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Abstract

In this paper we approach concepts of nonuniform dichotomy for the case of discrete skew-product semiflows. Different
characterizations of this properties are given from the point of view of invariant and strongly invariant projector families.
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1. Introduction

The (exponential) dichotomy is one of the most representative asymptotic properties studied for discrete
dynamical systems in (Alonso ef al., 1999), (Babutia & Megan, 2016), (Crai, 2016), (Elaydi & Janglajew,
1998), (Popa et al., 2012), (Sasu & Sasu, 2013) from various perspectives.

In (Sasu, 2009) is approached the uniform exponential dichotomy for discrete skew-product flows and in
(Birig et al., 2019) the authors investigate a generalization of the uniform exponential dichotomy property
(the uniform exponential splitting) for discrete skew-product semiflows. Other significant results for the
dichotomic behaviors of skew-product semiflows are obtained in (Biris & Megan, 2016), (Chow & Leiva,
1996) and (Huy & Phi, 2010).

Regarding the nonuniform dichotomies, M. Megan, B. Sasu and A. L. Sasu (Megan et al., 2002)) prove
interesting results for the nonuniform exponential dichotomy of evolution operators, using admissibility
techniques. Also, different concepts of nonuniform exponential dichotomy and nonuniform polynomial
dichotomy are studied in (Megan & Stoica, 2010) and (Stoica, 2016).

In this article, the properties of nonuniform dichotomy and nonuniform exponential dichotomy are
treated for discrete variational systems, described through discrete skew-product semiflows. We prove
criteria for the nonuniform exponential dichotomy, based on some results from (Przyluski & Rolewicz,
1984) and in particular we illustrate the characterizations for the nonuniform dichotomy.
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2. Preliminaries

In the following, we denote by ® a metric space, by X a Banach space and by B(X) the Banach algebra
of all bounded linear operators on X. The norms on X and on B(X) will be denoted by || - ||. Let I be the
identity operatoron X and ' = ® x X.

Definition 2.1. A mapping S : N x ® — O is called discrete semiflow on 0, if:
(ds1) S(0,0) =0, forall 6 € O;
(ds2) S(m,S(n,0)=S(m+n,6), forall m,n,0) € N* x @.

Example 1. We consider ® = Nand § : NxX® — 0, S(n,0) = n+ 6. It is immediate to see that S is a
discrete semiflow on ©.

Definition 2.2. We say that C : NxX® — B(X) is discrete cocycle over the discrete semiflow § : Nx® — ®
if:

(dcy) C(0,0) =1, forall 6 € O;
(dcy) C(m, S (n,0))C(n,6) = C(m + n,0), for all (m,n,d) € N*> x ©.

Example 2. Let U : {(m,n) € N> : m > n} — B(X) be a discrete evolution operator on the Banach space X
and ® = N. Then Cy : N X ©® — B(X), given by

Cy(n,0) =Un+06,0), forall (n,0)e Nx®
is a discrete cocycle over the discrete semiflow considered in Example 1.
Definition 2.3. The mapping 7 : NxI" — I, given by
n(n, 0, x) = (S (n,0),C(n,0)x),
where C is a discrete cocycle over a discrete semiflow S, is called discrete skew-product semiflow onT.
Definition 2.4. A mapping P : ® — B(X) is said to be family of projectors if:
P%(0) = P(0), forall 0 € ®.

If P: ® - B(X) is a family of projectors, then O : ® — B(X), defined by Q(0) = I — P(0) represents
the complementary family of projectors of P.

Definition 2.5. A family of projectors P : ® — B(X) is called
o invariant for a discrete skew-product semiflow 7 = (S, C) if:
P(S(n,0)C(n,0) = C(n,0)PH), forall (n,6)cNx0;
o strongly invariant for a discrete skew-product semiflow n = (S, C) if it is invariant for 7 and for all
(n,6) € N x @, the restriction C(n, 6) is an isomorphism from Ker P(6) to Ker P(S (1, 0)).

Remark 1. If P : ® — B(X) is a strongly invariant family of projectors for 7 = (S, C), then there exists
the mapping D : N X ® — B(X) such that for all (n,6) € N x © the bounded linear operator D(n, ) is an
isomorphism from Ker P(S (n, 0)) to Ker P(6) and

(1) C(n,0)D(n, 6)Q(S (n,0)) = O(S (n,0));
(i) D(n,0)C(n,0)Q(0) = Q(6);

(iii) Q(O)D(n,)Q(S (n,0)) = D(n,)Q(S (n,0)),
for all (n,0) € N x ©.
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3. Nonuniform dichotomic behaviors of discrete skew-product semiflows

Let 7 = (S, C) be a discrete skew-product semiflow and P : ® — B(X) an invariant family of projectors
for .

Definition 3.1. The pair (7, P) is called nonuniformly dichotomic if there exists a mapping N : ® — R}
such that:

(ndy) [IC(n, O)P(O)xI| < NO)IPO)x];
(ndy) 11QO)x]] < N(O)IIC(n, H)QO)xl,

forall (n,0,x) e NxT.

In particular, if N is a constant function, then (r, P) is named uniformly dichotomic.

Remark 2. The pair (7, P) admits a nonuniform dichotomy if and only if there exists N : @ — R} with:

(nd}) IC(m + n, O)PO)x]| < NO)IIC(n, O)PO)xll;
(ndy) [IC(n, 0)QO)x]l < N(@OIIC(m + n, 0)Q(0)xll,

for all (m,n, 0, x) € N2 xT.

Definition 3.2. We say that (r, P) is nonuniformly exponentially dichotomic if there exist two functions
N,v: ©® — R such that:

(nedy) ||C(n,0)P(0)xll < N(@)e™""||P(0)xll;
(neds) ¢"?"|Q(O)xI < N(®)IC(n,0)Q(O)xll,
forall (n,0,x) e NxT.
Remark 3. We observe that, if

e vis a constant function, then we have the concept of nonuniform exponential dichotomy in the classi-
cal sense;

e N and v are constant functions, then obtain the property of uniform exponential dichotomy.

Remark 4. The pair (rr, P) has a nonuniform exponential dichotomy if and only if there exist V,v : @ — R%
with:

(ned}) |IC(m + n,O)P(O)xl| < N(@)e™""|IC(n, 6)P(©O)xll;

(neds) ¢"”™|C(n, )QO)x]] < N@O)IIC(m + n,0)Q(6)x]\,

for all (m,n, 0, x) € N2 xT.

Remark 5. If the pair (, P) admits nonuniform exponential dichotomy, then (&, P) has nonuniform di-
chotomy.
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Theorem 3.1. The pair (r, P) is nonuniformly exponentially dichotomic if and only if there exist the func-
tions 6, A : @ — R such that the following conditions hold:

(dnedy) > & NIC(k, 0)PO)x]] < AOIIPO)]
k=n

(dneds) )" STOKIC(n— K, S (k, 0)O(S (k, ))xll < A(S (m, 6)IC(, S (m, 0))Q(S (m, )l
k=0

forall (n,0,x) e NxT.

N6
Proof. Necessity. We consider 6,A : ® — R*, with §(6) < v(0) and A() = 1+(0))V(9), forall 6 € ©.
— e -
Thus, for all (n, 0, x) € N X I'" we have:
(dned,)
+00 +00
2., HICk, PO < N©) Y P e X |PO)x] =
k=n k=0
=N(@) - WHP(Q)XH = AO)||PO)xl;
(dnedy)

ed(S(n,G))k”Q(S (n,0))C(n—k,Sk,0)x| <
k=0

< N(S(,0) ) eOSmNS@OMKIC(K, S (n, 6))Q(S (1, 0))C(n = k, S (k, O))xd| =
k=0

= N(S(n,0)) ) CODYS@ONC(n, S (n, )OS (n, 0))x]| =
k=0

1 = (S (.0)—v(S (n,0)(n+1)
= N(S (1.0) sy 1001 (1,6)Q(S (n. 6)x| <

< A(S (n, 0)IC(n, S (n, 0) O(S (n, 0))xl|.

Sufficiency. Considering k = n in the relations (dned,), respectively (dned,), it follows that
L OMNCn, POl < AB)IIPO)],

respectively
SN O(S (n, 9)x]| < A(S (n, O))IC (1, S (n, 0)O(S (1, O)xll,

for all (n, 0, x) € N x I', which implies that (7, P) has a nonuniform exponential dichotomy. ]

Corollary 3.2. The pair (r, P) is nonuniformly dichotomic if and only if there are 6, A : ® — R, such that
the conditions (dnedy) and (dned,) from Theorem 3.1 are verified.

Proof. It yields from Theorem 3.1 and Remark 5. O
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Proposition 1. Let P : ® — B(X) be a strongly invariant family of projectors for x = (S, C). Then (n, P) is
nonuniformly exponentially dichotomic if and only if there are two functions N,v : ® — R such that:
(ned) [IC(n, )P(O)Al] < N(B)e™ "||P(6)xl];
(neds) 11D(n, )OS (n, )l < N(©)e™ || (S (n, O)All,

forall (n,0,x) e NxT.

Proof. We show that (nedé) is equivalent with (ned,), using the relations from Remark 1.
For the implication (ned}) = (ned,), we have

" MQO)x]l = " ID(n, H)C(n, H)Q(O)x]| =

= "D"|D(n, ) Q(S (n, 0))C(n, O)xI| < NONIQ(S (n, 0))C(n, )| = N(B)IIC(n, O)Q(O)x]l,

forall (n,0,x) e NxT.
Similarly, for the converse implication (ned,) = (nedé), we deduce

1D(n, )Q(S (n, 0))xI| = |Q(O)D(n, H)Q(S (n, 6))x]| <

< N@)e™""|IC(n,0)QO)D(n, )Q(S (n, ))x]] = N(@)e™" (| Q(S (1, 0))l,
forall (n,0,x) e NxT. ]
Proposition 2. Let P : ® — B(X) be a strongly invariant family of projectors for 1 = (S, C). Then (m, P)
admits nonuniform dichotomy if and only if there exists N : ® — R} such that:
(ndy) [IC(n, O)P(O)x|| < N(O)IIPO)xI];
(nd3) 1ID(n, 0)Q(S (n, 0)xIl < NO)IQ(S (n, 6))x|,

forall (n,0,x) e NxT.
Proof. 1t is a consequence of Proposition 1. 0

Theorem 3.3. Let P : @ — B(X) be a strongly invariant family of projectors for n = (S, C). The pair (r, P)
is nonuniformly exponentially dichotomic if and only if there exist the functions 6, A : ®@ — R such that
the following conditions are satisfied:

(dnedy) " & NIC(k, 0)PO)x]] < AOIIPO)]
k=n

n

(dned;) " O PID( — k, S (k, 0)Q(S (n, 0))]] < AOIIOCS (n, )l
k=0

forall (n,6,x) e NxT.
. . . N(6)
Proof. Necessity. We consider 6, A : ® — R}, with 6(8) < v(6) and A(6) = 1= 0@ for all 6 € ©.
—e
The condition (dned;) follows as in Theorem 3.1.
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For (dnedé) we use Proposition 1 and we obtain

n

2,V UD(M — k.S (k, 0)Q(S (n, 6Dl < N(O) ), O™ D) O(S (n, )] <
k=0 k=0

eV O-56) _ JEO)-vO)n
< N(6) 000 _ | 1O(S (n, 0))x]| < AO)IQ(S (n, O))xl,

for all (n,0,x) e NxT.
Sufficiency. Taking k = n in the relation (dned), it results

EOC(n, 0)PO)xI| < AB)IPO)x]|
and for k = 0 in (dned}) we deduce
2O"D(n, 0)Q(S (n, ) x| < AOIQCS (1, 6))xll,

forall (n,0,x) e NxT.
Hence, (7, P) is nonuniformly exponentially dichotomic. O

Corollary 3.4. The pair (n, P) admits a nonuniform dichotomy if and only if there are 6, A : @ — R such
that the conditions (dned,) and (dned)) from Theorem 3.3 hold.

Proof. 1t follows from Theorem 3.3 and Remark 5. O
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Abstract

In the present paper we deal with the concept of polynomial stability in average. We obtain two characterization theorems
that describe the concept mentioned above. In fact, we give a logarithmic criterion and a Datko type theorem for cocycles of linear
operators.
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1. Introduction

The notion of exponential dichotomy in average was introduced by L.Barreira, D.Dragicevic and C.
Valls in (Barreira et al., 2016) and it includes the classical concept of uniform exponential dichotomy which
appeared due to Perron (Perron, 1930).

A particular case of this dichotomy behavior was studied by Dragicevic in (Dragicevic, 2016). He
obtained a version of a well known theorem of R. Datko for the notion of the exponential stability in
average for cocycles over flows and also for cocycles over maps.

In (Hai, 2019) the author uses the theory of Banach function spaces to characterize polynomially
bounded stochastic skew evolution semiflows. He talks about polynomial stability and polynomial instabil-
ity in mean. He states and proves results which are continuous or discrete-time versions of the Datko type
characterization theorems.

The objective of this paper is to find for cocycles of linear operators, similar approaches as in the expo-
nential case, for the classical polynomial stability concept, that has been studied in many papers (Barreira
& Valls, 2009), (Hai, 2015), (Megan et al., 2003). In fact, we consider cocycles acting on functions from L
and we give a version of a logarithmic criterion for the concept of polynomial stability in average which is
similar to the one obtained for the classical uniform polynomial stability concept. Also, we prove a Datko
type characterization theorem for the concept mentioned.

*Corresponding author
Email address: rovanaboruga@gmail.com (Rovana Boruga (Toma))
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2. Preliminaries

Let (Q, B, i) be a probability space. We consider the sets A = {(t, s) € R2 : stand T = {(¢, s,1y) €
R3 :t> s>t}

Definition 2.1. An application ¢ : R, X Q — Q is called a semiflow on Q if:
(s1) ¢(0,w) = w, for all w € Q.
(52) @t + 5, 0) = @(t, (s, w)), for all (¢, s, w) € A X Q.
Let X be a Banach space and B(X) the Banach algebra of all bounded linear operators acting on X.
Definition 2.2. An application @ : R, x Q — B(X) is called a cocycle over the semiflow ¢ if:
(c1) Yx € X the mapping (f, w) — (¢, w)x is Bochner measurable.
(c2) Y(t,w) e Ry x Q, AD(1,w) ™.
(c3) O(0,w) =1,YVw € Q, where I is the identity operator on X.
(ca) Ot + 5,w) = O, (5, W)) (s, w),Vt,s = 0,Yw € Q.

Let L'(Q, X, 1) be the Banach space of all Bochner measurable functions x : Q — X such that

llxlly == fllx(w)ll du(w) < .
Q

In what follows, we will denote by
D,,(t, 5) = D(t, w) O(s,w) ", Vt,5 > 0,Yw € Q.
Remark 2.1. It is easy to see that an evolution property holds:
Dy (1, 19) = Oy(t, s) Dy(s,t9), Vi =5 >19 >0, Yo € Q.

Indeed, @, (1, 5) Dy (s, 19) = O, ) D(s, w)~! D(s, ) D(ty, W)™ = B(1, W) D(ty, w)~! = O,(1, 10).

3. Polynomial stability in average

Definition 3.1. The cocycle @ : R, X Q — B(X) is polynomially stable in average if there exist N > 1 and
v > 0 such that

f 1D, S)X(w)||dﬂ(w)<M( ) f (@)l dia(w)

for all (¢, s, w) € A X Q.

Remark 3.1. The cocycle @ : Ry x Q — B(X) is polynomially stable in average if and only if there exist
N > 1 and v > 0 such that

f 1D (1, to)x(w)lldp(w) < N ( ) f 1D, (s, 10)x(w)|| dp(w)

forall (¢, 5,1y, w) € T X Q.
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Definition 3.2. The cocycle ®@ : R, x Q — B(X) is uniformly stable in average if there exists N > 1 such
that

f 1P (1, $)x(w)lldu(w) < N f llx(w)ll du(w)

for all (¢, s, w) € A X Q.

Remark 3.2. The cocycle @ : Ry x Q — B(X) is uniformly stable in average if and only if there exist N > 1
such that

f 101, t0)x()du(w) < N f D5, t0)x(@)] dia(@)
Q Q

for all (¢, s,ty), w) € T X Q.

Definition 3.3. The cocycle @ : R, x Q — B(X) has polynomial growth in average if there exist M > 1
and @ > 0 such that

f 1D, S)X(w)lldu(w)<M( ) f (@) du(w)

for all (¢, s, w) € A X Q.

Remark 3.3. The cocycle ® : R, x Q — B(X) has polynomial growth in average if and only if there exist
M > 1 and @ > 0 such that

f 10,0, fo)x(w)||dﬂ(w)<M( ) f 10, (s, 10)x(W)]| du(w)

for all (¢, s, tow) € T X Q.
In what follows, we will present a logarithmic criterion for the concept of polynomial stability in aver-
age.

Theorem 3.1. Let ® be a cocycle with polynomial growth in average. Then ® in polynomially stable in
average if and only if there exist a constant L > 1 such that:

f 190, s)x@)ldu(@)n - < f (@) du(w)

forallt,s > 1,w € Q.

Proof. Necessity. We suppose that @ is polynomially stable in average. Then, there exist N > 1 and v > 0

such that ,
r+1 r+1\ r+1
f |De (2, $)x(w)||du(w) In <N ( ) In f lIx(w)lldu(w).
s+ 1 s+ 1
Q Q

s+ 1

r+1 N
We consider the application f : [1,00) = R, f(#) = u™” Inu, where u = Pt Then, we obtain f(u) < —.

s ve
It results that

2

N
[lx(w)lldu(w), where L =1+ —.
ve

t+1

f (1, )x(@)lldpu(ew) In —— < L
s+ 1

Q
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t+1
Sufficiency. We denote by S = sup f [|Dy (2, s)x(w)|] du(w) In al .
t25>1 s+1
t
In (—)
s
48

(1) S€4nS <t< se4(n+1)S

Step 1. Letn 4 , with (¢, s) € A, s > 1. Then, the following inequalities hold:

2
r+1
()( +1) < forallt> s> 1.

Indeed, the first relation is a simple computation which uses the property of the whole part of a number
and the second inequality results immediately from the first one.
Step 2. We prove that

f 1905 syl dute) < 5 f (@) du(@), Vs > 1,¥ew € Q
Q

1 48
From — — 28 it results that
1+s
Do (se™ , )x(w)ll du(w) < ———= | I(lldu(w) £ —= | [Ix()lldu(w) = 5 | lIx(w)ll du(w).
1 1+ se Ine 2
Q n Q Q Q

1+s
Step 3. We show that

1
f D, (se™S, $)x(w)| du(w) < > f x(w)lldu(w), Vs > 1,Yw € Q.
Q
Indeed, using step 2, we have
f [P, (s, $)x(w)| du(w) = f D, (5™, 5e* DS )D(5e* DS | 5)]|x(w)l| dp(w) <
1 4(n—-1)S 1
<5 | IPu(se @)l dp) < -+ < o [ l()ldu(w).
Q Q

Step 4. We prove that @ is polynomially stable in average using the evolution property proved in
Remark [2.1] and the previous steps.

f 1D, (2, $)x(w)lldu(w) = f D (2, 5¢*5) - D, (56™™S | 5)x(w)lldu(w) <

Q
1 @ 1 4aS
< M(;t) e f ||x(a))||du(a))< f lx(w)lldu(w) <

1 + se#nS

< 2Me* (H 1) f Ix(w)lldu(w) < N ( ) f llx(w)lldp(w),
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In2
where N = 2Me*“S > 1 and v = :—S > 0.

Next, we will give a Datko type theorem for the polynomial stability in average concept.

Theorem 3.2. Let ® be a cocycle with polynomial growth in average. Then © is polynomially stable in
average if and only if there exist the constants D > 1 and d > 0 such that

f (r+ D! [ f |De (T, $)x(w)|] dy(a))] dr < D(s + 1)¢ f lIx(w)| dp(w), ¥s = 0,Yw € Q. (3.1)
K} Q Q

Proof. Neccesity. We suppose that @ is polynomially stable in average. Then, we have that there exist
N > 1,v > 0 such that for all d € [0, v):

f (r+ 1) 1[ f [, (7, $)x(w)|| du(w)] dr <N f (t+ 1) 1( ) f x()l du(w)dr =

~ N(s+ 1) f (@)l du(w) f (e e = (s 1) f (@)l du(w) <
K Q

< D(s + l)dfllx(w)ll du(w), where D = —

Sufficiency. We suppose that there exist D > 1 and d > 0 such that the integral inequality form the
theorem states. First, we discuss the case when d > 0.
Ift > 25+ 1 we have

i+ 1 f Dot 5)3()l dia(w) = f i+ 1) f 101, )X du(@)dr <
Q =1

(t+1)d t+1
7+1 \t+1

=1
2

(l + l)d d+a
f f 1Dt TP (7, ()] di(w)idr < 2M ) f Do (7, $)3()] du(w)dr <
=1 Q

< 2o+d+l f (r+ 14! f (7, $)x(w)|| du(w)dr < Ni(s + 1)? f lIx(w)|| du(w)dr.

r+1
If t € [s,25 + 1), we obtain that T < 2. Then using the growth property we obtain
s

(t+1)* f (|, (t, s)x(w)||du<w><(r+1)dM( ) f ()l du(w) < Na(s + 1)¢ f x| du(w).



R. Boruga/ Theory and Applications of Mathematics & Computer Science 9 (1) (2019) 8-13 13

So, it results that @ is polynomially stable in average. Next, we deal with the case when d = 0. From (3.2),
for d = 0 it results

(9]

f — f 1D (. t0) (@) du(w) | dr < D f 1D (s, o) x(@)| (), V(s 1) € AV € Q.
Q Q

N

Step 1. We prove that © is uniformly stable in average. Indeed, we consider firstly # > 2s + 1 and then
t € [s,2s + 1) and using similar techniques as in the first case we obtain the conclusion.
Step 2. We show that @ is polynomially stable in average using the logarithmic criterion.

t o

1 1 1
fllq)w(t, $)x(w)|| du(w) In L =f f”q)w(t’ s)x(w)|| du(w)dr < f— fllq)w(t, s)x(w)| du(w)dr <
s+ 1 T+ 1 T+ 1
Q Q Q

N

N

<D f (@)l du(w)
Q

From Theorem [3.1] it results that the cocycle @ is polynomially stable in average. O
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Abstract

This article introduces an application of Ghrist barcodethe study of persistent Betti numbers derived from vortewve
complexes found in triangulations of video frames. A Ghoestcode (also called a persistence barcode) is a topolodgtafpic-
tograph useful in representing the persistence of therfeatf changing shapes. The basic approach is to introduee &belian
group representation of intersecting filled polygons ortédug/centers of the triangles of Alexanéirnerves. An Alexandid nerve
is a maximal collection of triangles of a common vertex in thangulation of a finite, bounded planar region. In our ¢dke
planar region is a video frame. A Betti number is a count ofrthenber of generators is a finite Abelian group. The focus here
is on the persistent Betti numbers across sequences ofttated video frames. Each Betti number is mapped to an émty
Ghrist barcode. Two main results are given, namely, vorexes are Edelsbrunner-Harer nerve complexes and therBettier
of a vortex nerve equals+ 2 for a vortex nerve containingedges attached between a pair of vortex cycles in the nerve.

KeyWOI‘dS: Betti Number, Ghrist barcode, Hole, Topology of Data, Vieféerve, Video Frame Shape
2010 MSC NoPrimary 55N99 (Persistent Homology), Secondary 68U05 (@dational Geometry).

1. Introduction

This paper introduces an application of Ghrist barcodedassifying and identifying persistent video
frame shapes. This approach to video frame shape deteciibanalysis provides a foundation for machine
learning in the study of persistent video frame shapes afdba&ishrinking approach to solving the big data
problem relative to videos containing thousands of redonftames.

A Ghrist barcode, usually called gersistence barcodeis a topology-of-data pictograph that rep-
resents that appearance and disappearance of conse@divenses of video frames having a particu-
lar feature value Ghrist, 2008, (Ghrist, 2014 §5.13, pp. 104-106). The origin of topology-of-data
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barcodes can be traced back to H. Edelsbrunner, D. LetsclileAaZomorodian Edelsbrunneet al,,
2000, (Edelsbrunneet al., 2001). For a complete view of the landscape for a topology-o&dadrcode
viewed as a multiset of intervdissee J.A. Pere@grea2018). In this paper, the Betti number of a triangu-
lated video frame vortex nerve is represented by consecséiguences of frames with holes (gaps) between
them. Avortex nervds a collection of nesting, possibly overlapping filled exas attached to each other
and have nonempty intersectioflimad & Peters2018 Peters & Ramann2018 Peters201&,a, 2017).
A filled vortexhas a boundary that is a simple closed curve and a nonemptjoint

Each of the vertices on the edges of a vortex nerve is a bagrcgntersection of triangle median lines)
in a triangle in an Alexandf®nerve, introduced by P. AlexandfdAleksandrov] @lexandrdt, 1965 §31,
p. 39), Alexandrdf, 1926 and elaborated inAlexandroy 1956 Vol. 3, p. 67), Alexandrdf & Hopf,
1935 §2.11, pp. 160-161). Briefly, aAlexandrgf nerveis a collection of triangles with a common vertex.
Each vortex in a nerve has a corresponding cyclic group wirerating element and a Betti number equal
to 1. TheBetti numberof a vortex nerve is a count of the number of generating elésnerthe nerve. A
Ghrist barcode that records the multiple occurences ofovfdeEmes containing a vortex nerve with Betti
number equal to 8 is shown in Fify. Each row of the video Ghrist barcode in Figrepresents a sequence
of frames containing vortex nerves with the same Betti numbe

Vortex nerves in triangulated video frames are of importarthis work, since the edges and interior
each vortex nerve reveal paths of reflected light betweesmovichme dark regions (image holes). Because
of their very simple structure, it is a straightforward taskcompute the Betti number of a vortex nerve
and equally straightforward task to derive a Betti-numissda barcode for each triangulated video. For a
particular Betti number, it is common to find sequences oéweiffames separated by gaps (frames with a
different Betti number) in an entire video.

This observation leads to the production of focused (redlugieleos containing only video frames with
a particular video number. Here, the basic approach, iedfy B. Le, H. Nguyen and D. Trah€ et al,
2014, is to shrink a video so that only frames with a recurrentesonerve Betti number of interest are
retained in a video. Video shrinking.€., video frame elimination) is achieved by deleting thoseniea
represented by gaps between occurrences of frames théitcgiebecutive sequences of a particular vortex
nerve Betti number.

The end result of this approach is easy as well quick acceasmtgulated video frames that represent
a particular Betti number. The beneficial sidéeet of reduced videos is the focus on the minute changes
in persistent surface shapes recorded in sequences ofsfaitinea single Betti number orientation.

2. Preliminaries

This section briefly introduces the methods used to deriveexmerves and their Betti numbers as well
as the method used to construct the Ghrist barcode for a.vitle® sample barcode in Fig.is the result
of the following steps leading from the detection of a vomexve in each triangulated video frame to the
Betti number representing the video frame,,

Steps leading to a Ghrist barcode entry for video frame Betthumber: ‘

Stepl Select a videov, a sequence of framds[1],..., fr[i],..., fr[n].
Step2 Selecti™ frame fr[i] in video .

IMany thanks to Vidit Nanda for pointing this out.
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Figure 1. Video barcode entry derived from a triangulateaie with vortex nerve Betti ne= 8

Step3 Frame fr[i] frame maps to a set of centroidson image holes (black regions in a binary image).
Step4 Frame Centroids S map to a set of nonoverlapping triangles.
Step5 Triangles {A} map to a set of barycenteBs

Step6 Barycenters B map to a vortex nenq
Step7 Vortex nerve sk,..NrvE maps to Betti numbes3(sk,..NrvE), which is a count of the number

of overlapping vortexes plus the number of edges (calleg ¢ilmments) connected between the
vortexes.
Step8 Betti number B(sk,,..Nrv E) maps to an entry (tiny bar) in a row of a video Ghrist barcode.

frli] — | S |—[{a}|— | B |—|SKycicNIVE | - B(SksycicNIVE)

Figure 2. Stages from video franie[i] to Betti no. B(skeycicNrvE) of vortex nerve sk icNrvE

The mappings in steps 3 to 7 are shown in Rigeach mapping in these steps establishes a correspon-
dence between an object such as the set of cent®ids

Example 1. Mapping of a Frame Betti number to a Video Ghrist Bacode Entry.

An illustration of the steps leading to a video Ghrist bareaghtry is partially represented in Fid.. In
this case, a vortex nerve with Betti number equal to 8 is @erifvom a sample video frame. In Fify. the
barycenters of the triangles on the sample video frame afeped to a vortex nerve (step ﬁ
The Betti number of the nerve gkNrvE is mapped to a tiny bar entry in a row of the Ghrist barc p
8). [ |

2.1. Holes, geometric centroids, triangulation, baryesatand vortexes

A holeis a surface retion that absorbs light. In terms of opticatees that record the intensity and colour of

light reflected from visual scene surfaces, near zero iittesgorrespond to dark (hole) surface regions. In
the morphology of binary images, each centroid is the carfterass of a dark image region that corresponds
to a visual scene surface hole. Détbe a set of points in an-sided filled polygonal 2D region (called a
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homogeneous plateontaining vertices with coordinatés, y;),i = 1,...,nin the Euclidean plane. Then,
for example, the coordinateg, y. of the geometric centroid in a 2D homogeneous plate are

Xc:}Zn:Xi,YC:}Zn:)’i-
ni:l ni:l

For more about centroids, see M. BergBe(ger 1994 §3.4.2, pp. 76-77) (see, also, T. Apostol and M.A.
MnatsakanianApostol & Mnatsakanian2000).

Algorithm 1: Filled Delaunay Triangle Construction

Input : Set of centroidss on the holes (dark regions) on video frame
Output: Delaunay Triangle Construction

Let p be a centroid in S

Triangle Vertexes Selection StepSelect centroids @ € S nearest [ S;
Draw edgepg on a closed half planey that covers re S;

Draw edgepr on a closed half planey, that covers ¢t S;

5 Draw edgeqr on a closed half planeq, that covers e S;

6 Edges on trianglex(pqr) are on intersecting half planes coveringpqr);
7 /* a(pqr) is a filled Delaunay triangle/*

w N

N

A centroid is also called a seed point, which is used as awaertthe triangulation of a digital image.
By selecting a set of seed points that are image centroigghién possible to construct a collection of what
are known as Delaunay triangles on the image.d.etr be three neighbouring image centroids is a set of
seed pointsS and letrpg, mpr, mgr be three half planes. Then Alg.is used to construct a filled Delaunay
triangle.

Figure 3. Filled Delaunay triangle(pqr) barycenteib

The intersection of the median lines of a filled Delaunayntyla isbarycenterof the triangle.

Example 2. Sample Barycenters of Filled Dalaunay Triangles

LetA(pgr) be a filled Delaunay triangle as shown in Fi§). Themedian lineof a triangle is the line drawn
from a triangle vertex to the midpoint of the side oppositevtartex. Three median lines are also shown in
Fig. 3. The barycenter a&(pqr) is located at the intersection of the median lines (showh wigreene in
Fig. 3). Many other examples of Delaunay triangle barycenterssti@wvn in Fig.7. [ |

The important thing to notice here is that an image barycestiea centroidal triangle is in an image
region between the dark regions (holes) in a visual scen@thar words, the barycenter of a centroidal
triangle like A(pgr) in Fig. 3 originates from a surface shape that reflects or refradi$ tigmbarding the
surface.

Alexandroff Nerve Triangles— Barycentric Vortex Cycle: ‘
The next step is to select an Alexanfirnerve NnE (i.e., collection of triangles with a common vertex).
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SI‘cyclic E
(a)

Figure 4. Barycentric vortex cycle gkicE with generatoga) on an Alexandrff nerve

Next, locate the barycenters of the triangles in BlriThen draw edges of half planes between neighbouring
barycenters on nerve NiEv Each barycentric half plane covers the nucleus (commadex)eof NrvE. The
end result is a filledvortex cycle Edenoted by sk..E) that captures the reflected light from visual scene
surface shapes. Every vortex cycle has a geneeafdenoted bya)), wherea is the vertex of an edge in
the path between vertexand any other vertex in the cycle. A simplifying assumptioade here is that
every sequence of edges is a multiple of the edge that bedihy@rtexa. For more about generators, see
Section2.2

Example 3. Sample Barycentric Vortex Cycle on an Alexandrff Nerve.
Let sk,...E be a vortex cycle drawn on the barycenters of a filled Delaunaygle as shown in Fig4.
Many other examples of barycentric vortex cycles are shovig. 7. [ |

H. Edelsbrunner and J.L Hardtdelsbrunner & HareR01Q §ll1.2, p. 59) that, in general, aadelsbrunner-
Harer nervecomplex is a collection of sets that have nonempty inteimect

‘ Construction of a Barycentric Vortex Nerve: ‘

For the triangles bordering an Alexan@irmerve NnE, construct a filled vortex cycle gk.E’ on the
barycenters of the triangles. Each edge qf.sE’ is on a half plane that covers the common vertex of
the Alexandré nerve NnE.

Lemma 1. A collection of nesting, overlapping filled vortexes is arelSdrunner-Harer nerve complex.

Proof. Let sk,..E, sk,«.E" be filled vortex cycles on Alexandfitnerve NnE. sk.,..E, sk,.E" are nesting
vortexes, since vortex gk..E is in the interior of sk.E’. We have

SKycIichVE = {SK:yclicEa SKycIicE/ : SI‘:yclicE N SK:ycIicE’ * ®} s

since each vortex cycle is filled and the portion of the placeupied by sk...E’ includes sk..E. Hence,
skycicNIVE is an Edelsbrunner-Harer nerve complex. O

For each video frame, it is possible to extend outward fronargdentric Alexandrfd vortex cycle to
form multiple nesting filled vortex cycles, one inside thbeat In that case, the collection of vortex cycles
form a large vortex nerve.

Theorem 1. A collection of nesting, overlapping filled vortex cyclesaofriangulated video frame is an
Edelsbrunner-Harer nerve complex.

Proof. Let sk,.NrvE be a collection of nesting, overlapping filled vortex cyatesa video frame. From
Lemmal, we have

SKyeicNIVE = {skcyc.icE € SkyyeicNIVE : ﬂ SkyeicE # 0 # (Z)}.
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Hence, sk...NrvE is a nerve complex. O

Example 4. Sample Video Fame Vortex Nerve Complexes

A trio of video frame vortex nerve complexes are shown inzign Fig. 5.1, for example, a collection of 4

nesting, overlapping vortexes are shown with

vortex.1 (innermosivortex) with blue edges with 12 vertices. There is a cusp filameath#d between
the 12 vertices on the blue vortex and

vortex.2 (vortex ) with more than 20 vertices. Again, there is a cusp filametached between more than
20 vertices on the blue vortex and

vortex.3 (vortex ) with more than 30 vertices. Again, there is a cusp filametached between more than
30 vertices on the blue vortex and

vortex.4 (vortex ) with more than 30 vertices.

The vortex nerve in Figh.2consists of a pair of overlapping vortexes with 12 cusp fitsattached between

the vortexes. A pair of vortex nerves on the same triangdilaigeo frame are shown in Fi§.3. [

2.2. Cyclic groups representing video frame vortex nerves.

Let sk be a filled vortexi(e., also called a skeleton) on a triangulated video frame. HEnces in vortex
skE are path-connected. This means that there is path betweey @air of vertices in k. In addition,
each sk is bi-directional in a vortex nerve. So, for example, if \e#t p, q are on sk, a movement
(traversal) fromp to q is represented bp + g and a reverse traversal is represented-gy p.

The + between path edges reaaisach to. No movement is represented py (—p) = Op. In effect,
every membelp in skE has an inverse-p and o represents an identity element in an algebraic group
view of skE. Notice that+ operation is Abelian. To see this, do addition modulo 2 onctbefficients in a
movement fromp to q, e.g,

p+qg+— 1+ 1mod2= 0, and
g+ p+— 1+ 1mod2=0.

For such a group, we write (Bk+) (called acyclic Abelian groujp A generatorof skeleton sk (denoted
by (a)) of such a group is a minimum length edge with a distinguisis¢atting vertexa € ske. LetV be
an ordered set df path-connected vertices in vortexisknamely,

k ordered vertices

V = {VOavlasvla’Vk—l}
generator (a) = minimum edge-length

—_——
@ = lIva — voll .

Example 5. Sample Generator of a Cyclic Group
Let generatora) represented by vertédb in vortex skB in Figl, which is the starting vertex in a minimum
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5.3: Frame dual vortex nerves

Figure 5. Sample triangulated frames for video 1.
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length edgdblb. Then, for example, verteX g skB can written as a multiple of ed@elb, i.e.,

p2:m+]@+---+m
maps to a multiple of generator(b)

— 1b+1b+---+1b

Figure 6. Sample Vortex Nerve with 6 filaments attached betwertexes

2.3. Cyclic groups for filament edges between vortexes.

An edge attached between the inner and outer vortexes intexvaerve is called a filament, which has a
cyclic group representation. Letbe a filament (denoted by &)l between a pair of vortexes. A filament is
bi-directional,i.e., a filament can be traversed in either the forward)(or reverse direction (-e) relative to
a starting vertex on the filament. Hence, a filment is its owrlige and we write

no traversal of filament e
e+(-e)=e-e=0.

Notice that traversal of #l ktimes is the same as traversing filamemwhe time. Hence,

filament eis an identity element
e+---+e=e+e=e

Obviously, the traversal operationis Abelian,e + € = € + e. Consequently, a filament with the binary
operation+ is an Abelian group, represented ffifamente, +). Every filament is its own generator. A
filament Abelian group is also written &&) , +).

Example 6. Multiple Filaments Attached Between Vortexes
Let a vortex nerve NrvE contains 6 filaments attached betweewortexegay) , (b) is shown in Fig6, each
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with its own generator, namely,
Six Filament Groups

(e1),(&),...,(es).

Notice that each pair of vertices in NrvE is path-connectéttis means that each member of the vortex
nerve can be written as a linear combination of the genemat&or example, consider the pair of vertexes
2a,0b. Then we have

Traverse edges starting aka and ending with Ob
Ob = 2a+0e+ le+ 1b + Ob. [ |

From Example5, we have a way of representing a vortex nerve in terms of meggors. That is, we

can write _ )
Vortex nerve is a collection of generators

NIvE = {(@),(e1), (&), ....(es).(b)}.

Figure 7. Barycentric vortex nerve on a triangulated videote

2.4. Betti number for a vortex nerve on a triangulated vidaonie.

Notice that a vortex nerve is a collection vortexes that ét@ched to each other. This means that every
pair of vertices in a vortex nerve is path-connected. Alsticedhat each skeletal vortex in a vortex nerve
is represented by a cyclic Abelian group with its own geraratn efect, every vortex nerve has a free
Abelian group representation. f#ee abelian groupis an Abelian group with multiple generatoiisg.,
every element of the group can be writtenpag;a for generatorsg;) in G.

|
A Betti number is a count of the number of generators (ranlkg free Abelian groupGiblin, 2016
p. 151). This observation coupled with what we know aboutdyaic Abelian group representation of
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each skeletal vortex and of each bi-directional sequen@elgés attached between the vortexes, leads to
the following result.

Theorem 2. (Peters202Q §4.13, p. 263)

Let B(sk,.i.NrvE) be the Betti number of gk.NrvE. A free Abelian group representation of,sKNrvE
includes k generators of cusp filament cyclic groups and temegators of the pair of the pair of cyclic
groups representing the nesting, non-concentric nerveexes. HenceB(sk,.;:NrvE) = k + 2.

Example 7. A sample optical vortex nerve on the triangles of an Alexafidierve on a triangulated video
frame, is shown in Fig7. Briefly, notice that there is a pair of nesting, non-condentortexes with 9
attached between inner and outer vortex vertexes, eachtwitiivn generator. Hence, from Theor@ythe
Betti number equals 2 10 = 12 for this sample nerve. R

2.5. Maximal Nerve Complexes (MNCs)

Of patrticular interest among all of the possible Alexarfirerves on a triangulated video frame are
those nerves that have a maximal number of triangles atiaitha particular vertex. In a triangulation
of frame centroids, anaximal nerve comple®MINC) has the highest number of centroids surrounding the
common centroid at its center. Each of the MNC vertexes isnéraie of an image dark region (hole).
For this reason, an MNC has the highest number of dark redimiss) in the triangulation of video frame
centroids. Also, the barycenters of the triangles on an Mbatween image holes, since each barycenter
is in that part of a triangle between the centroids on frant& degions. Hence, connected barycenters
model paths for light from either reflected or refracted tiffom visual scene surface shapes recorded in a
video frame. That is, the edge between a pair of barycentesteises across a visual scene surface where
there is reflected or refracted light. Consequently, witlo@ex nerve on an MNC, we will find the highest
concentration of contrasting light and dark regions in aagm It is well-known that a concentration of
surface holes defines a surface shape. In other words, asstiape represented by an MNC will have the
highest definitionij.e., highest concentration of holes pinpointed by their cedsio

Example 8. Sample Video Frame MNC
A sample video frame MNC is shown the majenta-coloured megidig. 7. [ |

3. Betti Number-Based Video Barcode

A Betti number-based videbarcodeis a pictograph that records one or more occurrences of Betti
numbers derived from vortex nerves across sequences ofjtteted frames. In our case, a frame Betti
number tells us the number of generators in the frame vorexen A repetition of the same Betti number
across a sequence of consecutive frames tells us that thegrilar shape outlined by a vortex nerve that
recurs on the frames.

In the video barcode introduced in the paper, there is alldorrespondence between a frame number
and a Betti number. There can be more than one vortex nervéframa. Hence, a frame with more than
one Betti number will result in the more than one bar in theesapiumn of the video barcode. The steps
to construct a video barcode are given in Alg.

Example 9. Sample Video Barcodes
Sample video barcodes are given in Rigl and Fig.8.2 A persistent video frame Betti number is repre-
sented by a row of contiguous bars. W
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Algorithm 2: Video Barcode Construction Method
input : Avideolm of sizew x | and f frames
output: A triangulated videav x | and f frames

1 while count< f do

2 count « count + 1;

3 Read the video and géame(coun).;

4 matCentroids < skelSeedPoints (frame(coun)) ;

5 triDelaunay « Perform Delaunay triangulation omatCentroids.;

6 plot (triDelaunay);

7 mncNode « Calculate the most common nodéetiiDelaunay ;

8 matBarycenters « Calculate barycenters of triangles triDelaunay ;

9 mncBarycenters « Select barycenters surroundimgncNode from matBarycenters ;
10 plot (matBarycenters);

11 bettyNo (count)(j) =1,

12 | whilei < length(mncNodée do

13 kvortex (i)(1) « mncBarycenters;

14 je< 1

15 while polygon (spkComplex (i)(j) ) encapsulatspkComplex(i)(j — 1) do

16 kvortex (i)(j) < Calculate immediate neighboring triangles

17 spkComplex (i)(j) « Select barycenters ddvortex (i)(j) from matBarycenters ;
18 plot (polygon(spkComplex (i)(j)));

19 filaments « Connect each vertices apkComplex (i)(j-1) to vertices inspkComplex

M0 ;

20 plot (filaments);
21 bettyNo (count)(j) = bettyNo (count)(j) + length (spkComplex (i)(j-1)) +1;
22 Write frame ;

23 plot (bettyNo);

The gaps between the sequences of contiguous bars areamp@ince each column in a video barcode
corresponds to a video frame, a barcode row containing aesequof contiguous bars corresponds to
sequence of video frames that we can identify. As a resuth eaw containing persistent Betti numbers
leads to the production of a new video in which only framestaiming vortex nerves with similar shapes
appear in the video. Each row video containing a persisteface shape give us a closer look at the minute
changes in surfaces covered by a vortex nerve with the sarttierBenber. This leads to the following
provable observations.

Observation 1. A Betti number-based video barcode row with no gaps indictite presence of a vortex
nerve with approximately the same shape in each video frame®

Observation 2. A Betti number-based video barcode row with large gaps batveecurrences of a Betti
number indicates the presence of dissimilar vortex nentk dissimilar shapes in large number of video
frames. |

A pair of vortex nerves sk;.NrvE, sk,.,.NrvE’ are descriptively close, provided the vortex nerves have
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8.2: Barcode for a 2nd triangulated video

Figure 8. Sample Video Ghrist Barcodes for Two Videos

the same descriptiomne., a feature vectod(sk,,.,.NrvE) that describes sk;.NrvE will match the feature
vectord(sk,.:NrvE’). This is leads to the following observation.

Observation 3. A Betti number-based video barcode row with a persistenti Bember across the video
frames implies the presence of descriptively close vorexas on the frames. B

4. Time complexity Analysis

Fig.9 shows the results of the time complexity analysis Far algorithm. In order to calculate the
theoretical time complexity several assumptions were made time taken for built-in functions were
not considered; for example time taken to import the vidaok, save the triangulated frames, initializing
variables, inner working of loops etc. Addition, Subtranti Multiplication, Division were taken as 4
different calculations.Furthermore, allocation of valuesamay search function were considered to be one
calculation.

The theoretically obtained time complexity in terms of bim@ation wasnr? wheremis the number
of MNCs andn is the number of centroids.

In order to obtain the actual time complexity plot, randoménerated points were used. This ensures
that the generated points are not based on a particular iarab®ill give more generic results. To plot the
two graphs in the same plot, a scaling fadtavas calculated. So the final theoretical graph shown irfFig.
is in the form ofkmr?. The value ok was experimentally found to be(b26zs.

The theoretical graph is shown in green dotted line. Theshtime complexity is shown using the blue
solid line. The number of MNCs that were generated are shonthdogray stem plot. The red dotted line
shows thekr? graph where the MNC number was not considered. It is evidemn the plots that both
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number of centroids and the number of MNGEeats the time complexity of the algorithm. Furthermore,
thekmr? graph follows the real time complexity graph very closely.
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Figure 9. Time complexity.

5. Conclusion

A video, Betti nuumber-based form of Ghrist barcode has leteoduced in this paper. This form of
Ghrist barcode is useful in tracking the persistence obsarShapes recorded in sequences of video frames.
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