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Abstract
In this paper, firstly, the waves P and T in ECG of kittens and adult cats were converted to fuzzy sets. After,

using to entropy definition for fuzzy sets, we have assigned an entropy to waves P and T for kittens and adult cats.
Also, using to some new formulates, the graphical representation of waves P and T for normal or diseased heart of
cats were given.
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1. Introduction

The theoretical and practical applications of fuzzy sets have increased considerably since
Zadeh’s paper, (see (Abdollahian et al., 2010) ; (Bilgin, 2003); (Dhar, 2013); (Diamond & Kloe-
den, 1994); (Goetschel & Voxman, 1986); (Li et al., 1995); (Iwamoto & et al, 2007); (Kosko,
1986); (Matloka, 1986); Tong et al. (2007); (Zadeh, 1965) and (Zararsız & Şengönül, 2013)). In
medicine, cardiologists are try to predetermine some heart diseases from electrocardiographs and
this processes is also valid for veterinary medicine. Some fine details may not be seen in graphical
representation of the waves electrocardiographs of human or animals. It is a fact that, long time
can be spent for interpreting electrocardiographs (shortly; ECG) and sometimes small but impor-
tant details can be unnoticed or ECG’s can be misleading for junior vet or cardiologists. In this
paper, by using entropy concept, we have obtained numerical values for ECGs of kittens and adult
cats. These numerical values are the best way to observe fine details in the waves such as P, PQR
complex and T . The numerical values are also very clear and can be easily interpreted for any
person according to graphical representation of ECG’s. It will be seen that these computations are
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completely different than computations of (Czogala & Leski, 2000). Let us give some background
information on fuzzy sets and entropy of the fuzzy sets.

Let X be nonempty set. According to Zadeh, a fuzzy subset of X is a nonempty subset
{(x, u(x)) : x ∈X } of X × [0, 1] for some function u : X → [0, 1], (Diamond & Kloeden, 1994).
Consider a function u : R → [0, 1] as a subset of a nonempty base space R. The function u is
called membership function of the fuzzy set u.

Furthermore, we know that shape similarity of the membership functions does not reflect the
conception of itself, but it will be used for examining the context of the membership functions.
Whether a particular shape is suitable or not can be determined only in the context of a particular
application. However, that many applications are not overly sensitive to variations in the shape.
In such cases, it is convenient to use a simple shape, such as the triangular shape of membership
function. Let us define fuzzy set u on the set R with membership function as follows:

u(x) =


hu

u1−u0
(x − u0), x ∈ [u0, u1)

−hu
u2−u1

(x − u1) + hu, x ∈ [u1, u2]
0, others

, (1.1)

where the notations hu denotes height of the fuzzy sets u. For brief, we write triple (u0, u1 : hu, u2)
for fuzzy set u. Notation F be the set of the all fuzzy sets in the form u = (u0, u1 : hu, u2) on the
R.

Define the function S as follows:

S : F ×F → R, S (u, v) =
min{hu, hv}
max{hu, hv}

[1 − 1
3

2∑
k=0

|uk − vk|]. (1.2)

The function S is called similarity degree between the fuzzy sets u and v. If S (u, v) = 1
then we say that u is full similar to v or vice versa, we say that v is completely similar to u. If
0 < S (u, v) < 1 then we say that the fuzzy set u is S - similar to the fuzzy set v (or the fuzzy set v
is S - similar to the fuzzy set u), if S (u, v) ≤ 0 we say that, u is not similar to v. Similar definitions
can be found in (Sridevi & Nadarajan, 2009) and (Yıldız & Şengönül, 2014).

If we capture numerous ECG for any human or animal, it can be considered as a finite sequence
of ECG’s. Therefore we will give some definitions and properties about sequences of fuzzy sets.

The set

w(F ) = {(uk) | u : N→ F, u(k) = (uk) = ((uk
0, u

k
1 : huk , uk

2))} (1.3)

is called sequence of fuzzy sets. Any element of the set w(F ) is called sequences of fuzzy sets,
where uk

0, u
k
1, u

k
2 ∈ R, uk

0 ≤ uk
1 ≤ uk

2 and the mean of notation uk
1 : huk is the kth therm of the sequence

(uk) takes highest membership degree at uk
1 and this membership degree is equal to huk . If for all

k ∈ N, huk = 1 then the set w(F ) turns into sequence set of fuzzy numbers and if uk
0 = uk

1 = uk
2 and

huk
1
= 1 the set w(F ) turns in to ordinary sequence space of the real numbers, respectively.
An another important class of the sequence set of the fuzzy sets is defined by

φ(F ) = {(uk) ∈ w(F ) | ∃k0 ∈ N,∀k ≥ k0 : uk = 0}. (1.4)

Clearly, the sequences of fuzzy sets can obtain by fuzzification of the term by term of sequence of
real numbers with a suitable method.
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Definition 1.1. Let us define the function S as follows:

S : w(F ) × w(F )→ R, S (un, vn) =
inf{hun , hvn}
sup{hun , hvn}

[1 − 1
3

lim
n

2∑
k=0

|un
k − vn

k |] = λ. (1.5)

The function S is called similarity degree between sequences of fuzzy sets (un) and (vn). If
S (un, vn) = 1 then we say that (un) is completely similar to the sequence (vn), if 0 < S (un, vn) =
λ < 1 then we say that the sequence (un) is λ- similar to the sequence (vn), if λ ≤ 0 we say that,
(un) is not similar to (vn).

In the fuzzy set theory, the fuzziness of a fuzzy set is a important matter and there are many
method to measure the fuzziness of a fuzzy set. At first, the fuzziness was thought to be the
distance between fuzzy set and its nearest nonfuzzy set. Later, the entropy was used instead of of
fuzziness (de Luca & Termini, 1972) and has received attention, recently (Wang & Chui, 2000).
Well, then what is the entropy?

Definition 1.2. (Zimmermann, 1991) Let u ∈ F and u(x) be the membership function of the fuzzy
set u and consider the function H : F → R+. If the function H satisfies conditions below,

1. H(u) = 0 iff u is crisp set,
2. H(u) has a unique maximum, if u(x) = 1

2 , for all x ∈ R
3. For u, v ∈ F , if v(x) ≤ u(x) for u(x) ≤ 1

2 and u(x) ≤ v(x) for u(x) ≥ 1
2 then H(u) ≥ H(v),

4. H(uc) = H(u), where uc is the complement of the fuzzy set u

then the H(u) is called entropy of the fuzzy set u.

Let suppose that u = u(x) be membership function of the fuzzy set u and the function h :
[0, 1]→ [0, 1] satisfies the following properties:

1. Monotonically increasing at [0, 1
2 ] and decreasing [ 1

2 , 1],
2. h(x) = 0 if x = 0 and h(x) = 1 if x = 1

2 .

The function h is called entropy function and the equality H(u(x)) = h(u(x)) holds for x ∈ R.
Some well known entropy functions are given as follows:

h1(x) = 4x(1 − x), h2(x) = −x ln x − (1 − x) ln(1 − x), h3(x) = min{2x, 2 − 2x} and

h4(x) =
{

2x, x ∈ [0, 1
2 ]

2(1 − x), x ∈ [ 1
2 , 1] .

Note that the function h1 is the logistic function, h2 is called Shannon function and h3 is the tent
function.

Let X be a continuous universal set. The total entropy of the fuzzy set u on the X is defined

e(u) =
∫

x∈X
h(u(x))p(x)dx (1.6)

where p(x) is the probability density function of the available data in X (Pedrycz, 1994), (Pedrycz
& Gomide, 2007). If we take p(x) = 1 in the (1.6) then the e(u) is called entropy of the fuzzy set
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u. It is known that the value of e(u) is depend on support of the fuzzy set u. Let u be fuzzy set on
the set R with membership function (1.1), then we see that the total entropy of fuzzy set u is equal
to

e(u) = c(2hu −
4
3

h2
u)ℓ(u) (1.7)

for p(x) = c and h = h1, where ℓ(u) = max{x − y : x, y ∈ {x ∈ R : u(x) > 0}}. We know that
each fuzzy set or a fuzzy number correspond to the fuzzy thoughts in the idea of user. So, any
sequence of the fuzzy sets can be seen as sequence of thoughts or sequence fuzzy information.
This sequence of fuzzy information may contain an useful information or not contain an useful
information. But we can use terms of this sequence to obtain meaningful information from this
sequence.

Definition 1.3. Let h be an entropy function, (uk) be a sequence of fuzzy sets (or fuzzy thought)
and pk(x) be probability density function of the available data in R for every k ∈ N. Then sequence

e(uk) =
∫

x∈R
h(uk(x))pk(x)dx (1.8)

is called total entropy sequence of the fuzzy sets (uk). If the probability density function pk(x) = 1
is fix, for all k ∈ N, then the (1.8) is called entropy sequence of the fuzzy sets u = (uk).

If we take u = (uk) ∈ w(F ), pk(x) = ck ∈ (0, 1] and h(u) = h1(u) then from (1.8) we have

e(uk) = (ck(2huk − 4
3

h2
uk)ℓ(uk)), (1.9)

here and other places in the text, the notation 2h2
uk denotes second power of the huk . If we choose

the probability density functions pk(x) = c ∈ (0, 1] for all k ∈ N and huk = 1 for all k ∈ N in the
(1.9) then we see that e(uk) = 2

3cℓ(uk).
Let us suppose that u = (uk) be sequences of the fuzzy numbers (that is huk = 1), h(u) = h1(u)

and pk(x) = ck = 1 ∈ (0, 1] for all k ∈ N. Then the entropy e(uk) of the sequence of fuzzy numbers
(uk) is equal to

e(uk) =
2
3
ℓ(uk). (1.10)

Clearly, if ℓ(uk) = 0 for every k ∈ N then the sequence (uk) returns to sequence of real numbers.
In this case the entropy of the total entropy sequence is zero for sequences of real numbers. For
example, let u = (uk) be ((1, 1 : 1, 1)), then from (1.10) we obtain zeros sequence. Furthermore,
the entropy sequence (ek) can not be convergent but be bounded.

Definition 1.4. Let A = (ank) be a lower triangular infinite matrix of real or complex numbers
and ∑

k

ank

∫
x∈R

h(uk(x))pk(x)dx→ E, n→ ∞. (1.11)

The real number E is called total A -entropy of the sequence (uk) of fuzzy sets, if it exists.
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Definition 1.5. Let suppose that the u = (uk) be a sequence of fuzzy sets, pk(x) = ck, (ck ∈ (0, 1])
for all k ∈ N and

lim
n

∑
k

ank

∫
x∈R

h(uk(x))pk(x)dx = lim
n

∑
k

ankck(2huk − 4
3

h2
uk)ℓ(uk) = E1. (1.12)

The real number E1 is called total A - entropy according to entropy function h and pk(x) = ck is
probability density functions of the sequence u = (uk) of fuzzy sets, and it is shown by T A

e (uk).

Let n, k ∈ N, α > −1, pk(x) = ck and
(

n−k+α−1
n−k

)
,
(

n+α
n

)
are binomial confidence. Let us define

infinite matrices A = (ank) and Cα = (cαnk) as follows:

ank =

{
1, 0 ≤ k ≤ n
0, otherwise and cαnk =

 (n−k+α−1
n−k )

(n+α
n ) , 0 ≤ k ≤ n

0, otherwise
.

If we write the matrices A and Cα instead of A in the expression (1.12) then we have

lim
n

n∑
k=0

∫
x∈R

h(uk(x))pk(x)dx = T A
e (uk) (1.13)

and

lim
n

1(
n+α

n

) n∑
k=0

(
n − k + α − 1

n − k

) ∫
x∈R

h(ui(x))pk(x)dx = TCα
e (uk), (1.14)

respectively.
The expressions (1.13) and (1.14) are called A- total entropy and total Cesàro entropy of or-

der α of the sequence u = (uk) of fuzzy sets, according to probability density functions pk(x),
respectively. If we take α = 1 and pk(x) = ck from (1.14) we see that

TC1

e (uk) = lim
n

1
n + 1

n∑
k=0

ck(2huk
1
− 4

3
h2

uk
1
)ℓ(uk) (1.15)

which is called Cesàro normalized entropy of order 1 (shortly, Cesàro entropy) of the sequence
u = (uk) of fuzzy sets.

It is easily prove that, if

TC1

e (uk) = lim
n

1
n + 1

n∑
k=0

ck(2huk
1
− 4

3
h2

uk
1
)ℓ(uk) = a

then

TC1

e (uk) = lim
n

s
n + r

n∑
k=0

ck(2huk
1
− 4

3
h2

uk
1
)ℓ(uk) = a
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where r, s ∈ R. For example, the Cesàro entropy of sequence (uk) = (( k
k+1 − t1,

k
k+1 : 1, k

k+1 + t2)) is

TC
e (uk) = lim

n

2(t2 + t1)
3(n + 1)

n∑
k=0

ck, (1.16)

where we assume that t1 < t2 and t1, t2 ∈ R and huk = 1 for all k ∈ N. If the series
∑

k ck is con-
vergent then the value TeC1 (uk) exists every time. As a comment of the (1.13) and (1.16), we point
out that we can obtain an useful information from infinite fuzzy information by a suitable method.
But, the total entropy and Cesàro entropy of the sequence v defined by v = ((vk

0, v
k
1, v

k
2)) = ((−k, 1 :

1, k + 2)) is infinite. This means that, the sequence v does not contain any useful information for
us.

Since, every real number is also a fuzzy number then we can give following corollary:

Corollary 1.1. Let the sequence r = (rk) be a convergent or divergent sequence of real numbers.
Then the all entropies of the r = (rk) are zero.

Corollary 1.1 can be interpreted as, in the any information sequence, if the elements of infor-
mation sequence are crisp information then we obtain a crisp information from this sequence.

Proposition 1.1. If the fuzziness of the any sequence of fuzzy set is constantly increasing then
the entropy is constantly grow and maybe is infinite. On the contrary if the fuzzyness of the any
sequence of fuzzy set is constantly decreasing then the entropy is decreases and becomes 0.

It is calculated in (Chin, 2006) that the entropy of any fuzzy number is 2c(u2−u0)
3 . Therefore, in

generally, if we take h = h1 and pi(x) = c, for every i ∈ N, then entropy of the sequence of fuzzy
numbers is given with (1.10).

In next section, we will investigate entropy of the electrocardiogram for cats and give some
comments. We know that, an electrocardiogram is an important test for any relevant heart diseases
of human or animals, the shortest way of identifying heart problems and you can detects cardiac
(heart) abnormalities, as an example heart attacks, an enlarged heard or abnormal heart rhythms
may cause heart failure, abnormal position of heart can be given, by measuring the electrical
activity generated by the heart as it contacts, (for more, see (de Luna, 1987)).

2. The Applications to ECG’s of the Idea Entropy and Some Comments

It is a fact that, the long time can be spent for interpreting electrocardiographs results by cardi-
ologists or vet and sometimes small but important details can be unnoticed because of complexity
of the ECG. The same situation is also valid for computerized electrocardiography. According
to us, numerical values for ECG outputs can be more reliable for cardiologists and vet for inter-
preting ECG results. Furthermore, if the outputs are numerical then the consultation may be easy
than consultation of the ECG papers. In this section we have proposed a new consultation method
for cardiac problems of cats which will be based upon numerical value of ECGs, ( see (Brady &
Rosen, 2005); (Khan, 2003) for ECG).

Quite simply every heart beats can be considered as term of a sequence. Using to the waves
P, QRS complex and T , we can construct the waves sequence ((Pk, (QRS )k),Tk)), where k is beat
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number or number of measurements and is finite. The graphical shapes of the waves P, QRS
complex and T can imagine a membership functions a fuzzy set. With this idea, we can appoint
an entropy value using to these membership functions which will be described below.

The entropy of the sequence ((Pk, (QRS )k),Tk)) can compute for finite or infinite many k and
this computation gives to us a numerical value, not graphical. From numerical value, we can
determine some cardiac problems. Namely, the sequence ((Pk, (QRS )k),Tk)) can divide three part
for calculate entropy as follows:

1. The entropy of the sequence (Pk) waves,
2. The entropy of the sequence ((QRS )k)) complexes,
3. The entropy of the sequence (Tk) waves.

In this case, we can assume that the total entropy of the heart is equal to

E = e(Pk) + e((QRS )k) + e(Tk). (2.1)

Now we will summarize some information about electrocardiographs without deepening the
subject.

The electrocardiograph records the electrical activity of the heart muscle and displays this data
as a trace on a screen or on paper and, later, this data is interpreted by a medical practitioner.
ECG’s from healthy hearts have a characteristic shape. Any irregularity in the heart rhythm or
damage to the heart muscle can change the electrical activity of heart which leads to change in the
shape of ECG’s according to patients. Using this changes, we can investigate entropy of the heart
rhythm or damage entropy of the heart muscle. It is known that, the QRS complex reflect the rapid
depolarization of the right and left ventricles. The ventricles have a large muscle mass compared
to the atria so the QRS complex usually has a much larger amplitude than the P- wave.

Furthermore, the heart movements are kept in check by various charges and pulses that change
slightly on exertion, blood chemistry and strain. According to us, residence of skin and conduc-
tivity of blood are important for ECG, too. The conductivity and residence of the skin are vary
according to some minerals in the blood plasma such as calcium, chloride, potassium or glucose
concentration in a diabetic patients blood. So we have to consider the conductivity of blood in the
calculations of transmitting electric current and therefore in the entropy calculations for a heart.
For blood conductivity properties, you can read to (Hirsch & et al, 1950).

2.1. The Entropy of The Waves Sequence (Pk) and Some Comments
Primary wave of a heart in ECG, is called P wave and shortly denoted with P, have an entropy

value and it can be compute as follows:

e(P) =
∫

x∈R
h1(P(x))r(x)dx, (2.2)

where the function P(x) is membership function of the fuzzy P set that we will correspond to
wave P and the function r(x) is conductivity function (generally the function r is fix) of the body .

Experimental measurements showed that to us for kittens, the wave P has maximal height
about 0.12mV , duration is shorter than 0.3 seconds but these values for adult cats are 0.2mV
second and 0.04 (Lourenço & Ferreira, 2003).
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Using the maximal height and duration of wave P as 0.12 second and 0.3 mV, respectively,
the membership function P1(x) of the fuzzy P1 set which is correspond to wave P for kittens can
write as follows:

P1(x) =


0.8x, x ∈ [0, 0.15]

0.24 − 0.8x, x ∈ (0.15, 0.30]
0, otherwise

. (2.3)

Furthermore, the membership function P2(x) of the fuzzy P2 set which is correspond to wave P
for adult cats is

P2(x) =


10x, x ∈ [0, 0.02]

0.4 − 10x, x ∈ (0.02, 0.04]
0, otherwise

. (2.4)

It is clear that the support of the fuzzy set P1 is duration of the wave P and height is maximum
height of wave P.

Let us take suppP1 ≈]0, 0.30[, suppP2 ≈]0, 0.04[ and closure of the suppP1 and suppP2

be suppP1 = [0, 0.30] and suppP2 = [0, 0.04] where the notations suppP1 and suppP2 de-
notes support of the P1 and P2 .

In this case, we see that h1(P1(x)) =


3.2x − 2.56x2, x ∈ [0, 0.15]

0.7296 − 1.664x − 2.56x2, x ∈ (0.15, 0.30]
0, otherwise

. Simi-

larly to h1(P1(x)), we have h1(P2(x)) =


40x − 400x2, x ∈ [0, 0.02]

0.96 − 8x − 400x2, x ∈ (0.02, 0.04]
0, otherwise

.

Let us denote P1 and P2 of wave P for kittens and adult cats, respectively. If we choose r(x) = c
in (2.2) then we see that the the entropy of wave P1 is equal to

e(P1) = 662.4 × 10−4c (2.5)

for normal wave P for kittens. The P2 wave entropy for adult cats is

e(P2) = 138.667 × 10−4c. (2.6)

If we compare (2.5) and (2.6) then we see that the P wave entropies of the kittens and adult cats
are different.

Definition 2.1. The total Cesàro entropy of the sequence (Pk) is

TC1

e (Pk) =
1

k + 1

k∑
i=0

ciai
2(2hai

1
− 4

3
h2

ai
1
)S (Pk, P), (2.7)

where ci is resistance of the dry skin in the ith sample, k is number of sample of P wave and
S (Pk, P) is similarity degree between of the waves Pk and P.
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Table 1. Non-clinical P waves data for adult cats

Gender: Male Age:xx Weight:xx Height:xx

Days 1 2 3 4 5 6 7 8 9 10

m(h
a1

k
) 0.2 0.2 0.19 0.21 0.23 0.23 0.19 0.2 0.18 0.15

m(ak
2) 0.04 0.04 0.03 0.05 0.05 0.05 0.045 0.044 0.043 0.043

e(Pk) 0,0138672 0,0138672 0,009956361 0,018060735 0,019474215 0,019474215 0,017526794 0,014602663 0,013622864 0,011610323

S (Pk , P) 1 1 0,94525 0,947619048 0,865217391 0,865217391 0,867391304 0,9481 0,89865 0,748875

Let the resistance of the dry skin be fix that is if ci equal to c at the each every i. place then the
(2.7) is turn to

TC1

e (Pk) =
c

k + 1

k∑
i=0

ai
2(2hai

1
− 4

3
h2

ai
1
)S (Pk, P). (2.8)

Example 2.1. Let us suppose, the wave P values as height and width as given in Table 1 for any
adult cat for 10 measurements with fix conductivity of blood and residence of the skin. Note that
these data are not clinical measures. In this mean, the sequence (Pk) is in the set φ(F ). The
notations m(ha1

k
) and m(ak

2) in Table 1 denotes measured height and durations of the wave P in
day. Then from (2.8), we see that the Cesàro total entropy of the wave P of adult cats according to
Table 1 is

TC1

e (Pk) = 137.94345 × 10−4c (2.9)

for 10 beats. If we compare (2.5) and (2.9), the P wave properties of the adult cat heart which
given above example is very low than normal value. Using to (1.7), we can give a graphic for 10
sample of wave P which given in the Table 1 (see, Figure 2) .

0.1990 0.1992 0.1994 0.1996 0.1998 0.2000

0.03990

0.03992

0.03994

0.03996

0.03998

0.04000

Figure 1
Graphical representation of e(Pk) of the normal

P wave for adult cats.

0.15 0.16 0.17 0.18 0.19 0.20

0.030

0.035

0.040

0.045

0.050

Figure 2
Graphical representation of e(Pk) for Table 1

values for adult cats.

The Figure 1 is entropy graphic for the normal wave P of adult cats. If we compare the Figures
1 and 2 then we see that the height and duration of the P wave when changed with any effect,
the all entropy zones are curl to upward at adult cats as in humans. It can be consider that the
magnitude of the curl is P wave degenerations.
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0.1990 0.1992 0.1994 0.1996 0.1998 0.2000
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Figure 3
The values ha2

k
nearly fix but values ak

2 variable
for adult cats.

0.15 0.16 0.17 0.18 0.19 0.20

0.03990

0.03992

0.03994

0.03996

0.03998

0.04000

Figure 4
The values ak

2 nearly fix but the values ha2
k

variable for adult cats.

If the ha1
k

is fix but the value ak
2 be variable and conversely the ha1

k
is variable but the value ak

2
be fix then graphical representation of the entropy zones are shown as in Figure 3 and Figure 4,
respectively.

As similar to (2.7), the A- entropy of the sequence wave P is

T A
e (Pk) = 1379.43446 × 10−4c (2.10)

from (1.13). But normal A-entropy value for 10 beats of adult cats should be 6624× 10−4c and the
P wave value in (2.10) very low than 6624 × 10−4c. where c is resistance of the dry skin in the ith

time.

Comment 1.
We know that the value of the S (Pk, P) must be 0 ≤ S (Pk, P) ≤ 1 for every k ∈ N. After a

certain place, if Pk waves is not exists, or the similarity values S (Pk, P) nearly to the zero then the
entropy of atrial depolarization of the heart, the T A

e (Pk) is near to zero. In this case we can say that
this is a risk (for example, it can indicate hyperkalemia or hypokalemia or right atrial enlargement
for this heart in the future as in human.

Comment 2.
Respectively, if the values e(P1) and e(P2) less than 662.4×10−4c and 138.667×10−4c for kitten

and adult cats then, we can say that, there is a risk (for example, it can indicate hyperkalemia or
hypokalemia or right atrial enlargement as in human for this heart in the future.

3. Comparison with the ECG

1. Long time can be spent for interpreting electrocardiographs results by cardiologists or vets
and sometimes small but important details can be unnoticed because of the complexity of
ECG.

2. Numerical values are more reliable than graphical representations.
3. If the outputs are numerical then the consultation may be easy than consultation of the ECG

papers.
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4. Weakness of This Model

The weakness of this model is that the data may be incomplete and not accurate enough be-
cause of the system that we use when we collect the data. Kittens adaptation to ECG machines is
an important factor in the measurement phase since heart rates can change under stress and differ-
ent circumstances. The numerical values may not reflect the reality if the information is not in the
near proximity of real world assessment, shortly wrong inputs can produces misleading results.

5. Conclusions and Suggestions

The conclusions can be summarized as follows:

1. The entropy of the wave P for normal heart of the kitten should be 1379.43446 × 10−4c and
should be 6624 × 10−4c for adult cats.

2. The graphical representation of the normal wave P of kittens should similar to Figure 1.
3. If the duration is fix but height is being altered by any reason then lines in graphical repre-

sentation of the wave P becomes steeper.
4. The lines in the graphical representation of the wave T should be almost parallel to horizon-

tal axis.

As a suggestion, clearly, one can define entropy value and graphical representations of QRS com-
plex and wave T to similar entropy value wave P. So any numerical value can obtain for (2.1). If
entropy value of the QRS complex and wave P are calculate then we can give a numerical entropy
value for (2.1).
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1. Introduction

Throughout this paper, let the functions of the form

ϕ(z) = c1z −
∞∑

n=2

cnzn (c1 > 0; cn ≥ 0), (1.1)

and

ψ(z) = d1z −
∞∑

n=2

dnzn (d1 > 0; dn ≥ 0) (1.2)

which are analytic and univalent in the unit disc

U = {z : z ∈ C and |z| < 1} ;

also, let

f (z) =
a0

z
+

∞∑
n=1

anzn (a0 > 0; an ≥ 0), (1.3)

∗Corresponding author
Email addresses: r_elashwah@yahoo.com (R. M. EL-Ashwah ), drbuk2@yahoo.com (M. E. Drbuk)
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fi (z) =
a0,i

z
+

∞∑
n=1

an,izn (a0,i > 0; an,i ≥ 0), (1.4)

g(z) =
b0

z
+

∞∑
n=1

bnzn (b0 > 0; bn ≥ 0), (1.5)

g j(z) =
b0, j

z
+

∞∑
n=1

bn, jzn (b0, j > 0; bn, j ≥ 0). (1.6)

which are analytic and univalent in the punctured unit disc

U∗ = {z : z ∈ C and 0 < |z| < 1} .

A function f (z) ∈ Σ is meromorhpically starlike of order α if

−Re
{

z f ′(z)
f (z)

}
> α (z ∈ U∗; 0 ≤ α < 1) . (1.7)

A function f of the form (1.3) is said to be in the class UΣS ∗0(α, β) of meromorphic uniformly β
-starlike functions of order α if it satisfies the condition:

−Re
{

z f ′(z)
f (z)

+ α

}
> β

∣∣∣∣∣z f ′(z)
f (z)

+ 1
∣∣∣∣∣ (z ∈ U; 0 ≤ α < 1; β ≥ 0) . (1.8)

Also, a function f of the form (1.3) is said to be in the class UΣC0(α, β) of meromorphic uniformly
β -convex functions of order α if it satisfies the condition:

−Re
{

1 +
z f ′′(z)
f ′(z)

+ α

}
> β

∣∣∣∣∣2 +
z f ′′(z)
f ′(z)

∣∣∣∣∣ (z ∈ U; 0 ≤ α < 1; β ≥ 0) . (1.9)

It follows from (1.8) and (1.9) that

f ∈ UΣC0(α, β) ⇐⇒ −z f ′ ∈ UΣS ∗0(α, β). (1.10)

The classes UΣS ∗0(α, β) and UΣC0(α, β) have been studied by (Aouf et al., 2014), (Atshan &
Kulkarni, 2007), and others. We note that
(i) UΣS ∗0(α, 0) = S ∗n(α) and UΣC0(α, 0) = Cn(α) (see (Aouf & Silverman, 2008),with n = 1) ;
(ii) UΣS ∗0(α, 0) = ΣpS ∗n(α, γ) and UΣC0(α, 0) = ΣpCn(α, γ) (also see (R. M. El-Ashwah & Hassan,
2013), with n = p = γ = 1);
(iii) UΣS ∗0 (α, 0) = ΣS ∗0 (α) and UΣC0 (α, 0) = ΣK0 (α, β) (see (Mogra, 1991)).

Lemma 1.1. Let the function f defined by (1.3). Then f ∈ UΣS ∗0 (α, β) if and only if

∞∑
n=1

[n(1 + β) + (α + β)]an ≤ (1 − α)a0. (1.11)
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Lemma 1.2 (3). Let the function f defined by (1.3). Then f ∈ UΣC0 (α, β) if and only if

∞∑
n=1

n[n(1 + β) + (α + β)]an ≤ (1 − α)a0. (1.12)

Definition 1.1. Let the function f defined by (1.3). Then f ∈ UΣS m (α, β) if and only if

∞∑
n=1

nm[n(1 + β) + (α + β)]an ≤ (1 − α)a0, (1.13)

where (0 ≤ β < ∞) , (0 ≤ α < 1) and m any positive integer number.

We note that UΣS 1 (α, β) = UΣC0 (α, β) and UΣS 0 (α, β) is equivalent to UΣS ∗0 (α, β) . Further,
UΣS m (α, β) ⊂ UΣS r (α, β) if m > r ≥ 0, the containment beign proper. Whence, for any positive
integer m, we have the inclusion relation

UΣS m (α, β) ⊂ UΣS m−1 (α, β) ⊂ ... ⊂ UΣS 2 (α, β) ⊂ UΣC0 (α, β) UΣS ∗0 (α, β) .

Also, we note that for nonnegative real number m the class UΣS m (α, β) is nonempty as the func-
tions of the form

f (z) =
a0

z
+

∞∑
n=1

(1 − α)a0

nm[n(1 + β) + (α + β)]
λnzn,

where a0 > 0, and
∞∑

n=1
λn ≤ 1, satisfy the inequality (1.13). For the functions

f j (z) =
1
z

+

∞∑
n=1

an, jzn
(
an, j ≥ 0; j = 1, 2

)
. (1.14)

We denote by ( f1 ∗ f2) (z) the Hadamard product (or convolution) of functions f1 (z) and f2 (z), that
is

( f1 ∗ f2) (z) =
1
z

+

∞∑
n=1

an,1an,2zn. (1.15)

Similarly, we can define the Hadamard product of more than two functions. The quasi-Hadamard
product of two or more functions ϕ(z) and ψ(z) given by (1.1) and (1.2), (see (Kumar, 1987)).

(ϕ ∗ ψ)(z) = c1d1z −
∞∑

n=2

cndnzn (1.16)

In this paper, we can discuss certain results concerning the Hadamard product of functions in the
classes UΣS ∗0 (α, β) , UΣS m (α, β) and UΣC0 (α, β) .
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2. Main results

Theorem 2.1. Let the functions fi(z) defined by (1.4) be in the class UΣC0 (α, β) for every i =

1, 2, ...,m, and suppose that the functions g j(z) defined by (1.6) be in the class UΣS ∗0 (α, β) for
every j = 1, 2, ..., q. Then the Hadamard product ( f1 ∗ f2 ∗ ... ∗ fm ∗ g1 ∗ g2 ∗ ...gq)(z) belongs to the
class UΣS 2m+q−1 (α, β) .

Proof. It is sufficient to show that

∞∑
n=1

n2m+q−1 {n(1 + β) + (α + β)}

 m∏
i=1

an,i

q∏
j=1

bn, j


 ≤ (1 − α)

 m∏
i=1

a0,i

q∏
j=1

b0,i

 . (2.1)

Since fi(z) ∈ UΣC0 (α, β) , we get

∞∑
n=1

n[n(1 + β) + (α + β)]an,i ≤ (1 − α)a0,i (i = 1, 2, ...,m) . (2.2)

Therefore,

an,i ≤
(1 − α)

n[n(1 + β) + (α + β)]
a0,i (2.3)

which implies that
an,i ≤ n−2a0,i (i = 1, 2, ...,m) . (2.4)

Similarly, for g j(z) ∈ UΣS ∗0 (α, β) , we obtain

∞∑
n=1

[n(1 + β) + (α + β)]bn, j ≤ (1 − α)b0, j, (2.5)

for j = 1, 2, ..., q. Hence we have

bn, j ≤ n−1b0, j ( j = 1, 2, ..., q) . (2.6)

Using (2.4) for i = 1, 2, ...,m, (2.6) for j = 1, 2, ..., q − 1, and (2.5) for j = q, we have

∞∑
n=1

n2m+q−1 {n(1 + β) + (α + β)}

 m∏
i=1

an,i

q∏
j=1

bn, j




≤

∞∑
n=1

n2m+q−1 {n(1 + β) + (α + β)}

n−2mn−(q−1)
m∏

i=1

a0,i

q−1∏
j=1

b0, j

 bn,q


=

m−1∏
i=1

a0,i

q−1∏
j=1

b0, j

 ∞∑
n=1

[
n {n(1 + β) + (α + β)} bn,q

]
≤ (1 − α)

m∏
i=1

a0,i

q∏
j=1

b0, j.

Hence ( f1 ∗ f2 ∗ ...∗ fm ∗g1 ∗g2 ∗ ...gq)(z) ∈ UΣS 2m+q−1 (α, β) . The proof of Theorem 1 is completed.
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Theorem 2.2. Let the functions fi(z) defined by (1.4) be in the class UΣC0 (α, β) for every i =

1, 2, ...,m, then the Hadamard product ( f1 ∗ f2 ∗ ... ∗ fm)(z) belongs to the class UΣS 2m−1 (α, β) .

Proof. It is sufficient to show that

∞∑
n=1

n2m−1 {n(1 + β) + (α + β)}

 m∏
i=1

an,i


 ≤ (1 − α)

 m∏
i=1

a0,i

 . (2.7)

Since fi(z) ∈ UΣC0 (α, β) , the inequalities (2.1) and (2.2) hold for every i = 1, 2, ...,m.
Using (2.2) for i = 1, 2, ...,m − 1, and (2.1) for i = 1, 2, ...,m, we have

∞∑
n=1

n2m−1 {n(1 + β) + (α + β)}

 m∏
i=1

an,i




≤

∞∑
n=1

n2m−1 {n(1 + β) + (α + β)}

n−2(m−1)
m−1∏
i=1

a0,i

 an,m


=

m−1∏
i=1

a0,i

 ∞∑
n=1

[
n {n(1 + β) + (α + β)} an,m

]
≤ (1 − α)

m∏
i=1

a0,i.

Hence ( f1 ∗ f2 ∗ ... ∗ fm)(z) ∈ UΣS 2m−1 (α, β) . The proof of Theorem 2 is completed.

Theorem 2.3. Let the functions fi(z) defined by (1.4) be in the class UΣS ∗0 (α, β) for every i =

1, 2, ...,m, then the Hadamard product ( f1 ∗ f2 ∗ ... ∗ fm)(z) belongs to the class UΣS m−1 (α, β) .

Proof. Since fi(z) ∈ UΣS ∗0 (α, β) , we have

∞∑
n=1

[n(1 + β) + (α + β)]an,i ≤ (1 − α)a0,i, (2.8)

for every i = 1, 2, ...,m. Therefore, we obtain an,i ≤
(1−α)

n(1+β)+(α+β)a0,i which implies that

an,i ≤ n−1a0,i (i = 1, 2, ...,m) . (2.9)

Using (2.9) for i = 1, 2, ...,m − 1, and (2.8) for i = 1, 2, ...,m, we have

∞∑
n=1

nm−1 {n(1 + β) + (α + β)}

 m∏
i=1

an,i




≤

∞∑
n=1

nm−1 {n(1 + β) + (α + β)}

n−(m−1)
m−1∏
i=1

a0,i

 an,m


=

m−1∏
i=1

a0,i

 ∞∑
n=1

[
{n(1 + β) + (α + β)} an,m

]
≤ (1 − α)

m∏
i=1

a0,i.

Hence ( f1 ∗ f2 ∗ ... ∗ fm)(z) ∈ UΣS m−1 (α, β) , which completes the proof of Theorem 3.

Remark. Taking β = 0 in our main results, we obtain the results obtained by Mogra (Mogra, 1991).
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1. Preliminaries

One of the most important asymptotic properties studied for evolution operators is the uniform
exponential stability. This concept was treated in a large number of papers and of the most impor-
tant we recall (Coppel, 1965), (Lupa et al., 2010), (Megan et al., 2001), (van Neerven, 1995) and
(Stoica & Megan, 2010).

In the last years, are considered more general concepts of stability, as h-stability ( see (Megan,
1995) ) or (h, k)-stability ( see (Fenner & Pinto, 1997), (Megan & Cuc, 1997), (Minda & Megan,
2011) ), where h and k are growth rates ( i.e. nondecreasing functions with different properties ).

In this paper is considered the concept of uniform h-stability, with h : R+ → [1,+∞) a growth
rate ( more precisely a nondecreasing function with lim

t→+∞
h(t) = +∞ ), for evolution operators in

Banach spaces.
Are obtained necessary and sufficient conditions for this notion and as consequences, we empha-
size the results for the case of uniform exponential stability.

In what follows, X represents a real or complex Banach space, X∗ its topological dual andB(X)
the Banach algebra of all bounded linear operators on X. We will denote the norms on X, on X∗

∗Corresponding author
Email address: mihit.claudia@yahoo.com (Claudia-Luminiţa Mihiţ)
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and on B(X) by || · ||.
Also, ∆ is the set of all the pairs (t, s) ∈ R2

+ with t ≥ s and I represents the identity operator on X.

Definition 1.1. A mapping Φ : ∆→ B(X) is called evolution operator on X if

(eo1) Φ(t, t) = I, for every t ≥ 0;
(eo2) Φ(t, s)Φ(s, t0) = Φ(t, t0), for all (t, s) and (s, t0) ∈ ∆.

We consider Φ : ∆→ B(X) an evolution operator and h : R+ → [1,+∞) a growth rate.

Definition 1.2. We say that Φ has a uniform h-growth if there exists N ≥ 1 such that for all
(t, s, x) ∈ ∆ × X :

h(s)||Φ(t, s)x|| ≤ Nh(t)||x||.

If h(t) = eαt, with α > 0, then we say that Φ has a uniform exponential growth.

Definition 1.3. The evolution operator Φ is called uniformly h-stable if there exists S ≥ 1 such
that for all (t, s, x) ∈ ∆ × X :

h(t)||Φ(t, s)x|| ≤ S h(s)||x||.

In particular, if h(t) = eαt, with α > 0, then we recover the concept of uniform exponential
stability and α is called stability constant.

Remark. If Φ is uniform h-stable, then it has a uniform h-growth. In general, the converse impli-
cation is not valid.

Example 1.1. Considering the evolution operator Φ : ∆→ B(X), defined by

Φ(t, s) =
h(t)
h(s)

, for all (t, s) ∈ ∆,

it is easy to observe that Φ has a uniform h-growth, but Φ is not uniformly h-stable.

Remark. The evolution operator Φ has a uniform h-growth if and only if there exists N ≥ 1 with

h(s)||Φ(t, t0)x0|| ≤ Nh(t)||Φ(s, t0)x0||,

for all (t, s), (s, t0) ∈ ∆, x0 ∈ X.

Remark. Φ is uniformly h-stable if and only if there is S ≥ 1 such that

h(t)||Φ(t, t0)x0|| ≤ S h(s)||Φ(s, t0)x0||,

for all (t, s), (s, t0) ∈ ∆, x0 ∈ X.

Definition 1.4. We say that Φ : ∆→ B(X) is

(i) strongly measurable if for all (s, x) ∈ R+ × X the mapping

t 7→ ||Φ(t, s)x|| is measurable on [s,+∞);

(ii) *-strongly measurable if for all (t, x∗) ∈ R+ × X∗ the mapping

s 7→ ||Φ(t, s)∗x∗|| is measurable on [0, t].
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2. Necessary conditions for uniform h-stability

In this section we will denote by H the set of the growth rates h : R+ → [1,+∞) with the
property that there is a constant M ≥ 1 such that

+∞∫
s

dt
h(t)
≤

M
h(s)

, for all s ≥ 0.

Also,H1 represents the set of the growth rates h : R+ → [1,+∞) with the property that there exist
a growth rate h1 : R+ → [1,+∞) and a constant M1 ≥ 1 with

+∞∫
s

h1(t)
h(t)

dt ≤ M1
h1(s)
h(s)

, for all s ≥ 0.

Remark. Denoting by E the set of functions h : R+ → [1,+∞), h(t) = eαt, with α > 0, it results
that E ⊂ H ∩H1.

Remark. The growth rate h : R+ → [1,+∞) is in H1 if and only if there exists a growth rate

h2 : R+ → [1,+∞), defined by h2(t) =
h(t)
h1(t)

, for all t ≥ 0 such that h2 ∈ H .

A first result concerning the connections between the uniform exponential stability and uni-
form h-stability of an evolution operator Φ : ∆→ B(X) is

Theorem 2.1. Following statements are equivalent:

(i) Φ is uniformly exponentially stable;
(ii) there exists h ∈ H1 such that Φ is uniformly h-stable;

(iii) there exists h ∈ H such that Φ is uniformly h-stable.

Proof. (1)⇒ (2). It results for h(t) = eαt, with α > 0.
(2)⇒ (3). From the hypothesis, there is a growth rate h1 : R+ → [1,+∞) and M1 ≥ 1 with

+∞∫
s

h1(t)
h(t)

dt ≤ M1
h1(s)
h(s)

, for all s ≥ 0

and using the second Remark from this section it follows that h2 ∈ H .
Thus, for all (t, s, x) ∈ ∆ × X we have

h2(t)||Φ(t, s)x|| =
h(t)
h1(t)

||Φ(t, s)x|| ≤

≤ S
h(s)
h1(t)

||x|| ≤ S h2(s)||x||,

which shows that Φ is h2-stable.
(3)⇒ (1). It is immediate from the first Remark of this section.



22 Claudia-Luminiţa Mihiţ / Theory and Applications of Mathematics & Computer Science 5 (1) (2016) 19–27

We consider Φ : ∆ → B(X) a strongly measurable evolution operator and a first necessary
condition of Datko-type, due to R. Datko ( (Datko, 1972)) is

Theorem 2.2. If Φ : ∆ → B(X) is uniformly h-stable with h ∈ H1 then there are a growth rate
h1 : R+ → [1,+∞) and a constant D ≥ 1 such that

+∞∫
s

h1(t)||Φ(t, t0)x0||dt ≤ Dh1(s)||Φ(s, t0)x0||,

for all (t, s), (s, t0) ∈ ∆, x0 ∈ X.

Proof. It is immediate for D = M1S , where M1 and h1 are given by definition ofH1 and S is given
by Definition 1.3.

Corollary 2.1. If Φ : ∆ → B(X) is uniformly exponentially stable, then there are the constants
β > 0 and D ≥ 1 such that

+∞∫
s

eβt||Φ(t, t0)x0||dt ≤ Deβs||Φ(s, t0)x0||,

for all (t, s), (s, t0) ∈ ∆, x0 ∈ X.

Proof. It is a particular case of Theorem 2.2.

Definition 2.1. A mapping L : ∆ × X → R+ is said to be a h-Lyapunov function for Φ if

L(t, t0, x0) +

t∫
s

h(τ)||Φ(τ, t0)x0||dτ ≤ L(s, t0, x0),

for all (t, s), (s, t0) ∈ ∆, x0 ∈ X.

In particular, if h(t) = eαt, with α > 0, then the function L is called exponential Lyapunov
function.
The importance of the Lyapunov functions in the study of the stability property is described for
instance in (Barreira & Valls, 2008), (Barreira & Valls, 2013).

Another significant result for the uniform h-stability of an evolution operator is given by

Theorem 2.3. If the evolution operator Φ is uniformly h-stable with h ∈ H1, then there exist a
growth rate h1 : R+ → [1,+∞), a h1-Lyapunov function for Φ and D ≥ 1 such that

L(s, s, x0) ≤ Dh1(s)||x0||,

for all (s, x0) ∈ R+ × X.
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Proof. Let L : ∆ × X → R+, L(t, s, x0) =
+∞∫
t

h1(τ)||Φ(τ, s)x0||dτ.

Thus, L is a h1-Lyapunov function for Φ and using Theorem 2.2 we obtain

L(s, s, x0) =

+∞∫
s

h1(τ)||Φ(τ, s)x0||dτ ≤ Dh1(s)||x0||,

for all (s, x0) ∈ R+ × X.

In particular, we obtain

Corollary 2.2. If Φ : ∆ → B(X) is uniformly exponentially stable, then there are the constants
β > 0, D ≥ 1 and an exponential Lyapunov function L for Φ with

L(s, s, x0) ≤ Deβs||x0||,

for all (s, x0) ∈ R+ × X.

We consider now the set H̃ of the growth rates h : R+ → [1,+∞) with the property that there
is a growth rate h1 : R+ → [1,+∞) and a constant M̃ ≥ 1 with

t∫
0

h(τ)
h1(τ)

dτ ≤ M̃
h(t)
h1(t)

, for all t ≥ 0.

Remark. It is easy to see that the functions h ∈ E ( considered in Remark 2 ) are in H̃ .
Let Φ : ∆ → B(X) be a ∗-strongly measurable evolution operator. A first result for this type

of evolution operators is proved by E. A. Barbashin ( (Barbashin, 1967) ) in the case of uniform
exponential stability.
Concerning the uniform h-stability, we prove

Theorem 2.4. If Φ is uniformly h-stable with h ∈ H̃ , then there is a growth rate h1 : R+ → [1,+∞)
and B ≥ 1 with

t∫
0

||Φ(t, τ)∗x∗||
h1(τ)

dτ ≤
B

h1(t)
||x∗||,

for all (t, x∗) ∈ R+ × X∗.

Proof. It results using Definition 1.3 and the definition of H̃ , for B = S M̃.

As a consequence of the above result, we obtain

Corollary 2.3. If Φ is uniformly exponentially stable, then there are the constants γ > 0 and B ≥ 1
such that

t∫
0

e−γτ||Φ(t, τ)∗x∗||dτ ≤ Be−γt||x∗||,

for all (t, x∗) ∈ R+ × X∗.
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3. Sufficient conditions for uniform h-stability

In what follows, we will denote by H2 the set of the functions h : R+ → [1,+∞) with the
property

sup
s≥0

h(s + 1)
h(s)

= M2 < +∞.

Remark. We observe that all the functions h ∈ E (defined in Remark 2 ) are inH2, i.e. E ⊂ H2.

We consider Φ : ∆ → B(X) a strongly measurable evolution operator and a sufficient criteria
of Datko-type is

Theorem 3.1. Let Φ : ∆ → B(X) be an evolution operator with uniform h-growth and h ∈ H2. If
there is D ≥ 1 such that

+∞∫
s

h(t)||Φ(t, t0)x0||dt ≤ Dh(s)||Φ(s, t0)x0||,

for all (t, s), (s, t0) ∈ ∆, x0 ∈ X, then Φ is uniformly h-stable.

Proof. Let S = M2
2 ND.

Case 1. We consider (t, s), (s, t0) ∈ ∆ with t ≥ s + 1, x0 ∈ X. Thus,

h(t)||Φ(t, t0)x0|| ≤

t∫
t−1

h(t)||Φ(t, τ)|| · ||Φ(τ, t0)x0||dτ ≤

≤ N

t∫
t−1

h(t)
h(t)
h(τ)
||Φ(τ, t0)x0||dτ ≤

≤ NM2
2

+∞∫
s

h(τ)||Φ(τ, t0)x0||dτ ≤ S h(s)||Φ(s, t0)x0||.

It results that
h(t)||Φ(t, t0)x0|| ≤ S h(s)||Φ(s, t0)x0||,

for all (t, s), (s, t0) ∈ ∆ with t ≥ s + 1, x0 ∈ X.
Case 2. Let (t, s), (s, t0) ∈ ∆ with t ∈ [s, s + 1], x0 ∈ X. We have

h(t)||Φ(t, t0)x0|| ≤ h(t)||Φ(t, s)|| · ||Φ(s, t0)x0|| ≤

≤ N
h2(t)
h2(s)

h(s)||Φ(s, t0)x0|| ≤ S h(s)||Φ(s, t0)x0||.

In conclusion,
h(t)||Φ(t, t0)x0|| ≤ S h(s)||Φ(s, t0)x0||,

for all (t, s), (s, t0) ∈ ∆, x0 ∈ X, which shows that Φ is uniformly h-stable.
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Corollary 3.1. Let Φ : ∆ → B(X) be an evolution operator with uniform exponential growth. If
there is D ≥ 1 such that

+∞∫
s

eαt||Φ(t, t0)x0||dt ≤ Deαs||Φ(s, t0)x0||,

for all (t, s), (s, t0) ∈ ∆, x0 ∈ X, then Φ is uniformly exponentially stable.

Proof. It results from Theorem 3.1.

Theorem 3.2. Let Φ : ∆ → B(X) be an evolution operator with uniform h-growth and h ∈ H2. If
there exist a h-Lyapunov function for Φ and D ≥ 1 with

L(s, s, x0) ≤ Dh(s)||x0||,

for all (s, x0) ∈ R+ × X, then Φ is uniformly h-stable.

Proof. From Definition 2.1, for s = t0 we obtain

t∫
s

h(τ)||Φ(τ, s)x0||dτ ≤ L(s, s, x0) ≤ Dh(s)||x0||,

for all (t, s, x0) ∈ ∆ × X and for t → +∞, it follows that Φ is uniformly h-stable.

In particular, a sufficient condition for the uniform exponential stability is given by

Corollary 3.2. Let Φ : ∆ → B(X) be an evolution operator with uniform exponential growth. If
there exist an exponential Lyapunov function for Φ and D ≥ 1 such that

L(s, s, x0) ≤ Deαt||x0||,

for all (s, x0) ∈ R+ × X, then Φ is uniformly exponentially stable.

A sufficient condition of Barbashin-type for the uniform h-stability of a ∗-strongly measurable
evolution operator Φ : ∆→ B(X) is

Theorem 3.3. We consider Φ an evolution operator with uniform h-growth and h ∈ H2. If there is
B ≥ 1 with

t∫
0

||Φ(t, τ)∗x∗||
h(τ)

dτ ≤
B

h(t)
||x∗||,

for all (t, x∗) ∈ R+ × X∗, then Φ is uniformly h-stable.

Proof. We consider S = NM2
2 B.

Let (t, s) ∈ ∆, t ≥ s + 1 and (x, x∗) ∈ X × X∗. Then,

h(t)| < x∗,Φ(t, s)x > | =

s+1∫
s

h(t)| < Φ(t, τ)∗x∗,Φ(τ, s)x > |dτ ≤
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≤ h(t)

s+1∫
s

||Φ(t, τ)∗x∗|| · ||Φ(τ, s)x||dτ ≤

≤ Nh(t)

s+1∫
s

||Φ(t, τ)∗x∗||
h(τ)

h2(τ)
h2(s)

h(s)dτ||x|| ≤

≤ S h(s)||x|| · ||x∗||.

Considering the supremum relative to ||x∗|| ≤ 1 it results that

h(t)||Φ(t, s)x|| ≤ S h(s)||x||, for all t ≥ s + 1, x ∈ X.

Let now t ∈ [s, s + 1], x ∈ X. We obtain

h(t)||Φ(t, s)x|| ≤ N
h2(t)
h(s)
||x|| ≤ S h(s)||x||,

for all t ∈ [s, s + 1], x ∈ X.
In conclusion, Φ is uniformly h-stable.

As a particular case, we obtain

Corollary 3.3. Let Φ be an evolution operator with uniform exponential growth. If there is B ≥ 1
with

t∫
0

e−ατ||Φ(t, τ)∗x∗||dτ ≤ Be−αt||x∗||,

for all (t, x∗) ∈ R+ × X∗, then Φ is uniformly exponentially stable.
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Abstract

In this note, the reader is invited to a walk through tropicalsemifields and the places where they border on
“ordinary” algebra. Though mostly neglected in today’s lectures on algebra, we point to the places where tropical
structures inevitably pervade, and show that they frequently occur in ring theory and classical algebra, touching at
least functional analysis, and algebraic geometry. Specifically, it is explained how valuation theory, which plays
an essential part in classical commutative algebra and algebraic geometry, is essentially tropical. In particular, it
is shown that Eisenstein’s well-known irreducibility criterion and other more powerful criteria follow immediately
by tropicalization. Some applications to algebraic equations in characteric 1, neat Bézout domains, and rings of
continuous functions are given.
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1. Introduction

Mathematical ideas quite often originate from natural sciences where experiments help to un-
derstand what happens behind reality. In chemistry, the usual method to analyse a matter is by
heating until the components begin to separate. “Tropical”mathematics did not quite emerge in
that way, but at least one of its founders (Imre Simon) was working on it in the sunny regions of
Brazil.

To illustrate the basic process, consider the function

a `p b :“ pap ` bpq1{p

for positive real numbersa, b. At “room temperature” (p “ 1), the functiona `1 b is just ordinary
addition inR. Now turn on the heating - proceed untilp Ñ 8 to get the real number system to
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melt. Recall that F. Riesz (Riesz, 1910) made such an experiment already in 1910, which led him
to the invention of Lebesgue spacesLppRq. If p is replaced by the Planck constant~ :“ 1

p, the
limit process~ Ñ 0 is known as adequantization(Litvinov, 2006). Indeed, the passage fromL1 to
L8 bears a certain analogy to the correspondence principle in quantum mechanics (Bohr, 1920).

Now what remains after melting the real number system? Forp “ 8, ordinary additiona ` b
in R turns intoa _ b :“ maxta, bu. The additive group ofR becomes a semigroup, the fieldR of
real numbers turns into the semifieldR`

max of tropical real numbers, investigated in the 1987 thesis
of Imre Simon (Simon, 1987). A remarkable feature ofR`

max is that its addition is idempotent:

a _ a “ a.

Thus, if there would exist additive inverses, the whole system would collapse into the zero ring.
So is there any reason to regard the elements ofR`

max as numbers? Before taking up this question
seriously, let us content ourselves for the moment with referring back to F. Riesz’ early work on
Lp-spaces. Here the connection betweenp “ 1 andp “ 8 is very tight:L8pRq is just the Banach
space dual ofL1pRq.

Hilbert once placed the number system between the three-dimensional space and the one-
dimensional time, saying that numbers are ‘two-dimensional’. Such a statement would still have
shocked the mathematical community in the days of Euler who called imaginary numbers “im-
possible” (Euler, 1911). Nowadays, the two-dimensionality is firmly justified by analytical and
algebraic reasons, the latter consisting in the algebraic closedness ofC. On the other hand, two-
dimensionality would not make sense without reference to the base fieldR which is “really” fun-
damental.

In the tropical world, there is no such distinction: the semifield of tropical reals is “alge-
braically closed”. Making this precise is a good exercise and an invitation to be more careful in
stating the ‘fundamental theorem of algebra’. To be sure, the latter does not mean thateverycom-
plex polynomial has a root - the non-zero constants have to beexcluded. This triviality becomes
relevant in the wonderland of tropical algebra: there are tropical semifields where (non-constant)
linear equations need not be solvable. Roots and solutions of polynomial equations fall apart, and
quadratic equations need not be solvable by radicals. On theother hand, every algebraic equation
can be reduced to quadratic ones.

In this paper, classical algebra is revisited with regard totropical structures, and it is shown
that they occur at various places. Apart from a revision of semifields of characteristic 1, we
add new characterizations for their algebraic closedness (Theorem6.1). A connection with neat
Bézout domains is given in Corollary 2. As a second application, we show that if the semifield of
characteristic 1 corresponding to anℓ-groupC pXq of contiuous functions on a completely regular
spaceX is algebraically closed, the spaceX must be an F-space, that is, the corresponding ring
CpXq of continuous functions is a Bézout ring (Corollary 3).

Another motivation to study semifields of characteristic 1 comes from a recent, highly con-
jectural branch of arithmetic geometry. Since André Weil sketched his diagonal argument (Weil,
1940, 1941) to tackle the Riemann hypothesis, some research groups eagerly delve under the sur-
face ofZ, searching for its “base field” to makeZ (a ring of Krull dimension one) into an algebra
over that field (see, e. g., (Connes & Consani, 2010, 2011; Deitmar, 2008; Soulé, 2011)). The way
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to this non-existing, mysterious, “field” of characteristic 1 inevitably leads through the tropical
region. By Proposition2.2, this hot region is nothing else than the vast and well-developed theory
of lattice-ordered abelian groups.

2. The forgotten characteristic

To include the result of a dequantization, we are advised to consider semifields instead of
fields. More generally, asemiringis an abelian monoidpA; `, 0q with a multiplicative monoid
structurepA; ¨, 1q satisfying the distributive laws anda ¨ 0 “ 0 ¨ a “ 0 for all a P A. If the group of
(multiplicatively) invertible elements, theunit group Aˆ, coincides withArt0u, we callA asemi-
skewfield. If, in addition, the multiplicative monoid is commutative, A is said to be asemi-field.
For example, the above mentionedR`

max is a semifield.
A morphismin the category of semirings is a mapf : A Ñ B which satisfies

f pa ` bq “ f paq ` f pbq, f p0q “ 0

f pa ¨ bq “ f paq ¨ f pbq, f p1q “ 1.

Like in the category of rings, there is an initial object, thesemiringN of non-negative integers:
For any semi-ringA there is a unique morphismc: N Ñ A. The image ofc is the intersection
of all sub-semirings ofA, theprime semiringof A. Similarly, every semi-skewfieldA contains a
smallest sub-semi-skewfield. If it coincides withA, we callA aprime semi-skewfield.

In general, the kernel Kerc :“ tn P N | cpnq “ 0u is not of the formNp for somep P N. For
example,I :“ Nr t1, 2, 4, 7u is an ideal of the semiringN which occurs, e. g., as the grading of a
simple curve singulatity (Greuel & Knörrer, 1985). ThusN{I is a finite semiring with Kerpcq “ I .
On the other hand, there exist congruence relations onN which do not come from an ideal, even
if A is a semifield. For example, letB :“ t0, 1u be the semifield with 1̀ 1 “ 1. Thenc: N ։ B

satisfiescpnq “ 1 for n �“ 0. Soc has a trivial kernel, while it is far from being a monomorphism.
Note thatB is the prime a sub-semifield ofR`

max. Therefore, we writea _ b for the addition in
B. SoB is a Boolean algebra witha ^ b :“ ab. The reader will notice thatB can be derived from
the prime fieldF2 via a _ b “ a ` b ` ab, but not vice versa.

Definition 2.1. We define thecharacteristiccharA of a semiringA to be the smallest integerp ą 0
with cpn ` pq “ cpnq for somen P N. If such an integerp does not exist, we set charA :“ 0.

In analogy to the theory of skew-fields, we have (cf. (Rump, 2015), Proposition 1)

Proposition 2.1. Every prime semi-skewfield is a semifield. Up to isomorphism,the prime semi-
fields areQ`, B, andFp for rational primes p. In particular, the prime semifields are determined
by their characteristic.

Proof. Let F be a prime semi-skewfield. Assume first that charF “ 0. ThenN can be regarded
as a sub-semiring ofF. Every non-zeron P N has an inverse1n in F which commutes with all
elements ofN. Hencetm

n | m, n P N, n ą 0u is a sub-semifield isomorphic to the positive coneQ`

of Q.
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Now assume thatp :“ charF �“ 0. Then there is an integern P N with cpnq ` cppq “ cpnq. As
this equation holds for almost alln, we can assume thatn is a multiple ofp. Adding multiples of
cppq on both sides, the equations obtained in this way imply thatcpnq ` cpnq “ cpnq. If cpnq “ 0,
thencppq “ 0, and the usual argument shows thatcpNq – Fp for a primep. Otherwise, we obtain
cp1q ` cp1q “ cp1q, which yieldscpNq – B. l

So the possible prime semifields are

Q`,B,F2,F3,F5,F7, . . . ,

including the prime fieldsFp and a natural sub-semifield ofQ. Note that formally,Q` carries more
information thanQ: The positive cone providesQ with its natural ordering. Thus,Q` connects
arithmetic (the semiringN) with algebra and analysis (the ordered fieldQ and its completionR),
while the newcomerB bridges the gap between algebra and logic.

Every semifield contains one of the prime semifields according to its characteristic. For fields,
this is a well-known piece of algebra. So the question ariseshow the “logical” semi-skewfields,
those containingB, look like. By Proposition2.1, they are of characteristic 1, which means that
they satisfy the equation 1̀1 “ 1. Recall that a partially ordered group is said to belattice-ordered
or anℓ-group if the partial order is a lattice. For the theory ofℓ-groups, the reader is referred to
(Anderson & Feil, 1988; Bigardet al., 1977; Darnel, 1995; Glass, 1999). The commutative case
of the following result is due to Weinert and Wiegandt (Weinert & Wiegandt, 1940). Similar ideas
have been developed independently by several authors (see (Castella, 2010; Lescot, 2009), and the
literature cited there).

Proposition 2.2. Up to isomorphism, there is a one-to-one correspondence betweenℓ-groups and
semi-skewfields of characteristic 1.

Proof. Note first that a semi-skewfieldF is of characteristic 1 if and only ifa ` a “ a holds
for all a P F. Then it easily checked that

a ď b :ðñ a ` b “ b (2.1)

makesF into a_-semilattice witha _ b :“ a ` b. Furthermore, the distributivity shows thatFˆ

is anℓ-group. Conversely, everyℓ-groupG can be made into a semi-skewfieldrG :“ G \ t0u by
adjoining a smallest element 0 with 0a “ a0 “ 0 for all a P rG. Since rGˆ “ G and ĂFˆ “ F, the
correspondence is bijective. l

In particular, semifields of characteristic 1 are equivalent to abelianℓ-groups, and our prime
semifieldB corresponds to theℓ-group of order one. For those who would like to prove the
Riemann hypothesis, we should add thatB is not identical with the desperately sought fieldF1 - it
is still “too big”!

3. Tropical semi-domains

To study field extensions, one has to understand polynomial rings first. Thus, in characteristic
1, we have to deal with polynomials over the semifieldrG of an abelianℓ-groupG. For an arbitrary
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field K, there are many integral domains with quotient fieldK. If K is an algebraic number field,
there is a canonical subringO - the ring of integers - with quotient fieldK. Similarly, any semifield
rG of characteristic 1 has a canonical sub-semiringĂG´ :“ G´ \t0u, whereG´ is the negative cone
of G. (Since 0 is the smallest element ofrG, the cone that touches 0 is the negative one.)

Definition 3.1. We define asemi-domainto be a commutative semiringA satisfyingac “ bc ñ
a “ b for a, b, c P A with c �“ 0. We callA tropical if there exists an abelianℓ-groupG with
A “ ĂG´.

In particular, a semi-domain has no zero-divisors. An intrinsic description of tropical semi-
domains is obtained as follows. Recall that ahoop(Blok & Ferreirim, 2000) is a commutative
monoidH with a binary operationÑ such that the following are satisfied for alla, b, c P H:

a Ñ a “ 1

ab Ñ c “ a Ñ pb Ñ cq

pa Ñ bqa “ pb Ñ aqb.

Every hoop is â -semilattice with respect to thenaturalpartial order

a ď b :ðñ D c P H : a “ cb ðñ a Ñ b “ 1.

A hoop is calledself-similar (Rump, 2008) if it is cancellative. (For an explanation of the ter-
minology and equational characterizations, see (Rump, 2008), Proposition 5.) Every self-similar
hoopH has a group of fractions, thestructure group GpHq of H, which consists of the fractions
a´1b with a, b P H.

Proposition 3.1. Up to isomorphism, there is a one-to-one correspondence between
(a) semifields of charatceristic 1,
(b) tropical semi-domains,
(c) abelianℓ-groups, and
(d) self-similar hoops.

Proof. The equivalence between (a) and (c) follows by Proposition2.2, while the equivalence
between (b) and (c) is obvious. For an abelianℓ-groupG, we define

a Ñ b :“ ba´1 ^ 1

for a, b P G´. By (Rump, 2008), Section 5, this makesG´ into a self-similar hoop with structure
groupG. Conversely, the structure groupGpHq of a self-similar hoopH is an abelianℓ-group with
GpHq´ “ H by (Rump, 2008), Proposition 19. l

Note that Proposition3.1 implies that a self-similar hoopH is a lattice. Explicitly, the join is
given by the formula

a _ b “ pa Ñ bq Ñ b

which is well known from the theory of BCK algebras (Iséki & Tanaka, 1978).
The concept of Grothendieck group (Lang, 1965) extends to semirings as follows.
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Definition 3.2. Let A be a commutative semiring. We define anideal of A to be an additive
submonoidI which satisfies

a P A, b P I ùñ ab P I . (3.1)

We say that an idealP is prime if Ar P is a submonoid ofA.

Let I be an ideal of a commutative semiring. Then

a „ b :ðñ D c P I : a ` c “ b ` c

is an equivalence relation, and it is easily checked that it is a congruence relation. So the equiv-
alence classes form a commutative semiringA{I , the factor semiringmodulo I . There is also a
concept of localization.

Proposition 3.2. Let P be a prime ideal of a commutative semiring A. There exists a morphism
q: A Ñ AP of semirings with qpA r Pq Ă Aˆ

P such that every morphism f: A Ñ B of semirings
with fpAr Pq Ă Bˆ factors uniquely through q.

Proof. Define an equivalence relation on the multiplicative monoidA ˆ pAr Pq:

pa, bq „ pc, dq :ðñ D s P Ar P: ads“ bcs. (3.2)

Then x „ y implies xz „ yz for all x, y, z P A ˆ pA r Pq. So „ is a congruence relation on
A ˆ pAr Pq. As usual, we writea

b for the equivalence class ofpa, bq. So the equivalence classes
form a commutative monoidAP with a morphismq: A Ñ AP given byqpaq :“ a

1. Moreover,
qpAr Pq Ă Aˆ

P . Furthermore, it is easily checked that

a
b

`
c
d

:“
ad` bc

bd

is well defined and makesAP into a commutative semiring such thatq becomes a morphism of
semirings. Now the universal property is straightforward. l

We callAP the localizationof A at P. If the zero ideal is prime, the localization at 0 yields the
quotient semifield KpAq of A.

Note that there are semiringsA where 0 is prime, butA is not a semi-domain. For example, let
K be a semifield. We define a(formal) polynomialto be an expression

f “ a0 ` a1x ` a2x2 ` ¨ ¨ ¨ ` anxn

with ai P K. If f �“ 0, say,an �“ 0, we call degf :“ n the degreeof f . Thus, with the usual
operations, the formal polynomials make up a semiringKxxy, and 0 is a prime ideal. To see that
Kxxy need not be a semidomain, consider the case charK “ 1, that is,K “ rG for an abelianℓ-
groupG. Consider two elementsa, b P G with a �ď b. Then the two formal polynomialsa_bx_ x2

anda _ pa _ bqx _ x2 are distinct. However,

pa2 _ bx_ x2qpa _ xq “ pa2 _ pa _ bqx _ x2qpa _ xq,
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which shows thatrGxxy fails to be a semi-domain! That is the reason why we speak offormal
polynomials.

If A is a semidomain, the equivalence (3.2) simplifies to
a
b

“
c
d

ðñ ad “ bc,

which implies that all localizationsAP can be regarded as sub-semidomains ofKpAq.

Example. Let A be a semidomain of characteristic 1. The quotient semifieldKpAq is of the form
KpAq “ rG with an abelianℓ-groupG, and the monoidA r t0u “ A X G is a_-sub-semilattice.
However,A X G need not be the negative cone ofG. Indeed, this happens if and only ifA is
tropical. Assume this from now on. By Definition3.2, an ideal ofA is the same as a_-sub-
semilattice which is a downset. So the complementQ :“ ArP of a prime idealP of A is a convex
submonoid ofG´ with the property

a _ b P Q ùñ a P Q or b P Q,

that is,Q is the negative cone of a primeℓ-ideal inG (see (Darnel, 1995), Definitions 8.1 and 9.1).
In other words, there is a one-to-one correspondence between prime ideals ofA and primeℓ-ideals
of G. According to (Darnel, 1995), Proposition 14.3, the prime ideals ofA can be identified with
the prime filters of the negative coneG´ (with the reverse ordering). Note that the zero ideal ofA
corresponds toG, the “trivial” prime ℓ-ideal ofG, which should not be excluded from the prime
spectrum ofG.

Definition 3.3. Let K be a semifield. The elements of the quotient semifieldKpxq of Kxxy will be
calledrational functionsin x. We writeKrxs for the image of the natural mapKxxy Ñ Kpxq and
call the elements ofKrxs polynomialsin x.

4. Divisors in characteristic 1

In classical algebraic geometry, divisors are intimately connected with line bundles, invertible
sheaves, linear systems, and embeddings into projective spaces. Therefore, they play a decisive
rôle. Here we shall study their behaviour in characteristic 1.

Thus, letG be an abelianℓ-group. As a lattice,G is distributive. So the elements ofG can
be regarded as functions on a set. Let us take the simplest case whereG satisfies the ascending
chain condition. By a theorem of Birkhoff (Birkhoff, 1942), this implies thatG is a cardinal sum
G “

Ð
pPPZ with basisP. (Suchℓ-groups naturally arise as groups of fractional ideals of a

Dedekind domain.) So each intervalra, bs :“ tc P G | a ď c ď bu has a composition series
a “ c0 ă c1 ă ¨ ¨ ¨ ă cn “ b with atomic intervalsrci , ci`1s “ tci , ci`1u. For a diagram

a _ b

a b

a ^ b

(4.1)
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with a, b P G, the intervalsra ^ b, as andrb, a _ bs are said to beisomorphic, in analogy with
the isomorphism theorem in group theory.Isomorphismbetween intervals is then defined by finite
sequences of elementary isomorphisms (4.1). So each paira, b P G can be connected by a finite
chaina “ c0, c1, . . . , cn “ b in G, with atomic intervalsrci , ci`1s or rci`1, cis. If we attach a factor
´1 to the intervals of the second type, the total count of isomorphism classes of atomic intervals on
such a connecting path merely depends on the pair of endpoints a, b. Regarding the isomorphism
classes of atomic intervals as “points”, every elementa P G is completely determined by the formal
Z-linear combination of points encountered on a path between0 anda which is independent of the
chosen path. For algebraic curves, a formalZ-linear combination of points is called adivisor.

In general, there are no atomic intervals. So we have to watchout for a substitute. This
naturally leads to the following

Definition 4.1. Let G be a (multiplicative) abelianℓ-group, and letD be the subgroup of the free
abelian groupZpGq generated by the elements

pa _ bq ` pa ^ bq ´ a ´ b

with a, b P G. The factor group DivpGq :“ ZpGq{D will be called the group ofdivisorsof G. The
natural mapG Ñ DivpGq will be denoted bya ÞÑ ras.

In the special case of a noetherian groupG, it is clear that the homomorphismG Ñ DivpGq is
injective. In general, this follows sinceG Ñ DivpGq admits a retraction DivpGq Ñ G, given by
the map

n1ra1s ` ¨ ¨ ¨ ` nrrars ÞÑ an1
1 ¨ ¨ ¨ anr

r .

The retraction is well defined by virtue of the equation

pa _ bqpa ^ bq “ ab,

which holds in every abelianℓ-group. However, even forG “ Z, the embedding

G ãÑ DivpGq

is far from being surjective. Instead, the group DivpGq tells us much about the polynomial semi-
domain rGrxs.

Let Gpxq :“ rGpxqˆ be the abelianℓ-group which is freely generated byG and a single inde-
terminatex. Similarly, we setGrxs :“ rGrxs X Gpxq. The degree of non-zero polynomials extends
to a homomorphism

deg:Gpxq Ñ Z.

of abelianℓ-groups. For ordinary fieldsK, the degree function deg:Kpxqˆ Ñ Z is also important,
but it is not a homomorphism of rings. So the degree of a polynomial or rational function in
classical algebra signalizes a tropical structure!

The reader may check that
`
x _ pa _ bq

˘`
x _ pa ^ bq

˘
“ px _ aqpx _ bq
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holds for alla, b P G. To generalize this fact, recall that an abelianℓ-groupG is divisible if every
a P G admits ann-th root for each positive integern, or equivalently, the pure equation

xn “ a

is solvable for anya P G. (If G is written additively, this just means thatG can be regarded as a
Q-vector space.) Now we have ((Rump, 2015), Theorem 1):

Fundamental theorem for abelianℓ-groups. Let G be a divisible abelianℓ-group, and let K:“
rG be the corresponding tropical semifield. Every non-zero polynomial f P Krxs has a unique
factorization

f “ apx _ d1qpx _ d2q ¨ ¨ ¨ px _ dnq (4.2)

with a P G and d1 ď d2 ď ¨ ¨ ¨ ď dn in K.

For K “ R`
max, this theorem is known as the “fundamental theorem of tropical algebra” (see,

e. g., (Cuninghame-Green & Meijer, 1980)). Two things are remarkable. First, theroots d1 ď
¨ ¨ ¨ ď dn have to be put into linear order - otherwise, they won’t be unique. The roots of a
polynomial are in fact nothing else than its divisor. So in contrast to divisors of algebraic curves,
tropical divisors are not unique as unordered point sets with multiplicities. For the divisorras`rbs,
the equivalence tora _ bs ` ra ^ bs can be seen from the basic relation of Definition4.1.

Secondly, the rootsd1 ď ¨ ¨ ¨ ď dn are not the zeros, because no non-zero polynomialf P Krxs
satisfiesf paq “ 0 for anya P G. Only equationsf pxq “ gpxq for a pair of polynomials are
sensible! So the question whether polynomial equations canbe solved inG is not answered by the
fundamental theorem. We will come back to this in Section 5.

By the fundamental theorem, there is a well-defined map

div: Grxs Ñ DivpGdq (4.3)

for any abelianℓ-groupG with divisible closureGd, given by

divp f q :“ rd1s ` rd2s ` ¨ ¨ ¨ ` rdns

for a non-zero polynomial (4.2). Every rational functionf P Gpxq can be written as

f “ axn0px _ d1qn1px _ d2qn2 ¨ ¨ ¨ px _ drq
nr (4.4)

with a, d1, . . . , dr P G, andn0, . . . , nr P Z. In contrast to polynomials wheren1, . . . , nr P N, the
di cannot be put into linear order, which means that they are notunique! However,a andn0 are
unique. So letGpxq0 denote the subgroup of rational functionsf P GpXq with a “ 1 andn0 “ 0.
Then (Rump, 2015), Theorem 2, yields

Theorem 4.1. Let G be a divisible abelianℓ-group. The mapp4.3q extends uniquely to a group
isomorphism

div: Gpxq0 ÝÑ„ DivpGq

with inverse mapras ÞÑ px _ aq.

This gives a complete description of the divisor group DivpGq and its relationship to the unit
group of rGpxq, namely,

Gpxq – G ˆ Z ˆ Gpxq0.
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5. Dequantization of Prüfer and Bézout domains

Proposition3.1 suggests a study of abelianℓ-groups via semi-domains. A first step of this
program has already been taken in Section 3, where a decomposition of polynomials into linear
factors has been achieved. Now let us come “back to the roots”. The good news is that they are
most easily calculated from the coefficients. For an abelianℓ-groupG and a polynomialf “
a0 ` a1x` a2x2 ` ¨ ¨ ¨ ` anxn P rGrxs with a0an �“ 0, it is not hard to show that all coefficientsai can
be assumed to be non-zero, that is, they belong toG. (This is of course not true for polynomials
over a field, but note that in the tropical case, the zero element is the absolutely smallest one,
smaller than every element ofG.) By (Rump, 2015), Propositions 3 and 4, we have the following
explicit formula for the roots:di “ bi´1b

´1
i , where

b j :“ a j _
ł

iă jăk

pak´ j
i a j´i

k q
1

k´i .

So the rootsdi of each polynomial are expressible in terms ofk-th roots, wherek does not exceed
the degree of the polynomialf . Compared with the efforts of classical algebra up to the final stroke
after Ruffini, Abel, and Galois - a quick victory!

However, as already mentioned, roots are not solutions. Nevertheless, the decomposition into
linear factors indicates a close relationship to classicalsolutions. Indeed, here is a point where
tropical algebra applies to the classical case.

Recall that afractional idealof an integral domainR with quotient fieldK is a non-zeroR-
submoduleI of K such thatI Ă Ra for somea P Kˆ. A fractional idealI is said to beinvertible
if there is a (necessarily unique) fractional idealI´1 with I´1I “ R. Note that every invertible
fractional ideal is finitely generated. An integral domainR is said to be aPrüfer domain(see
(Gilmer, 1992), chap. IV) if the non-zero finitely generated ideals are invertible. If every non-zero
finitely generated ideal ofR is principal (hence invertible),R is called aBézout domain.

The invertible fractional ideals of a Prüfer domainR form an abelianℓ-groupGpRq with respect
to inclusion. Note that

pI ` JqpI X Jq “ IJ

holds for I , J P GpRq, which shows thatGpRq is closed under finite intersection. In the special
case thatR is a Bézout domain,pGpRq; Ąq can be identified withKˆ{Rˆ, thegroup of divisibility
of R (see (Gilmer, 1992), section 16).

For a Prüfer domainR, the finitely generated ideals form a tropical semi-domainApRq´, the
dequantizationof R. By Proposition3.2and the Jaffard-Ohm correspondence (Jaffard, 1953; Ohm,
1966), every tropical semi-domain occurs as the dequantizationof a Bézout domain. Thus, trop-
ical algebra makes no difference between Prüfer domains and the more special Bézoutdomains.
SinceApRq´ is a semi-domain, we consider its quotient semifieldApRq, consisting of all finitely
generatedR-submodules ofK. There is a natural map

t : K Ñ ApRq (5.1)

from the quotient fieldK of R to ApRq, given bytpaq :“ Ra. Note thatt is a monoid homomor-
phism, but not a morphism of semirings sinceRpa ` bq need not be equal toRa` Rb.
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This is by no means an anomaly. To the contrary, here is another point where tropical concepts
enter the classical world. Recall that avaluationof a fieldK is a functionv: K Ñ Γ into a totally
ordered abelian groupΓ, augmented by an element8 with α ` 8 “ 8 for all α P Γ\ t8u such
that the following are satisfied:

vpaq “ 8 ðñ a “ 0 (5.2)

vpabq “ vpaq ` vpbq (5.3)

vpa ` bq ě mintvpaq, vpbqu. (5.4)

In a time where order-theoretic terms have been almost completely eliminated from the standard
curriculum1, such a functionv which is not a morphism in any sense should sting in the eye! Let
us rewrite (5.2)-(5.4) as follows. EndowΓ with the opposite order and write it multiplicatively.
Then8 becomes 0 withα ¨ 0 “ 0 for all α P Γ\ t0u, and the inequality (5.4) turns into

vpa ` bq ď vpaq _ vpbq.

So rΓ :“ Γ \ t0u becomes a tropical semifield. The map (5.1) is characterized by the following
universal property:

Proposition 5.1. Let R be a Prüfer domain with quotient field K. Then every valuation v: K Ñ rΓ
with vpRq ď 1 factors uniquely through t: K Ñ ApRq

K
t

Ñ ApRq

v

rΓ

f
O

............Ñ

(5.5)

such that f: ApRq Ñ rΓ is a morphism of semifields.

Proof. Define f : ApRq Ñ rΓ by f pIq :“
Ž

tvpaq | a P Iu. Since everyI P ApRq is of the form
I “ Ra1`¨ ¨ ¨`Ran, everya “ r1a1 `¨ ¨ ¨` rnan P I with r i P Rsatisfiesvpaq ď vpa1q_¨ ¨ ¨_vpanq,
which shows thatf is well defined and renders (5.5) into a commutative diagram. The uniqueness
of f is obvious. l

For an abelianℓ-groupG, the pure polynomial 1_ xn is “purely inseparable”:

1 _ xn “ p1 _ xqn.

Therefore, the Frobenius identity
pa _ bqn “ an _ bn

1It seems that Grothendieck’s aversion against valuations had its bearing on this. In a letter of October 26, 1961,
Serre complained: “You are very harsh on Valuations! I persist nonetheless in keeping them, for several reasons ...”.
Grothendieck’s unrepentant response (October 31, 1961): “Your argument in favor of valuations is pretty funny ...”
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holds inG, and (Darnel, 1995), 47.11, implies thatG is a subdirect product of linearly ordered
abelian groups. Thus, for a Prüfer domainR, the diagram (5.5) can be expressed by a single map

Kˆ t
ÝÑ ApRqˆ

ãÑ
ź
Γ,

whereΓ runs through the value groups of all valuations ofR. Moreover,t is surjective if and only
if R is a Bézout domain. Examples of Bézout domains abound. Themost prominent examples are
the ring of algebraic integers ((Kaplansky, 1974), Theorem 102) and the ring of entire functions
(Helmer, 1940). The ring IntpZq of integer-valued polynomialsf P Qrxs is an example of a Prüfer
domain which is not a Bézout domain (Brizolis, 1979) (cf. (Narkiewicz, 1995), VII). In contrast
toZrxs, which is not a Prüfer domain, IntpZq has an uncountable number of maximal ideals, while
both rings have Krull dimension 2.

The valuationsv: R Ñ rΓ or rather their extensions

v: K Ñ rΓ
to K are just the components of the tropicalizationt. Thus, ifV is a valuation domain with quotient
field K, the corresponding valuation is just the tropicalization

t : K Ñ ApVq,

andApVqˆ is the value group ofV. There is a natural extensiont1 : Krxs Ñ ApVqrxs via t1pxq :“ x.
Explicitly:

t1pa0 ` a1x ` a2x2 ` ¨ ¨ ¨ ` anxnq “ tpa0q _ tpa1qx _ tpa2qx2 _ ¨ ¨ ¨ _ tpanqxn.

Note thatKrxs is even a principal ideal domain. We add a prime to make sure that t1 cannot be
confused with the restriction oft : Kpxq Ñ ApKrxsq to Krxs.

For higher rank valuations, Hensel’s lemma, which roughly states that coprime factorizations
of polynomials modulo the maximal ideal can be lifted, is no longer valid (see (Engler & Prestel,
2005), Remark 2.4.6). What remains is that the topology of a fieldK with a complete valuation
extends uniquely to fieldsL which are finite overK (Roquette, 1958). The proper substitute for
complete valuation rings (where Hensel’s lemma merely holds in rank 1) are theHenselianlocal
rings, introduced by Azumaya (Azumaya, 1951) and developed by Nagata (Nagata, 1962), which
satisfy Hensel’s lemma by definition. For equivalent characterizations, see (Ribenboim, 1985).
The most important characterization of Henselian local integral domains is that every integral
extension is local ((Nagata, 1954), Theorem 7). For Henselian valuations of a fieldK, this means
that they uniquely extend to the algebraic closureK.

Proposition 5.2.Let V be a Henselian valuation domain with quotient field K. Then t: K Ñ ApVq
extends uniquely to the algebraic closureK of K, which gives a commutative diagram

K
t
Ñ ApVq

K

Ó

X

t
Ñ ApVqd.

Ó

X
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For every non-zero polynomial fP Krxs with rootsα1, . . . , αn P K, the roots of t1p f q are tpα1q, . . . , tpαnq.

Proof. SinceV is Henselian, the integral closureS of V in K is local, hence a valuation ring
((Bourbaki, 1972), VI.8.6, Proposition 6). Furthermore,ApSq can be identified with the divisible
closure ofApVq. If a is the leading coefficient of f , we havef “ apx ´ α1q ¨ ¨ ¨ px ´ αnq in Krxs.
Sincet1 is multiplicative, this implies thatt1p f q “ tpaqpx _ tpα1qq ¨ ¨ ¨ px _ tpαnqq. As ApVqd is
linearly ordered, this proves the claim. l

Proposition5.2is the basis for Newton’s method, which makes use of the following result. Its
first part is essentially due to Ostrowski (Ostrowski, 1935).

Proposition 5.3. Let V be a Henselian valuation domain with quotient field K, and let f “ a0 `
a1x ` ¨ ¨ ¨ ` anxn P Krxs be a non-zero polynomial. If f is irreducible, t1p f q has a single root in
ApVqd. Conversely, if t1p f q has a single root in ApVqd, and there is no divisor dą 1 of n such that
ApVqˆ contains a d-th root of tpa0a´1

n q, then f is irreducible.

Proof. Let S be the integral closure ofV in the splitting fieldL of f . Every elementσ of the
Galois groupGpL|Kq leavesS invariant:σpSq “ S. Hence, if f is irreducible, every zeroα of f
satisfiestpσpαqq “ tpαq for all σ P GpL|Kq. So there is a single roottpαq of t1p f q of multiplicity
deg f .

Conversely, assume thatt1p f q has a single root inApVqd, and that there is no divisord ą 1
of n such thatApVqˆ contains ad-th root of tpa0a´1

n q. Let g be a monic irreducible factor off .
Without loss of generality, we can assume thatan “ 1. Then the single rootα of t1p f q satisfies
t1p f q “ px _ αqn andαn “ tpa0q. If g is of degreem, then t1pgq “ px _ αqm. Let d ą 0 be
the greatest common divisor ofm andn. Thend “ pm` qn for some integersp, q P Z. Hence
h :“ px _ αqd “ t1pgqpt1p f qq P ApVqrxs, andd|m implies thatt1pgq “ hm{d. Furthermore, the
absolute terma :“ αd of h belongs toApVqˆ, andan{d “ tpa0q. By assumption, this givesd “ n.
Whencef “ g “ h is irreducible. l

Proposition5.3reduces irreducibility of polynomials overK almost completely to the tropical
semifieldApVq, where the complete factorization is obtained by straightforward calculation. Con-
trary to a remark in (Khanduja & Saha, 1997), the condition of the criterion is not necessary, as
the trivial example 1̀ x ` x2 P pQ2rxs shows. (The mistake is caused by rewriting the special
version of Popescu and Zaharescu (Popescu & Zaharescu, 1995) in a logically different way.) In
particular, we have the following

Corollary. Let V be a Henselian valuation domain with quotient field K, and let f “ a0 ` a1x `
¨ ¨ ¨ ` anxn P Krxs be a non-zero polynomial. If t1p f q has m distinct roots, f splits into m relatively
prime factors.

Newton’s method was applied already in the early days of valuation theory, invented by Hensel
(Hensel, 1908), and developed by Kürschák (Kürschák, 1913a; Kürschák, 1913b), Ostrowski (Os-
trowski, 1916, 1917, 1933), and Rychlı́k (Rump & Yang, 2008; Rychlı́k, 1924). Newton’s method
also appears in a paper of Rella (Rella, 1927), but in essence, it can even be traced back to Newton
himself via Puiseux’s theorem which states, in modern terms, that the field of Puiseux series over
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C is the algebraic closure of the fieldCppxqq of formal Laurent polynomials, the quotient field of
Crrxss.

Here the fieldCppxqq not only builts a bridge between algebraic curves and complex analysis;
in addition, it is maximally close to its tropical shadow: Every finite extension field ofCppxqq is
isomorphic toCppxqq, the extension being just given be extracting somen-th root of x. So if S
denotes the the integral closureS of Crrxss in the algebraic closure ofCppxqq, the tropical picture
is encoded in the commutative diagram

Cppxqq
t

Ñ ApCrrxssq “ Z

Cppxqq

Ó

X

t
Ñ ApSq “ Q.

Ó

X

A lot of irreducibility criteria can be derived from Proposition 5.3, which seems to be the “true
metaphysics”2 behind polynomial factorization. Eisenstein’s criterionis just the first of a series
of irreducibility criteria (e. g., (Dumas, 1906; Kürschák, 1923; Ore, 1923, 1924; Rella, 1927;
MacLane, 1938; Azumaya, 1951)) which follow the same “tropical” pattern.

6. Algebraic equations in characteristic 1

Now we return to the problem that solutions of equations between tropical polynomials cannot
just be read off from the roots. Let us start with linear equations

ax_ b “ cx_ d (6.1)

in a tropical semifieldK. Looking quite innocent, they already bear a mild challenge. In contrast
to classical algebra, such an equation is not always solvable. To avoid trivialities, assume that
a, b, c, d P G :“ Kˆ. Thenx cannot be zero, unlessb “ d. To solve Eq. (6.1), consider the map
p: G Ñ G given by

ppxq :“
`
pad_ bcqx _ bd

˘`
acx_ pad_ bcq

˘´1
. (6.2)

Note the expression∆ :“ ad _ bc which looks like a determinant! The roots of the left- and
right-hand side of Eq. (6.1) are respectively

α :“ a´1b, β :“ c´1d.

Proposition 6.1. The mapp6.2q is idempotent and maps G onto the interval

rα ^ β, α _ βs. (6.3)

Every solution x of Eq.p6.1q is mapped into a solution ppxq.

2A common expression of the 18th century (see (Carnot, 1860); or (Speiser, 1956), Chapter 17, concerning La-
grange who considered groups as “la vraie métaphysique” ofalgebraic equations).
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Proof. To verify thatp2 “ p, note first that∆2 ě abcd. Now Eq. (6.2) can be written as

ppxq “
∆x _ bd
acx_ ∆

.

So we have

ppppxqq “
∆p∆x _ bdqpacx_ ∆q´1 _ bd

acp∆x _ bdqpacx_ ∆q´1 _ ∆
“
∆p∆x _ bdq _ bdpacx_ ∆q

acp∆x _ bdq _ ∆pacx_ ∆q

“
p∆2 _ abcdqx _ ∆bd

ac∆x _ p∆2 _ abcdq
“
∆

2x _ ∆bd
ac∆x _ ∆2

“
∆x _ bd
acx_ ∆

“ ppxq.

Furthermore,

ppxq “ p∆x _ bdqpacx_ ∆q´1 “ p∆x _ bdqpa´1c´1x´1 ^ ∆´1q

“ ∆xpa´1c´1x´1 ^ ∆´1q _ bdpa´1c´1x´1 ^ ∆´1q

ď ∆a´1c´1 _ bd∆´1 “ a´1b _ c´1d,

and similarly,ppxq “ p∆x _ bdqa´1c´1x´1 ^ p∆x _ bdq∆´1 ě ∆a´1c´1 ^ bd∆´1 “ a´1b ^ c´1d.
Thusp maps into the intervalrα^β, α_βs. Forx P rα^β, α_βs, we haveacxď acpa´1b_c´1dq “
∆, and secondly,bd ď pad_ bcqpa´1b^ c´1dq ď ∆x. Henceppxq “ p∆x_ bdq∆´1 “ ∆x∆´1 “ x.

Finally, if x is a solution of Eq. (6.1), thenpappxq _ bqpacx_∆q “ ap∆x_ bdq _ bpacx_∆q “
a∆x_b∆ “ pcx_dq∆ “ pc∆_acdqx_dpbc_∆q “ cp∆x_bdq_dpacx_∆q “ pcppxq_dqpacx_∆q,
which shows thatppxq is a solution of Eq. (6.1). l

By Proposition6.1, the solutions of Eq. (6.1) are the fibers of the solutions in the interval
(6.3) under the projectionp. So it remains to consider solutions in the interval (6.3). To solve the
equation, we consider another maps: G Ñ G with

spxq :“ a´1dpax_ bqpcx_ dq´1. (6.4)

Proposition 6.2. The mapp6.4q satisfies s2 “ p. In particular, s is an involution on the interval
p6.3q.

Proof. We have

spspxqq “ a´1d ¨
a ¨ a´1dpax_ bqpcx_ dq´1 _ b

c ¨ a´1dpax_ bqpcx_ dq´1 _ d
“ a´1d ¨

dpax_ bq _ bpcx_ dq

cá 1dpax_ bq _ dpcx_ dq

“
dpax_ bq _ bpcx_ dq

cpax_ bq _ apcx_ dq
“
∆x _ bd
acx_ ∆

“ ppxq. l

Corollary. The following are equivalent.
(a) Eq. p6.1q is solvable.
(b) ad ^ bc ď ab ď ad_ bc.
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(c) ad ^ bc ď cd ď ad _ bc.

If Eq. p6.1q is solvable, the unique solution in the intervalp6.3q is x “ pb _ dqpa _ cq´1.

Proof. The equivalence of (b) and (c) follows by symmetry. Condition (c) is equivalent to
a´1d P rα ^ β, α _ βs. Furthermore, Eq. (6.4) shows thats maps every solution of Eq. (6.1)
to a´1d. Hence, if Eq. (6.1) is solvable, there is a solutionx P rα ^ β, α _ βs, which yields
a´1d “ spxq “ sppxq “ s3pxq “ pspxq P rα^β, α_βs. Thus (c) is necessary for the solvability of
Eq. (6.1). Moreover,x “ ppxq “ s2pxq “ spa´1dq “ a´1dpd_bqpca´1d_dq´1 “ pd_bqpc_aq´1.

Conversely, ifa´1d P rα ^ β, α _ βs, thenx :“ spa´1dq satisfiesspxq “ ppa´1dq “ a´1d.
Hence Eq. (6.4) implies thatx is a solution. l

Our discussion of linear equations already shows that solutions need not exist, even for non-
trivial equations. Therefore, a concept of algebraically closed semifield has to take this into ac-
count. So we arrive at the following

Definition 6.1. A semifieldK is said to bealgebraically closedif every equationf pxq “ 1 with
f P Kpxq which is solvable in some extension semifield ofK admits a solution inK.

Note that an equationf pxq “ 1 in Kpxq can also be written in the form

gpxq “ hpxq

with polynomialsg, h P Krxs. We mention here that polynomials inKrxs can be regarded as
functions. Namely, for a non-trivial abelianℓ-groupG, Proposition 5 of (Rump, 2015) implies
that f P rGrxs is uniquely determined by the corresponding functionf : Gd Ñ Gd on the divisible
closure ofG. For rG “ R`

max, it is convenient to writeR` additively via the logarithm. SoG
is turned into the additive group ofR, and 0 becomeś 8. The graph of a polynomial is then
piecewise linear, a classical Newton polygon. For example,the polynomial

´1 _ p´2 ` 2xq _ p´4 ` 3xq

looks as follows:
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´2

´4

1
2 2

Here the coefficients are inZ, while the roots are in12Z, because the linear term is missing. The
root 1

2 is of multiplicity 2. Thus, if we add a linear term to get the polynomial into the normal
form, the coefficient ofx would be´3

2.
The corollary of Proposition6.2shows that in the tropical case, linear equations are not trivial,

and that roots only play a certain rôle with respect to the solutions. In compensation for this initial
difficulty of tropical equations, Theorem 4 of (Rump, 2015) states that we don’t have to go beyond
quadratic equations! Precisely, the theorem says that a tropical semifieldK is algebraically closed
if and only if theℓ-groupG :“ Kˆ is divisible, that is, the pure equationsxn “ a are solvable in
G, and the quadratic equations

pa _ 1qx2 _ pa2 _ b _ 1qx _ pa2 _ aq “ ax2 _ a (6.5)

are solvable for alla, b P G. Note that the solvablity clause (in an extension semifield)of Defini-
tion 6.1is missing. In fact, we have

Proposition 6.3. The equationsp6.5q are solvable in any totally ordered abelian group.

Proof. Fora ě 1, Eq. (6.5) becomesax2_pa2_bqx_a2 “ ax2_a. We show that this equation
holds for allx ě a _ a´1b. Indeed, the latter implies thatax2 ě axpa _ a´1bq “ pa2 _ bqx ě a2.
So the equation (6.5) is solved. Fora ď 1, the equation becomesx2 _ pb _ 1qx _ a “ ax2 _ a.
Here we choosex ď apb_ 1q´1. Thenx ď a andpb_ 1qx ď a. Henceax2 ď x ď a, which solves
the equation. l

Corollary 1. For any tropical semifield, there exists a (tropical) extension semifield where Eq.
p6.5q is solvable.

Proof. This follows since every abelianℓ-groupG is a subdirect product of totally ordered
abelian groups ((Darnel, 1995), 47.11). l
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Furthermore, Theorem 4 of (Rump, 2015) implies

Corollary 2. Let G be a totally ordered abelian group. ThenrG is algebraically closed if and only
if the pure equation xn “ a is solvable for all positive integers n and aP G.

To analyse Eq. (6.5), consider an additive abelianℓ-groupG. The proof of Proposition6.3
then tells us that in the totally ordered case, solutions of Eq. (6.5) exist, but depending on the sign
of a, they must be either large enough ifa ą 0 or small enough ifa ă 0.

It is this point where geometry enters the scene. By the Jaffard-Ohm correspondence, every
abelianℓ-groupG occurs as a tropicalized Bézout domainR. By (?), Proposition 7, the structure
sheaf ofR can be transferred toG, which yields a sheaf̆G on a spectral spaceX with totally or-
dered stalks such thatΓpX, Ğq – G. In the archimedean case,Ğ is a sheaf of germs of continuous
functions. Therefore, the sensitivity of Eq. (6.5) against sign change ofa is best illustrated by the
following

Example. Let G be theℓ-group C r´1, 1s of continuous real functions on the closed interval
r´1, 1s. Multiplying Eq. (6.5) by a´1x´1, it takes the symmetric form

a´x _ c _ a`x´1 “ |x| (6.6)

with a P G andc ě |a|, where|a| :“ a _ a´1 and

a` :“ a _ 1, a´ :“ a´1 _ 1.

Writing Eq. (6.6) additively, it becomes

pa´ ` xq _ c _ pa` ´ xq “ |x|.

Passing toC r´1, 1s, let c be the constant functiont ÞÑ 1, and leta be arbitrary with|a| ď c. If
xptq ě 0, this implies thatxptq “ |x|ptq ě 1, while xptq ď 0 gives´xptq ě 1, that is,xptq ď ´1.
Thus Eq. (6.5) cannot be solvable by a continuous function.

Recall that an elementu ě 1 of a (multiplicative) abelianℓ-groupG is said to be aweak order
unit ((Darnel, 1995), 54.3) if u ^ a “ 1 implies thata “ 1. Fora P G`, we writeGpaq for the
ℓ-ideal generated bya. It consists of the elementsx P G with |x| ď an for somen P N.

Definition 6.2. (McGovern, 2005) An abelianℓ-groupG is said to beweakly complementedif for
any paira, b P G with a^ b “ 1, there exista1, b1 P G with a ď a1 andb ď b1 such thata1 ^ b1 “ 1
anda1b1 is a weak order unit ofG. If Gpaq is weakly complemented for alla P G`, thenG is called
locally weakly complemented.

The following result shows that the solvability of Eq. (6.5) merely depends on the lattice
structure ofG. To state it, we need a very weak form of projectability. Recall that an abelian
ℓ-groupG is strongly projectable(Darnel, 1995) if the polar

IK :“ ta P G | @ b P I : |a| ^ |b| “ 1u



46 W. Rump/ Theory and Applications of Mathematics& Computer Science 6 (1) (2016) 28–50

of anyℓ-idealI is a cardinal summand:G “ IK
‘ IKK. If this holds for principalℓ-idealsI “ Gpaq,

thenG is calledprojectable. More generally,G is said to besemi-projectable3 (Bigardet al., 1977)
if

pa ^ bqK “ aKbK

for a, b P G`. (For a geometric characterization, see (Rump, 2014), corollary of Theorem 1.) Still
more generally, we callG z-projectable(Rump, 2014) if

pabqKK “ aKKbKK

holds fora, b P G`. Thus

strongly projectableùñ projectableùñ semi-projectableùñ z-projectable

All these concepts are pairwise inequivalent. The line of implications could even be enlarged
to seven types of projectability (Rump, 2014) which all have their particular relevance (cf. the
hierarchy of Tn-spaces in general topology). Now we are ready to prove

Theorem 6.1.Let G be an abelianℓ-group. The following are equivalent.
(a) The quadratic equationsp6.5q are solvable in G.
(b) For a, b, c P G with a^ b “ 1 and cě a _ b, there exist a1, b1 P G with a1 ě a and b1 ě b

such that a1 ^ b1 “ 1 and a1 _ b1 “ c.
(c) G is semi-projectable and locally weakly complemented.
(d) G is z-projectable and locally weakly complemented.

Proof. (a) ñ (b): By assumption, there exists a solutionx P G of Eq. (6.6) with ab´1 in-
stead ofa. Thenbx ď x`x´ andax´1 ď x`x´, which givespx´q2 ě b andpx`q2 ě a. Define
a1 :“ px`q2 ^ c andb1 :“ px´q2 ^ c. Thena1 ^ b1 “ 1 anda1 _ b1 “

`
px`q2 _ px´q2

˘
^ c “ c.

(b) ñ (c): Let P �“ Q be minimal primeℓ-ideals ofG. Choosea P P X G` r Q. Since
P is minimal,a ^ b “ 1 for someb R P. For anyc ě a _ b, the elementsa1, b1 in (b) satisfy
a1 P bK andb1 P aK. HenceaKbK “ G. SinceaK Ă Q andbK Ă P, we obtainPQ “ G, which
shows thatG has stranded primes. By (Bigardet al., 1977), Proposition 7.5.1, this implies thatG
is semi-projectable. Moreover, (b) implies thatG is locally weakly complemented.

(c) ñ (d): By (Rump, 2014), Proposition 4, every semi-projectable abelianℓ-group isz-
projectable.

(d) ñ (a): Leta, b, c P G with a ^ b “ 1 andc ě a _ b be given. By the equivalence of Eq.
(6.5) and Eq. (6.6), it is enough to solve the equation

ax_ c _ bx´1 “ |x|. (6.7)

3Some authors replace this term by “having stranded primes”,referring to an equivalent form proved in (Bi-
gard et al., 1977), Proposition 7.5.1. Darnel (Darnel, 1995) argues that “semi-projectable” does not come close
to “projectable” (referring perhaps to the “projections” of a cardinal sum). Note, however, the equivalent version
a ^ b “ 1 ñ aKbK “ G, which gives half of a cardinal sum: “semi”̂ “projectable”.
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By assumption, there exista1, b1 P G with a1 ě a and b1 ě b such thata1 ^ b1 “ 1 and
pa1b1qK X Gpcq “ t1u. SinceG is z-projectable, this yieldsc P pa1b1qKK “ pa1qKKpb1qKK. So
there arep P pa1qKK X G` andq P pb1qKK X G` with c “ pq. In particular, this implies that
p^ q “ 1. Hencea “ a^ pp_ qq “ pa^ pq _ pa^ qq “ a^ p. So we havea ď p, and similarly,
b ď q. Thusx :“ qp´1 solves Eq. (6.7). l

By (Rump, 2015), Theorem 4, we obtain

Corollary 1. Let G be an abelianℓ-group. The tropical semifieldrG is algebraically closed if and
only if G is divisible and its underlying lattice satisfies condition (b) of Theorem6.1.

Recall that a ringR is said to beclean(Nicholson, 1977) if every a P R is a sum of an idem-
potent and a unit. Nicholson (Nicholson, 1977) proved that a clean ringR satisfies theexchange
property(Crawley & Jónsson, 1964; Warfield, 1972), which means that for every decomposition
M “ R‘ N “

À
iPI Mi of modules, there are submodulesM1

i Ă Mi with M “ R‘
À

iPI M1
i . For

example, commutative von Neumann regular rings, and semiperfect rings, are clean. For various
characterizations, see (McGovern, 2005). If every non-isomorphic homomorphic image ofR is
clean, the ringR is calledneat(McGovern, 2005).

Corollary 2. A Bézout domain is neat if and only if its group of divisibility satisfies the equivalent
conditions of Theorem6.1.

Proof. By (McGovern, 2005), Theorem 5.7, a Bézout domain is neat if and only if its group of
divisibility is semi-projectable and locally weakly complemented. Thus Theorem6.1applies. l

Remark. Note that the underlying lattice of an abelianℓ-group is self-dual viax ÞÑ x´1. Thus,
for a Bézout domainR, Corollary 2 remains valid if the group of divisibility is replaced by the unit
groupApRqˆ of the tropical semifieldApRq. In particular, Corollary 2 gives a characterization of
Bézout domainsR with ApRq algebraically closed.

Finally, we consider the abelianℓ-groupC pXq of continuous real valued functions on a topo-
logical spaceX. Note thatC pXq is also a ring. To avoid confusion, let us denote this ring by
CpXq. By (Gillman & Jerison, 1960), Theorem 3.9, there is no loss of generality ifX is assumed
to be completely regular. It is known thatCpXq is a Bézout ring (that is, every finitely generated
ideal is principal) if and only ifX is anF-space, which originally was just defined by this property
(Gillman & Henriksen, 1956). For equivalent characterizations, see (Gillman & Jerison, 1960),
Theorem 14.25. One of these characterizations states that for every f P CpXq there is an element
g P CpXq with f “ g| f |.

Corollary 3. Let X be a completely regular space. If the tropical semifieldĆC pXq is algebraically
closed, then X is an F-space.

Proof. Let f P CpXq be given. Thenp f ` ^ 1q ^ p f ´ ^ 1q “ 0 andp f ` ^ 1q _ p f ´ ^ 1q ď 1.
Thus, by Corollary 1, there existg, h P C pXq with f ` ^ 1 ď g and f ´ ^ 1 ď h such thatg^ h “ 0
andg _ h “ 1. We claim thatf “ pg ´ hq| f |. If f ptq ą 0, then 0ă f `ptq ^ 1 ď gptq. Hence
hptq “ 0, and thuspg ´ hqptq “ 1. Similarly, f ptq ă 0 implies that 0ă f ´ptq ^ 1 ď hptq, which
yieldspg ´ hqptq “ ´1. ThusX is an F-space. l
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Dumas, G. (1906). Sur quelques cas d’irreductibilité des polynomes à coefficients rationnels.Journal de Mathema-
tique2, 191–258.

Engler, A. J. and A. Prestel (2005).Valued fields. Springer Monographs in Mathematics, Springer-Verlag, Berlin.
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Iséki, K. and S. Tanaka (1978). An introduction to the theory of bck-algebras.Math. Japon.23, 1–26.
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1. Introduction

Let C be the field of complex numbers. A continuous function f (z) = u + iv is a complex
valued harmonic function in a domain D ⊆ C, if both u and v are real harmonic in D. Hengartner
and Schober [5], among others, investigated the class of functions of the form f (z) = h(z) + g(z),
which are harmonic, meromorphic, orientation preserving and univalent in Ũ = {z : |z| > 1} so that
f (∞) = ∞ . It is known that f(z) admits the representation

f (z) = h(z) + g(z) + A log |z| (1.1)

where

h(z) = az +

∞∑
n=0

anz−n, g(z) = βz +

∞∑
n=0

bnz−n (1.2)

For 0 ≤ |β| ≤ |α| and a(z) =
f z

fz
is analytic and satisfies |a(z)| < 1 for z ∈ Ũ. Since the affine

transformation
α f − β f − αa0 + βa0

|α|2 − |β|2
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is again in the class studied by Hengartner and Schober see (Hengartner & Schober, 1987). Re-
cently, Jahangiri (Jahangiri, 2000) assumed α = 1, β = 0 and removed the logarithmic singularity
by letting A = 0 in (1.1) and focused on the study of the family of harmonic meromorphic func-
tions.
For fixed positive integer p, consider the family ΣH(p) consisting of functions

f (z) = h(z) + g(z) (1.3)

which are p−valent harmonic meromorphic functions in Ũ, where

h(z) = zp +

∞∑
n=1

an+p−1z−(n+p−1),

g(z) =

∞∑
n=1

bn+p−1z−(n+p−1), |bp| < 1 (1.4)

we call h(z) the analytic part and g(z) is co-analytic part of f (z). For 0 ≤ γ < 1, k ≥ 1 and 0 ≤
α ≤ 2π, we define a new subclass as follows: Let ΣH(p, γ, k) consist of functions f (z) satisfying
the conditions

Re
{

(1 + keiα)
z f ′(z)
z′ f (z)

− pkeiα

}
≥ pγ, (1.5)

where z′ =
∂

∂θ
z with z = reiθ, r > 1 and θ is real.

Further, let ΣH(p, γ, k) denote the subclass of ΣH(p, γ, k) consisting of functions f (z) = h(z) + g(z)
such that h(z) and g(z) are of the form

h(z) = zp +

∞∑
n=1

|an+p−1|z−(n+p−1),

g(z) = −

∞∑
n=1

|bn+p−1|z−(n+p−1), |bp| < 1 (1.6)

Note that, various other subclasses of harmonic p−valent meromorphic functions have been stud-
ied rather extensively by Ahuja and Jahangiri (Ahuja & Jahangiri, 2003) and Murugusundaramoor-
thy (Murugusundaramoorthy, 2003), we also note that, ΣH(1, γ, 1), the class of harmonic meromor-
phic functions, was studied by Rosy (T. Rosy & Jahangiri, 2001). Among other things, Ahuja and
Jahangiri (Ahuja & Jahangiri, 2003), proved that if, f (z) = h(z) + g(z) is given by (1.4) and if,

∞∑
n=1

(n + p − 1)(|an+p−1| + |bn+p−1|) ≤ p, (1.7)

then f (z) is harmonic, sense -preserving and p−valent in Ũ and f ∈ ΣH(p).
In the present paper, we have obtained coefficient bounds, extreme points, distortion bounds, con-
volution conditions and convex combinations for functions in the class ΣH(p, γ, k).
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2. Coefficient Bounds

First we state and prove the coefficient bound for the class ΣH(p, γ, k).

Theorem 2.1. Let f (z) = h(z) + g(z) with h(z) and g(z) given by (1.4) . If

∞∑
n=1

[
(n + p − 1)(1 + k) + p(k + γ)

] ∣∣∣an+p−1

∣∣∣
+[(n + p − 1)(1 + k) − p(k + γ)]

∣∣∣bn+p−1

∣∣∣ ≤ p(1 − γ), (2.1)

then f (z) is harmonic, orientation preserving and p−valent in Ũ and f ∈ ΣH(p, γ, k).

Proof. Suppose that (2.1) holds. Then we have

Re
(1 + keiα)(zh′(z) − zg′(z)) − pkeiα(h(z) + g(z))

h(z) + g(z)
=

A(z)
B(z)

≥ pγ, (2.2)

where z = reiθ, 0 ≤ r < 1, 0 ≤ γ < 1, k ≥ 1, 0 ≤ α ≤ 2π,
here, we let

A(z) = (1 + keiα)(zh′(z) − zg′(z)) − pkeiα(h(z) + g(z)) (2.3)

and

B(z) = (h(z) + g(z)). (2.4)

Using the fact that Rew ≥ pγ, if and only if |p − γ + ω| ≥ |p + γ − ω|, it suffices to show that

|A(z) + p(1 − γ)B(z)| − |A(z) − p(1 + γ)B(z)| ≥ 0. (2.5)

Substituting the expressions for A(z) and B(z) in (2.5), we obtain

|A(z) + p(1 − γ)B(z)| − |A(z) − p(1 + γ)B(z)| =
∣∣∣p(1 − γ)h(z) + (1 + keiα)zh′(z)) − pkeiαh(z)

∣∣∣
+

∣∣∣∣p(1 − γ)g(z) − (1 + keiα)zg′(z) − pkeiαg(z)
∣∣∣∣ − | p(1 + γ)h(z) − (1 + keiα)zh′(z) + pkeiαh(z)

+p(1 + γ)g(z) + (1 + keiα)zg′h(z) + pkeiαg(z) |

=

∣∣∣∣∣∣∣p(2 − γ)zp −

∞∑
n=1

[(1 + keiα)(n + p − 1) + p(keiα − p − γ)]

∣∣∣∣∣∣∣ an+p−1z−(n+p−1)

−

∞∑
n=1

[(1 + keiα)(n + p − 1) + p(1 − keiα − p − γ)]
∣∣∣bn+p−1

∣∣∣ z−(n+p−1)|∣∣∣∣∣∣∣γpzp −

∞∑
n=1

[(1 + keiα)(n + p − 1) + p(keiα + 1 + γ)]
∣∣∣an+p−1

∣∣∣ z−(n+p−1)
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−

∞∑
n=1

[(1 + keiα)(n + p − 1) − p(keiα + 1 + γ)]
∣∣∣bn+p−1

∣∣∣ z−(n+p−1)

∣∣∣∣∣∣∣∣
2p(1 − γ) |z|p −

∞∑
n=1

2(n + p − 1)(1 + k) + 2p(k + γ)
∣∣∣an+p−1

∣∣∣ |z|−(n+p−1)

−

∞∑
n=1

2(n + p − 1)(1 + k) − 2p(k + γ)
∣∣∣bn+p−1

∣∣∣ |z|−(n+p−1)

2 |z|p
p(1 − γ) −

∞∑
n=1

(n + p − 1)(1 + k) + p(k + γ)
∣∣∣an+p−1

∣∣∣ |z|−(n+p−2)


+

∞∑
n=1

(n + p − 1)(1 + k) − p(k + γ)
∣∣∣bn+p−1

∣∣∣ |z|−(n+p−2)

≥ 2{p(1 − γ) −
∞∑

n=1

(n + p − 1)(1 + k) + p(k + γ)
∣∣∣an+p−1

∣∣∣
+

∞∑
n=1

(n + p − 1)(1 + k) − p(k + γ)
∣∣∣bn+p−1

∣∣∣} ≥ 0,

by (2.1).

Remark 2.2. It is natural to ask if the condition (2.1) is also necessary for functions f ∈ ΣH(p, γ, k).

In the next theorem we show that the answer to that question which is in affirmative.

Theorem 2.3. Let f (z) = h(z) + g(z) be such that h(z) and g(z) given by (1.6). Then f (z) ∈∑
H(p, γ, k), if and only if the inequality (2.1) holds for the coefficients of f (z) = h(z) + g(z).

Proof. In view of Theorem I, we only need to show that f (z) <
∑

H(p, γ, k), if the condition (2.1)
does not hold. We note that for f (z) ∈

∑
H(p, γ, k), we have

Re

 (1 + keiα)(zh′(z) − zg′(z)) − pkeiα(h(z) + g(z))

h(z) + g(z)

 ≥ pγ.

This is equivalent to

Re

 (1 + keiα)(zh′(z) − zg′(z)) − pkeiα(h(z) + g(z))

h(z) + g(z)

 − pγ =

Re
{

1
zp +

∑∞
n=1 an+p−1z−(n+p−1) −

∑∞
n=1 bn+p−1z−(n+p−1)

[
p(1 − γ)zp

−

∞∑
n=1

[(1 + keiα)(n + p − 1) + pkeiα + pγ]an+p−1z−(n+p−1)

−

∞∑
n=1

[(1 + keiα)(n + p − 1) − pkeiα − pγ]bn+p−1z−(n+p−1)
]}
≥ 0
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The above condition must hold for all values of z such that |z| = r < 1. Upon choosing the values
of z on the positive real axis, we must have

Re
{

1
1 +

∑∞
n=1(an+p−1 − bn+p−1)r−(n−1)

[
p(1 − γ) −

∞∑
n=1

[(1 + keiα)(n + p − 1) + pkeiα + pγ]an+p−1r−(n−1)

−

∞∑
n=1

[(1 + keiα)(n + p − 1) − pkeiα − pγ]bn+p−1r−(n−1)
]}
≥ 0.

If the condition (2.1) does not hold, then the numerator in (2.5) is negative for r sufficiently close
to 1. Thus there exists z0 = r0 > 1, for which the quotient in (2.5) is negative. This contradicts the
conditions for f (z) ∈ ΣH(p, γ, k) and this completes the proof.

3. Distortion Bounds and Extreme Points

The determination of the extreme points of a compact family of harmonic univalent functions
enables us to solve many extremal problems for the family. The fundamental reason for con-
sidering extreme points for starlike and convex functions is to more easily categorize extremal
properties under continuous linear functionals acting on these classes. In this section, we shall
obtain distortion bounds for functions in ΣH(p, γ, k) and also determine the extreme points for the
class ΣH(p, γ, k).

Theorem 3.1. If f (z) ∈ ΣH(p, γ, k) then rp − p(1 − γ)r−p ≤ | f (z)| ≤ rp + p(1 − γ)r−p, |z| = r < 1.

Proof. We only prove the inequality on the right. The argument for the inequality on the left is
similar. Let f (z) ∈ ΣH(p, γ, k). Taking the absolute value of f (z), we obtain

| f (z)| ≤

∣∣∣∣∣∣∣zp +

∞∑
n=1

an+p−1z−(n+p−1) −

∞∑
n=1

bn+p−1z−(n+p−1)

∣∣∣∣∣∣∣ ≤ rp +

∞∑
n=1

(an+p−1 + bn+p−1)r−(n+p−1)

≤ rp +

∞∑
n=1

(an+p−1 + bn+p−1)r−p ≤ rp +

∞∑
n=1

(an+p−1 + bn+p−1)r−(n+p−1)

≤ rp +
∑∞

n=1[(n + p − 1)(1 + k) + p(k + γ)an+p−1] +
∑∞

n=1[(n + p − 1)(1 + k) − p(k +
∑

)bn+p−1]

≤ rp + (p − γ)r−p

by (2.1). Our next result shows how f (z) ∈ ΣH(p, γ, k) looks like. We precisely proved.

Theorem 3.2. f (z) ∈ ΣH(p, γ, k) , if and only if f (z) can be expressed as

f (z) =

∞∑
n=1

(xn+p−1hn+p−1 + yn+p−1gn+p−1) (3.1)
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where z ∈ Ũ ,

hp−1(z) = zp,

hn+p−1(z) = zp +
p(1 − γ)

(n + p − 1)(1 + k) + p(k + γ)
z(n+p−1) (n = 1, 2, 3, ...).

gp−1(z) = zp,

gn+p−1(z) = zp +
p(1 − γ)

(n + p − 1)(1 + k) − p(k + γ)
z−(n+p−1) (n = 1, 2, 3, ...)

∞∑
n=1

(xn+p−1 + yn+p−1) = 1, xn+p−1 ≥ 0 and yn+p−1 ≥ 0.

Proof. For the functions f (z) given by (3.1), we may write,

f (z) =

∞∑
n=1

(
xn+p−1hn+p−1 + yn+p−1gn+p−1

)

= xp−1hp−1 + yp−1gp−1 +

∞∑
n=1

xn+p−1(zp +
p(1 − γ)

(n + p − 1)(1 + k) + p(k + γ)
)z(n+p−1)

+yn+p−1zp −
p(1 − γ)

(n + p − 1)(1 + k) − p(k + γ)
z−(n+p−1).

Then,

=

∞∑
n=1

[
((1 + k)(n + p − 1) + p(γ + k))

(
p(1 − γ)

(1 + k)(n + p − 1) + p(γ + k)
xn+p−1

)

+((1 + k)(n + p − 1) − p(γ + k))
(

p(1 − γ)
(1 + k)(n + p − 1) − p(γ + k)

yn+p−1

)
.

= p(1 − γ)
∞∑

n=1

xn+p−1 + yn+p−1 ≤ p(1 − γ),

and so f (z) ∈ ΣH(p, γ, k). Conversely, suppose that f (z) ∈ ΣH(p, γ, k). Set

xn =
(1 + k)(n + p − 1) + p(γ + k)

p(1 − γ)
|an+p−1|

and
yn =

(1 + k)(n + p − 1) + p(γ + k)
p(1 − γ)

|bn+p−1|, (n = 1, 2, 3, ...)
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Then note that by Theorem 2, 0 ≤ xp−1 ≤ 1.

yp−1 = 1 − xp−1 −

∞∑
n=1

(xn+p−1 + yn+p−1),

we obtain

f (z) =

∞∑
n=1

(xn+p−1hn+p−1 + yn+p−1gn+p−1)

as required.

4. Convolution and Convex Linear Combination

In this section, we show that the class ΣH(p, γ, k) is invariant under convolution and convex
combinations of its members. For harmonic functions

f (z) = zp +

∞∑
n=1

an+p−1z−(n+p−1) −

∞∑
n=1

bn+p−1(z)−(n+p−1)

and

F(z) = zp +

∞∑
n=1

An+p−1z−(n+p−1) −

∞∑
n=1

Bn+p−1(z)−(n+p−1)

we define the convolution of f (z) and F(z) as

( f ∗ F)(z) = zp +

∞∑
n=1

an+p−1An+p−1z−(n+p−1) −

∞∑
n=1

bn+p−1Bn+p−1(z)−(n+p−1) (4.1)

Using this definition, we show in the next theorem that the class ΣH(p, γ, k) is closed under convo-
lution.

Theorem 4.1. For 0 ≤ β ≤ γ ≤ 1, let f (z) ∈ ΣH(p, γ, k) and F(z) ∈ ΣH(p, β, k). Then

f (z) ∗ F(z) ∈ ΣH(p, γ, k) ⊂ ΣH(p, β, k). (4.2)

Proof. Let

f (z) = zp +

∞∑
n=1

|an+p−1|z−(n+p−1) −

∞∑
n=1

|bn+p−1|(z)−(n+p−1)

F(z) = zp +

∞∑
n=1

An+p−1z−(n+p−1) −

∞∑
n=1

Bn+p−1(z)−(n+p−1)

Note that An+p−1 ≤ 1 and Bn+p−1 ≤ 1. Obviously, the coefficients of f and F must satisfy
conditions similar to the inequality (2.1). So for the coefficients of f ∗ F we can write,
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∞∑
n=1

(1 + k)(n + p − 1) + p(γ + k)|an+p−1An+p−1| + (1 + k)(n + p − 1) − p(γ + k)|bn+p−1Bn+p−1|

≤ (1 + k)(n + p − 1) + p(γ + k)|an+p−1| + (1 + k)(n + p − 1) − p(γ + k)|bn+p−1|.

This right hand side of the above inequality is bounded by 2 because f (z) ∈ ΣH(p, γ, k). By the
same token, we can conclude that f (z) ∗ F(z) ∈ ΣH(p, γ, k) ⊂ ΣH(p, β, k). Our next result shows
that ΣH(p, γ, k) is closed under convex combination of its members.

Theorem 4.2. The family ΣH(p, γ, k) is closed under convex combination

Proof. For i = 1, 2, 3, .., let fi(z) ∈ ΣH(p, γ, k) where fi(z) is given by

fi(z) = zp +

∞∑
n=1

|ai,n+p−1|(z)(n+p−1) +

∞∑
n=1

|bi,n+p−1|(z)−(n+p−1).

Then by (2.1),
∞∑

n=1

(1 + k)(n + p − 1) + p(γ + k)|ai,n+p−1| + (1 + k)(n + p − 1) − p(γ + k)|bi,n+p−1| ≤ p(1 − γ) (4.3)

for
∑∞

n=1 ti = 1, 0 ≤ ti ≤ 1, the convex combination of fi(z) may be written as

∞∑
n=1

ti fi(z) = zp +

∞∑
n=1

(ti|ai,n+p−1|)z−(n+p−1) +

∞∑
n=1

(ti|bi,n+p−1|)(z)−(n+p−1).

Then by (4.2),
∞∑

n=1

[(1 + k)(n + p − 1) + p(γ + k)|
∞∑

n=1

(ti|ai,n+p−1|)| + (1 + k)(n + p − 1)

−p(γ + k)|
∞∑

n=1

(ti|bi,n+p−1|)|

∞∑
n=1

ti

{ ∞∑
n=1

(1 + k)(n + p − 1) + p(γ + k)ai,n+p−1 + (1 + k)(n + p − 1)

−p(γ + k)bi,n+p−1

}
≤

∞∑
n=1

ti p(1 − γ) = (1 − γ).

Since this is the condition required by (2.1), we conclude that
∞∑

n=1

ti fi(z) ∈ ΣH(p, γ, k). This com-

pletes the proof of Theorem (2.1).
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The main object of this paper is to give an application of a linear operator Hm,µ

p,q,spα1q f pzq involving the general-
ized hypergeometric function. We define subclasses of the meromorphic function class Σp,m by means of operator
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1. Introduction and definitions

Let Σp,m denote the class of functions of the form:

f pzq “ z´p
`

8
ÿ

k“m

akzk
pp P N “ t1, 2, ...uq , (1.1)

which are analytic and p-valent in the punctured unit disc U˚ “ tz : z P C and 0 ă |z| ă 1u “
Uzt0u. We also denote Σp,1´p “ Σp .
A function f P Σp,m is said to be in the class ΣS ˚ppαq of meromorphically p-valent starlike functions
of order α in U if and only if

<

˜

z f
1

pzq
f pzq

¸

ă ´α pz P U; 0 ď α ă pq . (1.2)

˚Corresponding author
Email addresses: bafrasin@yahoo.com (B. A. Frasin ), ekram_008eg@yahoo.com (E. E. Ali)
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Also a function f P Σp,m is said to be in the class ΣCppαq of meromorphically p-valent convex of
order α in U if and only if

<

˜

1`
z f

2

pzq
f 1pzq

¸

ă ´α pz P U; 0 ď α ă pq . (1.3)

It is easy to observe from (1.2) and (1.3) that

f pzq P ΣCppαq ô ´
z f

1

pzq
p

P ΣS ˚ppαq . (1.4)

For a function f P Σp,m, we say that f P ΣKppβ, αq if there exists a function g P ΣS ˚ppαq such that

<

˜

z f
1

pzq
gpzq

¸

ă ´β pz P U; 0 ď α, β ă pq . (1.5)

Functions in the class ΣKppβ, αq are called meromorphically p-valent close-to-convex functions
of order β and type α. We also say that a function f P Σp,m is in the class ΣK˚p pβ, αq of meromor-
phically quasi-convex functions of order β and type α if there exists a function g P ΣCppαq such
that

<

˜

pz f
1

pzqq
1

g1pzq

¸

ă ´β pz P U; 0 ď α, β ă pq . (1.6)

It follows from (1.5) and (1.6) that

f pzq P ΣK˚p pβ, αq ô ´
z f

1

pzq
p

P ΣKppβ, αq ,

where ΣS ˚ppαq and ΣCppαq are, respectively, the classes of meromorphically p-valent starlike func-
tions of order α and meromorphically p-valent convex functions of order α p0 ď α ă pq(see Aouf
(Aouf, 2008) and Frasin (Frasin, 2012)).
For a function f pzq P Σp,m, given by (1.1) and gpzq P Σp,m defined by

gpzq “ z´p
`

8
ÿ

k“m

bkz k ,

we define the Hadamard product (or convolution) of f pzq and gpzq by

f pzq ˚ gpzq “ p f ˚ gqpzq “ z´p
`

8
ÿ

k“m

akbkzk
“ pg ˚ f qpzq pp P Nq.

For real or complex numbers

α1, ..., αq and β1, ..., βs pβ j R Z´0 “ t0,´1,´2, ...u; j “ 1, 2, ..., sq,
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we consider the generalized hypergeometric function qFspα1, ..., αq; β1, ..., βs; zq by (see, for exam-
ple, (Kiryakova, 2011, p.19))

qFspα1, ..., αq; β1, ..., βs; zq “
8
ÿ

k“0

pα1qk...pαqqk

pβ1qk...pβsqk
.
zk

k!

pq ď s` 1; q, s P N0 “ NY t0u; z P Uq,

where pθqν is the Pochhammer symbol defined, in terms of the Gamma function Γ, by

pθqν “
Γpθ ` νq

Γpθq
“

"

1 pν “ 0; θ P Czt0u “ C˚q,
θpθ ´ 1q...pθ ` ν´ 1q pν P N; θ P Cq.

Corresponding to the function φppα1, ..., αq; β1, ..., βs; zq given by

φppα1, ..., αq; β1, ..., βs; zq “ z´p
qFspα1, ..., αq; β1, ..., βs; zq ,

we introduce a function φp,µpα1, ..., αq; β1, ..., βs; zq defined by

φppα1, ..., αq; β1, ..., βs; zq ˚ φp,µpα1, ..., αq; β1, ..., βs; zq “
1

zpp1´ zqµ`p

pµ ą ´p; z P U˚
q.

We now define a linear operator Hm,µ
p,q,spα1, ..., αq; β1, ..., βsq : Σp,m Ñ Σp,m by

Hm,µ
p,q,spα1, ..., αq; β1, ..., βsq f pzq “ φp,µpα1, ..., αq; β1, ..., βs; zq ˚ f pzq (1.7)

`

αi, β j P CzZ´0 ; i “ 1, ..., q, j “ 1, ..., s ; µ ą ´p, f P Σp,m; z P U˚
˘

.

For; convenience, we write

Hm,µ
p,q,spα1, ..., αq; β1, ..., βsq “ Hm,µ

p,q,spα1q

and
H1´p,µ

p,q,s pα1q “ Hµ
p,q,spα1q pµ ą ´pq.

If f pzq is given by (1.1), then from (1.7), we deduce that

Hm,µ
p,q,spα1q f pzq “ z´p

`

8
ÿ

k“m

pµ` pqp`kpβ1qp`k...pβsqp`k

pα1qp`k...pαqqp`k
akzk

pµ ą ´p; z P U˚
q. (1.8)

It is easily follows from (1.8) that

z
`

Hm,µ
p,q,spα1q f pzq

˘1

“ pµ` pqHm,µ`1
p,q,s pα1q f pzq ´ pµ` 2pqHm,µ

p,q,spα1q f pzq. (1.9)
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From the identity (1.9), we readily have

z
`

Hm,µ´1
p,q,s pα1q f pzq

˘1

“ pµ` p´ 1qHm,µ
p,q,spα1q f pzq ´ pµ` 2p´ 1qHm,µ´1

p,q,s pα1q f pzq (1.10)

and

z
`

Hm,µ`1
p,q,s pα1q f pzq

˘1

“ pµ` p` 1qHm,µ`2
p,q,s pα1q f pzq ´ pµ` 2p` 1qHm,µ`1

p,q,s pα1q f pzq. (1.11)

The linear operator Hm,µ
p,q,spα1q was introduced by Patel and Palit (Patel & Palit, 2009) .

We note that the linear operator Hm,µ
p,q,spα1q is closely related to the Choi-Saigo-Srivastava oper-

ator (Choi et al., 2002) for analytic functions and is essentially motivated by the operators defined
and studied in (Cho & Noor, 2006) ( see also, (Dziok & Srivastava, 1999), (Dziok & Srivastava,
2003), (Srivastava, 2007) and (Srivastava & Karlsson, 1985)).

Specializing the parameters µ, αipi “ 1, 2, ...qq, β jp j “ 1, 2, ...sq, q and s we obtain the follow-
ing :

(i) Hm,0
p,2,1pp, p; pq f pzq “ Hm,1

p,2,1pp` 1, p; pq f pzq “ f pzq;

(ii) Hm,1
p,2,1pp, p; pq f pzq “ 2p f pzq`z f

1
pzq

p ;

(iii) Hm,2
p,2,1pp` 1, p; pq f pzq “ p2p`1q f pzq`z f

1
pzq

p`1 ;

(iv) Hm,1´p
p,1,1 pc ` 1, 1; cq f pzq “ Jc,pp f qpzq “ c

zc`p

z
ş

0
tc`p´1 f ptqdt pc ą 0; z P U˚q, this integral

operator is defined by

Jc,pp f qpzq “
c

zc`p

z
ż

0

tc`p´1 f ptqdt pc ą 0; f P Σp,mq ,

(v) Hm,0
p,2,2pp` 1, p; pq f pzq “ p

z2p

z
ş

0
t2p´1 f ptqdt ; pp P N; z P U˚q;

(vi) H1´p,n
p,2,1 pa, 1; aq f pzq “ 1

zpp1´zqn`p “ Dn`p´1 f pzq pn ą ´pq, the operator Dn`p´1 studied by
Ganigi and Uralegaddi (Ganigi & Uralegaddi, 1989), Yang (Yang, 1995), Aouf (Aouf, 1993), Aouf
and Srivastava (Aouf & Srivastava, 1997) and Uralegaddi and Patil (Uralegaddi & Patil, 1989);

(vii) Hm,µ
p,2,1pc, p` µ; aq f pzq “ Lppa, cq f pzq pa, c P RzZ´0 ; µ ą ´pq (see Liu (Liu, 2002));

(viii) Ho,µ
1,2,1pµ ` 1, n ` 1; µq f pzq “ In,µ f pzq pµ ą 0; n ą ´1q (see Yuan et al. (Yuan et al.,

2008)).
We also observe that, for m “ 0, p “ 1 replacing µ by µ´1, we have the operator H0

1,µ,q,spα1q f pzq “
Hµ,q,spα1q f pzq defined by Cho and Kim (Cho & Kim, 2007).

The object of the present paper is to investigate some properties of meromorphic p- valent
functions by the above operator Hm,µ

p,q,spα1q f pzq given by (1.8).

Definition 1.1. Let H the set of complex valued functions hpr, s, tq : C3 Ñ C such that

hpr, s, tq is continuous in a domain D Ă C3;

p1, 1, 1q P D and |hp1, 1, 1q| ă 1;
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ˇ

ˇ

ˇ

ˇ

h
ˆ

eiθ,
1

µ` p
`
µ` p´ 1
µ` p

eiθ
`

1
µ` p

δ,
2

µ` p` 1
`
µ` p´ 1
µ` p` 1

eiθ
`

1
µ` p` 1

δ`
pµ` p´ 1qδeiθ ` rδ` β´ δ2s

pµ` p` 1q ` pµ` p´ 1qpµ` p` 1qeiθ ` pµ` p` 1qδ

˙
ˇ

ˇ

ˇ

ˇ

ě 1

whenever
ˆ

eiθ,
1

µ` p
`
µ` p´ 1
µ` p

eiθ
`

1
µ` p

δ,
2

µ` p` 1
`
µ` p´ 1
µ` p` 1

eiθ
`

1
µ` p` 1

δ`
pµ` p´ 1qδeiθ ` rδ` β´ δ2s

pµ` p` 1q ` pµ` p´ 1qpµ` p` 1qeiθ ` pµ` p` 1qδ

˙

P D

with<pβ ě δpδ´ 1qq for real θ, δ ě 1 and λ ą 0.

2. The Main Result

In order to prove our main result, we recall the following lemma due to Miller and Mocanu
(Miller & Mocanu, 1978).

Lemma 2.1. Let wpzq “ a`wnzn` .......,be analytic in U “ tz : z P C and |z| ă 1u with wpzq ‰ a
and n ě 1. If z0 “ r0eiθ p0 ă r0 ă 1q and |wpz0q| “ max

|z|ďr0

|wpzq| . Then

zw
1

pz0q “ δwpz0q (2.1)

and

<p

#

1`
z0w

2

pz0q

w1
pz0q

+

q ě δ, (2.2)

where δ is a real number and

δ ě n
|wpz0q ´ a|2

|wpz0q|
2
´ |a|2

ě n
|wpz0q| ´ |a|
|wpz0q| ` |a|

.

Theorem 2.1. Let hpr, s, tq P H and let f P Σp,m satisfies
˜

Hm,µ
p,q,spα1q f pzq

Hm,µ´1
p,q,s pα1q f pzq

,
Hm,µ`1

p,q,s pα1q f pzq
Hm,µ

p,q,spα1q f pzq
,

Hm,µ`2
p,q,s pα1q f pzq

Hm,µ`1
p,q,s pα1q f pzq

¸

P D Ă C3 (2.3)
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and
ˇ

ˇ

ˇ

ˇ

ˇ

h

˜

Hm,µ
p,q,spα1q f pzq

Hm,µ´1
p,q,s pα1q f pzq

,
Hm,µ`1

p,q,s pα1q f pzq
Hm,µ

p,q,spα1q f pzq
,

Hm,µ`2
p,q,s pα1q f pzq

Hm,µ`1
p,q,s pα1q f pzq

¸
ˇ

ˇ

ˇ

ˇ

ˇ

ă 1 (2.4)

for all z P U and for some m P N.Then we have
ˇ

ˇ

ˇ

ˇ

ˇ

Hm,µ
p,q,spα1q f pzq

Hm,µ´1
p,q,s pα1q f pzq

ˇ

ˇ

ˇ

ˇ

ˇ

ă 1 pz P U; µ ą ´p, 0 ď α ă p; p P Nq.

Proof. Let
Hm,µ

p,q,spα1q f pzq

Hm,µ´1
p,q,s pα1q f pzq

“ wpzq. (2.5)

Then it follows that wpzq is either analytic or meromorphic in U, wp0q “ 1 and wpzq ‰ 1. Differ-
entiating (2.5) logarithmically and multiply by z, we obtain

z
`

Hm,µ
p,q,spα1q f pzq

˘1

Hm,µ
p,q,spα1q f pzq

´

z
´

Hm,µ´1
p,q,s pα1q f pzq

¯1

Hm,µ´1
p,q,s pα1q f pzq

“
zw

1

pzq
wpzq

.

Using the identities (1.6) and (1.10) , we have

Hm,µ`1
p,q,s pα1q f pzq

Hm,µ
p,q,spα1q f pzq

“
1

µ` p
`
µ` p´ 1
µ` p

wpzq `
1

µ` p
zw

1

pzq
wpzq

. (2.6)

Differentiating (2.6) logarithmically and multiply by z, we obtain

z
´

Hm,µ`1
p,q,s pα1q f pzq

¯1

Hm,µ`1
p,q,s pα1q f pzq

´
z
`

Hm,µ
p,q,spα1q f pzq

˘1

Hm,µ
p,q,spα1q f pzq

“

z
”

1
µ`p `

µ`p´1
µ`p wpzq ` 1

µ`p
zw
1
pzq

wpzq

ı
1

1
µ`p `

µ`p´1
µ`p wpzq ` 1

µ`p
zw1 pzq
wpzq

(2.7)

“

pµ` p´ 1qzw
1

pzq `
„

zw
1
pzq

wpzq `
z2w

2

pzq
wpzq ´

´

zw
1
pzq

wpzq

¯2


1` pµ` p´ 1qwpzq ` zw1 pzq
wpzq



66 B. A. Frasin et al. / Theory and Applications of Mathematics & Computer Science 6 (1) (2016) 60–68

Using the identities (1.9) and (1.11) , we have

pµ` p` 1q
Hm,µ`2

p,q,s pα1q f pzq

Hm,µ`1
p,q,s pα1q f pzq

“ 1` pµ` pq
Hm,µ`1

p,q,s pα1q f pzq
Hm,µ

p,q,spα1q f pzq
`

pµ` p´ 1qzw
1

pzq `
„

zw
1
pzq

wpzq `
z2w

2

pzq
wpzq ´

´

zw
1
pzq

wpzq

¯2


1` pµ` p´ 1qwpzq ` zw1 pzq
wpzq

“ 1`

«

1` pµ` p´ 1qwpzq `
zw

1

pzq
wpzq

ff

`

pµ` p´ 1qzw
1

pzq `
„

zw
1
pzq

wpzq `
z2w

2

pzq
wpzq ´

´

zw
1
pzq

wpzq

¯2


1` pµ` p´ 1qwpzq ` zw1 pzq
wpzq

.

We claim that |wpzq| ă 1 for z P U. Otherwise there exists a point z0 P U such that max
|z|ďr0

|wpzq| “

|wpz0q| “ 1. Letting wpz0q “ eiθ and using Lemma 2.1 with a “ 1 and n “ 1, we have

Hm,µ
p,q,spα1q f pzq

Hm,µ´1
p,q,s pα1q f pzq

“ eiθ,

Hm,µ`1
p,q,s pα1q f pzq

Hm,µ
p,q,spα1q f pzq

“
1

µ` p
`
µ` p´ 1
µ` p

eiθ
`

1
µ` p

δ,

Hm,µ`2
p,q,s pα1q f pzq

Hm,µ`1
p,q,s pα1q f pzq

“
2

pµ` p` 1q
`
pµ` p´ 1q
pµ` p` 1q

eiθ
`

1
pµ` p` 1q

δ

`
pµ` p´ 1qδeiθ ` rδ` β´ δ2s

pµ` p` 1q ` pµ` p` 1qpµ` p´ 1qeiθ ` pµ` p` 1qδ
,

where

β “
z2w

2

pzq
wpzq

and δ ě 1.

Further, an application of (2.2) in Lemma 2.1 given<p β ě δpδ´1q. Since hpr, s, tq P H , we have
ˇ

ˇ

ˇ

ˇ

ˇ

h

˜

Hm,µ
p,q,spα1q f pzq

Hm,µ´1
p,q,s pα1q f pzq

,
Hm,µ`1

p,q,s pα1q f pzq
Hm,µ

p,q,spα1q f pzq
,

Hm,µ`2
p,q,s pα1q f pzq

Hm,µ`1
p,q,s pα1q f pzq

¸
ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

h
ˆ

eiθ,
1

µ` p
`
µ` p´ 1
µ` p

eiθ
`

1
µ` p

δ,
2

µ` p` 1
`
µ` p´ 1
µ` p` 1

eiθ
`

1
µ` p` 1

δ`
pµ` p´ 1qδeiθ ` rδ` β´ δ2s

pµ` p` 1q ` pµ` p´ 1qpµ` p` 1qeiθ ` pµ` p` 1qδ

˙
ˇ

ˇ

ˇ

ˇ

ě 1
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which contradicts the condition (2.4) of Theorem 2.1. Therefore, we conclude that
ˇ

ˇ

ˇ

ˇ

ˇ

Hm,µ
p,q,spα1q f pzq

Hm,µ´1
p,q,s pα1q f pzq

ˇ

ˇ

ˇ

ˇ

ˇ

ă 1 pz P Uq.

The proof is complete.

Letting µ “ 1, q “ 2, s “ 1, α1 “ p ` 1, α2 “ p and β1 “ p in Theorem 2.1, we have the
following result.

Corollary 2.1. Let hpr, s, tq P H and let f pzq P Σp,m satisfies
˜

2p f pzq ` z f
1

pzq
p f pzq

,
p
“

p2p` 1q f pzq ` z f
1

pzq
‰

pp` 1q r2p f pzq ` z f 1pzqs
,

p2p` 2qp2p` 1q f pzq ` 4pp` 1qz f
1

pzq ` z2 f
2

pzq
pp` 2qp2p` 1q f pzq ` z f 1pzq

¸

P D Ă C3

and
ˇ

ˇ

ˇ

ˇ

ˇ

h

˜

2p f pzq ` z f
1

pzq
p f pzq

,
p
“

p2p` 1q f pzq ` z f
1

pzq
‰

pp` 1q r2p f pzq ` z f 1pzqs
,

p2p` 2qp2p` 1q f pzq ` 4pp` 1qz f
1

pzq ` z2 f
2

pzq
pp` 2qp2p` 1q f pzq ` z f 1pzq

¸
ˇ

ˇ

ˇ

ˇ

ˇ

ă 1

for all z P U. Then we have
ˇ

ˇ

ˇ

ˇ

ˇ

2p f pzq ` z f
1

pzq
p f pzq

ˇ

ˇ

ˇ

ˇ

ˇ

ă 1 pz P Uq.
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Abstract
The exponential dichotomy is one of the most important asymptotic properties for the solutions of evolution

equations, studied in the last years from various perspectives. In this paper we study some concepts of uniform
exponential dichotomy for skew-evolution semiflows in Banach spaces. Several illustrative examples motivate the
approach.
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1. Introduction

The property of exponential dichotomy is a mathematical domain with a substantial recent
development as it plays an important role in describing several types of evolution equations. The
literature dedicated to this asymptotic behavior begins with the results published in Perron (1930).
The ideas were continued by in Massera & Schäffer (1966), with extensions in the infinite dimen-
sional case accomplished in Daleckiĭ & Kreĭn (1974) and in Pazy (1983), respectively in Sacker
& Sell (1994). Diverse and important concepts of dichotomy were introduced and studied, for
example, in Appell et al. (1993), Babuţia & Megan (2015), Chow & Leiva (1995), Coppel (1978),
Megan & Stoica (2010), Sasu & Sasu (2006) or Stoica & Borlea (2012).

The notion of skew-evolution semiflow that we sudy in this paper and which was introduced in
Megan & Stoica (2008) generalizes the skew-product semiflows and the evolution operators. Sev-
eral asymptotic properties for skew-evolution semiflows are defined and characterized see Viet Hai
(2010), Viet Hai (2011), Stoica & Borlea (2014), Stoica & Megan (2010) or Yue et al. (2014).

˚Corresponding author
Email address: dianab268@yahoo.com (Diana Borlea)
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In this paper we intend to study some concepts of uniform exponential dichotomy for skew-
evolution semiflows in Banach spaces. The definitions of various types of dichotomy are illustrated
by examples. We also aim to give connections between them, emphasized by counterexamples.

2. Preliminaries

Let pX, dq be a metric space, V a Banach space and BpVq the space of all V-valued bounded
operators defined on V . Denote Y “ X ˆ V and T “

 

pt, t0q P R2
` : t ě t0

(

.

Definition 2.1. A mapping
varphi : T ˆ X Ñ X is said to be evolution semiflow on X if the following properties are satisfied:

(es1) φpt, t, xq “ x, p@qpt, xq P R` ˆ X;

(es2) φpt, s, φps, t0, xqq “ φpt, t0, xq, p@qpt, sq, ps, t0q P T, x P X.

Definition 2.2. A mapping Φ : T ˆ X Ñ BpVq is called evolution cocycle over an evolution
semiflow φ if:

(ec1) Φpt, t, xq “ I, p@qt ě 0, x P X (I - identity operator).

(ec2) Φpt, s, φps, t0, xqqΦps, t0, xq “ Φpt, t0, xq, p@qpt, sq, ps, t0q P T , p@qx P X.

Let Φ be an evolution cocycle over an evolution semiflow ϕ. The mapping C “ pϕ,Φq, defined
by:

C : T ˆ Y Ñ Y, Cpt, s, x, vq “ pϕpt, s, xq,Φpt, s, xqvq

is called skew-evolution semiflow on Y .

Example 2.1. We will denote C “ CpR,Rq the set of continous functions x : R Ñ R, endowed
with uniform convergence topology on compact subsets of R. The set C is metrizable with the
metric

dpx, yq “
8
ÿ

n“1

1
2n

dnpx, yq
1` dnpx, yq

, unde dnpx, yq “ sup
tPr´n,ns

|xptq ´ yptq|.

For every n P N˚ we consider a decreasing function

xn : R` Ñ
ˆ

1
2n` 1

,
1

2n

˙

, lim
tÑ8

xnptq “
1

2n` 1
.

We will denote
xs

nptq “ xnpt ` sq, @t, s ě 0.

Let be X the closure in C of the set txs
n, n P N˚, s P R`u. The application

ϕ : T ˆ X Ñ X, ϕpt, s, xq “ xt´s, unde xt´spτq “ xpt ´ s` τq, @τ ě 0,
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is a evolution semiflow on X. Let consider the Banach space V “ R2 with the norm }pv1, v2q} “

|v1| ` |v2|. Then, the application

Φ : T ˆ X Ñ BpVq, Φpt, s, xqv “
´

eα1
şt

s xpτ´sqdτv1, eα2
şt

s xpτ´sqdτv2

¯

,

where pα1, α2q P R2 is fixed, is a cocycle aplication of evolution over the semiflow ϕ, and C “

pϕ,Φq is a evolution cocycle on Y .

Let us remind the definition of an evolution operator, followed by examples that punctuate the
fact that it is generalized by an skew-evolution semiflows.

Definition 2.3. A mapping E : T Ñ BpVq is called evolution operator on V if following properties
hold:
pe1q Ept, tq “ I, @t P R`;
pe2q Ept, sqEps, t0q “ Ept, t0q, @pt, sq, ps, t0q P T.

Example 2.2. One can naturally associate to every evolution operator E the mapping

ΦE : T ˆ X Ñ BpVq, ΦEpt, s, xq “ Ept, sq,

which is an evolution cocycle on V over every evolution semiflow ϕ. Therefore, the evolution
operators are particular cases of evolution cocycles.

Example 2.3. Let X “ R`. The mapping

ϕ : T ˆ R` Ñ R`, ϕpt, s, xq “ t ´ s` x

is an evolution semiflow on R`. For every evolution operator E : T Ñ BpVq we obtain that

ΦE : T ˆ R` Ñ BpVq, ΦEpt, s, xq “ Ept ´ s` x, xq

is an evolution cocycle on V over the evolution semiflow ϕ. It follows that an evolution operator
on V is generating a skew-evolution semiflow on Y .

3. Sequences of Invariant Projections for a Cocycle

Definition 3.1. A continuous map P : X Ñ BpVq which satisfies the following relation:

PpxqPpxq “ Ppxq, p@qx P X

is called projection on V .

Definition 3.2. A projection P on V is called invariant for a skew-evolution semiflow C “ pϕ,Φq
if:

P pϕpt, s, xqqΦpt, s, xq “ Φpt, s, xqPpxq,

for all pt, sq P T and x P X.
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Remark. If P is a projection on V , than the map

Q : X Ñ BpVq, Qpxq “ I ´ Ppxq

is also a projection on V , called complementary projection of P.

Remark. If the projection P is invariant for C then Q is also invariant for C.

Definition 3.3. We will name pC, Pq a dichotomy pair where C is a skew-evolution semiflow and
P is invariant or C.

4. Concepts of Uniform Exponential Dichotomy for Skew-Evolution Semiflows

Definition 4.1. Let pC, Pq be a dichotomy pair. We say that pC, Pq is uniformly strongly exponen-
tially dichotomic (u.s.e.d) if there exist N ě 1 and ν ą 0 such that:

(used1) }Φpt, s, xqPpxq} ď Ne´νpt´sq

(used2) N}Φpt, s, xqQpxq} ě eνpt´sq

for all pt, sq P T and x P X.

Definition 4.2. We say that pC, Pq is uniformly exponentially dichotomic (u.e.d) if there exist
N ě 1 and ν ą 0 such that:

(ued1) }Φpt, s, xqPpxqv} ď Ne´νpt´sq}Ppxqv}

(ued2) N}Φpt, s, xqQpxqv} ě eνpt´sq}Qpxqv}

for all pt, xq P T ˆ X and for all v P V .

Definition 4.3. We say that pC, Pq is uniformly weakly exponentially dichotomic (u.w.e.d) if there
exist N ě 1 and ν ą 0 such that:

(uwed1) }Φpt, s, xqPpxq} ď Ne´νpt´sq}Ppxq}

(uwed2) N}Φpt, s, xqQpxq} ě eνpt´sq}Qpxq}

for all pt, xq P TxX and for all v P V .

Proposition 1. If pC, Pq is (s.u.e.d) then

sup
xPX
}Ppxq} ă `8. (4.1)

Proof. Consider in (used1) t “ s. Then we have

}Φpt, t, xqPpxq} “ }Ppxq} “ }Ppxq} ď N (4.2)

for all x P X.
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Proposition 2. If pC, Pq is (u.s.e.d) then pC, Pq is (u.w.e.d).

Proof. If pC, Pq is (u.s.e.d) then by (used1), for x P X, we have that }Ppxq} ď N and hence

}Qpxq} “ }I ´ Ppxq} ď 1` }Ppxq} ď 2N.

We have from (used1) and (used2) that:

}Φpt, s, xqPpxq} ď Ne´νpt´sq
¨ 1 ď Ne´νpt´sq

}Ppxq} (4.3)
ď 2N2e´νpt´sq

}Ppxq}. (4.4)

2N2
}Φpt, s, xqQpxq} ě 2Neνpt´sq

ě eνpt´sq
}Qpxq}, (4.5)

hence pC, Pq is (u.w.e.d)

Proposition 3. If pC, Pq is (u.e.d) then pC, Pq is also (u.w.e.d)

Proof. It follows immediately by taking the supremum over all v P V with }v} “ 1.

Definition 4.4. We say that C has a uniform exponential growth (u.e.g) if there exist M ě 1,
ω ą 0 such that

}Φpt, s, xq} ď Meωpt´sq,

for all pt, sq P T and x P X.

Theorem 4.1. Assume that a dichotomy pair pC, Pq is (u.w.e.d) and C has a uniform exponential
growth. Then:

sup
xPX
}Ppxq} ă `8.

Proof. Let N, ν given by the (u.w.e.d) property of pC, Pq and M, ω given by the (u.e.g) of C.
Consider s ě 0 fixed, t ě s and x P X.

„

1
2N

eνpt´sq
´ Ne´νpt´sq



}Ppxq} ď
1
N

eνpt´sq
}Qpxq} ´ Ne´νpt´sq

}Ppxq}

ď }Φpt, s, xqQpxq} ´ } ´ Φpt, s, xqPpxq}
ď }Φpt, s, xq} ď Meωpt´sq.

Let t0 ą 0 be such that

λ0 :“
1

2N
eνt0 ´ Ne´νt0 ą 0.

From the above estimation is follows that for t “ t0 ` s,

}Ppxq} ď
Meωt0

λ0
, p@qx P X.
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from where the conclusion follows.

Remark. In the following section we will see that for a dichotoomic pair pC, Pq:

1. (u.s.e.d) does not imply (u.e.d)
2. (u.e.d) does not imply (u.s.e.d)
3. (u.w.e.d) does not imply (u.e.d)
4. (u.w.e.d) does not imply (u.s.e.d)

5. Examples and Counterexamples

Example 5.1. Define, on R3, the family of projections

Ppxqpv1, v2, v3q “ pv1, 0, 0q

and the evolution cocycle on R3:

Φpt, s, xqpv1, v2, v3q “

#

pv1, v2, v3q, t “ s
pes´tv1, et´sv2, 0q , t ą s,

with the following norm:

}x} “ |x1| ` |x2| ` |x3| , x “ px1, x2, x3q P R3.

We have that for all pt, sq P T, x P X and v P R3

}Φpt, s, xqPpxqv} “ es´tv1 “ es´t
}Ppxqv}

from where we get that
}Φpt, s, xqPpxq} ď es´t

}Ppxq}

and

}Φpt, s, xqQpxqv} “

#

}Qpxqv}, t “ s
} p0, et´sv2, 0q }, t ą s

ď et´s
}Qpxqv}

hence
}Φpt, s, xqQpxq} ď }Qpxq}.

Choose p0, 1, 0q P R3. Then

}Φpt, s, xqQpxqp0, 1, 0q} “ et´s
}Qpxqp0, 1, 0q}

from where we finally obtain that:

}Φpt, s, xqQpxq} “ et´s
}Qpxq},

hence pC, Pq is (u.w.e.d). Assume by a contradiction that pC, Pq is (u.e.d). Then there exists,
N ě 1, ν ą 0 such that

N}Φpt, s, xqQpxqpv1, v2, v3q} ě eνpt´sq
}Qpxqpv1, v2, v3q}. (5.1)
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Put t ą s and pv1, v2, v3q “ p0, 0, 1q. Then }Qpxqpv1, v2, v3q} “ 1 and

eνpt´sq
ď }Φpt, s, xqpv1, v2, v3q} “ }Φpt, s, xqp0, 0, 1q} “ 0,

which is a contradiction.

Example 5.2 (u.e.d does not imply u.s.e.d). On V “ R2 and pX, dq “ pR`, dq endowed with the
max - norm. Consider,

Ppxq : R2
Ñ R2, Ppxqpv1, v2q “ pv1 ` xv2, 0q

it follows that
}Ppxq} “ 1` x, p@qx ě 0 (5.2)

Define the skew - evolutiv cocycle

Φpt, s, xq “ es´tPpxq ` et´sQpxq.

We have that

}Φpt, s, xqPpxq} “ es´t
}Ppxq} and

}Φpt, s, xqQpxq} ě et´s
}Qpxq}

(5.3)

Hence pC, Pq is (u.e.d). It can not be (u.s.e.d) because of (5.2).

Remark. From the above example, by taking the sup norm in (5.3) over }v} “ 1, we get that pC, Pq
is also (u.w.e.d). Hence pC, Pq is (u.w.e.d) but not (u.s.e.d).

Remark. The connection between the three concepts studied in this paper is summarized in the
below diagram

pu.s.e.dq œ pu.e.dq ñ pu.w.e.dq ð pu.s.e.dq

pu.s.e.dq ö pu.e.dq ö pu.w.e.dq œ pu.s.e.dq.
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Abstract

This work introduces informative and interesting Voronoï regions through measures utilizing probability density
functions and qualities of Voronoï cells of digital image point patterns. Global mesh cell quality exhibits a fairly
horizontal behaviour in its range of convergence across several categories of digital images. Simulation results un-
ambiguously show that Shannon entropy does not expose the most information in Voronoï meshes although it’s in
the range 1< β ≤ 2.5 for which information is maximized. Mesh information is seen to be generally a non-linear,
non-decreasing function of image point patterns. Some important mathematical theorems on quantities and optimality
conditions are proved.
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1. Introduction

This article introduces an approach to measuring the information levels Voronoï tessella-
tion (mesh) cells via Rényi entropy. The focus is on the Rényientropy of Voronoï meshes
with varying quality. Letp(x1), . . . , p(xi), . . . , p(xn) be the probabilities of a sequence of events
x1, . . . , xi , . . . , xn and letβ ≥ 1. Then the Rényi entropy (Rényi, 2011) Hβ(X) of a set of eventX is
defined by

Hβ(X) =
1

1− β
ln

n

∑
i=1

pβ(xi) (Rényi entropy).
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Rényi’s entropy is based on the work by R.V.L. Hartley (Hartley, 1928) and H. Nyquist (Nyquist,
1924) on the transmission of information. A proof thatHβ(X) approaches Shannon entropy as
βÐ→ 1 is given in (Bromileyet al., 2010), i.e.,

lim
βÐ→1

1
1− β

ln
n

∑
i=1

pβ(xi) = −∑ i = 1npi lnpi .

Figure 1. Rényi entropy

The information of orderβ contained
in the observation of the eventxi with re-
spect to the random variableX is defined by
H(X). In our case, it is information level of
the observation of the quality of a Voronoï
mesh cell viewed as random event that is
considered in this study. The principle ap-
plication of the proposed approach to mea-
suring the information levels of mesh cells
is the tessellation of digital images.

A main result reported in this study is
the correspondence between image quality and Rényi entropyfor different types of tessellated
digital images. In other words, the correspondence betweenthe Rényi entropy of mesh cells
relative to the quality of the cells varies for different classes of images. For example, with Voronoï
tessellations of images of humans, Rényi entropy tends to behigher for higher quality mesh cells
(see,e.g., the plot in Fig.1 for different Rényi entropy levels, ranging fromβ = 1.5 to 2.5 in 0.5
increments).

2. Literature Review on Voronoï Diagrams

It is known that generating meshes is a fundamental and necessary step in several domains
such as engineering, computing, geometric and scientific applications (Leibon & Letscher, 2000;
Owen, 1998; Liu & Liu , 2004). No matter what their domain application and the specific ter-
minology used, the resultant meshes have structures or volumes that result from the geometry of
surfaces, dimension of the space and placement or organization of generators(Ebeida & Mitchell,
2012; Mitchell, 1993; Persson, 2004). Meshes may be generated for purposes of image processing
and segmentation (Arbeláez & Cohen, 2006), clustering (Ramellaet al., 1998), data compression,
quantization, analysis of territorial behavior of animals(Persson, 2004; Persson & Strang, 2004;
Du et al., 1999) to name a few. Applications of meshes are growing but works in the direction
of exploiting pattern nature and information are lacking. We are therefore of the view that under-
standing the pattern and the underlying process could greatly benefit applications.

Voronoï diagrams were introduced by the Ukrainian mathematician G. Voronoï (Voronoï, 1903,
1907, 1908) (elaborated in the context of proximity and quality spacesspaces in (Peters, 2015b,c,a;
A-iyeh & Peters, 2015; Peters, 2016)) provide a means of covering a space with regular polygons.
The process allows us to understand fundamental propertiesof elements of the space by exploiting
properties of the meshes. The properties of the space may otherwise have remained inaccessible.

./images/EntVrsQualityhumansall.eps
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In telecommunications, Voronoï diagrams have furnished a tool for analysis of binary linear block
codes (Agrell, 1996) governing regions of block code and performance of Gaussian channels.

In musicology, Voronoï diagrams have demonstrated their utility ( McLean, 2007). For ex-
ample, they have been successfully applied in automatic grouping of polyphony (Hamanaka &
Hirata, 2002). Other works bordering on applications of Voronoï meshes are in reservoir modeling
(Møller & Skare, 2001) and cancer diagnosis (Demir & Yener, 2005).

The fact that the partitioning algorithm divides the plane into Euclidean neighborhoods permits
exploitation of proximity relations while offering the flexibility of modeling the space as a con-
tinuous image-like point pattern representing the space. Given the substantial utility of Voronoï
tessellations their applicability in additional areas including point pattern detection and image
analysis is currently being investigated vigorously.

In this work meshes are generated for the purposes of characterizing a point pattern informa-
tion using multiple measures for the individual mesh cells.The major focus here goes beyond
tessellating a space with meshes. Additionally we search for important cues that may be funda-
mental for basic pattern understanding which in turn may lead to identifying and understanding
the underlying pattern.

3. Preliminaries

In this section, the grounding theory entropy, quality of cells and Voronoï diagrams based on
point pattern distributions is set. Some useful definitionsare given prior to facilitate the process.

3.1. Notation and Definitions

A subset of points inRn is denoted byS. A partition of the space ofS ⊆ Rn according to the
Voronoï criterion into contiguous non-overlapping polygons is denoted by the set{V = F ,E ,S =
N} whereF ,E are the faces and edges of graph regions respectively. Also,properties of cells such
as length of edges of polygons are represented byl i, area byA, quality of cells byqi and entropy
by HR.

Definition 3.1. Given a point pattern setS ⊆ Rn of three or more non-collinear points and a
distance functiondn, the set{V,S = {N} is called a Voronoï tessellation ofS if Vi ∩V j ≠ ∅ for
i ≠ j ⊂ S. A Voronoï tessellation is a set of polygons with their edgesand vertices that partition a
given space of points.

Definition 3.2. The Voronoï region of an image point is a polygon about that site. The set of
all regions partition a plane of image points based on a distance function∥ ⋅ ∥. This results in a
covering of the plane with polygons about the points.

Definition 3.3. Consider the setS = {s1, ..., sk}, a plane(vi ,vj) is a Voronoï edge of the Voronoï
regionVi if and only if there exists a pointx such that the circle centered atx and circumscribing
vi andvj does not contain in its interior any other point ofVi. A Voronoï edge is a half plane
equidistant from two sites and bounds some part of the Voronoï diagram. Every edge is incident
upon exactly two vertices and every vertex upon at least three edges.
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Definition 3.4. A Voronoï neighborhood of a pointp in the vicinity of pointq is the locus of
bisectors or half planes equidistant fromp andq. The union of half planesHp

q (Hq
p) is the locus of

points nearer top than toq. The intersection of half planes⋂q∈S,q≠p Hq
p defines a region generated

at p.

Definition 3.5. A Voronoï vertex is the center of a circumcircle through three sites.

Definition 3.6. A set of pointsS is a convex set if there is a line connecting each pair of points
within S.

Definition 3.7. The convex hull of Voronoï regions aboutS is the smallest set which contains the
Voronoï regions as well as the union of the regions.

Definition 3.8. A point pattern is a set of points of the signal representing locations of signal
features. For example sets of corners, keypoints etc. are referred to as point or dot patterns.

Definition 3.9. The quality of a Voronoï cell is a dimensionless real number assigned to the cell
based on the extent to which the sides of the cell match.

Definition 3.10. An open pattern point is a point such that a disk centered on itcontains the point
as an interior point.

Definition 3.11. A closed pattern point is a point such that a disk centered on it contains the point
as well a boundary.

Definition 3.12. Let V be a Voronoï diagram inR2. The skeleton ofVi ∈ V, is the open setS(Ω)
from which the Voronoï diagram is generated.

Definition 3.13. The Voronoï quality of visual information given by a point generator is defined
as the aggregate of measure of cells comprising the tessellation. In other words it shows the
organization of a point pattern.

Definition 3.14. A point pattern is feasible when there exists a constantt > 0 such that at least one
quality measure of the Voronoï cells is at leastt.

3.2. Voronoï Diagrams

The spatial distribution of point sets informs the nature and organizations of the pattern. This
in turn influences the graph geometry of the Voronoï diagram the point set. Assume we have a
finite setS of point locations called sitessi in a spaceRn. Computing the Voronoï diagram with
respect toS entails partitioning the space ofS into Voronoï regionsV(si) in such a way that the
regionV(si) contains all points ofS that are closer tosi than to any other objectsj, i ≠ j in S.

More elaborately, given the generator set

S = {s1, . . . , sk ∶ i ∈ N},

the Voronoï regionV(si) is defined by

V(si) = {x ∈ Rn
∶ ∥x− si∥ ≤ ∥x− sk∥, sk ∈ S, i ≠ k},
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where∥., .∥ is the Euclidean norm (distance between vectors). The set

V(S) = ⋃
si∈S

V(si)

is called the n-dimensional Voronoï diagram generated by the point setS. In R2, this effectively
covers the plane with convex and non overlapping graphs, onefor each generating point inS. By
the definition of a Voronoï region above, the region about a site x satisfies

d(x, si) ≤ d(x, sk)⇔ ∣∣x− si ∣∣2 ≤ ∣∣x− sk∣∣2∀si ∈ S.

Manipulating the expression of a Voronoï region gives

V(si) ∶= {(sk − si)x ≤
∣∣sk∣∣2 − ∣∣si ∣∣2

2
, sk ∈ S}.

The immediate expression is recognized as an ordinary linear system of equations whenS is finite
(Gobernaet al., 2012). For a partitioned space in which all the individual regions are triangles, the
optimal tessellation of the point set which maximizes the minimum angle in each triangular graph
is the Delaunay triangulation. The Delaunay triangulationof S is the triangulation DT(S) where
the circum-circles of all cells contain only the three points forming the triangle. Since a Delaunay
image triangulation can be obtained from the correspondingVoronoï image graph our focus shall
be on the latter. Point patterns in Delaunay image triangulations are informative and can be used
to study the nature of the underlying tessellated process.

The advantage of Voronoï diagrams in studying patterns is that it associates the local neigh-
borhood of a point with the information in the region inclosed by the point as opposed to point
estimates only. Consequently measures may be aggregated for global pattern information gather-
ing.

Figure 2. Voronoï mesh pattern

Fig. 3.2displays a Voronoï diagram generated by a point set (not shown) in R2. The diagram
shows how a space partitioned into regions of influences about the generators in the form convex
non-intersecting polygons. The nature of the pattern influences the distribution of the point set
as well as the structure of the partitioned space. For example polygons in regions of higher point
densities are of smaller sizes or areas compared to polygonsof regions with with lower point
densities.

images/voromesh2.eps
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4. Patterns and Information Theory

Information in signals and patterns is commonly characterized using information theoretic
approaches such as entropy and characteristics of a transformed space of the pattern such as quality
measures of Voronoï cells. In the following subsections we present those tools.

4.1. Entropy

Entropy has long been an indicator of information and information content whose utility has
since extended to other fields besides thermodynamics whereit emerged. In thermodynamics, it
was first used for understanding molecular structure. Entropy now finds applications in several
other fields including portfolio selection and financial decision making (Zhouet al., 2013), distri-
bution analysis (Chapman, 1970) where it’s founded on probability density functions derived from
random variables.

Some general observations on entropic information are in order before proceeding. If all the
realizations of a random variable have equal chance of beingobserved, then the variables have
equal probabilities. Relating this to Voronoí cells this means we have a simple pattern formed by
repetition of a unit. Consequently the same information is contained in all cells of the pattern.
This scenario corresponds to maximization of entropy.

When a measure of information in a pattern is maximized the variations of the pattern primi-
tives must be minimal and one variable or cell and its attribute is representative of the pattern. This
situation also means there is no other information in the pattern other than the fact that the random
variables of the pattern are uniformly distributed. On the contrary variations in a random variable
indicates interestingness, disorder, complexity or randomness in the pattern and most importantly
a distribution of variables that is anything but uniform.

4.1.1. Renyi Entropy
Renyi entropy is a general information criterion of which Shannon entropy and others are

special cases (Xu & Erdogmuns, 2010). This generality is useful in diversity and dissimilarity
characterization (Rao, 1982) of pattern structure. Recall that the area of a Voronoï cellsatisfies
0 < Ai ≤ ∞ and so the probabilityPr(.) of the area random variable assuming a value in the
range of areas is defined in 0≤ Pr(Ai) ≤ 1. Let AT be the total planar surface area of a Voronoï
tessellationV. It follows that the probability of the random variableAi is defined by

Pr(Ai) =
Ai

AT
,

and
∑

i

Pr(Ai) = 1.

A general entropy criterion utilizing the probability densities of the random variables is defined
by:

H =
1

1− β
ln

n

∑
i=1

Prβi ,
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wherePr(Ai) = Pri. A noteworthy property of Renyi entropy is majorization. Assume two finite
probability vectorsP andQ of length 1< k ≤ n. P is said to majorizeQ if

P1 + P2 + ⋅ ⋅ ⋅ + Pk ≥ Q1 +Q2 + ⋅ ⋅ ⋅ +Qk.

This means thatP exhibits a stronger tendency towards uniformity thanQ and thus has more
entropy. This is an important indicator for understanding the nature of the distribution of a random
variable.

4.2. Cell Quality
Mesh quality in the literature is sufficiently developed with guarantees for triangular and tetra-

hedral elements (Bern & Eppstein, 1995). However this is not so for mesh elements of four or
more sides as well as hexahedra. As a result this research is necessitated in the direction of mesh
elements from planar Voronoï diagrams which mostly have four or more sides towards their quality
guarantees. This is where the potential utility and impact of mesh qualities in this work is directed.
The quality of a mesh depicts a way of investigating pattern organization with a measure of geo-
metric structure. The qualityq of a cell is defined by the lengths of the sides of the polygonl i and
its areaA. To illustrate consider a quadrilateral Voronoï cell. Its quality is defined by

q = 4
A

l21 + l22 + l23 + l24
.

Quality factors of different kinds of polygons are adopted to the criteria of (Shewchuk, 2002; Bha-
tia & Lawrence, 1990; Knupp, 2001). Quality measures are defined to assume values in 0≤ q ≤ 1.
A quality value of zero corresponding to a degenerate mesh region whilst a value of one corre-
sponds to a region with equal polygonal side lengths.

5. Theorems and Observations on Voronoï Diagrams

Let {qi}, i = 1,2, ..,n <∞ be the set of qualities of cells resulting from a Voronoï tessellation.

Theorem 5.1.Qualities of cells satisfy the inequality

(q1 + q2 + q3 + ... + qn)2 ≤ n2.

Proof. Without loss of generality assumen = 4. Notice thatqi ∈ [0,1]

(q1 + q2 + q3 + q4)2 = q2
1 + 2q1q2 + q2

2 + q1q3 + q1q4 + q2q3 + q2q4 + q2
3 + 2q3q4 + q2

4q
2
i ,qiq j ≤ 1.

Each of the individual terms is potentially less than its maximum value since all the qualities may
not haveqi = 1. So the squared sum of the qualities is equal ton2 if and only if all cells have a
quality of 1. The quality inequality must be as it is to take care of qualities other than the extremes
of zero and unity. Thus we must have

(q1 + q2 + q3 + ... + qn)2 ≤ n2,

for n <∞.
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Theorem 5.2. For a Voronoï cell of quality qi = 1 there exists a point inside the cell to which all
vertices are equidistant.

Proof. See (A-iyeh & Peters, 2015).

Theorem 5.3.For every Voronoï cell with q= 1 there exists a polygon whose edge lengths are not
unequal.

Proof. See (A-iyeh & Peters, 2015).

Lemma 5.1. Let A(Vs) be the area of the smallest polygon in a Voronoï mesh and let A(Vl) be
the area of the polygon with the largest area in the same mesh with intermediate polygonal areas
A(V1) . . . ,A(Vn). Then

A(Vs) ⊆ A(Vl)
and

A(Vs) ⊆ A(V1) ⊆ A(V2) ⋅ ⋅ ⋅ ⊆ A(Vn) ⊆ A(Vl)
for a mesh with n+ 2 polygons.

Lemma 5.2. The sequence of all ordered elements of the projections of sets A1 and B1, i.e.,{an}
and{bn}, n= 1,2,3, ... form a metric space.

Consider polygonal elements ofRn with elementsx = (x1, x2, ...., xn), y = (y1,y2, ...,yn). Let
ρ(A1,B1) = In f {∥x−y∥ ∶ x ∈ A1,y ∈ B1} be the distance between functions of bounded elementsA1

andB1 of the space. Again letprn(A1) = In f {x ∈ A1∣∃x1, x2..., xn−1 ∈ R ∶ x = (x1, x2..., xn−1) ∈ A1}
be the projection of setA1 onto the nth-coordinate space ofRn and∆l1...ln−1 represents polygons(half-
open meshes) of the form(l1h, l1h+h]× ⋅ ⋅ ⋅×(ln−1h, ln−1h+h]. h is the edge length andl1, l2, ..., ln−1

are integers.

Theorem 5.4. If A1 and B1 be bounded polygons in a Voronoï with with a function of the polygons
ρ(A1,B1) = δ0 > 0, then a family of polygons{△}N

k=1,△k ⊆ Rn−1 exists such that

prRn−1(A∪ B) ⊆
N

∏
i=1

,

for any△ if x ∈ A, y∈ B, prRx−1x,pr(R)n−1y ∈△k, then∣xn − yn∣ = ∣prnx− prny∣ ≥ δ = δ02 .

Proof. Assumeh ∈ (0, δ0(2n)−1/2). Let Dk1...kn−1 =△k1...kn−1R. ThenDk1...kn−1 possesses the following
properties

1. ⋃k1,...kn−1∈Z
Dk1,...kn−1 = Rn

2. Di ∩D j = ∅

3. ∀D = Dk1,...kn−1 and∀x,y ∈ D if ρ(x,y) ≥ δ0, thenρ(prnx, pry) ≥ δ0/2
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Considerx,y ∈ D and assume∣xn−yn∣ = ∣prnx−prny∣ < δ0/2. Then we haveρ(x,y) = [(x1−y1)2+⋅ ⋅ ⋅+
(xn−yn)2]−1/2 ≤ (h2+⋅ ⋅ ⋅+h2+δ20/4). Forh ∈ (0, δ0(2n)−1/2), ρ(x,y) = (δ20(n−1)/(2n)+δ20/4)−1/2 <
δ0. This is untrue. Hence, property 3 is proved.
For property 2,A∪ B ≠ ∅ and the union of the bounded sets is bounded, so⋃N

i=1 ⊇ A∪ B. Thus
the union of all the polygons covers the spaceRn and that proves property 1.prRn−1(⋃N

i=1 Di) =
prRn−1(⋃N

k=1△kR) ⊇ prRn−1(A∪B) and⋃N
k=1 ⊇ prRn−1(A∪B). These statements imply that forx ∈ A,

y ∈ B we can find△k such thatρ(x,y) ≥ δ0 by assumption, so thatρ(prnx, prny) = ∣xn−yn∣ ≥ δ0/2 =
δ.

Theorem 5.5.Symmetry is a condition for optimality of Voronoï meshes.

Proof. Note thatV for a sites can be expressed asV(si) ∶= {(sk − si)x ≤ ∣∣sk∣∣
2
−∣∣si ∣∣

2

2 , sk ∈ S}. To
show optimality we need

∂V(si)
∂si

.

This gives
∂V(s)
∂s

= −x = −
2∣∣si∣∣

2
.

The immediate expression is equivalent to

x =
⎧⎪⎪⎨⎪⎪⎩

si , if x ≥ 0,

si , if x < 0,

which is a mathematical expression for symmetry.

Property1. Given a measure functionq(.) for a Voronoï diagram of ann ≥ 3 point set the Voronoï
tessellation consists of quality functions equal in numberto the number of Voronoï cells.

Property 2. The Voronoï diagram of a setS consisting ofn ≥ 3 non-collinear objects with a
measureq for the polygons has at most 2n− 5 vertices and 3n− 6 edges, respectively.

Theorem 5.6.The quality of a scaled Voronoï cell is scale invariant.

Proof. Consider a triangular cell with qualityq = 1 before scaling. Now assume the edges of the
cell have been scaled with a multiplierm> 0. The quality before scaling is given by

q = 4
√

3
0.5l2

l2 + l2 + l2
= 1.

The quality, after scaling, is expressed by

q = 4
√

3
0.5(ml)2

√
3
4

(ml)2 + (ml)2 + (ml)2 = 1.
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6. Applications

The utility of Voronoï tessellations has often been limitedto space partitioning and not un-
derstanding the pattern as evidenced by numerous articles.Owing to this an abysmal number of
works explore the potential of Voronoï diagrams beyond space partitions. Even fewer works exam-
ine properties of Voronoï cells with the viewpoint of understanding underlying nature of patterns.
We attempt a way of representing part of a signal space from a point set sample distribution that
summarizes the pattern by its equivalent Voronoï signature. These points in the pattern form gener-
ators for Voronoï diagrams. Keypoint image patterns of buildings, animals, humans and mountains
as previously utilized in (A-iyeh & Peters, 2015) were sampled from images of dimensionsM by
N to summarize the signals. These point patterns consist of 50units corresponding to the most
prominent in the images. To establish a fair basis for cross analysis the same number of point
sets is sampled for all images. In addition all the image signals are gray scale of their respective
categories from the dataset of (Wanget al., 2001) (Fig. 4).
With the preamble in place we tessellate and cover the pattern spaces with Voronoï polygons. It is
expected that since point patterns are distinct their Voronoï diagrams would exhibit discriminatory
properties. This could be key in pattern discrimination using the computed quantities.

Upon identifying the subset representing an image space, weapply the Voronoï partition algo-
rithm to the generators in the signal space. The result is a tessellated space of Voronoï polygons.
Open polygons are typical of Voronoï partitions as such in the mathematical formulation of some
derived features of the tessellated spaces we adopt techniques that allow the infinite polygons as
well as the finite ones to be well behaved.
To help examine the nature and bahaviour of patterns, plots of various quantities are given. There
are as many qualities as cells so we define a global quality index or fidelity to capture the geometry
of the pattern. Using all cell qualities in a tessellation itis defined by

qall =
1
n

n

∑
i=1

qi,

wheren is the total number of cells andqi is the quality of celli. This enables a one-to-one
correspondence between quantities.

Due to the finite nature of digital image, we limit the geometrical extent of the point patterns
to their convex sets. The information content of images are assessed using a general entropy crite-
rion. A special case of the the general entropy criterionH occurs whenβ = 2. This is the so called
Renyi entropy denoted hereHR. Simulation results are included forβ = 2,1.5,2.5. This range ofβ
captures a range of entropies including the Shannon entropyatβ = 2.

The choice ofβ in the neighborhood of 2 is not arbitrary. The reasons are twofold; on the one
hand we are close to Shannon entropy which enables us to obtain information on the distribution
of elements. On the other hand it gives us information on how units of a point pattern influence
their distribution. Just asl0 andl∞ norms represent extremes of the smallest and largest elements
of a setH0 andH∞ are the extremes of information measures of whichH0<p<∞ gives a tradeoff.

The simulation process is summarized in the following algorithm.
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Mesh Quality(q)
for each Voronoï regionVi ∈ V of S do

Access the number of sides and coordinates of the vertices ofthe polygon.
Using the coordinates, compute the lengthsl i and Area A of the polygon.
Usel i andAi in the appropriate expression to compute its qualityqi.

end for
Q = {qi}
Mesh Entropy(H)
for each Voronoï regionVi ∈ V do

ComputePri

UsePri to computeHi

H = {Hi}
end for

Remark 6.1. The assumption made here is that the lengths of the sides of every Voronoï region
polygon are measurable. Unfortunately, this is not always the case in, for example, Voronoï tessel-
lations of 2D digital images, since some of the sides of Voronoï region polygons along the borders
of an image have infinite length and border polygons have unbounded areas. To cope with this
problem, the lengths of all border polygons are a measured relative to one or more image borders.

Example 1. Consider a completely regular pattern tessellated as shownin Fig. 3.

3.1: Mesh 3.2: Probability 3.3: Quality

Figure 3. Perfectly Regular Image Graph Space and Quantities

In Fig. 3 all Voronoï cells have the same area resulting in a uniform distribution of their prob-
abilities. Also all cells have the same quality. Now there are 400 cells in the tessellation and soH
attains its maximum value of 5.99146 and the global quality index also attains its maximum value
of unity. From the distribution of the probability of cells and their qualities it’s straight forward to
see that a plot of general entropy against global quality indices would be a straight horizontal line.

images/perfectmesh.eps
images/perfectmeshprob.eps
images/perfectquality2.eps
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4.1: Building set 4.2: Horse set 4.3: Human set 4.4: Mountain set

Figure 4. Data sets

5.1: Mesh 5.2: Probability 5.3: Quality

Figure 5. Image Graph Spaces

6.1: Mesh 6.2: Probability 6.3: Quality

Figure 6. Image Graph Spaces

7. Results and Discussion

Most polygons typically have non-zero area soPri is defined for all regions in the plane. In
the following image Voronoï graphs, probability functionsof cells, image cell qualities and plots
of quantities are shown. Also quality of cells and information are studied by examining the nature
of the plots. The results of our simulations are shown for only three images per category of the
data set given in Fig.4 for space reasons although the results are presented for theentire data set
of 20 images per category amounting to 80 images in total. Corresponding cell area probabilities
and distribution of cell qualities are shown next to tessellated spaces in Fig.5-Fig. 16 in that order.

Point patterns consist of a maximum of 50 keypoints and so theresulting cells are usually 50
in number. Notice the nature of the distributions of probabilities and qualities. Probability distri-

images/buildingsimagecollage.eps
images/horsesimagecollage.eps
images/humansimagecollage.eps
images/mountainsimagecollage.eps
images/image1mesh.eps
images/image1prob.eps
images/image1quality.eps
images/image2mesh.eps
images/image2prob.eps
images/image2quality.eps
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7.1: Mesh 7.2: Probability 7.3: Quality

Figure 7. Image Graph Spaces

8.1: Mesh 8.2: Probability 8.3: Quality

Figure 8. Image Graph Spaces

butions range from the extreme of only a few influential cellsto cells exhibiting higher tendencies
of equal influences. This corresponds to a few large peaks on the probability distributions and a
spread out distribution respectively. The qualities of thecells portray the exhibited behaviour.

9.1: Mesh 9.2: Probability 9.3: Quality

Figure 9. Image Graph Spaces
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images/image22quality.eps
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10.1: Mesh 10.2: Probability 10.3: Quality

Figure 10. Image Graph Spaces

11.1: Mesh 11.2: Probability 11.3: Quality

Figure 11. Image Graph Spaces

12.1: Mesh 12.2: Probability 12.3: Quality

Figure 12. Image Graph Spaces

Entropies of tessellations and global quality indices are condensed into the following plots.
For 50 Voronoï cells exihibiting a uniform probability distribution the maximum value possible
for Renyi entropy is 3.912. All entropy values fall short of this value. Plots of entropies and global
qualities are shown for the buildings, horses, humans and mountain scenery categories in Fig.17.
Notice the flat nature of the global qualities for the images.Renyi entropies as a function of the
images is non-decreasing.

In the following, plots of global qualities, Renyi entropies and plots of entropies against qual-
ities are shown.

Notice the monotonically increasing entropies and global qualities in Fig.17. Also observe that
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13.1: Mesh 13.2: Probability 13.3: Quality

Figure 13. Image Graph Spaces

14.1: Mesh 14.2: Probability 14.3: Quality

Figure 14. Image Graph Spaces

15.1: Mesh 15.2: Probability 15.3: Quality

Figure 15. Image Graph Spaces

the quantities are distinct across categories. Most importantly entropic information is decreases
for β = 1.5,2.0,2.5 in that order. Recall thatβ = 2 yields Shannon entropy from the general entropy
criterion H. It is interesting to note the oscillating (Fig.18) as opposed to uniform relationship
between entropy and global quality. This confirms the departure of the images from the less
interesting case of completely regular patterns.
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16.1: Mesh 16.2: Probability 16.3: Quality

Figure 16. Image Graph Spaces

17.1: Buildings 17.2: Horses

17.3: Humans 17.4: Mountains

Figure 17. Quantity Relations

8. Conclusion and Future Work

Non-linear probability distribution distribution functions as opposed to uniform ones are ob-
served. However, recall that a uniform distribution maximizes the entropy so that implies that
the point patterns are more informative and interesting compared to completely regular patterns.
Although the patterns are not uniform the information parameter range of 1< β ≤ 2.5 maximizes
the information content of Voronoï cells. This shows that the Renyi entropy is more informative
than Shannon entropy. This is due to the variations in pattern structure. Owing to the non-linear
relationship between entropy and cell qualities, we see that the patterns are not simple patterns
because of the variations.

Notice that the global qualitiesqall for all image categories practically follow a linear distri-
bution with a gradient close to zero. So given a global quality of a tessellation converging in the
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18.1: Buildings 18.2: Horses

18.3: Humans 18.4: Mountains

Figure 18. Quality Signatures

neighborhood of 0.5 ≤ qall < 1.0, the point pattern is not completely regular and could be from a
digital image. This range of global qualities observed shows that point pattern primitives of digital
images may not be simple and completely regular features.

Image point patterns with global quality coefficients in the range 0.5 ≤ qall < 1.0 are stable.
This indicates that the image physical system is sufficiently modeled. This is the so called fidelity
of solution of the physical system of differential equations represented by the mesh. A completely
regular pattern with a global index or fidelity of unity is themost stable (Fig.3) so that an unstable
system has an index of zero or close to zero.

Since the point patterns are not completely regular they contain more information than regular
ones because their global indices are less than unity and their entropies are less than the maximum
value.
Notwithstanding this quality guarantees for meshes of fouror more sides which is hardly studied
and much less developed is seen to be stable and guaranteed inthe reported range.

Finally it has been shown that the distribution of digital image point patterns is anything but
uniform. Therefore future work should reveal the applicable distribution(s).

It goes without saying that although the method is simple andeffective in characterizing pat-
tern information and structure the assignment of zero probabilities to infinite Voronoï cells is a
disadvantage. This however is a natural consequence of Voronoï partitioning for which the choice
has to be made whether the information is attributed to a few infinite cells or otherwise.
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Abstract
Main objective of this paper is to study further properties of fuzzy pseudo near compactness via ps-ro closed fuzzy

sets, fuzzy nets and fuzzy filterbases. It is shown by an example that ps-ro fuzzy continuous and fuzzy continuous
functions do not imply each other. Several characterizations of ps-ro fuzzy continuous function are obtained in terms
of a newly introduced concept of ps-ro interior operator, ps-ro q-nbd and its graph.
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1. Introduction

In (Ray & Chettri, 2010), while finding interplay between a fuzzy topological space p f ts, for
short) pX, τq and its corresponding strong α-level topology(general) on X, the concept of pseudo
regular open(closed) fuzzy sets and ps-ro fuzzy topology on X was introduced, members of which
are called ps-ro open fuzzy sets and their complements are ps-ro closed fuzzy sets on pX, τq. In
(Ray & Chettri, 2011), in terms of above fuzzy sets, a fuzzy continuous type function called ps-ro
fuzzy continuous function and a compact type notion called fuzzy pseudo near compactness were
introduced and different properties were studied.

In this paper, fuzzy pseudo near compactness has been studied via ps-ro closed fuzzy sets,
fuzzy nets and fuzzy filterbases. Further, it is shown by an example that ps-ro fuzzy continuous
and fuzzy continuous functions are independent of each other. An interior-type operator called
ps-ro interior is introduced and several properties of such functions are studied interms of this
operator, ps-ro q-nbd and its graph.
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We state a few known definitions and results here that we require subsequently. A fuzzy point
xα is said to q-coincident with a fuzzy set A, denoted by xαqA if α` Apxq ą 1. If A and B are not
q-coincident, we write A ­ qB. A fuzzy set A is said to be a q-neighbourhood (in short, q-nbd.) of a
fuzzy point xα if there is a fuzzy open set B such that xαqB ď A (Pao-Ming & Ying-Ming, 1980).
Let f be a function from a set X into a set Y . Then the following holds:
(i) f ´1p1´ Bq “ 1´ f ´1pBq, for any fuzzy set B on Y .
(ii) A1 ď A2 ñ f pA1q ď f pA2q, for any fuzzy sets A1 and A2 on X. Also, B1 ď B2 ñ f ´1pB1q ď

f ´1pB2q, for any fuzzy sets B1 and B2 on Y .
(iii) f f ´1pBq ď B, for any fuzzy set B on Y and the equality holds if f is onto. Also, f ´1 f pAq ě A,
for any fuzzy set A on X, equality holds if f is one-to-one (Chang, 1968). For a function f : X Ñ
Y , the graph g : X Ñ X ˆ Y of f is defined by gpxq “ px, f pxqq, for each x P X, where X and Y
are any sets. Let X, Y be f ts and g : X Ñ X ˆ Y be the graph of the function f : X Ñ Y . Then
if A, B are fuzzy sets on X and Y respectively, g´1pA ˆ Bq “ A ^ f ´1pBq(Azad, 1981). Let Z, X,
Y be f ts and f1 : Z Ñ X and f2 : Z Ñ Y be two functions. Let f : Z Ñ X ˆ Y be defined by
f pzq “ p f1pzq, f2pzqq for z P Z, where X ˆ Y is provided with the product fuzzy topology. Then if
B, U1 U2 are fuzzy sets on Z, X, Y respectively such that f pBq ď U1 ˆ U2, then f1pBq ď U1 and
f2pBq ď U2 (Bhattacharyya & Mukherjee, 2000). A function f from a f ts pX, τq to f ts pY, σq is
said to be fuzzy continuous, if f ´1pµq is fuzzy open on X, for all fuzzy open set µ on Y (Chang,
1968). For a fuzzy set µ in X, the set µα “ tx P X : µpxq ą αu is called the strong α-level set of X.
In a f ts pX, τq, the family iαpτq “ tµα : µ P τu for all α P I1 “ r0, 1q forms a topology on X called
strong α-level topology on X (Lowen, 1976), (Kohli & Prasannan, 2001). A fuzzy open(closed)
set µ on a f ts pX, τq is said to be pseudo regular open(closed) fuzzy set if the strong α-level set
µα is regular open(closed) in pX, iαpτqq, @α P I1. The family of all pseudo regular open fuzzy sets
form a fuzzy topology on X called ps-ro fuzzy topology on X which is coarser than τ. Members of
ps-ro fuzzy topology are called ps-ro open fuzzy sets and their complements are known as ps-ro
closed fuzzy sets on pX, τq (Ray & Chettri, 2010). A function f from a f ts pX, τ1q to another f ts
pY, τ2q is pseudo fuzzy ro continuous (in short, ps-ro fuzzy continuous) if f ´1pUq is ps-ro open
fuzzy set on X for each pseudo regular open fuzzy set U on Y . For a fuzzy set A, ^tB : A ď B, B
is ps-ro closed fuzzy set on Xu is called fuzzy ps-closure of A. In a f ts pX, τq, a fuzzy set A is said
to be a ps-ro nbd. of a fuzzy point xα, if there is a ps-ro open fuzzy set B such that xα P B ď A.
In addition, if A is ps-ro open fuzzy set, the ps-ro nbd. is called ps-ro open nbd. A fuzzy set A
is called ps-ro quasi neighborhood or simply ps-ro q-nbd. of a fuzzy point xα, if there is a ps-ro
open fuzzy set B such that xαqB ď A. In addition, if A is ps-ro open, the ps-ro q-nbd. is called
ps-ro open q-nbd. Let tS n : n P Du be a fuzzy net on a f ts X. i.e., for each member n of a directed
set pD,ďq, S n be a fuzzy set on X. A fuzzy point xα on X is said to be a fuzzy ps-cluster point
of the fuzzy net if for every n P D and every ps-ro open q-nbd. V of xα, there exists m P D, with
n ď m such that S mqV. A collection B of fuzzy sets on a f ts pX, τq is said to form a fuzzy filter
base in X if for every finite subcollection tB1, B2, ..., Bnu of B,

Źn
i“1

Bi ‰ 0 (Ray & Chettri, 2011).

2. Fuzzy Pseudo Near Compactness

It is easy to observe, as pseudo regular open fuzzy sets form a base for ps-ro fuzzy topology,
replacing ps-ro open cover by pseudo regular open cover, we may obtain pseudo near compact-



98 A. Deb Ray et al. / Theory and Applications of Mathematics & Computer Science 6 (2) (2016) 96–102

ness.

Definition 2.1. Let xα be a fuzzy point on a f ts X. A fuzzy net tS n : n P pD,ěqu on X is said to
ps-converge to xα, written as S n

ps
Ñ xα if for each ps-ro open q-nbd. W of xα, there exists m P D

such that S nqW for all n ě m ,pn P Dq.

Definition 2.2. Let xα be a fuzzy point on a f ts X. A fuzzy filterbase B is said to
(i) ps-adhere at xα written as xα ď ps-ad.B if for each ps-ro open q-nbd. U of xα and each B P B,
BqU.
(ii) ps-converge to xα, written as B ps

Ñ xα if for each ps-ro open q-nbd. U of xα, there coresponds
some B P B such that B ď U.

Theorem 2.1. A f ts pX, τq is fuzzy pseudo nearly compact iff every tBα : α P Λu of ps-ro closed
fuzzy sets on X with ^

αPΛ
Bα “ 0, there exist a finite subset Λ0 of Λ such that ^

αPΛ0
Bα “ 0.

Proof. Let tUα : α P Λu be a ps-ro open cover of X. Now, ^
αPΛ
p1´Uαq “ p1´_αPΛ

Uαq “ 0. As
t1´ Uα : α P Λu is a collection of ps-ro closed fuzzy sets on X, by given condition, there exist a
finite subset Λ0 of Λ such that ^

αPΛ0
p1 ´ Uαq “ 0 ñ 1 ´ _

αPΛ0
Uα “ 0. i.e., 1 “ _

αPΛ0
Uα. So, X

is fuzzy pseudo nearly compact.
Conversely, let tBα : α P Λu be a family of ps-ro closed fuzzy sets on X with ^

αPΛ
Bα “ 0. Then

1 “ 1´^
αPΛ

Bα ñ 1 “ _
αPΛ
p1´ Bαq. By given condition there exist a finite subset Λ0 of Λ such

that 1 “ _
αPΛ0
p1´ Bαq ñ 1 “ p1´^

αPΛ0
Bαq. Hence, ^

αPΛ0
Bα ď p^αPΛ0

Bαq ^ p1´^αPΛ0
Bαq “ 0.

Consequently, ^
αPΛ0

Bα “ 0.

Theorem 2.2. For a fuzzy set A on a f ts, the following are equivalent:
(a) Every fuzzy net in A has fuzzy ps-cluster point in A.
(b) Every fuzzy net in A has a ps-convergent fuzzy subnet.
(c) Every fuzzy filterbase in A ps-adheres at some fuzzy point in A.
Proof. paq ñ pbq: Let tS n : n P pD,ěqu be a fuzzy net in A having fuzzy ps-cluster point at
xα ď A. Let Qxα “ tA : A is ps-ro open q-nbd. of xαu. For any B P Qxα , some n P D can
be chosen such that S nqB. Let E denote the set of all ordered pairs pn, Bq with the property that
n P D, B P Qxα and S nqB. Then pE,ąq is a directed set where pm,Cq ą pn, Bq iff m ě n in D and
C ď B. Then T : pE ąq Ñ pX, τq given by T pn, Bq “ S n, is a fuzzy subnet of tS n : n P pD,ěqu.
Let V be any ps-ro open q-nbd. of xα. Then there exists n P D such that pn,Vq P E and hence
S nqV . Now, for any pm,Uq ą pn,Vq, T pm,Uq “ S mqU ď V ñ T pm,UqqV . Hence, T ps

Ñ xα.
pbq ñ paq If a fuzzy net tS n : n P pD,ěqu in A does not have any fuzzy ps-cluster point, then
there is a ps-ro open q-nbd. U of Xα and n P D such that S n ­ qU, @ m ě n. Then clearly no fuzzy
subnet of the fuzzy net can ps-converge to xα.
pcq ñ paq Let tS n : n P pD,ěqu be a fuzzy net in A. Consider the fuzzy filter base F “ tTn : n P
Du in A, generated by the fuzzy net, where Tn “ tS m : m P pD,ěq and m ě nu. By (c), there exist
a fuzzy point aα ď A ^ pps-adF q. Then for each ps-ro open q-nbd. U of aα and each F P F ,
UqF, i.e., UqTn, @ n P D. Hence, the given fuzzy net has fuzzy ps-cluster point aα.
paq ñ pcq Let F “ tFα : α P Λu be a fuzzy filterbase in A. For each α P Λ, choose a fuzzy point
xFα

ď Fα, and construct the fuzzy net S “ txFα
: Fα P F u in A with pF ,ąąq as domain, where

for two members Fα, Fβ P F , Fα ąą Fβ iff Fα ď Fβ. By (a), the fuzzy net has a fuzzy ps-cluster
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point say xt ď A, where 0 ă t ď 1. Then for any ps-ro open q-nbd. U of xt and any Fα P F , there
exists Fβ P F such that Fβ ąą Fα and xFβqU. Then FβqU and hence FαqU. Thus F adheres at
xt.

Theorem 2.3. If a f ts is fuzzy pseudo nearly compact, then every fuzzy filterbase on X with at
most one ps-adherent point is ps-convergent.
Proof. Let F be a fuzzy filterbase with at most one ps-adherent point in a fuzzy pseudo nearly
compact f ts X. Then by Theorem ( 2.2), F has at least one ps-adherent point. Let xα be the unique
ps-adherent point of F . If F does not ps-converge to xα, then there is some ps-ro open q-nbd. U
of xα such that for each F P F with F ď U, F^p1´Uq ‰ 0. Then G “ tF^p1´Uq : F P F u is
a fuzzy filterbase on X and hence has a ps-adherent point yt(say) in X. Now, U ­ qG, for all G P G,
so that xα ‰ yt. Again, for each ps-ro open q-nbd. V of yt and each F P F , VqpF ^ p1 ´ Uqq ñ
VqF ñ yt is a ps-adherent point of F , where xα ‰ yt. This shows that yt is another ps-adherent
point of F , which is not the case.

3. ps-ro Fuzzy Continuous Functions

We begin this section by introducing an interior-type operator, called ps-interior operator and
observe a few useful properties of that operator.

Definition 3.1. The union of all ps-ro open fuzzy sets, each contained in a fuzzy set A on a f ts X
is called fuzzy ps-interior of A and is denoted by ps-intpAq. So, ps-intpAq “ _tB : B ď A, B is
ps-ro open fuzzy set on X}

Some properties of ps-int operator are furnished below. The proofs are straightforward and
hence omitted.

Theorem 3.1. For any fuzzy set A on a f ts pX, τq, the following hold:
(a) ps-intpAq is the largest ps-ro open fuzzy set contained in A.
(b) ps-intp0q “ 0, ps-intp1q “ 1.
(c) ps-intpAq ď A.
(d) A is ps-ro open fuzzy set iff A “ ps-intpAq.
(e) ps-intpps-intpAqq “ ps-intpAq.
(f) ps-intpAq ď ps-intpBq, i f A ď B.
(g) ps-intpA^ Bq “ ps-intpAq ^ ps-intpBq.
(h) ps-intpA_ Bq ě ps-intpAq _ ps-intpBq.
(i) ps-intpps-intpAqq “ ps-intpAq.
(j) 1´ ps-intpAq “ ps-clp1´ Aq.
(k) 1´ ps-clpAq “ ps-intp1´ Aq.

Now, we recapitulate the definition of ps-ro fuzzy continuous functions.

Definition 3.2. A function f from f ts pX, τ1q to f ts pY, τ2q is pseudo fuzzy ro continuous (in
short, ps-ro fuzzy continuous) if f ´1pUq is ps-ro open fuzzy set on X for each pseudo regular
open fuzzy set U on Y .
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The following Example shows that ps-ro fuzzy continuity and fuzzy continuity do not imply
each other.

Example 3.1. Let X “ ta, b, cu and Y “ tx, y, zu. Let A, B and C be fuzzy sets on X defined by
Apaq “ 0.2, Apbq “ 0.4, Apcq “ 0.4, Bptq “ 0.4, @t P X and Cptq “ 0.2, @t P X. Let D and E be
fuzzy sets on Y defined by Dptq “ 0.2, @t P Y and Epxq “ 0.6, Epyq “ 0.7, Epzq “ 0.7. Clearly,
τ1 “ t0, 1, A, B,Cu and τ2 “ t0, 1,D, Eu are fuzzy topologies on X and Y respectively. In the
corresponding topological space pX, iαpτ1qq, @α P I1 “ r0, 1q, the open sets are φ, X, Aα, Bα and Cα,

where Aα “

$

’

&

’

%

X, for α ă 0.2
tb, cu, for 0.2 ď α ă 0.4
φ, for α ě 0.4

, Bα “

#

X, for α ă 0.4
φ, for α ě 0.4

and Cα “

#

X, for α ă 0.2
φ, for α ě 0.2

For 0.2 ď α ă 0.4, the closed sets are on pX, iαpτ1qq are φ, X and tau. Therefore, intpclpAαqq “ X.
So, Aα is not regular open on pX, iαpτ1qq and hence, A is not pseudo regular open fuzzy sets on
pX, τ1q for 0.2 ď α ă 0.4. Similarly, it can be seen that 0, 1, B and C are pseudo regular open
fuzzy set on pX, τ1q. Therefore, ps-ro fuzzy topology on X is t0, 1, B,Cu. Again, E is not pseudo
regular open fuzzy set for 0.6 ď α ă 0.7 on Y . Therefore, ps-ro fuzzy topology on Y is t0, 1,Du.
Now, ps-clpBq “ 1´ B and ps-clpCq “ 1´ B where, p1´ Bqptq “ 0.6, @t P X. Define a function
f : X Ñ Y by f paq “ x, f pbq “ y and f pcq “ z. Then, f ´1pDqptq “ 0.2 “ Cptq, @t P X. Hence,
f ´1pUq is ps-ro open fuzzy set on X, for every ps-ro open fuzzy set U on Y . Therefore, f is
ps-ro fuzzy continuous function. But, f is not fuzzy continuous as f ´1pEq is not fuzzy open on
X. Clearly, every ps-ro open fuzzy set is fuzzy open but not conversely, as for an example here A
is fuzzy open but not ps-ro open fuzzy on X. This implies that a fuzzy continuous function need
not be ps-ro fuzzy continuous. Hence, ps-ro fuzzy continuous and fuzzy continuous functions are
independent of each other.

The following couple of results give characterizations of ps-ro fuzzy continuous functions.

Theorem 3.2. Let pX, τq and pY, σq be two f ts. For a function f : X Ñ Y , the following are
equivalent:
paq f is ps-ro fuzzy continuous.
pbq Inverse image of each ps-ro open fuzzy set on Y under f is ps-ro open on X.
pcq For each fuzzy point xα on X and each ps-ro open nbd. V of f pxαq, there exists a ps-ro open
fuzzy set U on X, such that xα ď U and f pUq ď V .
pdq For each ps-ro closed fuzzy set F on Y , f ´1pFq is ps-ro closed on X.
peq For each fuzzy point xα on X, the inverse image under f of every ps-ro nbd. of f pxαq on Y is
a ps-ro nbd. of xα on X.
p f q For all fuzzy set A on X, f pps-clpAqq ď ps-clp f pAqq.
pgq For all fuzzy set B on Y , ps-clp f ´1pBqq ď f ´1pps-clpBqq.
phq For all fuzzy set B on Y , f ´1pps-intpBqq ď ps-intp f ´1pBqq.
Proof. paq ñ pbq Let f be ps-ro fuzzy continuous and µ be any ps-ro open fuzzy set on Y . Then
µ “ _µi, where µi is pseudo regular open fuzzy set on Y , for each i. Now, f ´1pµq “ f ´1p_iµiq “

_i f ´1pµiq. f being ps-ro fuzzy continuous, f ´1pµiq is ps-ro open fuzzy set and consequently,
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f ´1pµq is ps-ro open fuzzy set on X.
pbq ñ paq Let the inverse image of each ps-ro open fuzzy set on Y under f be ps-ro open fuzzy
set on X. Let U be a pseudo regular open fuzzy set on Y . Every pseudo regular open fuzzy set
being ps-ro open fuzzy set, the result follows.
pbq ñ pcq Let V be any ps-ro open nbd. of f pxαq on Y . Then there is a ps-ro open fuzzy set V1

on Y such that f pxαq ď V1 ď V . By hypothesis, f ´1pV1q is ps-ro open fuzzy set on X. Again,
xα ď f ´1pV1q ď f ´1pVq. So, f ´1pVq is a ps-ro nbd. of xα, such that f p f ´1pVqq ď V , as desired.
pcq ñ pbq Let V be any ps-ro open fuzzy set on Y and xα ď f ´1pVq. Then f pxαq ď V and so
by given condition, there exists ps-ro open fuzzy set U on X such that xα ď U and f pUq ď V .
Hence, xα ď U ď f ´1pVq. i.e., f ´1pVq is a ps-ro nbd. of each of the fuzzy points contained in it.
Thus f ´1pVq is ps-ro open fuzzy set on X.
pbq ô pdq Obvious.
pbq ñ peq Suppose, W is a ps-ro open nbd. of f pxαq. Then there exists a ps-ro open fuzzy set U
on Y such that f pxαq ď U ď W. Then xα ď f ´1pUq ď f ´1pWq. By hypothesis, f ´1pUq is ps-ro
open fuzzy set on X and hence the result is obtained.
peq ñ pbq Let V be any ps-ro open fuzzy set on Y . If xα ď f ´1pVq then f pxαq ď V and so f ´1pVq
is a ps-ro nbd. of xα.
pdq ñ p f q ps-clp f pAqq being a ps-ro closed fuzzy set on Y , f ´1pps-clp f pAqqq is ps-ro closed
fuzzy set on X. Again, f pAq ď ps-clp f pAqq. So, A ď f ´1pps-clp f pAqqq. As ps-clpAq is the
smallest ps-ro closed fuzzy set on X containing A, ps-clpAq ď f ´1pps-clp f pAqqq. Hence, f pps-
clpAqq ď f f ´1pps-clp f pAqqq ď ps-clp f pAqq.
p f q ñ pdq For any ps-ro closed fuzzy set B on Y , f pps-clp f ´1pBqqq ď ps-clp f p f ´1pBqqq ď ps-
clpBq “ B. Hence, ps-clp f ´1pBqq ď f ´1pBq ď ps-clp f ´1pBqq. Thus, f ´1pBq is ps-ro closed
fuzzy set on X.
p f q ñ pgq For any fuzzy set B on Y , f pps-clp f ´1pBqqq ď ps-clp f p f ´1pBqqq ď ps-clpBq. Hence,
ps-clp f ´1pBqq ď f ´1pps-clpBqq.
pgq ñ p f q Let B “ f pAq for some fuzzy set A on X. Then ps-clp f ´1pBqq ď f ´1pps-clpBqq ñ ps-
clpAq ď ps-clp f ´1pBqq ď f ´1pps-clp f pAqqq. So, f pps-clpAqq ď ps-clp f pAqq.
pbq ñ phq For any fuzzy set B on Y , f ´1pps-intpBqq is ps-ro open fuzzy set on X. Also, f ´1pps-
intpBqq ď f ´1pBq. So, f ´1pps-intpBqq ď ps-intp f ´1pBqq.
phq ñ pbq Let B be any ps-ro open fuzzy set on Y . So, ps-intpBq “ B.Now, f ´1pps-intpBqq ď ps-
intp f ´1pBqq ñ f ´1pBq ď ps-intp f ´1pBqq ď f ´1pBq. Hence, f ´1pBq is ps-ro open fuzzy set on
X.

Theorem 3.3. Let pX, τq and pY, σq be two f ts. A function f : X Ñ Y is f is ps-ro fuzzy
continuous iff for every fuzzy point xα on X and every ps-ro open fuzzy set V on Y with f pxαqqV
there exists a ps-ro open fuzzy set U on X with xαqU and f pUq ď V .
Proof. Let f be ps-ro fuzzy continuous and xα a fuzzy point on X, V a ps-ro open fuzzy set
V on Y with f pxαqqV . So, Vp f pxqq ` α ą 1 ñ f ´1pVqpxq ` α ą 1. So, xαqp f ´1pVqq. Now,
f f ´1pVq ď V is always true. Choosing U “ f ´1pVq we have, f pUq ď V with xαqU.
Conversely, let the condition hold. Let V be any ps-ro open fuzzy set on Y . To prove f ´1pVq is
ps-ro open fuzzy set on X, we shall prove 1´ f ´1pVq is ps-ro closed fuzzy set on X. Let xα be any
fuzzy point on X such that xα ą 1X ´ f ´1pVq. So, p1´ f ´1pVqqpxq ă αñ Vp f pxqq ` α ą 1. So,
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f pxαqqV . By given condition, there exists a ps-ro open fuzzy set on U such that xαqU and f pUq ď
V . Now, Uptq ` p1 ´ f ´1pVqqptq ď Vp f ptqq ` 1 ´ Vp f ptqq “ 1, @ t. Hence, U ­ qp1 ´ f ´1pVqq.
Consequently, xα is not a fuzzy ps-cluster point of 1´ f ´1pVq. This proves 1´ f ´1pVq is a ps-ro
closed fuzzy set on X

Theorem 3.4. Let X, Y , Z be f ts. For any functions f1 : Z Ñ X and f2 : Z Ñ Y , a function
f : Z Ñ X ˆ Y is defined as f pxq “ p f1pxq, f2pxqq for x P Z, where X ˆ Y is endowded with
the product fuzzy topology. If f is ps-ro fuzzy continuous then f1 and f2 are both ps-ro fuzzy
continuous.
Proof. Let U1 be a ps-ro q-nbd. of f1pxαq on X, for any fuzzy point xα on Z. Then U1 ˆ 1Y is a
ps-ro q-nbd. of f pxαq “ p f1pxαq, f2pxαqq on X ˆ Y . By ps-ro continuity of f , there exists ps-ro
q-nbd. V of xα on Z such that f pVq ď U1 ˆ 1Y . Then f pVqptq ď pU1 ˆ 1Yqptq “ U1ptq ^ 1Yptq “
U1ptq, @ t P Z. So, f1pVq ď U1. Hence, f1 is ps-ro fuzzy continuous. Similarly, it can be shown
that f2 is also ps-ro fuzzy continuous.

Theorem 3.5. Let f : X Ñ Y be a function from a f ts X to another f ts Y and g : X Ñ X ˆ Y be
the graph of the function f . Then f is ps-ro fuzzy continuous if g is so.
Proof. Let g be ps-ro fuzzy continuous and B be ps-ro open fuzzy set on Y . By Lemma 2.4 of
(Azad, 1981), f ´1pBq “ 1X ^ f ´1pBq “ g´1p1X ˆ Bq. Now, as 1X ˆ B is ps-ro open fuzzy set on
X ˆ Y , f ´1pBq becomes ps-ro open fuzzy set on X. Hence, f is ps-ro fuzzy continuous.
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In this paper, we introduce and investigate two subclasses AΣm pλ;αq and AΣm pλ; βq of Σm consisting of ana-

lytic and m-fold symmetric bi-univalent functions in the open unit disc U . For functions in each of the subclasses
introduced in this paper, we obtain the coefficient bounds for |am`1| and |a2m`1|.
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1. Introduction

LetA denote the class of functions f pzq which are analytic in the open unit disk

U “ tz : z P C and |z| ă 1u

and normalized by the conditions f p0q “ 0 , f 1p0q “ 1 and having the following form:

f pzq “ z`
8
ÿ

k“2

akzk. (1.1)

Also let S denote the subclass of functions in A which are univalent in U (for details, see
Duren (1983)).

The Koebe One Quarter Theorem (e.g.,see (Duren, 1983)) ensures that the image of U under
every univalent function f pzq P A contains the disk of radius 1{4. Thus every univalent function
f has an inverse f´1 satisfying

f´1 p f pzqq “ z pz P Uq

˚Corresponding author
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and

f
`

f´1
pwq

˘

“ w
ˆ

|w| ă r0p f q, r0p f q ě
1
4

˙

.

In fact, the inverse function f´1 is given by

gpwq “ f´1
pwq “ w´ a2w2

` p2a2
2 ´ a3qw3

´ p5a3
2 ´ 5a2a3 ` a4qw4

` ¨ ¨ ¨ .

A function f P A is said to be bi-univalent in U if both f pzq and f´1pzq are univalent in U.
We denote by Σ the class of all bi-univalent functions in U given by the Taylor-Maclaurin series
expansion (1.1).

For a brief history and examples of functions in the class Σ, see (Srivastava et al., 2010) (see
also (Brannan & Taha, 1988), (Lewin, 1967), (Taha, 1981)).

In fact, the aforecited work of Srivastava et al. (Srivastava et al., 2010) essentially revived
the investigation of various subclasses of the bi-univalent function class Σ in recent years; it was
followed by such works as those by Ali et al. (Ali et al., 2012), Srivastava et al. (Srivastava et al.,
2015b)(see also (Akın & Sümer-Eker, 2014), (Deniz, 2013), (Frasin & Aouf, 2011), (Srivastava,
2012), Xu et al (Xu et al., 2012a), (Xu et al., 2012b) and the references cited in each of them).

Let m P N “ t1, 2, ...u. A domain E is said to be m-fold symmetric if a rotation of E about
the origin through an angle 2π{m carries E on itself (e.g.,see (Goodman, 1983)). It follows that, a
function f pzq analytic in U is said to be m-fold symmetric in U if for every z in U

f pe2πi{mzq “ e2πi{m f pzq.

We denote by Sm the class of m-fold symmetric univalent functions in U.
A simple argument shows that f P Sm is characterized by having a power series of the form

f pzq “ z`
8
ÿ

k“1

amk`1zmk`1
pz P U, m P Nq. (1.2)

Each bi-univalent function generates an m-fold symmetric bi-univalent function for each inte-
ger m P N. The normalized form of f is given as in (1.2) and the series expansion for f´1, which
has been recently proven by Srivastava et al.(Srivastava et al., 2014), is given as follows

gpwq “ w´ am`1wm`1
`
“

pm` 1qa2
m`1 ´ a2m`1

‰

w2m`1 (1.3)

´

„

1
2
pm` 1qp3m` 2qa3

m`1 ´ p3m` 2qam`1a2m`1 ` a3m`1



w3m`1
` ¨ ¨ ¨

where f´1 “ g. We denote by Σm the class of m-fold symmetric bi-univalent functions in U.
Recently, certain subclasses of m-fold bi-univalent functions class Σm similar to subclasses

of Σ introduced and investigated by Sümer Eker (Sümer-Eker, 2016), Altınkaya and Yalçın (Altınkaya
& Yalçın, 2015), Srivastava et al (Srivastava et al., 2015a).

The aim of this paper is to introduce new subclasses of the function class bi-univalent func-
tions in which both f and f´1 are m-fold symmetric analytic functions and derive estimates on
initial coefficients |am`1| and |a2m`1| for functions in each of these new subclasses.
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2. Coefficient Estimates for the function classAΣmpλ; αq

Definition 2.1. A function f pzq P Σm given by (1.2) is said to be in the classAΣmpλ;αq p0 ă α ď
1, 0 ď λ ď 1q if the following conditions are satisfied:

ˇ

ˇ

ˇ

ˇ

arg
ˆ

z f 1pzq
f pzq

`
λz2 f 2pzq

f pzq

˙ˇ

ˇ

ˇ

ˇ

ă
απ

2
pz P Uq (2.1)

and
ˇ

ˇ

ˇ

ˇ

arg
ˆ

wg1pwq
gpwq

`
λw2g2pwq

gpwq

˙
ˇ

ˇ

ˇ

ˇ

ă
απ

2
pw P Uq (2.2)

where the function g is given by (1.3).

Theorem 2.1. Let f P AΣmpλ;αq p0 ă α ď 1, 0 ď λ ď 1q be given by (1.2). Then

|am`1| ď
2α

m
a

2αr1` 2λpm` 1qs ` p1´ αqr1` λpm` 1qs2
(2.3)

and

|a2m`1| ď
αpm` 1q r1` |α´ 1|s

m2r1` 2λpm` 1qs
. (2.4)

Proof. From (2.1) and (2.2) we have

z f 1pzq
f pzq

`
λz2 f 2pzq

f pzq
“ rppzqsα (2.5)

and for its inverse map, g “ f´1, we have

wg1pwq
gpwq

`
λw2g2pwq

gpwq
“ rqpwqsα (2.6)

where ppzq and qpwq are in familiar Caratheodory Class P (see for details (Duren, 1983)) and have
the following series representations:

ppzq “ 1` pmzm
` p2mz2m

` p3mz3m
` ¨ ¨ ¨ (2.7)

and

qpwq “ 1` qmwm
` q2mw2m

` q3mw3m
` ¨ ¨ ¨ . (2.8)

Comparing the corresponding coefficients of (2.5) and (2.6) yields

mr1` λpm` 1qsam`1 “ αpm, (2.9)
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2mr1` λp2m` 1qsa2m`1 ´ mr1` λpm` 1qsa2
m`1 “ αp2m `

αpα´ 1q
2

p2
m, (2.10)

´mr1` λpm` 1qsam`1 “ αqm (2.11)

and

mrp2m` 1q` λpm` 1qp4m` 1qsa2
m`1´ 2mr1` λp2m` 1qsa2m`1 “ αq2m`

αpα´ 1q
2

q2
m. (2.12)

From (2.9) and (2.11), we get

pm “ ´qm (2.13)

and
2m2

r1` λpm` 1qs2a2
m`1 “ α2

pp2
m ` q2

mq. (2.14)

Also from (2.10), (2.12) and (2.14), we get

2m2
r1` 2λpm` 1qsa2

m`1 “ αpp2m ` q2mq `
αpα´ 1q

2
pp2

m ` q2
mq.

Therefore, we have

a2
m`1 “

α2pp2m ` q2mq

m2 r2αr1` 2λpm` 1qs ` p1´ αqr1` λpm` 1qs2s
. (2.15)

Note that, according to the Caratheodory Lemma (see (Duren, 1983)), |pm| ď 2 and |qm| ď 2
for m P N. Now taking the absolute value of (2.15) and applying the Caratheodory Lemma for
coefficients p2m and q2m we obtain

|am`1| ď
2α

m
a

2αr1` 2λpm` 1qs ` p1´ αqr1` λpm` 1qs2
.

This gives the desired estimate for |am`1| as asserted (2.3).

To find bounds on |a2m`1|, we multiply p2m` 1q ` λpm` 1qp4m` 1q and 1` λpm` 1q to the
relations (2.10) and (2.12) respectively and on adding them we obtain:

4m2
r1` λp2m` 1qsr1` 2λpm` 1qsa2m`1

“ α trp2m` 1q ` λpm` 1qp4m` 1qs p2m ` r1` λpm` 1qs q2mu

`
αpα´ 1q

2

 

rp2m` 1q ` λpm` 1qp4m` 1qs p2
m ` r1` λpm` 1qsq2

m

(

.

Now using p2
m “ q2

m and the Caratheodory Lemma again for coefficients pm, p2m and q2m we obtain

|a2m`1| ď
αpm` 1qr1` |α´ 1|s

m2r1` 2λpm` 1qs
.

This completes the proof of the Theorem 2.1.
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3. Coefficient Estimates for the function classAΣmpλ; βq

Definition 3.1. A function f pzq P Σm given by (1.2) is said to be in the class AΣmpλ; βq p0 ď λ ď
1, 0 ď β ă 1q if the following conditions are satisfied:

Re
"

z f 1pzq
f pzq

`
λz2 f 2pzq

f pzq

*

ą β pz P Uq (3.1)

and

Re
"

wg1pwq
gpwq

`
λw2g2pwq

gpwq

*

ą β pw P Uq (3.2)

where the function gpwq is given by (1.3).

Theorem 3.1. Let f P AΣmpλ; βq p0 ď λ ď 1, 0 ď β ă 1q be given by (1.2). Then

|am`1| ď

d

2p1´ βq

m2r1` 2λpm` 1qs
(3.3)

and

|a2m`1| ď
p1´ βqpm` 1q

m2r1` 2λpm` 1qs
. (3.4)

Proof. It follows from (3.1) and (3.2) that

z f 1pzq
f pzq

`
λz2 f 2pzq

f pzq
“ β` p1´ βqppzq (3.5)

and

wg1pwq
gpwq

`
λw2g2pwq

gpwq
“ β` p1´ βqqpwq (3.6)

where ppzq and qpwq have the forms (2.7) and (2.8), respectively. Equating coefficients (3.5) and
(3.6) yields

mr1` λpm` 1qsam`1 “ p1´ βqpm, (3.7)

2mr1` λp2m` 1qsa2m`1 ´ mr1` λpm` 1qsa2
m`1 “ p1´ βqp2m, (3.8)

´mr1` λpm` 1qsam`1 “ p1´ βqqm (3.9)



108 S. Sümer Eker / Theory and Applications of Mathematics & Computer Science 6 (2) (2016) 103–109

and

mrp2m` 1q ` λpm` 1qp4m` 1qsa2
m`1 ´ 2mr1` λp2m` 1qsa2m`1 “ p1´ βqq2m. (3.10)

From (3.7) and (3.9) we get

pm “ ´qm (3.11)

and
2m2

r1` λpm` 1qs2a2
m`1 “ p1´ βq2pp2

m ` q2
mq. (3.12)

Also from (3.8) and (3.10), we obtain

2m2
r1` 2λpm` 1qsa2

m`1 “ p1´ βqpp2m ` q2mq. (3.13)

Thus we have

ˇ

ˇa2
m`1

ˇ

ˇ ď
p1´ βq

2m2r1` 2λpm` 1qs
p|p2m| ` |q2m|q

ď
2p1´ βq

m2r1` 2λpm` 1qs
,

which is the bound on |am`1| as given in the Theorem 3.1.
In order to find the bound on |a2m`1|, we multiply p2m`1q`λpm`1qp4m`1q and 1`λpm`1q

to the relations (3.8) and (3.10) respectively and on adding them we obtain:

4m2
r1` λp2m` 1qsr1` 2λpm` 1qsa2m`1

“ p1´ βq trp2m` 1q ` λpm` 1qp4m` 1qsp2m ` r1` λpm` 1qsq2mu

or equivalently

a2m`1 “
p1´ βqrp2m` 1q ` λpm` 1qp4m` 1qsp2m ` r1` λpm` 1qsq2m

4m2r1` λp2m` 1qsr1` 2λpm` 1qs

Applying the Caratheodory Lemma for the coefficients p2m and q2m, we find

|a2m`1| ď
p1´ βqpm` 1q

m2r1` 2λpm` 1qs
,

which is the bound on |a2m`1| as asserted in Theorem 3.1.

Remark. For 1-fold symmetric bi-univalent functions, if we put λ “ 0 in our Theorems, we obtain
the Theorem 2.1 and the Theorem 3.1 which were given by Brannan and Taha (Brannan & Taha,
1988).
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1. Introduction

LetAk (p) be the class of functions of the form

f (z) = zp +

∞∑
n=k

anzn (p < k; p, k ∈ N := {1, 2, 3, . . . }) , (1.1)

which are analytic and p−valent in the unit disc, U := U(1), where U(r) = {z ∈ C : |z| < r}. Also,
letA (p) = Ap+1 (p) andA = A(1). For the functions f ∈ Ak (p) of the form (1.1) and g ∈ Ak (p)

given by g(z) = zp +
∞∑

n=k
bnzn, the Hadamard product (or convolution) of f and g is defined by

( f ∗ g)(z) := zp +

∞∑
n=k

anbnzn, z ∈ U.
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If f and g are two analytic functions in U, we say that f is subordinate to g, written symbolically
as f (z) ≺ g(z), if there exists a Schwarz function w, which (by definition) is analytic in U, with
w(0) = 0, and |w(z)| < 1 for all z ∈ U, such that f (z) = g(w(z)), z ∈ U.

If the function g is univalent in U, then we have the following equivalence, (c.f (Miller &
Mocanu, 1981, 2000)):

f (z) ≺ g(z)⇔ f (0) = g(0) and f (U) ⊂ g(U).

Let α1, A1, . . . , αq, Aq and β1, B1, . . . , βs, Bs(q, s ∈ N) be positive and real parameters such that

1 +

s∑
i=1

Bi −

q∑
i=1

Ai > 0.

The Wright generalized hypergeometric function

qΨs[(αi, Ai)1,q; (βi, Bi)1,s; z] =

∞∑
n=0

q∏
i=1

Γ
(
αi + nAi

)
s∏

i=1
Γ
(
βi + nBi

) zn

n!
(z ∈ U).

If Ai = 1(i = 1, ..., q) and Bi = 1(i = 1, ..., s), we have the following relationship:

ΩqΨs[(αi, Ai)1,q; (βi, Bi)1,s; z] =q Fs(α1, . . . , αq; β1, . . . , βs; z),

where qFs(α1, . . . , αq; β1, . . . , βs; z) is the generalized hypergeometric function and

Ω =

q∏
i=1

Γ
(
βi

)
s∏

i=1
Γ
(
αi

) (1.2)

Now we define a functionWH p[(αi, Ai)1,q; (βi, Bi)1,s; z] by

WH p[(αi, Ai)1,q; (βi, Bi)1,s; z] = Ω zp
qΨs[(αi, Ai)1,q; (βi, Bi)1,s; z]

and also consider the following linear operator

θq,s
p [(αi, Ai)1,q; (βi, Bi)1,s; z] : Ak (p)→ Ak (p)

defined using the convolution

θq,s
p [(αi, Ai)1,q; (βi, Bi)1,s] f (z) =WH p[(αi, Ai)1,q; (βi, Bi)1,s; z] ∗ f (z).

We note that, for a function f of the form (1.1), we have

θq,s
p [(αi, Ai)1,q; (βi, Bi)1,s] f (z) = zp +

∞∑
n=k

Ωσn,p(α1)anzn, (1.3)
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where Ω is given by (1.2) and σn,p(α1) is defined by

σn,p(α1) =
Γ(α1 + A1(n − p)) . . . Γ(αq + Aq(n − p))

Γ(β1 + B1(n − p)) . . . Γ(βs + Bs(n − p))(n − p)!
. (1.4)

If for convenience, we write

θq,s
p (α1) f (z) = θq,s

p [(α1, A1) . . . (αq, Aq); (β1, B1) . . . (βs, Bs)] f (z)

then we can easily verify from (1.3) that

zA1

(
θq,s

p (α1) f (z)
)′

= (1.5)

α1θ
q,s
p (α1 + 1) f (z) − (α1 − pA1)θq,s

p (α1) f (z) (A1 > 0).

For Ai = 1(i = 1, ..., q) and Bi = 1(i = 1, ..., s), we obtain θq,s
p [α1] f (z) = Hp,q,s f (z), which is

known as the Dziok-Srivastava operator; it was introduced and studied by Dziok and Srivastava
(Dziok & Srivastava, 1999, 2003). Also, for f (z) ∈ A, the linear operator θq,s

1 [α1] f (z) = θ[α1]
is popularly known in the current literature as the Srivastava-Wright operator; it was systemati-
cally and firmly investigated by Srivastava (Srivastava, 2007).(see also (Kiryakova, 2011; Dziok
& Raina, 2004) and (Aouf et al., 2010)).

Remark. For f ∈ A (p) , Ai = 1(1 = 1, 2, . . . , q), Bi = 1(i = 1, 2, . . . , s), q = 2 and s = 1
by specializing the parameters α1, α2 and β1 the operator θq,s

p (α1) gets reduced to the following
familiar operators:

(i) θ2,1
p [a, 1; c] f (z) = Lp(a, c) f (z)[see Saitoh (Saitoh, 1996)];

(ii) θ2,1
p [µ + p, 1; 1] f (z) = Dµ+p−1 f (z) (µ > −p), where Dµ+p−1 is the µ + p − 1- the order

Ruscheweyh derivative of a function f ∈ A (p) . [see Kumar and Shukla (Kumar & Shukla,
1984a,b)]

(iii) θ2,1
p [1 + p, 1; 1 + p − µ] f (z), where the operator Ω

µ,p
z is defined by [see Srivastava and Aouf

(Srivastava & Aouf, 1992)];

Ωµ,p
z f (z) =

Γ(1 + p − µ)
Γ(1 + p)

zµDµ
z f (z) (0 ≤ µ < 1; p ∈ N),

where Dµ
z is the fractional derivative operator.

(iv) θ2,1
p [ν + p, 1; ν + p + 1] f (z) = Jν,p( f )(z), where Jν,p is the generalized Bernadi-Libera-

Livingston-integral operator (see (Bernardi, 1996; Libera, 1969; Livingston, 1966) );
(v) θ2,1

p [λ + p, a; c] f (z) = Iλp(a, c) f (z) (a, c ∈ R\Z−0 ; λ > −p), where Iλp(a, c) is the Cho-Kwon-
Srivastava operator (Cho et al., 2004);

Definition 1.1. For the fixed parameters A and B, with 0 ≤ B < 1,−1 ≤ A < B and 0 ≤ λ < p, p ∈
N and for a analytic p− valent function of the form (1.1) we define the following subclasses:

V(λ, A, B) =

{
f ∈ Ak(p) :

1
p − λ

(z
[
θ

q,s
p (α1) f (z)

]′
θ

q,s
p (α1) f (z)

− λ

)
≺

1 + Az
1 + Bz

}
(1.6)
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and

W(λ, A, B) =

{
f ∈ Ak(p) :

1
p − λ

(
1 +

z[θq,s
p (α1) f (z)]′′

[θq,s
p (α1) f (z)]′

− λ

)
≺

1 + Az
1 + Bz

}
. (1.7)

The subclassV(λ, A, B) was discussed by Aouf et al., (Aouf et al., 2010) for multivalent ana-
lytic functions with negative coefficients, also coefficients estimates, distortion theorem, the radii
of p−valent starlikeness and p−valent convexity and modified Hadamard products were inves-
tigated. In (Murugusundaramoorthy & Aouf, 2013) Murugusundaramoorthy and Aouf obtained
similar results for the meromorphic equivalent of the class W(λ, A, B). Sarkar et al., (Sarkar et
al., 2013) presented certain inclusion and convolution results involving the operator θq,s

p (α1) for
functions belonging to certain favoured classes of analytic p-valent functions.
Motivated by the aforementioned works, in the present study we obtain certain strict subordination
relationship involving the subclasses V(λ, A, B) and W(λ, A, B). Some subordination properties
involving the linear operator defined in (1.3) are also considered. An argument estimate result is
also obtained.

2. Preliminaries

Let Pm denote the class of function of the form

f (z) = 1 + amzm + am+1zm+1 + . . . (2.1)

that are analytic in the unit disc,U. In proving our main results, we need each of the following
definitions and lemmas.

Definition 2.1. (Wilf, 1961)
A sequence {bn}n∈N of complex numbers is said to be a subordination factor sequence if for

each function f (z) =
∞∑

k=0
akzk, z ∈ U, from the class of convex (univalent) functions in U, denoted

by S c, we have
∞∑

n=1

bnanzn ≺ f (z) (where a1 = 1).

Lemma 2.1. (Wilf, 1961) A sequence {bn} is a subordinating factor sequence if and only if

Re

1 + 2
∞∑

n=1

bnzn

 > 0, z ∈ U. (2.2)

Lemma 2.2. (Miller & Mocanu, 1981, 2000) Let the function h be analytic and convex (univalent)
in U with h(0) = 1. Suppose also that the function φ given by (2.1). If

φ(z) +
zφ′(z)
γ
≺ h(z) (Reγ ≥ 0, γ ∈ C∗) , (2.3)
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then

φ(z) ≺ ψ(z) =
γ

m
z−

γ
m

z∫
0

t
γ
m−1h(t) dt ≺ h(z)

and ψ is the best dominant.

Lemma 2.3. (Nunokawa, 1993)
Let the function p be analytic in U, such that p(0) = 1 and p(z) , 0 for all z ∈ U. If there exists

a point z0 ∈ U such that

| arg p(z)| <
πδ

2
, for |z| < |z0|

and
| arg p(z0)| =

πδ

2
(δ > 0),

then we have
z0 p′(z0)

p(z0)
= ikδ,

where

k ≥
1
2

(
c +

1
c

)
, when arg p(z0) =

πδ

2

and

k ≤ −
1
2

(
c +

1
c

)
, when arg p(z0) = −

πδ

2
,

where
p(z0)1/δ = ± ic, and c > 0.

Lemma 2.4. (Whittaker & Watson, 1927)
For the complex numbers a, b and c, with c < Z−0 = {0,−1,−2, . . . }, the following identities

hold: ∫ 1

0
tb−1(1 − t)c−b−1(1 − tz)−a dt =

Γ(b)Γ(c − b)
Γ(c) 2F1(a, b; c; z), z ∈ U, (2.4)

for Rec > Reb > 0, (2.5)

2F1(a, b; c; z) = (1 − z)−a
2F1

(
a, c − b; c;

z
z − 1

)
, z ∈ U, (2.6)

and
(b + 1) 2F1(1, b; b + 1; z) = (b + 1) + bz 2F1(1, b + 1; b + 2; z), z ∈ U. (2.7)
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3. Coefficient estimates and subordination results for the function classes W(λ, A, B) and
V(λ, A, B)

Unless otherwise mentioned, we shall assume throughout the sequel that 0 ≤ λ < p, p ∈
N and 0 ≤ B < 1. First, we will give sufficient conditions for a function to be in the classes
W(λ, A, B).

Lemma 3.1. A sufficient condition for an analytic p-valent function f of the form (1.1), to be in
the classW(λ, A, B) is

∞∑
n=k

γn,p|an| ≤ p(B − A)(p − λ) (3.1)

where

γn,p = Ωσn,p(α1)n[(n − p)(1 + B) − (A − B)(p − λ)], (n ≥ k). (3.2)

Proof. An analytic p−valent function f of the form (1.1) belongs to the classW(λ, A, B), if and
only if there exists a Schwarz function w, such that

1
p − λ

(
1 +

z[θq,s
p (α1) f (z)]′′

[θq,s
p (α1) f (z)]′

− λ

)
=

1 + Aw(z)
1 + Bw(z)

, z ∈ U.

Since |w(z)| ≤ |z| for all z ∈ U, the above relation is equivalent to∣∣∣∣∣∣ [θq,s
p (α1) f (z)]′ + z[θq,s

p (α1) f (z)]′′ − p[θq,s
p (α1) f (z)]′

([θq,s
p (α1) f (z)]′ + z[θq,s

p (α1) f (z)]′′ − p[θq,s
p (α1) f (z)]′)B − (p − λ)(A − B)[θq,s

p (α1) f (z)]′

∣∣∣∣∣∣ < 1.

Thus it is sufficient to show that∣∣∣[θq,s
p (α1) f (z)]′ + z[θq,s

p (α1) f (z)]′′ − p[θq,s
p (α1) f (z)]′

∣∣∣
−

∣∣∣([θq,s
p (α1) f (z)]′ + z[θq,s

p (α1) f (z)]′′ − p[θq,s
p (α1) f (z)]′)B − (p − λ)(A − B)[θq,s

p (α1) f (z)]′
∣∣∣ < 0, z ∈ U.

Indeed, letting |z| = r (0 < r < 1) and using (3.1), we have∣∣∣[θq,s
p (α1) f (z)]′ + z[θq,s

p (α1) f (z)]′′ − p[θq,s
p (α1) f (z)]′

∣∣∣−∣∣∣[θq,s
p (α1) f (z)]′ + z[θq,s

p (α1) f (z)]′′ − p[θq,s
p (α1) f (z)]′ − (p − λ)(A − B)[θq,s

p (α1) f (z)]′
∣∣∣

≤

∞∑
n=k

n(n − p)Ωσn,p(α1)|an|rn − (B − A)p(p − λ) rp−1

+

∞∑
n=k

n[(n − p)B − (A − B)(p − λ)]Ωσn,p(α1)|an|rn = rp−1
( ∞∑

n=k

γn,p|an|rn−p+1 − (B − A)p(p − λ)
)
< 0.

Hence f ∈ W(λ, A, B).
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Similarly, we have the following Lemma which gives sufficient condition for a function to be
in the classV(λ, A, B).

Lemma 3.2. A sufficient condition for an analytic p-valent function f of the form (1.1), to be in
the classV(λ, A, B) is

∞∑
n=k

δ∗n,p|an| ≤ (B − A)(p − λ) (3.3)

where

δ∗n,p = Ωσn,p(α1)[(n − p)(1 + B) − (A − B)(p − λ)], (n ≥ k). (3.4)

Our next result provides a sharp subordination result involving the functions of the class
W(λ, A, B).

Theorem 3.1. Let the sequence {γn,p}n∈N defined in (3.2) be a nondecreasing sequence. If a func-
tion f of the form (1.1) belong to the classW(λ, A, B). and g ∈ Sc, then(

ε
(
z1−p

)
∗ g

)
(z) ≺ g(z), (3.5)

and

Re
(
z1−p f (z)

)
> −

1
2ε
, z ∈ U, (3.6)

whenever ε =
γk,p

2
[
(B − A)p(p − λ)

]
+ γk,p

.

Moreover, if (k − p) is even, then the number ε cannot be replaced by a larger number.

Proof. Supposing that the function g ∈ Sc is of the form

g(z) =

∞∑
n=1

bnzn, z ∈ U (where b1 = 1),

then
∞∑

n=1

dnbnzn =
(
ε
(
z1−p f

)
∗ g

)
(z) ≺ g(z),

where

dn =


ε, if n = 1,
0, if 2 ≤ n ≤ k − p,
εan+p−1, if n > k − p.
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Now, using the Definition 2.1, the subordination result in (3.5) holds if {dn} is a subordinating
factor sequence. Since {γn,p}n∈N is a nondecreasing sequence we have,

Re

1 + 2
∞∑

n=1

dnzn

 = Re
(
1 +

γk,p

p(p − λ)(B − A) + γk,p
z+ (3.7)

∞∑
n=k

γk,p

p(p − λ)(B − A) + γk,p
anzn−p

 ≥
1 −

γk,p

p(p − λ)(B − A) + γk,p
r−

r
p(p − λ)(B − A) + γk,p

∞∑
n=k

δn,p|an|, |z| = r < 1.

Thus, by using Lemma 3.1 in (3.7) we obtain

Re

1 + 2
∞∑

n=1

cnzn

 ≥ 1 −
γk,p

p(B − A)(p − λ) + γk,p
r−

r
p(B − A)(p − λ) + γk,p

(B − A)p(p − λ) > 0, z ∈ U,

which proves the inequality (2.2), hence also the subordination result asserted by (3.5). The in-
equality (3.6) asserted by Theorem 3.1 would follow from (3.5) upon setting

g(z) =
z

1 − z
=

∞∑
n=1

zn, z ∈ U.

We also observe that whenever the functions of the form

fn,p(z) = zp +
(B − A)p(p − λ)

γn,p
zn, z ∈ U (n ≥ k),

belongs the classW(λ, A, B) and if (k − p) is a even number, then

z1−p fk,p(z)
∣∣∣∣
z=−1

= −
1
2ε
,

and the constant ε is the best estimate.

Using the same techniques as in the proof of Theorem 3.1, we have the following result.

Theorem 3.2. Let the sequence {δ∗n,p}n∈N defined by (3.4) be a nondecreasing sequence. If the
function g of the form (1.1) belongs to the classV(λ, A, B) and h ∈ Sc, then(

µ
(
z1−p f

)
∗ h

)
(z) ≺ h(z), (3.8)
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and

Re
(
z1−p f (z)

)
> −

1
2µ
, z ∈ U, (3.9)

where

µ =
δ∗k,p

2
[
(B − A)(p − λ)

]
+ δ∗k,p

.

Moreover, if (k − p) is even, then the number µ cannot be replaced by a larger number.

4. Subordination Properties of the operator θq,s
p (α1)

In this section we obtain certain subordination properties involving the operator θq,s
p (α1).

Theorem 4.1. For f ∈ Ak(p) let the operator Q be defined by

Q f (z) :=
[
1 − τ − τ

(α1 − pA1)
A1

θq,s
p (α1) f (z)

]
+
τα1

A1

[
θq,s

p (α1 + 1) f (z)
]
, (4.1)

for A1 , 0 and τ > 0.

(i) If

Q( j) f (z)(p − j)!
zp− j p!

≺ (1 − τ + τp)
1 + Az
1 + Bz

(0 ≤ j ≤ p) , (4.2)

, then [
θ

q,s
p (α1) f (z)(p − j)!

]( j)

zp− j p!
≺ g̃(z) ≺

1 + Az
1 + Bz

, (4.3)

where for m positive, g̃ is given by

g̃(z) =


A
B

+

(
1 −

A
B

)
(1 + Bz)−1

2F1

(
1, 1;

1 − τ + τp
τm

+ 1;
Bz

1 + Bz

)
, if B , 0,

1 +
Az(1 − τ + τp)

1 − τ + τ(m + p)
, if B = 0,

and g̃ is the best dominant of (4.3).
(ii)

Re
(Q( j) f (z)

zp− j

)
>

p!
(p − j)!

σ, z ∈ U (4.4)

where

σ =


A
B

+

(
1 −

A
B

)
(1 − B)−1

2F1

(
1, 1;

1 − τ + τp
τm

+ 1;
B

B − 1

)
, if B , 0,

1 −
A(1 − τ + τp)

1 − τ + τ(p + m)
, if B = 0.

The inequality (4.4) is the best possible.
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Proof. From (1.5) and (4.1) we easily obtain

Q( j) f (z) = (1 − τ + τ j)
[
θq,s

p (α1) f (z)
]( j)

+ τz
[
θq,s

p (α1) f (z)
]( j+1)

, z ∈ U. (4.5)

Letting

g(z) :=

[
θ

q,s
p (α1) f (z)

]( j)
(p − j)!

zp− j p!
.

with f ∈ Ak(p), then g is analytic in U and has the form (2.1). Also, note that

(1 − τ + τp)
[
g(z) +

τ

1 − τ + τp
zg′(z)

]
=
Q( j) f (z)(p − j)!

zp− j p!
. (4.6)

Then, by (4.2) we have

g(z) +
τ

1 − τ + τp
zg′(z) ≺

1 + Az
1 + Bz

.

Now, by using Lemma 2.2 for γ =
1 − τ + τp

τ
and whenever γ > 0, by a changing of variables

followed by the use of the identities (2.5), (2.6) and (2.7), we deduce that[
θ

q,s
p (α1) f (z)

]( j)
(p − j)!

zp− j p!
≺ g̃(z) =

(1 − τ + τp)
τm

z−
(1−τ+τp)

τm

z∫
0

t
(1−τ+τp)

τm −1 1 + At
1 + Bt

dt

=


A
B

+

(
1 −

A
B

)
(1 + Bz)−1

2F1

(
1, 1;

1 − τ + τp
τm

+ 1;
Bz

1 + Bz

)
, if B , 0,

1 +
A(1 − τ + τp)

1 − τ + τ(p + m)
z, if B = 0,

which proves the assertion (4.3) of our Theorem.
Next, in order to prove the assertion (4.4), it sufficies to show that

inf {Re g̃(z) : z ∈ U} = g̃(−1). (4.7)

Indeed, for |z| ≤ r < 1 we have

Re
1 + Az
1 + Bz

≥
1 − Ar
1 − Br

,

and setting

χ(s, z) =
1 + Asz
1 + Bsz

and dµ(s) =
1 − τ + τp

τm
s

1−τ+τp
τm −1 ds (0 ≤ s ≤ 1)

which is a positive measure on the closed interval [0, 1] whenever τ > 0, we get

g̃(z) =

∫ 1

0
χ(s, z) dµ(s),
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and

Re g̃(z) ≥
∫ 1

0

1 − Asr
1 − Bsr

dµ(s) = g̃(−r), |z| ≤ r < 1.

Letting r → 1− in the above inequality we obtain the assertion (4.7) of our Theorem. The estimate
in (4.4) is the best possible since the function g̃ is the best dominant of (4.3).

Taking q = 2 and s = 1,for Ai = Bi = 1, α1 = 1, α2 = β1 and A = 1 −
2α(p − j)!

(1 − τ + τp)p!
and

B = −1 in Theorem 4.1 we get the following result:

Corollary 4.1. Let Q f (z) = (1 − τ) f (z) + τz f ′(z), where f ∈ Ak(p). For τ > 0

Re
Q( j) f (z)(p − j)!

zp− j p!
> α, z ∈ U

(
0 ≤ α <

(1 − τ + τp)p!
(p − j)!

, 0 ≤ j ≤ p
)
,

implies that

Re
f ( j)(z)
zp− j >

α

1 − τ + τp
+[

p!
(p − j)!

−
α

1 − τ + τp

] [
2F1

(
1, 1;

1 − τ + τp
τm

+ 1;
1
2

)
− 1

]
, z ∈ U.

The above inequality is the best possible.

Theorem 4.2. For f ∈ Ak(p) let the operator Q be given by (4.1), and let τ > 0.
(i) If

Re

[
θ

q,s
p (α1) f (z)

]( j)

zp− j > ρ, z ∈ U
(
ρ <

p!
(p − j)!

),

then

Re
Q( j) f (z)

zp− j > ρ(1 − τ + τp), |z| < R,

where

R =


√

1 +

(
τm

1 − τ + τp

)2

−
τm

1 − τ + τp


1
m

. (4.8)

(ii) If

Re

[
θ

q,s
p (α1) f (z)

]( j)

(−1) jz−p− j < ρ, z ∈ U
(
ρ >

p!
(p − j)!

,
)
,

then

Re
Q( j) f (z)

zp− j < ρ(1 − τ + τp), |z| < R.

The bound R is the best possible.
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Proof. (i) Defining the function Φ by[
θ

q,s
p (α1) f (z)

]( j)

zp− j =: ρ +

[
p!

(p − j)!
− ρ

]
Φ(z), (4.9)

then Φ is an analytic function of the form (2.1) with positive real part in U. Differentiating (4.9)
with respect to z and using (4.5) we have

Q( j) f (z)
zp− j − ρ(1 − τ + τp) =

[
p!

(p − j)!
− ρ

] [
(1 − τ + τp)Φ(z) + τzΦ′(z)

]
. (4.10)

Now, by applying in (4.10) the following well-known estimate (MacGregor, 1963)

|zΦ′(z)|
Re Φ(z)

≤
2mrm

1 − r2m , |z| = r < 1, (4.11)

we have

Re
[
Q( j) f (z)

zp− j − ρ(1 − τ + τp)
]
≥ (4.12)

Re Φ(z)
[

p!
(p − j)!

− ρ

] [
(1 − τ + τp) −

2τmrm

1 − r2m

]
, |z| = r < 1.

Now, it is easy to see that the right hand side of (4.12) is positive whenever r < R, where R is
given by (4.8). In order to show that the bound R is the best possible, we consider the function
f ∈ Ak(p) defined by [

θ
q,s
p (α1) f (z)

]( j)

zp− j = ρ +

[
p!

(p − j)!
− ρ

]
1 + zm

1 − zm .

Then,

Q( j) f (z)
zp− j − ρ(1 − τ + τp) =

p!
(p − j)!

− ρ

(1 − zm)2

[
(1 − τ + τp)

(
1 − z2m

)
+ 2τmzm

]
= 0,

for z = R exp
iπ
m , and the first part of the Theorem is proved.

Similarly, we can prove part (ii) of the Theorem.

5. An argument estimate

In this section we obtain an argument estimate involving the operator θq,s
p (α1) and connected

with the linear operator Q.
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Theorem 5.1. For f ∈ Ak(p), let the operator Q be defined by (4.1), and let 0 ≤ τ <
1

1 − p
. If∣∣∣∣∣∣arg

Q( j) f (z)
zp− j

∣∣∣∣∣∣ < πδ

2
, z ∈ U

(
δ > 0, 0 ≤ j ≤ p

)
, (5.1)

then ∣∣∣∣∣∣∣∣arg

[
θ

q,s
p (α1) f (z)

]( j)

zp− j

∣∣∣∣∣∣∣∣ < πδ

2
, z ∈ U.

Proof. For f ∈ Ak(p), if we let

q(z) :=

[
θ

q,s
p (α1) f (z)

]( j)

zp− j

(p − j)!
p!

,

then q is of the form (2.1) and it is analytic in U. If there exists a point z0 ∈ U such that

| arg q(z)| <
πδ

2
, |z| < |z0| and | arg q(z0)| =

πδ

2
(δ > 0) ,

then, accorollaryding to Lemma 2.3 we have

z0q′(z0)
q(z0)

= ikδ and q(z0)1/δ = ± ic (c > 0).

Also, from the equality (4.5) we get

Q( j) f (z0)

zp− j
0

=
p!

(p − j)!
(1 − τ + τp)q(z0)

[
1 +

τ

1 − τ + τp
z0q′(z0)

q(z0)

]
.

If arg q(z0) =
πδ

2
, then

arg
Q( j) f (z0)

zp− j
0

=
πδ

2
+ arg

(
1 +

τ

1 − τ + τp
ikδ

)
=
πδ

2
+ tan−1

(
τ

1 − τ + τp
kδ

)
≥
πδ

2
,

whenever k ≥
1
2

(
c +

1
c

)
and 0 ≤ τ <

1
1 − p

, and this last inequality contradicts the assumption

(5.1).

Similarly, if arg q(z0) = −
πδ

2
, then we obtain

arg
Q( j) f (z0)

zp− j
0

≤ −
πδ

2
,

which also contradicts the assumption (5.1).

Consequently, the function q need to satisfy the inequality | arg q(z)| <
πδ

2
, z ∈ U, i.e. the

conclusion of our theorem.
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Abstract
In this paper, a new class of complex-valued harmonic univalent functions defined by using a new differential

operator is introduced. We investigate coefficient bounds, distortion inequalities, extreme points and inclusion results
for this class.
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1. Introduction

Harmonic functions are famous for their use in the study of minimal surfaces and also play
important roles in a variety of problems in applied mathematics (e.g. see Choquet (Choquet,
1945), Dorff (Dorff, 2003), Duren (Duren, 2004)). A continuous function f = u + iv is a complex
valued harmonic function in a complex domain C if both u and v are real harmonic in C. In any
simply connected domain D ⊂ C we can write f = h + g, where h and g are analytic in D. We
call h the analytic part and g the co-analytic part of f . A necessary and sufficient condition for
f to be locally univalent and sense- preserving in D is that

∣∣∣h′(z)
∣∣∣ > ∣∣∣g′(z)

∣∣∣ in D; see (Clunie &
Sheil-Small, 1984).

Denote by S H the class of functions f = h+g that are harmonic univalent and sense-preserving
in the unit disk

U = {z : z ∈ C and |z| < 1}

for which f (0) = fz(0) − 1 = 0. Then for f = h + g ∈ S H, we may express the analytic functions
h and g as

h(z) = z +

∞∑
k=2

akzk, g(z) =

∞∑
k=1

bkzk. (1.1)

∗Corresponding author
Email addresses: sahsene@uludag.edu.tr (Şahsene Altınkaya), syalcin@uludag.edu.tr (Sibel Yalçın)
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Therefore

f (z) = z +

∞∑
k=2

akzk +

∞∑
k=1

bkzk, |b1| < 1.

Note that S H reduces to the class S of normalized analytic univalent functions in U if the
co-analytic part of f is identically zero.

In 1984 Clunie and Sheil-Small (Clunie & Sheil-Small, 1984) investigated the class S H as
well as its geometric subclasses and obtained some coefficient bounds. Since then, there has been
several related papers on S H and its subclasses such as Avcı and Zlotkiewicz (Avcı& Zlotkiewicz,
1990), Silverman (Silverman, 1998), Silverman and Silvia (Silverman, 1999), Jahangiri (Jahangiri,
1999) studied the harmonic univalent functions.

The differential operator Dn
α,µ(λ,w) (n ∈ N0) was introduced by Bucur et al. (Bucur et al.,

2015). For f = h + g given by (1.1), we define the following differential operator:

Dn
α,µ(λ,w) f (z) = Dn

α,µ(λ,w)h(z) + (−1)nDn
α,µ(λ,w)g(z),

where

Dn
α,µ(λ,w)h(z) = z +

∞∑
k=2

[
(k − 1)(µwλ − α) + k

]n
akzk

and

Dn
α,µ(λ,w)g(z) =

∞∑
k=1

[
(k + 1)(µwλ − α) + k

]n
bkzk,

where µ, λ,w ≥ 0, 0 ≤ α ≤ µwλ, with Dn
α,µ(λ,w) f (0) = 0.

Motivated by the differential operator Dn
α,µ(λ,w), we define generalization of the differential

operator for a function f = h + g given by (1.1).

D0
α,µ(λ,w) f (z) = D0 f (z) = h(z) + g(z),

D1
α,µ(λ,w) f (z) = (α − µwλ)(h(z) + g(z)) + (µwλ − α + 1)(zh′(z) − zg′(z),

...

Dn
α,µ(λ,w) f (z) = D

(
Dn−1
α,µ (λ,w) f (z)

)
. (1.2)

If f is given by (1.1), then from (1.2), we see that

Dn
α,µ(λ,w) f (z) = z+

∞∑
k=2

[
(k − 1)(µwλ − α) + k

]n
akzk+(−1)n

∞∑
k=1

[
(k + 1)(µwλ − α) + k

]n
bkz

k. (1.3)

When , w = α = 0, we get modified Salagean differential operator (Salagean, 1983).
Denote by S H(λ,w, n, α, β) the subclass of S H consisting of functions f of the form (1.1) that

satisfy the condition

<

Dn+1
α,µ (λ,w) f (z)

Dn
α,µ(λ,w) f (z)

 ≥ β; (0 ≤ β < 1), (1.4)
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where Dn
α,µ(λ,w) f (z) is defined by (1.3).

We let the subclass S H(λ,w, n, α, β) consisting of harmonic functions fn = h + gn in S H so
that h and gn are of the form

h(z) = z −
∞∑

k=2

akzk, gn(z) = (−1)n
∞∑

k=1

bkzk, ak, bk ≥ 0. (1.5)

By suitably specializing the parameters, the classes S H(λ,w, n, α, β) reduces to the various
subclasses of harmonic univalent functions. Such as,

(i) S H(0, 0, 0, 0, 0) = S H∗(0) (Avcı (Avcı& Zlotkiewicz, 1990), Silverman (Silverman, 1998),
Silverman and Silvia (Silverman, 1999)),

(ii) S H(0, 0, 0, 0, β) = S H∗(β) (Jahangiri (Jahangiri, 1999)),
S H(0, 0, 0, 0, β) = S H(1, 0, β) (Yalçın (Yalçın, 2005)),

(iii) S H(0, 0, 1, 0, 0) = KH(0) (Avcı (Avcı& Zlotkiewicz, 1990), Silverman (Silverman, 1998),
Silverman and Silvia (Silverman, 1999)),

(iv) S H(0, 0, 1, 0, β) = KH(β) (Jahangiri (Jahangiri, 1999)),
S H(0, 0, 1, 0, β) = S H(2, 1, β) (Yalçın (Yalçın, 2005)),

(v) S H(0, 0, n, 0, β) = H(n, β) (Jahangiri et al. (Jahangiri et al., 2002)),
S H(0, 0, n, 0, β) = S H(n + 1, n, β) (Yalçın (Yalçın, 2005)),

The object of the present paper is to give sufficient condition for functions f = h+g where h and
g are given by (1.1) to be in the class S H(λ,w, n, α); and it is shown that this coefficient condition is
also necessary for functions belonging to the subclass S H(λ,w, n, α, β). Also, we obtain coefficient
bounds, distortion inequalities, extreme points and inclusion results for this class.

2. Coefficient Bounds

Theorem 2.1. Let f = h + g be so that h and g are given by (1.1). Furthermore, let

∞∑
k=2

(k − β)
[
(k − 1)(µwλ − α) + k

]n
|ak| +

∞∑
k=1

(k + β)
[
(k + 1)(µwλ − α) + k

]n
|bk| ≤ 1 − β, (2.1)

where µ, λ,w ≥ 0, 0 ≤ α ≤ µwλ, n ∈ N0, 0 ≤ β < 1. Then f is sense-preserving, harmonic
univalent in U and f ∈ S H(λ,w, n, α, β).

Proof. If z1 , z2,

∣∣∣∣∣ f (z1) − f (z2)
h(z1) − h(z2)

∣∣∣∣∣ ≥ 1 −
∣∣∣∣∣g(z1) − g(z2)
h(z1) − h(z2)

∣∣∣∣∣ = 1 −

∣∣∣∣∣∣∣∣∣∣∣
∞∑

k=1
bk

(
zk

1 − zk
2

)
(z1 − z2) +

∞∑
k=2

ak

(
zk

1 − zk
2

)
∣∣∣∣∣∣∣∣∣∣∣

> 1 −

∞∑
k=1

k |bk|

1 −
∞∑

k=2
k |ak|
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≥ 1 −

∞∑
k=1

(k+β)[(k+1)(µwλ−α)+k]n

1−β |bk|

1 −
∞∑

k=2

(k − β)
[
(k − 1)(µwλ − α) + k

]n

1 − β
|ak|

≥ 0,

which proves univalence. Note that f is sense preserving in U. This is because

|h′(z)| ≥ 1 −
∞∑

k=2

k |ak| |z|k−1 > 1 −
∞∑

k=2

(k − β)
[
(k − 1)(µwλ − α) + k

]n

1 − β
|ak|

≥

∞∑
k=1

(k + β)
[
(k + 1)(µwλ − α) + k

]n

1 − β
|bk| >

∞∑
k=1

k |bk| |z|k−1

≥ |g′(z)| .

Using the fact that<(w) ≥ β if and only if |1 − β + w| ≥ |1 + β − w|, it suffices to show that∣∣∣(1 − β)Dn
α,µ(λ,w) + Dn+1

α,µ (λ,w) f (z)
∣∣∣ − ∣∣∣(1 + β)Dn

α,µ(λ,w) − Dn+1
α,µ (λ,w)

∣∣∣ ≥ 0. (2.2)

Substituting for Dn+1
α,µ (λ,w) f (z) and Dn

α,µ(λ,w) f (z) in (2.2), we obtain∣∣∣(1 − β)Dn
α,µ(λ,w) + Dn+1

α,µ (λ,w) f (z)
∣∣∣ − ∣∣∣(1 + β)Dn

α,µ(λ,w) f (z) − Dn+1
α,µ (λ,w) f (z)

∣∣∣
≥ 2(1 − β) |z| −

∞∑
k=2

[
(k + 1 − β) + (k − 1)(µwλ − α)

] [
(k − 1)(µwλ − α) + k

]n
|ak| |z|k

−

∞∑
k=1

[
(k − 1 + β) + (k − 1)(µwλ − α)

] [
(k + 1)(µwλ − α) + k

]n
|bk| |z|k

−

∞∑
k=2

[
(k − 1 − β) + (k − 1)(µwλ − α)

] [
(k − 1)(µwλ − α) + k

]n
|ak| |z|k

−

∞∑
k=1

[
(k + 1 + β) + (k − 1)(µwλ − α)

] [
(k + 1)(µwλ − α) + k

]n
|bk| |z|k

≥ 2(1 − β) |z|

1 − ∞∑
k=2

(k − β)
[
(k − 1)(µwλ − α) + k

]n

1 − β
|ak|

−

∞∑
k=1

(k + β)
[
(k + 1)(µwλ − α) + k

]n

1 − β
|bk|

 .
This last expression is non-negative by (2.1), and so the proof is completed.
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Theorem 2.2. Let fn = h + gn be given by (1.5). Then fn ∈ S H(λ, n, α) if and only if
∞∑

k=2

(k − β)
[
(k − 1)(µwλ − α) + k

]n
ak +

∞∑
k=1

(k + β)
[
(k + 1)(µwλ − α) + k

]n
bk ≤ 1 − β, (2.3)

where µ, λ,w ≥ 0, 0 ≤ α ≤ µwλ, n ∈ N0, 0 ≤ β < 1.

Proof. The ”if” part follows from Theorem 2.1 upon noting that S H(λ,w, n, α, β) ⊂ S H(λ,w, n, α, β).
For the ”only if” part, we show that f < S H(λ,w, n, α, β) if the condition (2.3) does not hold. Note
that a necessary and sufficient condition for fn = h + gn given by (1.5), to be in S H(λ,w, n, α, β) is
that the condition (1.4) to be satisfied. This is equivalent to

<


(1 − β)z −

∞∑
k=2

(k − β)
[
(k − 1)(µwλ − α) + k

]n
akzk

z −
∞∑

k=2

[
(k − 1)(µwλ − α) + k

]n akzk +
∞∑

k=1

[
(k + 1)(µwλ − α) + k

]n bkz
k

−
∞∑

k=1
(k + β)

[
(k + 1)(µwλ − α) + k

]n
bkz

k

z −
∞∑

k=2

[
(k − 1)(µwλ − α) + k

]n akzk +
∞∑

k=1
(k + 1)

[
(k + 1)(µwλ − α) + k

]n bkz
k

 ≥ 0.

The above condition must hold for all values of z, |z| = r < 1. Upon choosing the values of z
on the positive real axis where 0 ≤ z = r < 1 we must have

(1 − β) −
∞∑

k=2
(k − β)

[
(k − 1)(µwλ − α) + k

]n
akrk−1

1 −
∞∑

k=2

[
(k − 1)(µwλ − α) + k

]n akrk−1 +
∞∑

k=1

[
(k + 1)(µwλ − α) + k

]n bkrk−1

−
∞∑

k=1
(k + β)

[
(k + 1)(µwλ − α) + k

]n
bkrk−1

1 −
∞∑

k=2

[
(k − 1)(µwλ − α) + k

]n akrk−1 +
∞∑

k=1

[
(k + 1)(µwλ − α) + k

]n bkrk−1
≥ 0. (2.4)

If the condition (2.3) does not hold, then the numerator in (2.4) is negative for r sufficiently
close to 1. Hence there exist z0 = r0 in (0, 1) for which the quotient in (2.4) is negative. This
contradicts the required condition for fn ∈ S H(λ,w, n, α, β) and so the proof is complete.

3. Distortion Inequalities and Extreme Points

Theorem 3.1. Let fn ∈ S H(λ,w, n, α, β). Then for |z| = r < 1 we have

| fn(z)| ≤ (1 + b1) r +

(
(1−β)

(2−β)[µwλ−α+2]n −
(1+β)[2(µwλ−α)+1]n

(2−β)[µwλ−α+2]n b1

)
r2,

and
| fn(z)| ≥ (1 − b1) r −

(
(1−β)

(2−β)[µwλ−α+2]n −
(1+β)[2(µwλ−α)+1]n

(2−β)[µwλ−α+2]n b1

)
r2.
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Proof. We only prove the right hand inequality. The proof for the left hand inequality is similar
and will be omitted. Let fn ∈ S H(λ,w, n, α, β). Taking the absolute value of fn we have

| fn(z)| ≤ (1 + b1) r +

∞∑
k=2

(ak + bk) rk

≤ (1 + b1) r +

∞∑
k=2

(ak + bk) r2

= (1 + b1) r +
(1 − β) r2

(2 − β)
[
µwλ − α + 2

]n

∞∑
k=2

(2 − β)
[
µwλ − α + 2

]n

(1 − β)
[ak + bk]

≤ (1 + b1) r +
(1 − β) r2

(2 − β)
[
µwλ − α + 2

]n

×

∞∑
k=2

 (k − β)
[
(k − 1)(µwλ − α) + k

]n

1 − β
ak

+
(k + β)

[
(k − 1)(µwλ − α) + k

]n

1 − β
bk


≤ (1 + b1) r +

(1 − β)
(2 − β)

[
µwλ − α + 2

]n

1 − (1 + β)
[
2
(
µwλ − α

)
+ 1

]n

1 − β
b1

 r2

≤ (1 + b1) r +

 (1 − β)
(2 − β)

[
µwλ − α + 2

]n −
(1 + β)

[
2
(
µwλ − α

)
+ 1

]n

(2 − β)
[
µwλ − α + 2

]n b1

 r2.

The following covering result follows from the left hand inequality in Theorem 3.1.

Corollary 3.1. Let fn of the form (1.5) be so that fn ∈ S H(λ,w, n, α, β). Then{
w : |w| < (2−β)[µwλ−α+2]n

−1+β

(2−β)[µwλ−α+2]n

−
(2−β)[µwλ−α+2]n

−(1+β)[2(µwλ−α)+1]n

(2−β)[µwλ−α+2]n

}
⊂ fn(U).

Theorem 3.2. Let fn be given by (1.5). Then fn ∈ S H(λ,w, n, α, β) if and only if

fn(z) =

∞∑
k=1

(
Xkhk(z) + Ykgnk(z)

)
,
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where
h1(z) = z, hk(z) = z − 1−β

(k−β)[(k−1)(µwλ−α)+k]n zk; (k ≥ 2),

gnk(z) = z + (−1)n 1−β
(k+β)[(k+1)(µwλ−α)+k]n zk; (k ≥ 2),

∞∑
k=1

(Xk + Yk) = 1, Xk ≥ 0,Yk ≥ 0.

In particular, the extreme points of S H(λ,w, n, α, β) are {hk} and
{
gnk

}
.

Proof. For functions fn of the form (1.5) we may write

fn(z) =

∞∑
k=1

(
Xkhk(z) + Ykgnk(z)

)
=

∞∑
k=1

(Xk + Yk) z −
∞∑

k=2

1 − β
(k − β)

[
(k − 1)(µwλ − α) + k

]n Xkzk

+(−1)n
∞∑

k=1

1 − β
(k + β)

[
(k + 1)(µwλ − α) + k

]n Ykz
k.

Then

∞∑
k=2

(k − β)
[
(k − 1)(µwλ − α) + k

]n

1 − β

(
1 − β

(k − β)
[
(k − 1)(µwλ − α) + k

]n Xk

)

+

∞∑
k=1

(k + β)
[
(k + 1)(µwλ − α) + k

]n

1 − β

(
1 − β

(k + β)
[
(k + 1)(µwλ − α) + k

]n Yk

)

=

∞∑
k=2

Xk +

∞∑
k=1

Yk = 1 − X1 ≤ 1, and so fn ∈ S H(λ,w, n, α, β).

Conversely, if fn ∈ S H(λ,w, n, α, β), then

ak ≤
1 − β

(k − β)
[
(k − 1)(µwλ − α) + k

]n

and
bk ≤

1 − β
(k + β)

[
(k + 1)(µwλ − α) + k

]n .

Setting

Xk =
(k − β)

[
(k − 1)(µwλ − α) + k

]n

1 − β
ak; (k ≥ 2),
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Yk =
(k + β)

[
(k + 1)(µwλ − α) + k

]n

1 − β
bk; (k ≥ 1),

and

X1 = 1 −

 ∞∑
k=2

Xk +

∞∑
k=1

Yk


where X1 ≥ 0. Then

fn(z) = X1z +

∞∑
k=2

Xkhk(z) +

∞∑
k=1

Ykgnk(z)

as required.

4. Inclusion Results

Theorem 4.1. The class S H(λ,w, n, α, β) is closed under convex combinations.

Proof. Let fni ∈ S H(λ,w, n, α, β) for i = 1, 2, ..., where fni is given by

fni(z) = z −
∞∑

k=2

akiz
k + (−1)n

∞∑
k=1

bkiz
k.

Then by (2.3),

∞∑
k=2

(k − β)
[
(k − 1)(µwλ − α) + k

]n

1 − β
aki +

∞∑
k=1

(k + β)
[
(k + 1)(µwλ − α) + k

]n

1 − β
bki ≤ 1. (4.1)

For
∞∑

i=1
ti = 1, 0 ≤ ti ≤ 1, the convex combination of fni may be written as

∞∑
i=1

ti fni(z) = z −
∞∑

k=2

 ∞∑
i=1

tiaki

 zk + (−1)n
∞∑

k=1

 ∞∑
i=1

tibki

 zk.

Then by (4.1),

∞∑
k=2

(k − β)
[
(k − 1)(µwλ − α) + k

]n

1 − β

 ∞∑
i=1

tiaki


+

∞∑
k=1

(k + β)
[
(k + 1)(µwλ − α) + k

]n

1 − v

 ∞∑
i=1

tibki


=

∞∑
i=1

ti

 ∞∑
k=2

(k − β)
[
(k − 1)(µwλ − α) + k

]n

1 − β
aki

+

∞∑
k=1

(k + β)
[
(k + 1)(µwλ − α) + k

]n

1 − β
bki

 ≤ ∞∑
i=1

ti = 1.

This is the condition required by (2.3) and so
∞∑

i=1
ti fni(z) ∈ S H(λ,w, n, α, β).
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Abstract
In this paper we introduce the notions approximation properties (APs) and bounded approximation properties

(BAPs) in the setting of intuitionistic fuzzy normed linear spaces (IFNLSs). Further, we define strong intuitionistic
fuzzy continuous and strong intuitionistic fuzzy bounded operators and using them we prove the existence of an
IFNLS which does not have the approximation property. In addition, we give example of an IFNLS with the AP
which fails to have the BAP.

Keywords: Intuitionistic fuzzy normed linear space, approximation property, bounded approximation property.
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1. Introduction

In analysis many problems we study are concerned with large classes of objects most of which
turn out to be vector spaces or linear spaces. Since limit process is indispensable in such problems,
a metric or topology may be induced in those classes. If the induced metric satisfies the translation
invariance property, a norm can be defined in that linear space and we get a structure of the space
which is compatible with that metric or topology. The resulting structure is a normed linear space.
There are situations where crisp norm can not measure the length of a vector accurately and in such
cases the notion of fuzzy norm happens to be useful. There has been a systematic development
of fuzzy normed linear spaces (FNLSs) and one of the important development over FNLS is the
notion of intuitionistic fuzzy normed linear space (IFNLS). The study of analytic propertis of
IFNLSs, their topological structure and generalizations, therefore, remain well motivated areas of
research.

˚Corresponding author
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Konwar)
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The idea of a fuzzy norm on a linear space was introduced by Katsaras (Katsaras, 1984).
Felbin (Felbin, 1992) introduced the idea of a fuzzy norm whose associated metric is of Kaleva
and Seikkala (Kaleva & Seikkala, 1984) type. Cheng and Mordeson (Cheng & Mordeson, 1994)
introduced another notion of fuzzy norm on a linear space whose associated metric is Kramosil and
Michalek (Kramosil & Michalek, 1975) type. Again, following Cheng and Mordeson, one more
notion of fuzzy normed linear space was given by Bag and Samanta (Bag & Samanta, 2003a).

The notion of intuitionistic fuzzy set (IFS) introduced by Atanassov (Atanassov, 1986) has trig-
gered some debate (for details, see (Cattaneo & Ciucci, 2006; Dubois et al., 2005; Grzegorzewski
& Mrowka, 2005)) regarding the use of the terminology “intuitionistic” and the term is considered
to be a misnomer on the following account:

• The algebraic structure of IFSs in not intuitionistic, since negation is involutive in IFS theory.

• Intuitionistic logic obeys the law of contradiction, IFSs do not.

Also IFSs are considered to be equivalent to interval-valued fuzzy sets and they are particular cases
of L-fuzzy sets. In response to this debate, Atanassov justified the terminology in (Atanassov,
2005). Apart from the terminological issues, research in intuitionistic fuzzy setting remains well
motivated as IFSs give us a very natural tool for modeling imprecision in real life situations which
can not be handled with fuzzy set theory alone and also IFS found its application in various areas
of science and engineering.

With the help of arbitrary continuous t-norm and continuous t-conorm, Saadati and Park (Saa-
dati & Park, 2006) introduced the concept of IFNLS. There has been further development over
IFNLS, e.g., the topological structure of an intuitionistic fuzzy 2-normed space has been stud-
ied by Mursaleen and Lohani in (Mursaleen & Lohani, 2009). Recently, a number of interesting
properties of IFNLS have been studied by Mursaleen and Mohiuddine (Mursaleen & Mohiuddine,
2009a,b,c,d). Further, generalizing the idea of Saadati and Park, an intuitionistic fuzzy n-normed
linear space (IFnNLS) has been defined by Vijayabalaji et al. (Vijayabalaji et al., 2007b). More
properties of IFnNLS have been studied by N. Thillaigovindan, S. Anita Shanti and Y. B. Jun
in (Vijayabalaji et al., 2007a). Some more recent work in similar context can be found in (Deb-
nath, 2015; Debnath & Sen, 2014a,b; Esi & Hazarika, 2012; Mursaleen et al., 2010a; Sen &
Debnath, 2011).

In classical Banach space theory, some most important properties are “Approximation proper-
ties” which were investigated by Grothendick (Grothendiek, 1955). We say that a Banach space X
has the approximation property (AP) if, for every compact K and ε ą 0, there is a bounded finite
rank operator T : X ÝÑ X such that ||T pxq ´ x|| ă ε, for all x P K, i.e. Ipxq-the identity operator
on X- can be approximated by finite rank operators uniformly on compact sets. Also X has the
bounded approximation property (BAP) if for every compact K and ε ą 0, there is a bounded
finite rank operator T : X ÝÑ X with ||T || ď λ such that ||T pxq ´ x|| ă ε for all x P K for some
λ ą 0. The APs play very crucial role in the study of infinite dimensional Banach space theory
and also in the investigation of Schauder bases. Some of the important references from related
works being (Choi et al., 2009; Enflo, 1973; Kim, 2008; Mursaleen et al., 2010b; Szarek, 1987).

Yilmaz (Yilmaz, 2010a) introduced the notion of the AP in fuzzy normed spaces and estab-
lished some interesting results on it. Very recently Keun Young Lee (Lee, 2015) identified some
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limitations in Yilmaz’s definitions regarding the continuity of fuzzy operators. He modified Yil-
maz’s definitions and studied approximation property (AP) and bounded approximation property
(BAP) on fuzzy normed spaces.

In this article we address the questions raised by Keun Young Lee (Lee, 2015) and also gener-
alize the work of Figel and Johnson (Figel & Johnson, 1973) in the context of AP and BAP in the
new setting of IFNLS.

First we recall some basic definitions and results which will be used subsequently.

Definition 1.1. (Saadati & Park, 2006) The 5-tuple pX, µ, ν, ˚, ˝q is said to be an IFNLS if X is a
linear space, ˚ is a continuous t-norm, ˝ is a continuous t-conorm, and µ, ν fuzzy sets on Xˆp0,8q
satisfying the following conditions for every x, y P X and s, t ą 0:

(a) µpx, tq ` νpx, tq ď 1,
(b) µpx, tq ą 0,
(c) µpx, tq “ 1 if and only if x “ 0,
(d) µpαx, tq “ µpx, t

|α|
q for each α ‰ 0,

(e) µpx, tq ˚ µpy, sq ď µpx` y, t ` sq,
(f) µpx, tq : p0,8q Ñ r0, 1s is continuous in t,
(g) limtÑ8 µpx, tq “ 1 and limtÑ0 µpx, tq “ 0,
(h) νpx, tq ă 1,
(i) νpx, tq “ 0 if and only if x “ 0,
(j) νpαx, tq “ νpx, t

|α|
q for each α ‰ 0,

(k) νpx, tq ˝ νpy, sq ě νpx` y, t ` sq,
(l) νpx, tq : p0,8q Ñ r0, 1s is continuous in t,

(m) limtÑ8 νpx, tq “ 0 and limtÑ0 νpx, tq “ 1.

In this case pµ, νq is called an intuitionistic fuzzy norm. When no confusion arises, an IFNLS will
be denoted simply by X.

Definition 1.2. (Debnath, 2012) Let X be an IFNLS. A sequence x “ txku in X is said to be
convergent to ξ P X with respect to the intuitionistic fuzzy norm pµ, νq if, for every ε P p0, 1q and
t ą 0, there exists k0 P N such that µpxk ´ ξ, tq ą 1 ´ ε and νpxk ´ ξ, tq ă ε for all k ě k0. It is
denoted by pµ, νq ´ lim xk “ ξ.

Definition 1.3. (Saadati & Park, 2006) Let X be an IFNLS. A sequence x “ txku in X is said to be
a Cauchy sequence with respect to the intuitionistic fuzzy norm pµ, νq if, for every α P p0, 1q and
t ą 0, there exists k0 P N such that µpxk ´ xm, tq ą 1´ α and νpxk ´ xm, tq ă α for all k,m ě k0.

Definition 1.4. (Debnath & Sen, 2014a) Let X be an IFNLS. Then X is said to be complete if and
only if every Cauchy sequence of X is convergent.

Definition 1.5. (Lael & Nourouzi, 2007) Let pX, µ, ν, ˚, ˝q be an IFNLS. A subset S in X is said to
be compact if each sequence of elements of S has a convergent subsequence.
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Definition 1.6. (Debnath, 2012) Let pX, µ, ν, ˚, ˝q be an IFNLS. For t ą 0, we define an open ball
Bpx, r, tq with center at x P X and radius 0 ă r ă 1, as

Bpx, r, tq “ ty P X : µpx´ y, tq ą 1´ r, νpx´ y, tq ă ru.

Proof of the following lemma is similar to its analogue in case of fuzzy normed spaces (Bag &
Samanta, 2003b).

Lemma 1.1. Let pX, µ, ν, ˚, ˝q be an IFNLS with the condition

µpx, tq ą 0 and νpx, tq ă 1 implies x “ 0, for all t P R`. (1.1)

Let }x}α “ in f tt P R` : µpx, tq ą α and νpx, tq ă 1 ´ αu for each α P p0, 1q. Then t} ¨ }α : α P
p0, 1qu is an ascending class of norms on X. These norms are called α- norms on the intuitionistic
fuzzy norm pµ, νq.

Definition 1.7. (Mursaleen et al., 2010a) Let pxnq be a sequence in an IFNLS pX, µ, ν, ˚, ˝q. It is
said to be basis of X if for every x P X there exists a unique sequence panq of scalars such that

pµ, νq ´ lim
řn

k“1 akxk “ x.

that is, for each α P p0, 1q and ε ą 0, there exists n0 “ n0pα, εq P N such that n ě n0 implies,

µpx´
řn

k“1 akxk, εq ą 1´ α and νpx´
řn

k“1 akxk, εq ă α, where x “
ř8

k“1 akxk.

2. Main Results

Now we are ready to discuss our main results. First we define some important notions in
connection with approximation property in IFNLS.

Definition 2.1. Let pX, µ, ν, ˚, ˝q be an IFNLS. A complete IFNLS is said to have the approxima-
tion property, briefly AP, if for every compact set K in X and for each α ą p0, 1q and ε ą 0, there
exists an operator T of finite rank such that

µ pTα pxq ´ x, εq ą 1´ α and ν pTα pxq ´ x, εq ă α

for every x P K.

Definition 2.2. Let λ be a real number. An IFNLS pX, µ, ν, ˚, ˝q is said to have the λ-bounded
approximation property, briefly λ-BAP, if for every compact set K in X and for each α P p0, 1q and
ε ą 0, there exists an operator T P F pX, X, λq such that

µ pT pxq ´ x, εq ą 1´ α and ν pT pxq ´ x, εq ă α

for every x P K.

Definition 2.3. Suppose that an IFNLS pX, µ, ν, ˚, ˝q has a basis pxnq. For each positive integer m,
the mth natural projection Pm for xm is the map
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ř8

n“1 anxn ÝÑ
řm

n“1 anxn from pX, µ, ν, ˚, ˝q to pX, µ, ν, ˚, ˝q.

Definition 2.4. Let pX, µ, ν, ˚, ˝q and pY, µ
1

, ν
1

, ˚, ˝q be two IFNLS and T : X ÝÑ Y be a linear
operator where pµ, νq and pµ

1

, ν
1

q are intuitionistic fuzzy normed. Then

1. The operator T is called strongly intuitionistic fuzzy (shortly sif) continuous at a P X if, for
given ε ą 0, there exists δ ą 0 such that, for all x P X,

µ
1

pT pxq ´ T paq, εq ě µpx´ a, δq and ν
1

pT pxq ´ T paq, εq ď νpx´ a, δq.

If T is sif-continuous at each point of X, then T is said to be sif-continuous on X.
2. The operator T is called strongly intuitionistic fuzzy bounded on X if there exists a positive

real number M such that µ
1

pT pxq, tq ě µpx, t
M q and ν

1

pT pxq, tq ď νpx, t
M q for all x P X

and t P R. We will denote the set of all strongly intuitionistic fuzzy (shortly sif) bounded
operators form X to Y by FpX,Yq. Then FpX,Yq is a vector space. For all M ą 0, FpX,Y,Mq
is denoted by

 

T P FpX,Yq : µ
1

pT pxq, tq ě µpx, t
M q, ν

1

pT pxq, tq ď νpx, t
M q, @x P X, @t P R

(

,

where M is a positive real number.
For some M ą 0 if S “ FpX,Y,Mq then S is called a bounded subset of FpX,Yq. Again
the set of all finite rank sif-bounded operators from X to Y is denoted by F̄pX,Yq. Then
F̄pX,Yq is subspace of FpX,Yq. Similarly, we can say that F̄pX,Y,Mq is also a subspace of
FpX,Y,Mq for some M ą 0.

Proof of the following is similar to its fuzzy analogue in (Bag & Samanta, 2005).

Lemma 2.1. Let pX, µ, ν, ˚, ˝q and pY, µ
1

, ν
1

, ˚, ˝q be two IFNLSs satisfying condition 1.1 and T :
X ÝÑ Y be a linear operator. Then T is sif-bounded if and only if it is uniformly bounded with
respect to α- norms of pµ, νq and pµ

1

, ν
1

q. That is, there exists some M ą 0, independent of α, such
that ||T pxq||α ď M||x||α, for all α P p0, 1q.

Remark. If pX, µ, ν, ˚, ˝q and pY, µ
1

, ν
1

, ˚, ˝q be two IFNLSs satisfying the conditions:
µpx, tq ą 0 and νpx, tq ă 1 implies x “ 0 for all t P R` and
for x ‰ 0, µpx, tq is continuous and strictly increasing on tt : 0 ă µpx, tq ă 1u, while νpx, tq is

continuous and strictly decreasing on tt : 0 ă µpx, tq ă 1u and M ą 0. Then we obtain

FpX,Y,Mq “ tT P FpX,Yq : ||T pxq||α ď M||x||α, @x P X, @α P p0, 1qu.

Hence FpX,Y,Mq and F̄pX,Y,Mq are bounded convex subsets of FpX,Yq.

Theorem 2.1. Let X be a Banach space and pxnq be a Schauder basis in X. Then pxnq is a basis
for an IFNLS pX, µ, ν, ˚, ˝q where

µpx, tq “

#

t´||x||
t`||x|| , if t ą ||x||
0, if t ď ||x||,

νpx, tq “

#

1´ t´||x||
t`||x|| , if t ą ||x||

1, if t ď ||x||,

and every natural projection is sif-continuous.
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Proof. Given that pxnq is a basis for an IFNLS pX, µ, ν, ˚, ˝q.
It is enough to show that -
natural projection Pn : pX, µ, ν, ˚, ˝q Ñ pX, µ, ν, ˚, ˝q is sif-bounded for each x P N.
Let n P N, t P R, x P X.
Consider M “ ||Pn||.
If t ď 0, the result is trivial.
Assume that t ą 0. Then it is enough to show that

µ pPn pxq , tq ě µ
`

x, t
M

˘

and ν pPn pxq , tq ď ν
`

x, t
M

˘

.

The proof of µ pPn pxq , tq ě µ
`

x, t
M

˘

can be established in a similar manner as in Proposition
3.4 of (Lee, 2015).

Now considering for ν, we have

t ą M||x||,

then

ν
`

x, t
M

˘

“ 1´
t

M´||x||
t

M`||x||
.

By the assumption,

t ą M||x|| “ ||Pn||||x|| ě ||Pn pxq ||

and
t´||Pnpxq||
t`||Pnpxq||

ě
t

M´||x||
t

M`||x||
.

Therefore, we have

ν pPn pxq , tq “ 1´ t´||Pnpxq||
t`||Pnpxq||

ď 1´
t

M´||x||
t

M`||x||
“ ν

`

x, t
M

˘

.

Hence

ν pPn pxq , tq ď ν
`

x, t
M

˘

.

Secondly,

t ď ||Mx||,

then

ν pMx, tq “ 1.

Thus,

ν pPn pxq , tq ď ν
`

x, t
M

˘

.

So, we have the existence of an IFNLS having a basis such that every natural projection is
sif-continuous. Now provide modified definitions of APs and BAPs in IFNLSs by incorporating
the continuity of approximating operators.
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Definition 2.5. Let pX, µ, ν, ˚, ˝q be an IFNLS. Then X is said to be have the approximation prop-
erty, briefly AP, if for every compact set K in X and for each α P p0, 1q and ε ą 0, there exists an
operator T P F̄ pX, Xq such that

µ pT pxq ´ x, εq ą 1´ α and ν pT pxq ´ x, εq ă α

for every x P K.

Definition 2.6. Let pX, µ, ν, ˚, ˝q be an IFNLS and λ be a positive real number. Then X is said to
be have the λ- bounded approximation property, briefly λ - BAP, if for every compact set K in X
and for each α P p0, 1q and ε ą 0, there exists an operator T P F̄ pX, X, λq such that

µ pT pxq ´ x, εq ą 1´ α and νpT pxq ´ x, εq ă α

for every x P K. We can also say that X has the BAP if X has the λ-BAP for some λ ą 0.

Theorem 2.2. Let pX, µ, ν, ˚, ˝q be an IFNLS. Then the following are equivalent.

1. pX, µ, ν, ˚, ˝q has the AP.
2. If pY, µ

1

, ν
1

, ˚, ˝q is an IFNLS, then for every T P FpX,Yq, every compact set K in pX, µ, ν, ˚, ˝q
and for each α P p0, 1q and t ą 0, there exists an operator S P F̄pX,Yq such that

µ
1

pS pxq ´ T pxq, tq ą 1´ α and ν
1

pS pxq ´ T pxq, tq ă α

for each x P K.
3. If pY, µ

1

, ν
1

, ˚, ˝q is an IFNLS, then for every T P FpY, Xq, every compact set K in pY, µ
1

, ν
1

, ˚, ˝q
and for each α P p0, 1q and t ą 0, there exists an operator S P F̄pY, Xq such that

µpS pyq ´ T pyq, tq ą 1´ α and νpS pyq ´ T pyq, tq ă α

for each y P K.

Proof. piq ñ piiq
Let T P F pX,Yq and K be a compact set in pX, µ, ν, ˚, ˝q and α P p0, 1q and t ą 0 and t P R.
Then there exists a positive real number M such that

µ
1

pT pxq , tq ě µ
`

x, t
M

˘

and ν
1

pT pxq , tq ď ν
`

x, t
M

˘

for all x P X.
Since pX, µ, ν, ˚, ˝q has the AP, there exists an operator R P F pX, Xq such that

µ
`

R pxq ´ x, t
M

˘

ą 1´ α and ν
`

R pxq ´ x, t
M

˘

ă α

for every x P K.
Now we put S “ TR. Since T and R both are sif-bounded operators, therefore S is also a

sif-bounded operator.
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µ
1

pS pxq ´ T pxq , tq “ µ
1

pTR pxq ´ T pxq , tq

ě µ
´

R pxq ´ x,
t

M

¯

ą 1´ α.

and

ν
1

pS pxq ´ T pxq , tq “ ν
1

pTR pxq ´ T pxq , tq

ď ν
´

R pxq ´ x,
t

M

¯

ă α.

for every x P K.
piq ñ piiiq
Let T P F pY, Xq and K be a compact set in

`

Y, µ
1

, ν
1

, ˚, ˝
˘

and α P p0, 1q and t ą 0 and t P R.
Since pX, µ, ν, ˚, ˝q has the AP and T pKq is compact set in pX, µ, ν, ˚, ˝q, there exists an operator

R P F̄ pX, Xq such that

µ pR pxq ´ x, tq ą 1´ α and ν pR pxq ´ x, tq ă α

for every x P T pKq.
Now we put, S “ RT P F̄ pY, Xq. Then we have,

µ pS pyq ´ T pyq , tq “ µ pRT pyq ´ T pyq , tq
ą 1´ α.

and

ν pS pyq ´ T pyq , tq “ ν pRT pyq ´ T pyq , tq
ă α,

for each y P K.
Since piq implies both piiq and piiiq, hence piq, piiq and piiiq are equivalent.
Hence proposition is proved.

Proof of the following Lemma is similar to Lemma 4.2 of (Lee, 2015).

Lemma 2.2. Let pX, µ, ν, ˚, ˝q be an IFNLS and K be a subset in X. If K is a compact set in
pX, µ, ν, ˚, ˝q, then for every α P p0, 1q and t ą 0, there exists a finite set tx1, x2, . . . , xnu in K such
that for every x P K we have x P B pxi, α, tq for some xi.

Theorem 2.3. Let pX, µ, ν, ˚, ˝q be an IFNLS with intuitionistic fuzzy norm pµ, νq and M ą 0.
Suppose that there exists a sequence pTnq P F̄ pX, X,Mq such that Tn pxq ÝÑ x for every x P X,
then pX, µ, ν, ˚, ˝q has the AP.
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Proof. Let pTnq be a sequence in F̄ pX, X,Mq such that

Tn pxq ÝÑ x for every x P X.

Let α P p0, 1q and t ą 0, and K be a compact set in pX, µ, ν, ˚, ˝q.
By the above Lemma, there exists a finite set tx1, x2, ..., xnu Ă K such that for x P K we have

x P B pxi, α, tq for some xi.
Then there exists N1,N2 P N such that if n ě N1,N2 we have,

µ pTn pxiq ´ xi, tq ą 1´ α and ν pTn pxiq ´ xi, tq ă α

for each i.
Let x P K and choose i such that x P B pxi, α, tq, that is,

µ pxi ´ x, tq ą 1´ α and ν pxi ´ x, tq ă α.

Then for n ě N1,N2,

µ pTn pxq ´ x, tq “ µ pTn pxq ` p´Tn pxiqq ` pTn pxiqq ` p´xiq ` xi ` p´xq , tq

ě min
!

µ
´

Tn px´ xiq ,
t
3

¯

, µ
´

Tn pxiq ´ xi,
t
3

¯

, µ
´

xi ´ x,
t
3

¯)

ě min
!

µ
´

x´ xi,
t

3M

¯

, µ
´

Tn pxiq ´ xi,
t
3

¯

, µ
´

xi ´ x,
t
3

¯)

ą 1´ α.

And

ν pTn pxq ´ x, tq “ ν pTn pxq ` p´Tn pxiqq ` pTn pxiqq ` p´xiq ` xi ` p´xq , tq

ď max
!

µ
´

Tn px´ xiq ,
t
3

¯

, µ
´

Tn pxiq ´ xi,
t
3

¯

, µ
´

xi ´ x,
t
3

¯)

ď max
!

µ
´

x´ xi,
t

3M

¯

, µ
´

Tn pxiq ´ xi,
t
3

¯

, µ
´

xi ´ x,
t
3

¯)

ă α.

Therefore, µ pTn pxq ´ x, tq ą 1´ α and ν pTn pxq ´ x, tq ă α.
Hence pX, µ, ν, ˚, ˝q has the AP.

By using the above result we derive the following.

Theorem 2.4. Suppose pX, µ, ν, ˚, ˝q has a basis txnu and every natural projection

Pn : pX, pµ, νqq ÝÑ pX, pµ, νqq

is sif-continuous. Then pX, µ, ν, ˚, ˝q has the AP but the converse is not necessarily true.

Theorem 2.5. An IFNLS pX, µ, ν, ˚, ˝q satisfying condition 1.1 has the AP if and only if for every
compact set K in pX, µ, ν, ˚, ˝q and for each α P p0, 1q and ε ą 0, there exists an operator T P

F̄ pX, Xq such that
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||T pxq ´ x||α ă ε

for every x P K.

Theorem 2.6. Let pX, µ, ν, ˚, ˝q be an IFNLS satisfying condition 1.1 and λ ą 0. Then pX, µ, ν, ˚, ˝q
has λ-BAP if and only if for every compact set K in pX, µ, ν, ˚, ˝q and for each α P p0, 1q and ε ą 0,
there exists an operator T P F̄ pX, X, λq such that

||T pxq ´ x||α ă ε

for every x P K.

Proof of the above two results follow from (Yilmaz, 2010b).

3. Examples

In this section, we give answers to the following interesting questions with proper examples:

1. Does every IFNLS have the AP?
2. Does in an IFNLSs the AP imply the BAP?

Now we are going to solve (in negative sense) the problem piq and piiq with the help of follow-
ing two examples.

Example 3.1. As we know that there exists a Banach space pX, || ¨ ||q which fails to have the
approximation property, similarly there exists an IFNLS pX, µ, ν, ˚, ˝q which fails to have the AP.

Let us define a function,

µ, ν : X ˆ R ÝÑ r0, 1s by

µpx, tq “
"

1, if t ą ||x||
0, if t ď ||x||.

and

νpx, tq “
"

0, if t ą ||x||
1, if t ď ||x||.

where pµ, νq is the intuitionistic fuzzy norm and ||x||α “ ||x||, for every α P p0, 1q.
Now suppose that pX, µ, ν, ˚, ˝q has the AP.
Let α P p0, 1q and ε ą 0 and K be a compact set in X. Since ||x||α “ ||x|| for each α P p0, 1q,

K is compact in pX, µ, ν, ˚, ˝q. Then by Theorem 2.5, there exists an operator Tα P F̄ pX, Xq such
that

||T pxq ´ x||α ă ε

for every x P K.
Hence we have,
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||T pxq ´ x|| “ ||T pxq ´ x||α ă ε

for every x P K, which is a contradiction as pX, || ¨ ||q fails to have the approximation property.
pX, µ, ν, ˚, ˝q has fails to have the AP.

As in Example 4.9 of (Lee, 2015), we give below an example of the existence of an IFNLS
which has the AP but fails to have BAP.

Example 3.2. Enflo and Lidenstrauss (Enflo, 1973; Lindenstrauss, 1971) has proved the existence
of a Banach Space X0 which has the metric approximation property but its dual space X˚0 fails to
have the approximation property. There is a sequence p|| ¨ ||nq of equivalent norms on X0 so that
pX0, || ¨ ||nq fails to have the n- BAP. Consider Xn “ pX0, || ¨ ||nq. Thus p

ř

‘Xnql2 fails to have the
BAP where p

ř

‘Xnql2 is a Banach space whose elements are sequence of the form px1, x2, ...q,
where

ř8

n“1 ||xn||
2
n ă 8 and xn P Xn.

Now we consider, X “ p
ř

‘Xnql2 , and define ||x|| “
`
ř8

n“1 ||xn||
2
n

˘
1
2 and ||x||1 “ supn||xn||

for all x “ px1, x2, ...q P X.
Let us defined a function,

µ, ν : X ˆ R ÝÑ r0, 1s by

µpx, tq “

$

&

%

1, if t ą ||x||
1
2 , if ||x||1 ă t ď ||x||
0, if t ď ||x||1,

and

νpx, tq “

$

&

%

0, if t ą ||x||
1
2 , if ||x||1 ă t ď ||x||
1, if t ď ||x||1,

where pµ, νq is the intuitionistic fuzzy norm.
Consider the α-norms as-

||x||α “
"

||x||, if 1 ą α ą 1
2

||x||1, if 0 ă α ď 1
2 .

Suppose that pX, µ, ν, ˚, ˝q has the BAP. Let us assume that K be a compact set in pX, || ¨ ||q.
Then we have to show that K is a compact set in pX, µ, ν, ˚, ˝q.

Let ε ą 0 and pxnq be a sequence in K. As K is compact subset in pX, || ¨ ||q, there exists
subsequence pxnkq in pX, || ¨ ||q. Therefore there exists an x P X and integers µ, ν ą 0 such that for
k ě µ, ν

||xnk ´ x|| ă ε.

Since ||x||1 ď ||x|| for all x P X, therefore for k ě µ, ν

||xnk ´ x||α ă ε
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for all α P p0, 1q.
Hence K is a compact set in pX, µ, ν, ˚, ˝q.
Next consider α P

`

1
2 , 1

˘

and ε ą 0. As K is a compact set in pX, µ, ν, ˚, ˝q and using α P
`

1
2 , 1

˘

and ε ą 0 we have λ ą 0 and Tα,ε P F̄ pX, X, λq such that

||Tα,ε pxq ´ x||α ă ε for every x P K.

Then we have ||Tα,ε pxq ´ x|| ă ε and ||Tα,ε pxq || ď λ||x||, which is a contradiction as pX, || ¨ ||q
fails to have the BAP.

Hence pX, µ, ν, ˚, ˝q has fails to have the BAP.
Finally, we have to show that pX, µ, ν, ˚, ˝q has the AP. Let ε ą 0 and K be a compact subset in

pX, µ, ν, ˚, ˝q. Again let P j : X ÝÑ
´

ř j
n“1‘Xn

¯

l2
be the projection given by

P ppxqq “ px1, x2, ..., x jq.

Since K is a compact set in X, therefore by Theorem 2.4 of (Choi et al., 2009) there exists a natural
number m P N and a finite rank operator T

1

: p
řm

n“1‘Xnql2
ÝÑ p

řm
n“1‘Xnql2

such that

||kT
1

Pm pxq ´ x|| ă ε

for every x P K, where k is the map defined as k : p
řm

n“1‘Xnql2
ÝÑ X such that

k px1, x2, ..., xmq “ px1, x2, ..., xm, 0, ...q.

Now we put T “ kT
1

Pm. As T is a finite rank operator defined as T : X ÝÑ X and ||x||1 ď ||x||
for all x P X, we have

||T pxq ´ x||1 ă ε

that is, for every α P p0, 1q, we have

||T pxq ´ x||α ă ε.

Next we have to show that T is sif-bounded on X. Since p
řm

n“1‘Xnql2
and p

řm
n“1‘Xnql8

are
equivalent, there exists M

1

ą 1 such that

p
řm

n“1 ||xn||
2
nq

1
2 ď M

1

sup1ďnďm||xn||n.

Then,

}T pxq}1 ď ||T pxq|| “ }kT
1

Pmpxq}

ď ||kT
1

||p

m
ÿ

n“1

}xn}
2
nq

1
2

ď ||kT
1

||M
1

sup1ďnďm||xn||n

ď ||kT
1

||M
1

||x||1.

Taking M “ max
 

||T ||, ||kT
1

||,M
1
(

, we have to show that
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µ pT pxq , tq ě µ
`

x, t
M

˘

and ν pT pxq , tq ď ν
`

x, t
M

˘

for all x P X and t P R.
If t ď 0, the result is trivial.
Assume that t ą 0. Then it is enough to show that

µ pT pxq , tq ě µ pMx, tq and ν pT pxq , tq ď ν pMx, tq, for all x P X and t P R.

Now first consider for µ:
For the first condition:

t ą M||x||

then

µ pMx, tq “ 1

By the assumption,

t ą M||x|| ě ||T ||||x|| ě ||T pxq ||

we have

µ pT pxq , tq “ 1.

Hence

µ pT pxq , tq ě µ pMx, tq.

For the second condition:

||Mx||1 ă t ď ||Mx||

then

µ pMx, tq “ 1
2 .

By the assumption

t ą M||x||1 ě ||kT
1

||M
1

||x||1 ě ||T pxq ||1

we have

µ pT pxq , tq ě 1
2 .

Hence

µ pT pxq , tq ě µ pMx, tq.

For the third condition :
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t ď M||x||

we have

µ pMx, tq “ 0.

Then by the assumption trivially we obtain,

µ pT pxq , tq ě µ pMx, tq.

Next considering for ν :
For the first condition :

t ą M||x||

then

ν pMx, tq “ 0.

By the assumption,

t ą M||x|| ě ||T ||||x|| ě ||T pxq ||

we have

ν pT pxq , tq “ 0.

Hence

ν pT pxq , tq ď ν pMx, tq.

For the second condition:

||Mx||1 ă t ď ||Mx||

then

ν pMx, tq “ 1
2

By the assumption

t ą M||x||1 ě ||kT
1

||M
1

||x||1 ě ||T pxq ||1,

thus

ν pT pxq , tq ď 1
2

Hence

ν pT pxq , tq ď ν pMx, tq

For the third condition :

t ď M||x||1.

Then

ν pMx, tq “ 1.

By the assumption trivially we have,

ν pT pxq , tq ď ν pMx, tq.

Hence pX, µ, ν, ˚, ˝q has the AP.
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4. Conclusion

In this paper we introduced and investigated the concepts of AP and BAP in the context of an
IFNLS. We have shown that there are IFNLSs which fail to have the AP and also there are IFNLSs
with AP but not the BAP. The current results give us a better understanding of the analytical struc-
ture of an IFNLS.
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Abstract
In the research of underlying algebraic structures of real world phenomena, we can find some behavior anomalies

that depend on external parameters that are not ruled by their axiom systems. These are not visible straightaway
and we have to deduce their existence from the effects they cause. To add them in mathematical constructions, we
introduce co-universal extensions of algebras and co-algebras based upon the dual construction of the Kleisli category
associated to a monad.

To illustrate this topic we introduce two applications. The first one is an artificial example. In the second applica-
tion we analyze language algebraic structures with a method that states a bridge between language and logic blindly,
that is to say, handling statements through their expressions in those languages satisfying some adequate conditions,
and disregarding their meanings.

Keywords: Algebraic extensions, hidden parameters, algebraic language structures, co-monad, Kleisli categories,
blind logic.
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1. Introduction

When we investigate the mathematical structures of real world phenomena, we can observe
some anomalies that depend on parameters that are not ruled by those axioms that define their
algebraic structures. For instance, the states of a Turing machine, contexts when we interpret
sentences in any language, environments, positions, etc. Recall that only tape symbols are the
visible part of Turing machines. By contrast, moves and states are not displayed in their tapes.
They work in the background as hidden parameters, but we can deduce their existence from the
behavior changes they cause.

In positional notations, the meaning of each word or symbol depends on their position. For
instance, consider the following sentences: 1) “Programmers know how to write code fast;” and 2)
“Programmers know how to write fast code.” Both consist of the same words, but their meanings

∗Corresponding author
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are order-dependent. We can consider both orders as hidden parameters, and the meanings of the
former sentences depend on them. Accordingly, to define a map µ sending each sentence in the
English language E into its meaning in M, we have to add a parameter set H the members of
which are associated to orders, contexts and styles. Thus, the domain of µ must be the Cartesian
product E ×H ; where E denotes the set of all English sentences.

We can also find hidden parameters in psychology, physics, and random phenomena. For
instance, the probability of remembering a name increases with the occurrence frequency, or when
some noticeable fact is associated to it. Thus, frequency and remarkable facts can work as hidden
parameters that can modify probabilities. In section 4, we analyze an artificial example of this
kind.

To learn and interpret any language, we have to handle abstractions and inferences between the
definitions of sentence meanings (Tudor-Răzvan & Manolescu, 2011). The topic goes as follows.
If two words, say W1 and W2, have the same meaning, when we swap them in any sentence, we
obtain an equivalent one. We introduce language structure conditions to build the inverse method.
Thus, we can find logical relations and abstractions between the meanings of W1 and W2 when
we observe that some set of proper sentences T1 becomes T2 when we swap W1 and W2 and each
member of T2 is a proper sentence too. To know that T2 consists of right sentences, we need not
know their meanings. It is sufficient to find them in any scholar paper. The method works as a blind
logic and can give rise to many ambiguities, that we can avoid deducing the existence of hidden
parameters. This topic is an enlargement of what Newell stated in (Newell & Simon, 1976). We
do not dive in this topic deeply, because we only expose these ideas to illustrate applications of
co-universal algebraic extensions that we introduce.

The main aim of this article consists of introducing an algebraic device to enrich categories
with sets of external (hidden) parameters that are not ruled by the axioms defining them. We term
these constructions co-universal because are based upon co-monads together with the associated
dual constructions of Kleisli categories. Well-known universal extensions of Set, associated to
monads, are categories of sets with fuzzy subsets (Mawanda, 1988). These extensions of Set arise
from an endofunctor that sends each ordinary set X into X × M, where M is a monoid of truth-
values. We introduce co-universal extensions by a similar endofunctor X 7→ X ×M such that M is
the set of hidden parameters.

2. Preliminaries

To simplify expressions, we state some auxiliary definitions and notations. We write in bold
face font those symbols denoting categories. In particular, Set denotes the category of ordinary
sets and maps. We use the symbol / as an end-of-definition marker.

Notation. For each couple of sets X and Y , we denote by XY
≥n the subset of XY defined as follows.

XY
≥n =

{
f ∈ XY | #

(
img( f )

)
≥ n

}
.

For instance, XY
≥2 consists of every non-constant map in XY .

For each subcategory C of Set and every non-empty setH , we denote the members of the set(
HomC(X,Y)

)H by symbols with the accent˘to indicate that are maps from an arbitrary setH into
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a homset. For each member f̆ of
(
HomC(X,Y)

)H we write the values of the independent variable
H as subscripts. Thus, the expression f̆α ∈ HomC(X,Y) denotes the image of α ∈ H under f̆ .

Definition 2.1. Let C be a subcategory of Set. For every setH with cardinality greater than 1, we
term H-extension of C the category C[H], with the same object class as C, such that, for every
couple of sets X and Y,

HomC[H](X,Y) = HomC(X,Y)
⋃{∐

α∈H

{h̆α}
∣∣∣∣h̆ ∈ (

HomC(X,Y)
)H
≥2

}
. (2.1)

Since C is a subcategory of C[H], we only have to define those compositions involving mor-

phisms in
{∐

α∈H {h̆α}
∣∣∣∣h̆ ∈ (

HomC(X,Y)
)H
≥2

}
. We denote this composition by the infix symbol �. For

every couple of morphisms f : X → Y ∈ HomC(X,Y) and
∐

α∈H {ğα} ∈ HomC[H](Y,Z) we define
their composition as follows. (∐

α∈H

{ğα}
)
� f =

∐
α∈H

{ğα ◦ f } (2.2)

Likewise, the composition of f and
∐

α∈H {ğα} ∈ HomC[H](T, X) is

f �
(∐
α∈H

{ğα}
)

=
∐
α∈H

{ f ◦ ğα} (2.3)

Finally, we define the composition of two morphisms
∐

α∈H { f̆α}∈ HomC[H](X,Y) and
∐

α∈H {ğα} ∈
HomC[H](Y,Z) by (∐

α∈H

{ğα}
)
�

(∐
α∈H

{ f̆α}
)

=
∐
α∈H

{ğα ◦ f̆α}. (2.4)

Since C is a subcategory of C[H] with the same object class, identities are the same in both
categories. /

Theorem 2.1. Let C1 and C2 be two subcategories of Set. For every setH with cardinality greater
than 1, and each functor T : C1 → C2, the following statements hold.

1) There is an extension T ∗ : C1[H]→ C2[H] of T with the same object-map.

2) If X1
σ
−−→ T (X2) is a T-universal arrow, then X1

σ
−−→ T ∗(X2) is a T ∗-universal one.

3) If for every α ∈ H , X1
σ̆α
−−−→ T (X2) is a T-universal arrow, then

X1

∐
α∈H {σ̆α}

−−−−−−−−−−−−→ T ∗(X2)

is a T ∗-universal one.

Proof.
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1) We define the extension T ∗ of T in the following terms. The object-maps of both T and T ∗ are
the same. Recall that, by definition, Obj(C1) = Obj(C1[H]). The images T ( f ) and T ∗( f )
of every morphism f ∈ Mor(C1) are the same. The image of each morphism

∐
α∈H { f̆α} ∈

Mor(C1[H]) \Mor(C1) is given by

T ∗
(∐
α∈H

{ f̆α}
)

=
∐
α∈H

{T ( f̆α)} (2.5)

The former definition is possible because, by equation (2.1), f̆α belongs to Mor(C1), for
every α ∈ H .

It remains to be shown that T ∗ preserves morphism composition and identities. Since the
restriction of T ∗ to Mor(C1) coincides with T , the extension T ∗ preserves identities and
compositions between members of C1. We only have to show that T ∗ preserves morphism
compositions involving some members of Mor(C1[H]) \ Mor(C1). For compositions like
(2.2), taking into account (2.5),

T ∗
(∐
α∈H

{(ğα ◦ f )}
)

=
∐
α∈H

{T (ğα ◦ f )} =
∐
α∈H

{T (ğα) ◦ T ( f )} =(∐
α∈H

{T (ğα)}
)
� T ( f ) = T ∗

(∐
α∈H

{ğα}
)
� T ∗( f ) (2.6)

The proofs for compositions of the form (2.3) and (2.4) go as in the preceding case.

2) We have to show that, for every object Y and every morphism f : X1 → T ∗(Y) there is a unique
f ∗ : X2 → Y such that the following triangle commutes.

X

f ''

σ // T ∗(X2)

T ∗( f ∗)
��

T ∗(Y)

(2.7)

If f ∈ Mor(C1), by hypothesis, this condition must be satisfied. Now, suppose that f =∐
α∈H { f̆α}. Since for every α, the morphism f̆α : X → T ∗(Y) belongs to Mor(C1), there is a

unique f̆ ∗α : X2 → T ∗(Y) = T (Y) such that the following diagram commutes.

X1

f̆α **

σ // T ∗(X2) = T (X2)

T ∗( f̆ ∗)=T ( f̆α)
��

T ∗(Y) = T (Y)

(2.8)

By virtue of (2.2) the following triangle is also commutative

X1

∐
α∈H { f̆α}

%%

σ // T ∗(X2)

T ∗
(∐

α∈H { f̆ ∗}
)

��
T ∗(Y))

(2.9)
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3) Let X1

∐
α∈H { f̆α}

−−−−−−−−−−−→ T ∗(Y) be a C1-morphism. By assumption, for every α ∈ H , there is a
C1-morphism f̆ ∗α such that the following diagram commutes.

X1
σ̆α //

f̆α ''

T (X2)

T ( f̆α)
��

T (Y)

(2.10)

hence, the following triangle is also commutative.

X1
σ̆α //

∐
α∈H { f̆α}

%%

T (X2)

T
(∐

α∈H { f̆α}
)

��
T (Y)

(2.11)

The uniqueness of
∐

α∈H { f̆ ∗α } is a consequence of being unique each f̆ ∗α that satisfies the
commutativity of (2.10), for every α ∈ H .

3. Co-universal algebraic extensions with hidden parameters

For every subcategory C of Set, being stable under Cartesian products, and each non-empty
setH in Obj(C), we denote byH† : C→ C the functor sending each set X ∈ Obj(C) into X ×H ,
and every map f : X → Y into

H†( f ) = f × idH : X ×H → Y ×H . (3.1)

Notation. For every endofunctor H† : C → C, we denote by π the natural transformation
H†

π
−−−−−→ Id such that, for each set X, the map πX : X ×H → X is the canonical projection;

where IdC : C→ C denotes the identity endofunctor. Likewise,H†
µ

−−−−−→ H† ◦H† is the natural
transformation

µX =: X ×H → X ×H ×H (3.2)

that sends each (x, v) ∈ X ×H into (x, v, v) ∈ X ×H ×H .

Proposition 3.1. Let C be a subcategory of Set being stable under Cartesian products. For every
nonempty set H ∈ Obj(C), the endofunctor H† : C → C together with both natural transforma-
tions π and µ form a comonad (H†, π, µ).
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Proof. We show that the following diagrams commute.

H H† ◦ H†
πH†oo H†π //H†

H†

id

bb

µ

OO

id

<< (3.3)

H† ◦ H† ◦ H† H† ◦ H†
H†µoo

H† ◦ H†

µH†

OO

H†µ
oo

µ

OO (3.4)

Let X be a set and (x, v) any member ofH†(X) = X ×H . By straightforward computations we
obtain

πX×H
(
µX(x, v)

)
= πX×H (x, v, v) = (x, v);

accordingly, πH† ◦ µ = id. The proofs for the right triangle and quadrangle (3.4) are similar.

Definition 3.1. Let C be a subcategory of Set being stable under Cartesian products. For each
set H ∈ Obj(C) with cardinality greater than 1, a co-universal H-extension of C with hidden
parameters is the category CH defined as follows.

1. The object-classes of both CH and C are the same.
2. For each couple of objects X and Y, the set HomCH (X,Y) consists of all maps fromH†(X) =

X ×H into Y such that there is f̆ ∈ (HomC(X,Y))H that satisfies the relation

∀α ∈ H : f (x, α) = f̆α(x).

3. The composition f ?g of two CH -morphisms g∈HomCH (X,Y) and f ∈HomCH (Y,Z) is given
by

f ? g = f ◦ H†(g) ◦ µX (3.5)

4. The identity associated to each CH -object X is the projection

πX : H†(X) = X ×H → X.

/

Notation. As in the preceding definition, for every co-universalH-extension CH of a subcategory
C of Set, we denote the morphism composition by the infix symbol ?.

Definition 3.2. Let C be a subcategory of Set such that there is the co-universalH-extension CH .
We say a CH -morphism f : X × H → Y to be π-factorizable whenever there is f ∗ ∈ HomC(X,Y)
that satisfies the equation f = f ∗ ◦ πX. /
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Lemma 3.1. Let C be a subcategory of Set, being stable under Cartesian products. For every set
H ∈ Obj(C) and each CH -object X, the associated CH -identity πX is π-factorizable. In addition,
π∗X = idX.

Proof. Setting π∗X = idX, the relation πX = idX ◦ πX leads to πX = π∗X ◦ πX .

Lemma 3.2. A CH -morphism f (x, α) = f̆α(x) is π-factorizable if and only if f̆ ∈ HomC(X,Y)H is
constant.

Proof. Assume f̆ to be a constant map, therefore the value of f (x, α) depends only on x. Thus,
setting f ∗(x) = f̆α(x), for every (x, α) ∈ X × H , the relation f = f ∗ ◦ πX holds. The proof for the
converse implication is similar.

Lemma 3.3. The composition of π-factorizable morphisms is again π-factorizable.

Proof. Let f ◦ πX : X × H → Y and g ◦ πY : Y × H → Z be two π-factorizable morphisms.
According to (3.5)

(g ◦ πY) ? ( f ◦ πX) = (g ◦ πY) ◦ H†( f ◦ πX) ◦ µX =

(g ◦ πY) ◦
(
( f ◦ πX) × idH

)
◦ µX = g ◦ f ◦ πX (3.6)

therefore (g ◦ πY) ? ( f ◦ πX) = (g ◦ f ) ◦ πX is π-factorizable.

Definition 3.3. Let C be any subcategory of Set, being stable under Cartesian products. For each
set H with cardinality greater than 1, and each α ∈ H , we define the map Γα,A : Mor(CH ) →
Mor(C) as follows. For every couple CH -objects X and Y, and each f ∈ HomCH (X,Y):

Γα,A( f ) =

 f ∗ if f = f ∗ ◦ πX is π-factorizable

f̆α where f̆ ∈
(
HomC(X,Y)

)H
≥2 otherwise.

(3.7)

being f̆ the map such that ∀(x, α) ∈ X ×H : f̆α(x) = f (x, α). /

To agree with Lemma 3.2, in the former definition, when f = f ∗ ◦ πX is π-factorizable, its
image Γα,A( f ) does not depend on the parameter α.

Proposition 3.2. Let CH be a co-universal H-extension of a subcategory C of Set with hidden
parameters. For every α ∈ H , the map Γα,A : Mor(CH ) → Mor(C) preserves identities and
morphism compositions.

Proof. We have to show that, for every couple of morphisms f : X ×H → Y and g : Y ×H → Z,
and each α ∈ H , the map Γα,A satisfies the following relation.

Γα,A(g ? f ) = Γα,A(g) ◦ Γα,A( f ) (3.8)
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If both f = f ∗ ◦ πX and g = g∗ ◦ πY are π-factorizable, then

Γα,A(g ? f ) = Γα,A
(
(g∗ ◦ πY) ? ( f ∗ ◦ πX)

)
=

Γα,A
(
(g∗ ◦ πY) ◦ H†( f ∗ ◦ πX) ◦ µX

)
=

Γα,A
(
(g∗ ◦ πY) ◦

(
( f ∗ ◦ πX) × idH

)
◦ µX

)
=

Γα,A
(
g∗ ◦ f ∗ ◦ πX)

)
= g∗ ◦ f ∗ = Γα,A(g) ◦ Γα,A( f ) (3.9)

Thus, Γα,A preserves the composition of π-factorizable morphisms.
For non-π-factorizable morphisms, the expression (g ? f )(x, α) can be written explicitly as

follows.

∀(x, α) ∈ X ×H : (g ? f )(x, α) =(
g ◦ H†( f ) ◦ µX

)
(x, α) =

(
g ◦ ( f × idH ) ◦ µX

)
(x, α) =

(g
(
f (x, α), α

)
= ğα( f̆α(x)) = (ğα ◦ f̆α)(x); (3.10)

and by definition, Γα,A( f ) = f̆α and Γα,A(g) = ğα; therefore

Γα,A(g ? f ) = (g ? f )̆ α = ğα ◦ f̆α = Γα,A(g) ◦ Γα,A( f ); (3.11)

hence Γα,A also preserves the composition of non-π-factorizable morphisms.
If g = g∗ ◦ πY is π-factorizable and f is not, the same procedure yields

∀(x, α) ∈ X ×H : (g ? f )(x, α) = (g
(
f (x, α), α

)
= g∗( f̆α(x)); (3.12)

and this equation leads to (3.11). The proof when f is π-factorizable and g is not, is similar.
It remains to be shown that Γα,A preserves identities. According to Lemma 3.1 and equation

(3.7), Γα,A(πX) = idX.

Corollary 3.1. With the same assumptions as in Proposition 3.2, for every fixed α ∈ H , the identity
Id : Obj(CH )→ Obj(C) and the map Γα,A : Mor(CH )→ Mor(C) form a functor Γα = (Id,Γα,A).

Proof. By definition, the object classes of CH and C are the same; hence the identity can be the
object map of Γα. By Proposition 3.2 the map Γα, A preserves identities and morphism composi-
tion.

Notation. For every subcategory C of Set being stable under Cartesian products, and each set
H ∈ Obj(C) with cardinality greater than 1, the expression

FH ,A : Mor(CH )→ Mor(C[H])

denotes the map such that, for each pair X and Y in Obj(CH ) and every f ∈ HomCH (X,Y):

FH ,A( f ) =

Γα( f ) if f is π-factorizable∐
α∈H {Γα( f )} =

∐
α∈H { f̆α} otherwise.

(3.13)

where Γα is the functor defined in Corollary 3.1.
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Theorem 3.1 (Main). For every subcategory C of Set being stable under Cartesian products, and
each setH ∈ Obj(C) with cardinality greater than 1, the following statements hold.

1) The identity Id : Obj(CH )→ Obj(C[H]) together with the arrow map

FH ,A : Mor(CH )→ Mor(C[H])

form an isomorphism FH = (Id, FH ,A) between both categories CH and C[H].

2) If D is a subcategory of Set, being stable under Cartesian products such that H belongs to
Obj(D), then every functor T : C → D gives rise to another one T \

H
: CH → DH , having

the same object map as T , which satisfies the following relation.

∀ f ∈ Mor(CH ) : Γα ◦ T \

H
( f ) = T ◦ Γα( f ) (3.14)

3) With the same conditions as in the preceding statement, if for every α ∈ H , the C-morphism

X1
σ̆α
−−−→ T (X2) is a T-universal arrow, then X1

σ
−−→ T \

H
(X2) is a T \

H
-universal one; where σ

denotes the CH -morphism σ : X1 × H → T \

H
(X2) such that, ∀(x, α) ∈ X1 × H: σ(x, α) =

σ̆α(x).

4) With the same assumptions as in Statement 2), every T \-algebra (co-algebra) is the extension
with hidden parameters of an ordinary T \

H
-algebra (co-algebra).

Proof.

1) We have to show that FH is a functor. For every object X, the CH -identity is πX : X ×H → X.
According to Proposition 3.2, its image under FH is Γα(πX) = idX. Thus, FH preserves
identities.

To show that FH preserves morphism composition, let f = f ∗ ◦ πX : X × H → Y and
g = g∗ ◦ πY : Y × H → Z be two π-factorizable morphisms. By equation (3.13) and taking
into account Lemma 3.3,

FH (g ? f ) = Γα(g ? f ) =

Γα
(
g∗ ◦ πY ◦ H

†( f ∗ ◦ πX) ◦ µX
)

= Γα(g∗ ◦ f ∗ ◦ πX) =

g∗ ◦ f ∗ = Γα(g) ◦ Γα( f ) = Γα(g) � Γα( f ); (3.15)

therefore
FH (g ? f ) = Γα(g ? f ) = Γα(g) � Γα( f ) = FH (g) � FH ( f ). (3.16)

If f and g are two non-π-factorizable morphisms, by definition,

(g ? f )(x, α) =
(
g ◦ H†( f ) ◦ µX

)
(x, α) = (

g ◦ ( f × idH ) ◦ µX
)
(x, α) = g

(
f (x, α), α

)
(3.17)
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Let f̆ ∈
(
HomC(X,Y)

)H and ğ ∈
(
HomC(Y,Z)

)H be the maps such that∀(x, α) ∈ X ×H : f̆α(x) = f (x, α)
∀(y, α) ∈ Y ×H : ğα(x) = g(y, α).

(3.18)

These relations together with (3.17) lead to

∀x ∈ X : (g ? f )(x) = g
(
( f (x, α), α

)
= ğα( f̆α(x)) =

(
ğα ◦ f̆α

)
(x), (3.19)

for every fixed α ∈ H . Consequently, by virtue of (2.4) and (3.13),

FH (g ? f ) =
∐
α∈H

{ğα ◦ f̆α} =

(∐
α∈H

{ğα}
)
�

(∐
α∈H

{ f̆α}
)

=(∐
α∈H

{Γα(g)}
)
�

(∐
α∈H

{Γα( f )}
)

= FH (g) � FH ( f ). (3.20)

If g = g∗ ◦ πY is π-factorizable and f is not, the same procedure yields,

FH (g ? f ) =
∐
α∈H

{g∗ ◦ f̆α} = g∗ �
(∐
α∈H

{ f̆α}
)

=

Γα(g) �
(∐
α∈H

{Γα( f )}
)

= FH (g) � FH ( f ). (3.21)

By the same method, we can build the proof when f is π-factorizable and g is not.

Since FH preserves identities and morphism composition, it is a functor.

To be an isomorphism, FH : CH → C[H] must be full, faithful, and bijective on objects.
By definition, the object-classes of C, CH , and C[H] are the same. Because the object map
Id of FH is the identity, FH is bijective on objects.

It remains to be shown that FH is full and faithful. The class Mor(C[H]) consists of the
ordinary maps in Mor(C) together with the coproduct class

Cprd(C,H) =

{∐
α∈H

{h̆α}
∣∣∣∣h̆ ∈ (

HomC(X,Y)
)H
≥2

)
∧ (X,Y) ∈ Obj(C) × Obj(C)

}
For every map f : X → Y in Mor(C) there is the preimage F−1

H
( f ) = f ◦ πX, because

FH ( f ◦ πX) = Γα( f ◦ πx) = f . Likewise, for each C[H]-morphism
∐

α∈H { f̆α} lying in
Cprd(C,H) ⊆ HomC[H](X,Y), the preimage is the morphism f : X ×H → Y that satisfies
the relation f (x, α) = f̆α(x), for each fixed α ∈ H and every x ∈ X; hence FH is full.

To see that FH is faithful, we split the class Mor(CH ) into the subclass CH ,π of π-factorizable
morphisms and its complement {Mor(CH )CH ,π. If the images of two π-factorizable morphisms
f : X×H → Y and f : X×H → Y are the same, then Γα( f ) = Γα(g); so then f = Γα( f )◦πX =

Γα(g) ◦ πX = g.
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Since the image of every π-factorizable morphisms belongs to C, we only have to show that,
the restriction of FH to each homset in {Mor(CH )CH ,π is also injective. Let f : X × H → Y
and g : X × H → Y be two morphisms with the same image

∐
α∈H {h̆α}. By definition, for

every (x, α) ∈ X × H : f (x, α) = Γα( f )(x) = h̆α(x) = Γα(g)(x) = g(x, α); therefore f = g.
Finally, the image under FH of each π-factorizable morphism f belongs to Mor(C), while
the image of every non-π-factorizable one g lies in Cprd(C,H). Since both sets are disjoint,
FH ( f ) , FH (g).

2) According to the preceding statement, there is the isomorphism FH : CH → C[H]; hence we
can define T \

H
by

T \

H
= F−1

H
◦ T ∗ ◦ FH (3.22)

where T ∗ : C[H] → D[H] is the extension of T defined in Theorem 2.1. Taking into
account (3.13), every π-factorizable morphism f ∈ Mor(CH ) satisfies the equation,

Γα ◦ T \

H
( f ) = Γα ◦ F−1

H
◦ T ∗ ◦ FH ( f ) = T ∗ ◦ Γα( f ) (3.23)

because Γα = FH . Since f is π-factorizable, Γα( f ) ∈ Mor(C), hence T ∗ ◦ Γα( f ) = T ◦ Γα( f ).
Thus, the former equation leads to

Γα ◦ T \

H
( f ) = T ◦ Γα( f ) (3.24)

For each non-π-factorizable morphism f : X ×H → Y ,

Γα ◦ T \

H
( f ) = Γα ◦ F−1

H
◦ T ∗ ◦ FH ( f ) =

Γα ◦ F−1
H
◦ T ∗

(∐
β∈H

{ f̆β}
)

=

Γα ◦ F−1
H

(∐
β∈H

{T ( f̆β)}
)

= Γα(h) (3.25)

where h : T (X) ×H → T (Y) is the map defined by

∀(x, α) ∈ T (X) ×H : h(x, α) = T ( f̆α)(x).

Thus, Γα(h) = h̆α = T ( f̆α) = T
(
Γα( f )

)
. This relation and equation (3.25) lead to equation

(3.14).

3) The image of σ under FH is
∐

α∈H {σα}. Since T \

H
= F−1

H
◦ T ∗ ◦ FH and FH is a category

isomorphism, statement 3) is a consequence of Theorem 2.1.

4) If (X, σX) is a T \

H
-algebra, for every α ∈ H , its image Γα(X, σX) =

(
Γα(X),Γα(σX)

)
under

Γα is a T -algebra. By definition, every set X ∈ Obj(C) remains unaltered under Γα. Ac-
cordingly,

(
Γα(X),Γα(σX)

)
=

(
X,Γα(σX)

)
. In addition, although σX : T \

H
(X) × H → X is
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a CH -morphism, its image under Γα is an ordinary map. According to statement 2), and
taking into account (3.7),

Γα

(
T \

H
(X)

σX
−−→ X

)
= Γα ◦ T \

H
(X)

Γα(σX)
−−−−−→ Γα(X) =

T ◦ Γα(X)
Γα(σX)
−−−−−→ Γα(X) = T (X)

Γα(σX)
−−−−−→ X (3.26)

therefore,
(
X,Γα(σX)

)
is a T -algebra, where Γα(σX) is either the image of α under the

map σ̆X ∈
(
HomC(T (X), X)

)H whenever σX is not π-factorizable, or the map σ∗X such that
σX = σ∗X ◦ πX otherwise. Likewise, if f : (X, σX)→ (Y, σY) is a morphism between two
T \

H
-algebras, the following quadrangle commutes.

T \

H
(X)

σX //

T \

H
( f )
��

X

f

��
T \

H
(Y) σY

// Y

(3.27)

Consequently, taking into account Statement 2), its image under Γα

T (X)
Γα(σX) //

T
(
Γα( f )

)
��

X

Γα( f )
��

T (Y)
Γα(σY )

// Y

(3.28)

is also commutative, and both (X,Γα(σX)) and (Y,Γα(σY)) are ordinary T -algebras. The
proof for co-algebras is the dual one.

Remark. The main application of the former result consists of considering most T -algebras (co-
algebras) as restrictions or particular cases of T \

H
-algebras (co-algebras) when we observe behavior

changes. The members of H that work as parameters need not be ruled by the axioms of the
extended constructs, and remain hidden until we observe either any anomalous event, or some
behavior changes. In the following sections we expose two illustrative applications.

4. Bernoulli distribution with hidden parameters.

Probability spaces can be formalized as co-algebras. For instance, let (Ω,E, P) be a probability
space; where Ω is the set of outcomes, E the set of events, and P : E → [0, 1] the probability
assignation. If T : Set → Set is the endofunctor sending each set into [0, 1], and every map
f : X → Y into the identity id : [0, 1] → [0, 1], then P : E → T (E) = [0, 1] gives rise to a
co-algebra. A map f : E1 → E2 is a morphism whenever the following quadrangle commutes.

E1
P1 //

f
��

T (E1)

T ( f )=id
��

E2 P2

// T (E2)
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We can interpret these co-algebras as restrictions of those with hidden parameters, such that the
probability assignations P1 and P2 depend on some parameter set H . The following paragraphs
illustrate these ideas.

Let X be a random variable, with Bernoulli distribution, like tossing a coin n-times. Let (T, P)
be the associated co-algebra, where P denotes the probability assignation. Let S = f1, f2, f3 . . . fn

be the observed relative frequency sequence of the event X = 1 (success) in some experiment.
Suppose that the sequence S converges in probability to 1

2 , and the relative frequencies satisfy the
relation ∀n ∈ N : fn ≤

1
2 . By the weak law of large numbers we know that p = q = 1

2 and both
events (success and failure) are equiprobable. Nevertheless, the relation ∀n ∈ N : fn ≤

1
2 leads

to P( fn ≤
1
2 ) = 1. This relation is not a consequence of probability laws. By contrast, it does not

satisfy the expected symmetry in equiprobable situations. We can interpret this fact introducing
hidden parameters as follows.

We can consider (T, P) as a particular case of an extension (T \

H
, P̃) with a hidden parameter

setH = {τ, ω}, where the probability assignation is a SetH -morphism P̃ : X ×H → T (X) = [0, 1]
defined as follows.

P̃(X, α) =


1
2 if (X, α) = (0, τ)
1
2 if (X, α) = (1, τ)
1 if (X, α) = (0, ω)
0 if (X, α) = (1, ω)

(4.1)

Now, suppose that

∀n ∈ N : α =


ω if n = 1
τ if n > 1 and fn−1 <

1
2

ω if n > 1 and fn−1 = 1
2

(4.2)

With these conditions the relative frequency sequence of the event X = 1 converges in proba-
bility to 1

2 and keeps always less than or equal to 1
2 . Notice that the parameter α takes the value ω

whenever the event fn = 1
2 occurs; otherwise keeps equal to τ.

In the former example, we can see that hidden parameters correspond to “events” or “situa-
tions” that can occur in real world phenomena. This example is artificial, but there are natural
random phenomena whose probability assignation can be modified by hidden parameters. For
instance, the frequency under which a word “w” occurs increases its probability occurrence. How-
ever, in smart text, under excessive repetition the probability occurrence of ”w” can vanish. Aca-
demic style, smartness, and word repetition can be regarded as hidden parameters that modify the
occurrence probability of any word.

5. Structured Languages

As in (Palomar Tarancón, 2011), for each nonempty object-class C, we denote by Cg the
generic object of C. For instance, if C is the set {n ∈ N | n ≡ 1 ( mod 2)}, then Cg denotes the
concept of odd positive integer. To avoid any exception, we apply the same operator to singletons
or one-member classes. The generic object of any singleton {O} coincides with its unique member;
hence

{O}g = O. (5.1)
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Definition 5.1. A predicate P(X) ∈ Pr is self-contradictory provided that ¬P(X) is a tautology. /

It is straightforward consequence of the preceding definition that if P(X) is a tautology, its
negation ¬P(X) is self-contradictory. If P(X) is not self-contradictory there is at least one object
O such that P(O) is true; otherwise ¬P(X) would be true for every value of X, hence a tautological
predicate.

In this section, Pr denotes a predicate class of higher-order logic, being stable under con-
junctions, disjunctions and negations. Likewise, Mc(Pr) denotes an object class satisfying the
following axioms.

Axiom 5.1. If a predicate P(X) ∈ Pr is neither self-contradictory nor tautological, the class
Mc(Pr) contains the generic object {O | P(O)}g.

Axiom 5.2. For every O ∈Mc(Pr) there is P(X) ∈ Pr such that

{Q ∈Mc(Pr) | P(Q)} = {O}.

Definition 5.2. An attributive definition for a member O of Mc(Pr) is any predicate P(X) ∈ Pr
such that O = {Q ∈Mc(Pr) | P(Q)}g. If the class {Q ∈Mc(Pr) | P(Q)} is a singleton, we say P(X)
to be a strictly attributive definition of O. /

Remark. In natural languages, most words denote generic objects of equivalence classes. For
instance, the word “polygon” denotes a class that contains “triangles” and “quadrangles among
others. Each of these words again denotes some object class. Attributive definitions consist of an
attribute or property that is stated by a predicate P(X). The defined object O is the generic one of
the class that satisfies P(X). Thus, if O1 is a concretion of O obtained by adding another property
Q(X), that is, if O1 is the generic object of the class {R | P(R)∧ Q(R)}, then P(X)∧ Q(X)⇒ P(X).

Lemma 5.1. Each predicate P(X) ∈ Pr that is neither tautological nor self-contradictory, gives
rise to a strictly attributive definition for some object O ∈Mc(Pr).

Proof. Let P∗(Y, P(X)) denote the predicate

“ Y is the generic object of the class C = {O ∈Mc(Pr) | P(O)}.”

The class C is nonempty because, by hypothesis, P(X) is not self-contradictory (see Defini-
tion 5.1). According to Axiom 5.1 there is the generic object Cg in Mc(Pr), besides, taking
into account (5.1),

{O ∈Mc(Pr) | P∗(O, P(X))}g = {Cg}g = Cg.

Consequently, it is a strictly definition.

Definition 5.3. The class Mc(Pr) can be enriched with an order relation � such that, between
every couple of objects O1 and O2, the relation O1 � O2 holds whenever there are two attributive
definitions PO1(X) and PO2(X) for O1 and O2, respectively, such that PO1(X)⇒ PO2(X). /
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Enriched with the relation �, the class Mc(Pr) satisfies the structure of a category Mc(Pr,�)
such that, for every couple of objects O1 and O2, the set HomMc(Pr,�)(O1,O2) either is empty or
it is the singleton {O1 � O2}. From now on, we assume that the category Mc(Pr,�) satisfies the
following axiom.

Axiom 5.3. The object-class of Mc(Pr,�) contains with each subset {Oi | i ∈ I} its coproduct∐
i∈I Oi; where I is any nonempty index set.

Notation. For each phrase W in any meaningful language, we denote by ‖W‖ the meaning associ-
ated to W.

Remark. Let P1(X), P2(X), and P(X) be attributive definitions for O1, O2, and O1
∐

O2, respec-
tively. According to the definition of �, the following relations are true: P1(X) ⇒ P(X) and
P2(X) ⇒ P(X). Thus, P(X) is the more restrictive definition that both objects O1 and O2 satisfy.
In other words, O1

∐
O2 is the more concrete abstraction of both objects O1 and O2. For instance,

‖Large positive integer‖
∐
‖small positive integer‖ = ‖positive integer‖.

Notation. For every object O in Mc(Pr) the expression |O| denotes the predicate class {P(X) ∈ Pr |
P(O)}.

Lemma 5.2. For every object O ∈ Ob (Mc(Pr,�)) and each predicate Q(X) ∈ |O|, the statement

∀P(X) ∈ |O| : Q(X)⇒ P(X) (5.2)

is true if and only if Q(X) is a strictly attributive definition for O.

Proof. First assume Q(X) to be a strictly attributive definition for O, and let P(X) be a member
of |O|. Suppose that (5.2) is false; hence there is O1 such that the conjunction Q(O1) ∧

(
¬P(O1)

)
is true. Since Q(X) is a strictly attributive definition for O, this relation leads to O = O1 because,
by Definition 5.2, the set {X | Q(X)} must be a singleton. Consequently, these relations lead to
¬P(O), which contradicts the initial assumption P(X) ∈ |O|.

Now suppose that (5.2) holds, and let Q1(X) be a strictly attributive definition for O. As we
have just seen, Q1(X) ⇒ Q(X). Since O must satisfy its own definition Q1(X) ∈ |O|. As a
consequence of (5.2) this membership relation leads to Q(X) ⇒ Q1(X); consequently Q1(X) ⇔
Q(X), and Q(X) is also an attributive definition for O.

Definition 5.4. From now on, we term structured language on a category Mc(Pr,≺) each 4–tuple
L = (A, A∗, A∗∗,M) such that,

1. The set A is a finite collection of symbols (alphabet).
2. The set A∗ is a partial (syntactic) free-monoid generated by A. We term “word” each member

of A∗.
3. The set A∗∗ is a partial free-monoid generated by A∗. We say each member of A∗∗ to be a

phrase.
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4. The symbol M denotes a nonempty subset of A∗∗ each of its members has a meaning lying
in Mc(Pr). The set A∗ contains words denoting the concepts of conjunction, disjunction,
and negation. In addition, M is stable under conjunctions, disjunctions and negations.

5. The set M contains with each subset {Wi | i ∈ I} a phrase the meaning of which is the
coproduct

∐
i∈I‖Wi‖, (see Axiom 5.3). /

The members of M can be also single words because each meaningful word can be regarded
as a one-word phrase. As usual, we term sentence each meaningful phrase. Likewise, statements
are truth-valued sentences.

Notation. For each structured language L = (A, A∗, A∗∗,M), we denote by ⊥g a variable ranging
over all phrases in A∗∗. This notation allows us to write patterns obtained from any phrase. For in-
stance, consider a phrase W = w1w2 . . .wiwi+1 . . .wi+ j . . .wn, where the wi are the involved words.
Substituting the sub-phrase V = wiwi+1 . . .wi+ j by ⊥g, we obtain the pattern WV(⊥g) that sends
each phrase U = u1, u2 . . . uk ∈ A∗∗ into

WV(U) = w1w2 . . . u1u2 . . . ukw j+1 . . .wn.

For instance, let W be the phrase

We can evaluate the area of every polygon.

If we substitute the one-word phrase “polygon” by ⊥g, we obtain the pattern

WV(⊥g) = We can evaluate the area of every⊥g.

The subscript V in the expression WV denotes V to be the sub-phrase that we substitute by the
variable ⊥g. If U = “regular triangle,” then

WV(regular triangle) = We can evaluate the area of every regular triangle.

Definition 5.5. Let L = (A, A∗, A∗∗,M) be a structured language. A pattern WV(⊥g) is continuous
provided that for every couple U1 and U2 of phrases in M the following conditions hold.

1. If both relations WV(U1) ∈ M and ‖U2‖ � ‖U1‖ are true, then WV(U2) ∈ M.
2. Let D = {Ui | i ∈ I} ⊆ M be a subset with cardinality greater than 1. If a phrase R ∈ M

denotes the object
∐

i∈I‖Ui‖, and for every i ∈ I: WV(Ui) ∈ M, then WV(R) ∈ M. /

Example 5.1. Let WV(⊥g) be the English pattern “The area of every ⊥g is finite.” Let U1 denote
the word “triangle” and U2 the phrase “regular triangle.” If M denotes the class of meaningful
English sentences, then the phrase WV(U1)= “The area of every triangle is finite” belongs to M.
Likewise, the relation ‖U2‖ � ‖U1‖ holds because if ‖U2‖ is a regular triangle, it is also a triangle.
Indeed, WV(U2) ∈ M. Finally, ‖U1‖

∐
‖U2‖ = ‖U1‖, and by assumption, WV(U1) ∈ M.

Since the conjunction of a set of phrases is again a phrase, it is a straightforward consequence
that the conjunction of a set of patterns is again a pattern. By definition, there is some symbol
or word in each structured language that denotes conjunction. From now on, we denote by the
symbol ∧̊ the conjunction in any structured language. Thus, if the considered language is the
English one, ∧̊ stands for the word “and”.
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Proposition 5.1. The conjunction of a set of continuous patterns is again continuous.

Proof. Let L = (A, A∗, A∗∗,M) be a structured language. Let P = {WVi(⊥
g) | i ∈ I} a set of patterns

in L and P(⊥g) =
∧̊

i∈IWVi(⊥
g) the conjunction of all members of P. Let U0 ∈ M and U1 ∈ M be

two phrases such that ‖U1‖ � ‖U0‖ and

∀i ∈ I : WVi(U0) ∈ M (5.3)

By continuity,
∀i ∈ I : WVi(U1) ∈ M (5.4)

hence, taking into account Definition 5.4, P(U0) ∈ M and P(U1) ∈ M.

Theorem 5.1. For every continuous pattern WV(⊥g) the following statements are true.

1. There is a �-maximum element in the class

W =
{
‖U‖ | WV(U) ∈ M)

}
.

2. If ‖U‖ is the �-maximum element of W, the predicate

P(X) = X is the maximum element of W

is a strictly attributive definition of ‖U‖, whenever P(X) ∈ Pr.

Proof.

1. If every element in a chain ‖U1‖ � ‖U2‖ � · · · � ‖Un‖ lies in W, by Definition 5.5, so does its
upper bound

∐
0<i≤n‖Ui‖. Thus, W satisfies the conditions of Zorn’s Lemma. Accordingly,

there is, at least, one �-maximal element ‖U1‖ in W.
To see that ‖U1‖ is the maximum element of W, let ‖U‖ ∈ W be any member. By virtue of
both Definition 5.4 and Definition 5.5, there is a phrase R in M such that ‖R‖ = ‖U‖

∐
‖U1‖;

hence there are the Mc(Pr)-morphisms ‖U1‖ � ‖R‖ and ‖U‖ � ‖R‖. Since ‖U1‖ is maximal
these relations lead to ‖R‖ = ‖U1‖ and ‖U‖ � ‖R‖ = ‖U1‖. Accordingly, ‖U1‖ is comparable
with every member of W.

2. It is a straightforward consequence of the maximum-element uniqueness.

Definition 5.6. Let L = (A, A∗, A∗∗,M) be a structured language. A pattern class Pt = {Wi,Vi(⊥
g) |

i ∈ I} is compatible provided that there is at least one phrase U in M such that, for every i ∈ I :
Wi,Vi(U) ∈ M. /

Recall that, by virtue of statement 4) in Definition 5.4, the conjunction of all phrases in Pt
again belongs to M.



J.-E. Palomar / Theory and Applications of Mathematics & Computer Science 6 (2) (2016) 150–169 167

Notation. By ∈∂ we denote the “sub-phrase/phrase” relationship. For instance, if

W = w1w2 . . .wiwi+1 . . .wi+ j . . .wn

is a phrase, the following expression denotes the word sequence wiwi+1 . . .wi+ j to be a sub-phrase.

wiwi+1 . . .wi+ j ∈
∂ w1w2 . . .wiwi+1 . . .wi+ j . . .wn.

From now on, for each phrase set A∗∗ and every V ∈ A∗∗, the expression A∗∗V denotes the subset
A∗∗V =

{
W ∈ A∗∗ | V ∈∂ W

}
. Likewise, [A∗∗,M] denotes the phrase-set collection

[A∗∗,M] =
⋃
V∈M

{
X ⊆ A∗∗V | V ∈ X

}
(5.5)

Finally, for every couple of phrases V1 and V2, the expression 〈V1 � V2〉 : M → M denotes
the result of substituting each occurrence of the sub-phrase V1 in W by one of V2. If W does not
contain any occurrence of V1, then 〈V1 � V2〉W = W. Likewise, the infix operator� can be used
to obtain patterns; for instance 〈V1 � ⊥g〉W = WV1(⊥

g).

Notation. From now on, for each V ∈ M and every X ⊆ A∗∗V , the expression Pat(X) denotes the
pattern class defined as follows.

Pat(V, X) =
{
〈V � ⊥g〉W | W ∈ X

}
Proposition 5.2. If L = (A, A∗, A∗∗,M) is a structured language, for every V ∈ M, each subset E
of A∗∗V satisfies the following statements.

1. The pattern class Pat(V, E) = {〈V � ⊥g〉W | W ∈ E} is compatible.
2. Let E0 a nonempty subset of E. Let UV(⊥g) and VV(⊥g) be the conjunctions of the pattern

classes Pat(V, E) and Pat(V, E0), respectively. If both patterns UV(⊥g) and VV(⊥g) are con-
tinuous, the maximum elements ‖U‖ and ‖U0‖ of the classes W = {‖X‖ | UV(X) ∈ M} and
W0 = {‖X‖ | VV(X) ∈ M} respectively, satisfy the relation ‖U‖ � ‖U0‖.

Proof. 1. By definition, for each W ∈ E: WV(V) = W; hence

∀WV ∈ Pat(V, E) : WV(V) ∈ M.

2. Since Pat(V, E0) is a subset of Pat(V, E), for each phrase P the relation UV(P) ∈ M leads to
VV(P) ∈ M; therefore ‖U‖ belongs to W0. By assumption, ‖U0‖ is the maximum element of
the class W0, then ‖U‖ � ‖U0‖.

Lemma 5.3. For every E ∈ [A∗∗,M], there is a unique V ∈ M such that E ⊆ A∗∗V and V ∈ E.

Proof. It is a straightforward consequence of (5.5).
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Definition 5.7. For each structured language L = (A, A∗, A∗∗,M), the expression Ph(L) denotes
the small category the object class of which is

Ob (Ph(L)) = [A∗∗,M]

For every pair of objects E1 and E2, the homset HomPh(L)(E1, E2) consists of each map f : E1 → E2

that satisfies the following condition.

∀W ∈ E1 : 〈V1 � V2〉W = f (W) (5.6)

where V1 and V2 are members of M such that E1 ⊆ A∗∗V1
and E2 ⊆ A∗∗V2

/

Recall that, by virtue of Lemma 5.3, for every Ph(L)-object E, there is V ∈ M such that
E ⊆ A∗∗V and V ∈ E.

The map TO : Ob (Ph(L))→ Ob (Ph(L)) sending each set E ∈ A∗∗V into the singleton TO(E) ={
V
}

is the object-map for an endofunctor T : Ph(L) → Ph(L) that sends each morphism f ∈
Hom(E1, E2) into the map T( f ) :

{
V1

}
→

{
V2

}
such that V1 7→ V2. Indeed, this map definition

satisfies the condition 〈V1 � V2〉V1 = V2. We denote this endofunctor by T.

Proposition 5.3. Let L = (A, A∗, A∗∗,M) a structured language. Let V1 and V2 two members of M.
If two T-algebras (E1, σ1) and (E2, σ2) satisfy the following hypotheses

1. There is a morphism f : (E1, σ1)→ (E2, σ2).
2. The sets E1 and E2 are subsets of A∗∗V1

and A∗∗V2
, respectively. In addition, all members of both

pattern classes
Pat

(
V1, σ1(V1)

)
= {〈V1 � ⊥

g〉W | W ∈ σ1(V1)}

and
Pat

(
V2, σ2(V2)

)
= {〈V2 � ⊥

g〉W | W ∈ σ2(V2)}

are continuous.
3. The objects ‖V1‖ and ‖V2‖ are the �-maximum elements of the object classes W1 = {‖X‖ |

P1(X) ∈ M} and W2 = {‖X‖ | P2(X) ∈ M}, respectively; where

P1(⊥g) =
∧̊

W(⊥g)∈Pat
(

V1,σ1(V1)
)W(⊥g),

and
P2(⊥g) =

∧̊
W(⊥g)∈Pat

(
V2,σ2(V2)

)W(⊥g),

respectively.

then the phrases V1 and V2 satisfy the relation ‖V2‖ � ‖V1‖.

Proof. By the definition of T, and taking into account hypothesis 2), the following relations are
true. 

T(E1) = {V1}

T(E2) = {V2}

σ1
(
V1

)
⊆ E1

σ2
(
V2

)
⊆ E2

(5.7)
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The existence of the morphism f leads to the relation

∀W ∈ σ1(V1) : 〈V1 � V2〉W = f (W) ∈ σ2(V2) (5.8)

therefore Pat(V1, σ1(V1)) ⊆ Pat(V2, σ2(V2)). By virtue of Proposition 5.2, this relation leads to
‖V2‖ � ‖V1‖.

Remark. By the former proposition we know that ‖U2‖ � ‖U1‖; accordingly if P1(X) and P2(X)
are attributive definitions of ‖U1‖ and ‖U2‖, respectively, the relation P2(X) ⇒ P1(X) holds (see
Definition 5.3). We can deduce this relation, simply, by knowing that substituting V1 by V2 in every
member of the phrase set σ1(V1) we obtain a subset of σ1(V2). This property is a straightforward
consequence of the Ph(L)-morphism definition. Thus, observing occurrences of some sub-phrases
in two phrase sets we can find logical implications between attributive definitions of their meanings
blindly, that is, without knowing what they mean. Nevertheless, several meanings can be assigned
to the same phrase in natural languages or artificial ones, depending on the context, state, style,
among other circumstances. Accordingly, contexts, states, styles work as hidden parameters in
a set H . Consequently, to apply the method arising from the preceding result, and to interpret
sentences in a language properly, we must consider that each T-algebra (E, σ) is a particular case
of a T\

H
-algebra; where the members of H denote states, contexts, styles, frequencies and any

other event modifying the meaning of any phrase.

6. Conclusion

Hidden parameters are handled implicitly in Computer Science and Linguistics. We can find
noticeable instances almost in each subject. This is a very exciting research field. Theorem 3.1 is
the bridge between structured sets, namely, algebras (co-algebras), and any set of hidden param-
eters that modify their behavior. For instance, the research of those relative frequency anomalies
that can be interpreted as the action of hidden parameters is an open problem.
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Tudor-Răzvan, Niculiu and Anton Manolescu (2011). Symmetry, hierarchy, analogy versus embedded systems. The-
ory and Applications of Mathematics & Computer Science 1(2), 42–55.

Turing, A.M. (1936). On computable numbers, with an application to the Entscheidungsproblem. Proc. Lond. Math.
Soc., II. Ser. 42, 230–265.



Theory and Applications of Mathematics & Computer Science 6 (2) (2016) 170 – 186

Modeling Evolution by Evolutionary Machines: A New Perspective
on Computational Theory and Practice

Mark Burgina,˚, Eugene Eberbachb

aDept. of Mathematics, University of California, 405 Hilgard Avenue, Los Angeles, CA 90095, USA
bDept. of Computer Science, Robotics Engineering Program, Worcester Polytechnic Institute, 100 Institute Road,

Worcester, MA 01609, USA

Abstract
The main goal of this paper is the further development of the foundations of evolutionary computations, con-

necting classical ideas in the theory of algorithms and the contemporary state of art in evolutionary computations.
To achieve this goal, we develop a general approach to evolutionary processes in the computational context, build-
ing mathematical models of computational systems, called evolutionary machines or automata. We introduce two
classes of evolutionary automata: basic evolutionary automata and general evolutionary automata. Relations between
computing power of these classes are explored. Additionally, several other classes of evolutionary machines are in-
vestigated, such as bounded, periodic and recursively generated evolutionary machines. Different properties of these
evolutionary machines are obtained.

Keywords: Turing unorganized machines, evolutionary computation, evolutionary automata, evolutionary Turing
machines, evolutionary finite automata, evolutionary inductive Turing machines.
2010 MSC: 03D10, 03D28.

1. Introduction

The classical theory of algorithms has been developed under the influence of Alan Turing, who
was one of the founders of theoretical computer science and whose model of computation, which
is now called Turing machine, is the most popular in computer science. He also had many other
ideas. In this report the National Physical Laboratory in 1948 (Turing, 1992), Turing proposed a
new model of computation, which he called unorganized machines (u-machines). There were two
types of u-machines: based on Boolean networks and based on finite state machines.

• A-type and B-type u-machines were Boolean networks made up of a fixed number of two-
input NAND gates (neurons) and synchronized by a global clock. While in A-type u-
machines the connections between neurons were fixed, B-type u-machines had modifiable
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switch type interconnections. Starting from the initial random configuration and applying
a kind of genetic algorithm, B-type u-machines were supposed to learn which of their con-
nections should be on and which off.

• P-type u-machines were tapeless Turing machines reduced to their finite state machine con-
trol, with an incomplete transition table, and two input lines for interaction: the pleasure and
the pain signals.

Although Turing never formally defined a genetic algorithm or evolutionary computation, in
his B-type u-machines, he predicted two areas at the same time: neural networks and evolutionary
computation (more precisely, evolutionary artificial neural networks), while his P-type u-machines
represent reinforcement learning. However, this work had no impact on these fields (Eberbach et
al., 2004), although these ideas are one of the (almost forgotten) roots of evolutionary computation.

Evolutionary computation theory is still very young and incomplete. Until recently, evolution-
ary computation did not have a theoretical model that represented practice in this domain. Even
though there are many results on the theory of evolutionary algorithms (see, e.g., (Michalewicz &
Fogel, 2004), (He & Yao, 2004), (Holland, 1975), (Rudolph, 1994), (Wolpert & Macready, 1997),
(Koza, 1992, 1994; Koza et al., 1999), (Michalewicz, 1996), very little has been known about
expressiveness, or computational power, of evolutionary computation (EC) and its scalability. Of
course, there are many results on the theory of evolutionary algorithms (again see, for instance,
(Michalewicz & Fogel, 2004), (He & Yao, 2004), (Holland, 1975), (Rudolph, 1994), (Wolpert
& Macready, 1997), (Koza, 1992, 1994; Koza et al., 1999), (Michalewicz, 1996)). Studied in
EC theoretical topics include convergence in the limit (elitist selection, Michalewiczs contractive
mapping GAs, (1+1)-ES), convergence rate (Rechenbergs 1/5 rule), the Building Block analysis
(Schema Theorems for GA and GP), best variation operators (No Free Lunch Theorem). However,
these authors do not introduce automata models - rather they apply a high-quality mathematical
apparatus to existing process models, such as Markov chains, etc. They also cover only some
aspects of evolutionary computation like convergence or convergence rate, neglecting for example
EC expressiveness, self-adaptation, or scalability. In other words, EC is not treated as a distinct
and complete area with its own distinct model situated in the context of general computational
models. This means that in spite of intensive usage of mathematical techniques, EC lacks more
complete theoretical foundations. As a result, many properties of evolutionary processes could
not be precisely studied or even found by researchers. Our research is aimed at filling this gap
to define more precisely conditions under which evolutionary algorithms will work and will be
superior compared to other optimization methods.

In 2005, the evolutionary Turing machine model was proposed to provide more rigorous foun-
dations for EC (Eberbach, 2005). An evolutionary Turing machine is an extension of the con-
ventional Turing machine, which goes beyond the Turing machine and belongs to the class of
super-recursive algorithms (Burgin, 2005). In several papers, the authors studied and extended
the ETM (evolutionary Turing machine) model to reflect cooperation and competition (Burgin &
Eberbach, 2008), universality (Burgin & Eberbach, 2009b), self-evolution (Eberbach & Burgin,
2007), and expressiveness of evolutionary finite automata (Burgin & Eberbach, 2009a), (Burgin
& Eberbach, 2012).
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In this paper, we continue developing a general approach to evolutionary processes in the
computational context constructing mathematical models of the systems, functioning of which
is based on evolutionary processes, and study properties of such systems with the emphasis on
their generative power. Two classes are introduced in Section 2: basic evolutionary automata and
general evolutionary automata. Relations between computing power of these classes are explored
in Section 3. Additionally, several other classes of evolutionary machines are investigated, such as
bounded, periodic and recursively generated evolutionary machines. Different properties of these
evolutionary machines are obtained. Section 4 contains conclusions and some open problems.

2. Modeling Evolution by Evolutionary Machines

Evolutionary algorithms describe artificial intelligence processes based on the theory of natu-
ral selection and evolution. Evolutionary computation is directed by evolutionary algorithms. In
technical terms, an evolutionary algorithm is a probabilistic beam hill climbing search algorithm
directed by the chosen fitness function. It means that the beam (population size) maintains mul-
tiple search points, hill climbing implies that only a current search point from the search tree is
remembered and used for optimization (going to the top of the hill), and the termination condition
very often is set to the optimum of the fitness function.

Let X be the representation space, also called the optimization space, for species (systems)
used in the process of optimization and a fitness function f : X Ñ R` is chosen, where R` is the
set of nonnegative real numbers.

Definition 2.1. A generic evolutionary algorithm EA can be represented as the collection EA “
pX, s, v, f ,R, Xr0s, Fq and described in the form of the functional equation (recurrence relation) R
working in a simple iterative loop in discrete time t, defining generations Xrts, pt “ 0, 1, 2, 3, ...q
with Xrt ` 1s “ spvpXrtsqq, where

• Xrts Ď X is a population under a representation consisting of one or more individuals from
the set X (e.g., fixed binary strings for genetic algorithms (GAs), finite state machines for
evolutionary programming (EP), parse trees for genetic programming (GP), vectors of reals
for evolution strategies (ES)),

• s is a selection operator (e.g., truncation, proportional, tournament),

• v is a variation operator (e.g., variants and compositions of mutation and crossover),

• Xr0s is an initial population,

• F Ď X is the set of final populations satisfying the termination condition (goal of evolution).
The desirable termination condition is the optimum in X of the fitness function f pxq, which
is extended to the fitness function f pXrtsq of the best individual in the population Xrts Ď F,
where f pxq typically takes values in the domain of nonnegative real numbers. In many
cases, it is impossible to achieve or verify this optimum. Thus, another stopping criterion
is used (e.g., the maximum number of generations, the lack of progress through several
generations.).
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The above definition is applicable to all typical EAs, including GA, EP, ES, GP. It is possible
to use it to describe other emerging subareas like ant colony optimization, or particle swarm opti-
mization. Of course, it is possible to think and implement more complex variants of evolutionary
algorithms.

Evolutionary algorithms evolve population of solutions x, but they may be the subject of self-
adaptation (like in ES) as well. For sure, evolution in nature is not static, the rate of evolution
fluctuates, their variation operators are subject to slow or fast changes, and its goal (if it exists at
all) can be a subject of modifications as well.

Formally, an evolutionary algorithm looking for the optimum of the fitness function violates
some classical requirements of recursive algorithms. If its termination condition is set to the op-
timum of the fitness function, it may not terminate after a finite number of steps. To fit it to the
conventional algorithmic approach, an artificial (or somebody can call it pragmatic) stop criterion
has had to be added (see e.g., (Michalewicz, 1996), (Michalewicz & Fogel, 2004), (Koza, 1992,
1994; Koza et al., 1999)). To remain recursive, i.e., to give some result after a finite number of
steps, the evolutionary algorithm has to reach the set F of final populations satisfying the termina-
tion condition after a finite number of generations or to halt when no visible progress is observable.
Usually this is a too restrictive condition, and naturally, in a general case, evolutionary algorithms
form a special class of super-recursive algorithms.

To formalize the concept of an evolutionary algorithm in mathematically rigorous terms, we
define a formal algorithmic model of evolutionary computation - an evolutionary automaton also
called an evolutionary machine.

Let K be a class of automata working with words in an alphabet E. It means that the represen-
tation or optimization space X is the set E˚ of all words in an alphabet E.

Definition 2.2. A basic evolutionary K-machine (BEM), also called basic evolutionary K-automaton,
is a (possibly infinite) sequence E “ tArts; t “ 0, 1, 2, 3, ...u of automata Arts from K each working
on the population Xrts Ď Xpt “ 0, 1, 2, 3, ...q where:

• the automaton Arts called a component, or more exactly, a level automaton, of E represents
(encodes) a one-level evolutionary algorithm that works with the generation Xrts of the
population by applying the variation operators v and selection operator s;

• the zero generation Xr0s is given as input to E and is processed by the automaton Ar0s,
so that either Xr0s is the result of the whole computation by E when it satisfies the search
condition or Ar0s generates/produces the first generation Xr1s as its output, which goes to
the automaton Ar1s;

• for all t “ 1, 2, 3, ..., the generation Xrt ` 1s is obtained by applying the variation operator
v and selection operator s to the generation Xrts and these operations are performed by the
automaton Arts, which receives Xrts as its input; the generation Xrt`1s either is the result of
the whole computation by E when it satisfies the search condition or it goes to the automaton
Art ` 1s;

• the goal of the BEM E is to build a population Z satisfying the search condition.
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The desirable search condition is the optimum of the fitness performance measure f pxrtsq of
the best individual from the population Xrts. There are different modes of the EM functioning
and different termination strategies. When the search condition is satisfied, then working in the
recursive mode, the EM E halts (t stops to be incremented), otherwise a new input population
Xrt ` 1s is generated by Arts. In the inductive mode, it is not necessary to halt to give the result
(cf. (Burgin, 2005)). When the search condition is satisfied and E is working in the inductive
mode, the EM E stabilizes (the population Xrts stops changing), otherwise a new input population
Xrt ` 1s is generated by Arts.

We denote the class of all basic evolutionary machines with level automata from K by BEAK.

Definition 2.3. A general evolutionary K-machine (GEM), also called general evolutionary K-
automaton, is a (possibly infinite) sequence E “ tArts; t “ 0, 1, 2, 3, ...u of automata Arts from K
each working on generations Xris Ď X where:

• the automaton Arts called a component, or more exactly, a level automaton, of E repre-
sents (encodes) a one-level evolutionary algorithm that works with generations Xris of the
population by applying the variation operators v and selection operator s;

• the zero generation Xr0s Ď X is given as input to E and is processed by the automaton Ar0s,
which generates/produces the first generation Xr1s as its output, which either is the result of
the whole computation by E when it satisfies the search condition or it goes to the automaton
Ar1s;

• for all t “ 1, 2, 3, ..., the automaton Arts, which receives Xris as its input either from Art`1s
or from Art ´ 1s, then Arts applies the variation operator v and selection operator s to the
generation Xrts, producing the generation Xrt ` 1s as its output, which either is the result
of the whole computation by E when it satisfies the search condition or it goes either to
Art ` 1s or to Art ´ 1s. To perform such a transmission, the automaton A[t] uses one of the
two techniques: transmission by the output and transmission by the state. In transmission
by the output, the automaton Arts uses two more symbols uup and udw in its output alphabet,
giving one of these symbols as a part of its output in addition to the regular output Xrt` 1s.
If this part of the output is uup, then Arts sends the output generation Xrt ` 1s to Art ` 1s.
If the additional part of the output is udw, then Arts sends the output generation Xrt ` 1s to
Art ´ 1s. In transmission by the state, the automaton Arts uses two more symbols uup and
udw as its final-transmission states. In these states the automaton Arts stops computing and
performs the necessary transmission of the output - to the automaton Art`1s when the state
is uup and to the automaton Art ´ 1s when the state is udw.

• the goal of the GEM E is to build a population Z satisfying the search condition.

We denote the class of all general evolutionary K-machines GEAK. As any basic evolutionary
K-machine is also a general evolutionary K-machine, we have inclusion of classes BEAK Ď

GEAK.
Let us consider some examples of evolutionary K-machines. An important class of evolution-

ary machines are evolutionary finite automata (Burgin & Eberbach, 2009a), (Burgin & Eberbach,
2012). Here K consists of finite automata.
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Definition 2.4. A basic (general) evolutionary finite automaton (EFA) is a basic (general) evo-
lutionary machine E in which all automata Arts are finite automata Grts each working on the
population Xrts in generations t “ 0, 1, 2, 3, ...

We denote the class of all general evolutionary finite automata by GEFA. It is possible to take
as K deterministic finite automata, which form the class DFA, or nondeterministic finite automata,
which form the class NFA. This gives us four classes of evolutionary finite automata: BEDFA
(GEDFA) of all deterministic basic (general) evolutionary finite automata and BENFA (GENFA)
of all nondeterministic basic (general) evolutionary finite automata.

Evolutionary Turing machines (Burgin & Eberbach, 2008), (Eberbach, 2005) are form another
important class of evolutionary machines.

Definition 2.5. A basic (general) evolutionary Turing machine (ETM) E “ tT rts; t “ 0, 1, 2, 3, ...u
is a basic (general) evolutionary machine E in which all automata Arts are Turing machines T rts
each working on population Xrts in generations t “ 0, 1, 2, 3, ....

Turing machines T rts as components of E perform multiple computations (Burgin, 1983).
Variation and selection operators are recursive to allow performing level computation on Turing
machines.

Definition 2.6. A basic (general) evolutionary inductive Turing machine (EITM) EI “ tMrts; t “
0, 1, 2, ...u is a basic (general) evolutionary machine E in which all automata Arts are inductive
Turing machines Mrts (Burgin, 2005) each working on the population Xrts in generations t “
0, 1, 2, ...

Simple inductive Turing machines are abstract automata (models of algorithms) closest to
Turing machines. The difference between them is that a Turing machine always gives the final
result after a finite number of steps and after this it stops or, at least, informs when the result
is obtained. Inductive Turing machines also give the final result after a finite number of steps,
but in contrast to Turing machines, inductive Turing machines do not always stop the process of
computation or inform when the final result is obtained. In some cases, they do this, while in other
cases they continue their computation and give the final result. Namely, when the content of the
output tape of a simple inductive Turing machine forever stops changing, it is the final result.

Definition 2.7. A basic (general) evolutionary inductive Turing machine (EITM) EI “ tMrts; t “
0, 1, 2, ...u has order n if all inductive Turing machines Mrts have order less than or equal to n and
at least, one inductive Turing machine Mrts has order n.

We remind that inductive Turing machines with recursive memory are called inductive Turing
machines of the first order (Burgin, 2005). The memory E is called n-inductive if its structure
is constructed by an inductive Turing machine of the order n. Inductive Turing machines with n-
inductive memory are called inductive Turing machines of the order n` 1. We denote the class of
all evolutionary inductive Turing machines of the order n by EIT Mn.

Definition 2.8. A basic (general) evolutionary limit Turing machine (ELTM) EI “ tLT Mrts; t “
0, 1, 2, ...u is a basic (general) evolutionary machine E in which all automata Arts are limit Turing
machines LT Mrts (cf. (Burgin, 2005)) each working on the population Xrts in generations t “
0, 1, 2, ...
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When the search condition is satisfied, then the ELTM EI stabilizes (the population Xrts stops
changing), otherwise a new input population Xrt`1s is generated by LT Mrts. We denote the class
of all evolutionary limit Turing machines of the first order by ELTM.

Basic and general evolutionary K-machines from BEAK and GEAK are called unrestricted
because sequences of the level automata Arts and the mode of the evolutionary machines func-
tioning are arbitrary. For instance, there are unrestricted evolutionary Turing machines when K
is equal to T and unrestricted evolutionary finite automata when K is equal to FA. However it
is possible to consider only basic (general) evolutionary K-machines from BEAK (GEAK) in
which sequences of the level automata have some definite type Q. Such machines are called Q-
formed basic (general) evolutionary K-machines and their class is denoted by BEAKQ for basic
machines and GEAKQ for general machines. When the type Q contains all finite sequences, we
have bounded basic (general) evolutionary K-machines. Some classes of bounded basic evolution-
ary K-machines are studied in (Burgin & Eberbach, 2010) for such classes K as finite automata,
pushdown automata, Turing machines, or inductive Turing machines, i.e., such classes as bounded
basic evolutionary Turing machines or bounded basic evolutionary finite automata. When the type
Q contains all periodic sequences, we have periodic basic (general) evolutionary K-machines.
Some classes of periodic basic evolutionary K-machines are studied in (Burgin & Eberbach, 2010)
for such classes K as finite automata, push down automata, Turing machines, inductive Turing ma-
chines and limit Turing machines. Note that while in a general case, evolutionary automata cannot
be codified by finite words, periodic evolutionary automata can be codified by finite words.

Another condition on evolutionary machines determines their mode of functioning or compu-
tation. Here we consider the following modes of functioning/computation.

1. The finite-state mode: any computation is going by state transition where states belong to a
fixed finite set.

2. The bounded mode: the number of generations produced in all computations is bounded by
the same number.

3. The terminal or finite mode: the number of generations produced in any computation is
finite.

4. The recursive mode: in the process of computation, it is possible to reverse the direction of
computation, i.e., it is possible to go from higher levels to lower levels of the automaton,
and the result is defined after finite number of steps.

5. The inductive mode: the computation goes in one direction, i.e., without reversions, and if
for some t, the generation Xrts stops changing, i.e., Xrts “ Xrqs for all q ą t, then Xrts is
the result of computation.

6. The inductive mode with recursion: recursion (reversion) is permissible and if for some t,
the generation Xrts stops changing, i.e., Xrts “ Xrqs for all q ą t, then Xrts is the result of
computation.

7. The limit mode: the computation goes in one direction and the result of computation is the
limit of the generations Xrts.

8. The limit mode with recursion: recursion (reversion) is permissible and the result of com-
putation is the limit of the generations Xrts.
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These modes are complementary to the three traditional modes of computing automata: computa-
tion, acceptation and decision/selection (Burgin, 2010). Existence of different modes of computa-
tion shows that the same algorithmic structure of an evolutionary automaton/machine E provides
for different types of evolutionary computations. We see that only general evolutionary machines
allow recursion. In basic evolutionary machines, the process of evolution (computation) goes
strictly in one direction. Thus, general evolutionary machines have more possibilities than basic
evolutionary machines and it is interesting to relations between these types of evolutionary ma-
chines. This is done in the next section. Note that utilization of recursive steps in evolutionary
machines provides means for modeling reversible evolution, as well as evolution that includes
periods of decline and regression.

3. Computing and Accepting Power of Evolutionary Machines

As we know from the theory of automata and computation, it is proved that different automata
or different classes of automata are equivalent. However there are different kinds of equivalence.
Here we consider two of them: functional equivalence and linguistic equivalence.

Definition 3.1. (Burgin, 2010)

a. Two automata A and B are functionally equivalent if given the same input, they give the
same output.

b. Two classes of automata A and B are functionally equivalent if for any automaton from A,
there is a functionally equivalent automaton from B and vice versa.

For instance, it is proved that deterministic and nondeterministic Turing machines are function-
ally equivalent (cf., for example, (Hopcroft et al., 2001)). Similar results are true for evolutionary
automata.

Theorem 3.1. (Burgin & Eberbach, 2010) For any basic n-level evolutionary finite automaton E,
there is a finite automaton AE functionally equivalent to E.

Here we study relations between basic and general evolutionary machines, assuming that all
these machines work in the terminal mode.

Let P : X ˆ U Ñ N be a function such that

U “ tu1,up, u1,dw, u2,up, u2,dw, ..., uk,up, uk,dw, ...u,

Ppx, uk,upq “ k ` 1

and
Ppx, uk,dwq “ k ´ 1

for any x from optimization space X “ E˚.

Definition 3.2. (Burgin, 2010) The P-conjunctive parallel composition^P Ai of the algorithms/automata
Ai pi “ 1, 2, 3, ..., nq is an algorithm/automaton D such that the result of application of D to any
input u is equal to Aipuq when Ppuq “ i.
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This concept allows us to show in a general case of the terminal mode that basic and general
evolutionary machines are equivalent.

Theorem 3.2. If a class K is closed with respect to P-conjunctive parallel composition, then
for any general evolutionary K-machine, there is a functionally equivalent basic evolutionary K-
machine.

Proof. Let us consider an arbitrary general evolutionary K-machine E “ tArts; t “ 0, 1, 2, 3, ...u.
We correspond the evolutionary system H “ tCrts; t “ 0, 1, 2, 3, ...u to the K-machine E. Each
component Crts in H is a system that consists of the automata C0rts,C1rts,C2rts,C3rts, ...,Ctrts
such that for all k “ 0, 1, 2, 3, ..., t, the automaton Ckrts is a copy of the automaton Arks and it uses
the elements uk,up and uk,dw instead of the elements uup and udw employed by Arks.

The system H has the same search condition as the evolutionary K-machine E and functions in
the following way. The zero generation Xr0s Ď X is given as input to the automaton C0r0s,which is
a copy of the automaton Ar0s and is processed by the automaton C0r0s, which generates/produces
the first generation Xr1s as its output. Then Xr1s either is the result of the whole computation by H
when it satisfies the search condition or it goes to the automaton C1r1s as its input. In the general
case, for all t “ 1, 2, 3, ... and k “ 1, 2, 3, ..., t, the automaton Ckrts receives Xrts as its input either
from Ck`1rt ´ 1s when the automaton Arks receives its input from Ark ` 1s or from Ck´1rt ´ 1s
when the automaton Arks receives its input from Ark´1s. Then Ckrts applies the variation operator
ν and selection operator s to the generation Xrts and producing the generation Xrt`1s. Then either
this generation is the result of the whole computation by H when it satisfies the search condition
or Ckrts sends this generation either to Ck`1rt ` 1s when the automaton Arks sends its output to
Ark ` 1s or to Ck´1rt ` 1s when the automaton Arks sends its output to Ark ´ 1s.

In such a way, the system H simulates functioning of the general evolutionary K-machine
E “ tArts; t “ 0, 1, 2, 3, ...u. Let us prove this by induction on the number of steps that the K-
machine E is making.

The base of induction:
Making the first step, the K-machine E receives is the zero generation Xr0s Ď X as its in-

put, processes it by the first automaton Ar0s producing the first generation Xr1s, which either is
the result of the whole computation by E when it satisfies the search condition or it goes to the
automaton Ar1s.

Making the first step, the system H receives the zero generation Xr0s Ď X as its input, processes
it by the first automaton C0r0s producing the first generation Zr1s, which either is the result of the
whole computation by H when it satisfies the search condition or it goes to the automaton C1r1s.
Because the system H has the same search condition as the evolutionary K-machine E, C0r0s is
a copy of the automaton Ar0s, while C1r1s is a copy of the automaton Ar1s, we have the equality
Zr1s “ Xr1s and the first step of the system H exactly simulates the first step of the K-machine E.

The general step of induction:
We suppose that making n´1 steps the system H exactly simulates n´1 steps of the K-machine

E. It means that making n´ 1 steps, both systems E and H produce the same n-th generation Xrns
using automata Arrs pr ď n´1q and Crrn´1s, correspondingly, and this output either is the result
of the whole computation by E and by H when it satisfies the search condition or it goes either to
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the automaton Arr ` 1s or to the automaton Arr ´ 1s in E and either to the automaton Cr`1rns or
to the automaton Cr´1rns in H.

Then the automaton Arr`1s (or Arr´1s) in E produces the next generation Xrn`1s, applying
the variation operator ν and selection operator s to the generation Xrns and producing the next
generation Xrn ` 1s. When the automaton Arr ` 1s in E produces the next generation Xrn ` 1s,
then either this generation is the result of the whole computation by E when it satisfies the search
condition or Arr ` 1s sends this generation either to Arr ` 2s or to Arrs. When the automaton
Arr´ 1s in E produces the next generation Xrn` 1s, then either this generation is the result of the
whole computation by E when it satisfies the search condition or Arr ´ 1s sends this generation
either to Arr ´ 2s or to Arrs.

At the same time, the automaton Cr`1rns (or Cr´1rns) applies the variation operator ν and
selection operator s to the generation Xrns and producing the generation Zrn ` 1s. When the
automaton Cr`1rns in H produces the next generation Zrn ` 1s, then either this generation is the
result of the whole computation by H when it satisfies the search condition or Cr`1rns sends this
generation either to Cr`2rn ` 1s or to Crrn ` 1s. When the automaton Cr´1rns in H produces the
next generation Zrn ` 1s, then either this generation is the result of the whole computation by H
when it satisfies the search condition or Cr´1rns sends this generation either to Cr´2rns or to Crrns.

Because system H has the same search condition as the evolutionary K-machine E, Cr`1rns is
a copy of the automaton Arr ` 1s, while Cr´1rns is a copy of the automaton Arr ´ 1s, we have the
equality Zrn ` 1s “ Xrn ` 1s and the n-th step of the system H exactly simulates the n-th step of
the K-machine E.

Now it is possible to conclude that the system H exactly simulates functioning of the K-
machine E. However, the system H is not an evolutionary K-machine. So we need to build
a basic evolutionary K-machine B equivalent to H. We can do this using P -conjunctive paral-
lel composition. This composition allows us for all t “ 0, 1, 2, 3, ..., to substitute each system
tC0rts,C1rts,C2rts,C3rts, ...,Ctrtsu by an automaton Brts from K, which by the definition of func-
tion P and P-conjunctive parallel composition, works exactly as this system. Then by construction
of the system H, B “ tBrts; t “ 0, 1, 2, 3, ...u is a basic evolutionary K-machine B equivalent to H.
Theorem is proved.

Corollary 3.1. If a class K is closed with respect to P-conjunctive parallel composition, then
classes GEAK and BEAK are functionally equivalent.

The class T of all Turing machines is closed with respect to P-conjunctive parallel composition
(Burgin, 2010). Thus, Theorem 3.2 implies the following result.

Corollary 3.2. Classes GEAT of all general evolutionary Turing machines and BEAT of all basic
evolutionary Turing machines are functionally equivalent.

The class IT of all inductive Turing machines is closed with respect to P-conjunctive parallel
composition (Burgin, 2010). Thus, Theorem 3.2 implies the following result.

Corollary 3.3. Classes GEAIT of all general evolutionary inductive Turing machines and BEAIT
of all basic evolutionary inductive Turing machines are functionally equivalent.
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Corollary 3.4. Classes GEAITn of all general evolutionary inductive Turing machines of order
n and BEAITn of all basic evolutionary inductive Turing machines of order n are functionally
equivalent.

The same is true for evolutionary limit Turing machines.

Corollary 3.5. Classes GEALT of all general evolutionary limit Turing machines and BEALT of
all basic evolutionary limit Turing machines are functionally equivalent.

Definition 3.3. (Burgin, 2010)

a. Two automata A and B are linguistically equivalent if they accept (generate) the same lan-
guage.

b. Two classes of automata A and B are linguistically equivalent if they accept (generate) the
same class of languages.

For instance, it is proved that deterministic and nondeterministic finite automata are linguisti-
cally equivalent (cf,. for example (Hopcroft et al., 2001)). It is proved that functional equivalence
is stronger than linguistic equivalence (Burgin, 2010).

Because P-conjunctive parallel composition of the level automata in an evolutionary automa-
ton allows the basic evolutionary K-machine to choose automata for data transmission, it is possi-
ble to prove the following results.

Theorem 3.3. If a class K is closed with respect to P-conjunctive parallel composition, then for
any general evolutionary K-machine, there is a linguistically equivalent basic evolutionary K-
machine.

Proof. Let us consider an arbitrary general evolutionary K-machine E “ tArts; t “ 0, 1, 2, 3, ...u.
Then by Theorem 3.2, there is a basic evolutionary K-machine L that is functionally equivalent to
E. As it is proved in (Burgin, 2010), functional equivalence implies linguistic equivalence. So, the
K-machine L is linguistically equivalent to the K-machine E. Theorem is proved.

Corollary 3.6. If a class K is closed with respect to P-conjunctive parallel composition, then
classes GEAK and BEAK are linguistically equivalent.

The class T of all Turing machines is closed with respect to P-conjunctive parallel composition
(Burgin, 2010). Thus, Theorem 3.3 implies the following result.

Corollary 3.7. Classes GEAT of all general evolutionary Turing machines and BEAT of all basic
evolutionary Turing machines are linguistically equivalent.

The class IT of all inductive Turing machines is closed with respect to P-conjunctive parallel
composition (Burgin, 2010). Thus, Theorem 3.3 implies the following results.

Corollary 3.8. Classes GEAIT of all general evolutionary inductive Turing machines and BEAIT
of all basic evolutionary inductive Turing machines are linguistically equivalent.
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Corollary 3.9. Classes GEAITn of all general evolutionary inductive Turing machines of order
n and BEAITn of all basic evolutionary inductive Turing machines of order n are linguistically
equivalent.

The same is true for evolutionary limit Turing machines.

Corollary 3.10. Classes GEALT of all general evolutionary limit Turing machines and BEALT of
all basic evolutionary limit Turing machines are linguistically equivalent.

Obtained results allow us to solve the following problem formulated in (Burgin & Eberbach,
2010).

Problem 3.1. Are periodic evolutionary finite automata more powerful than finite automata?

To solve it, we need additional properties of periodic evolutionary finite automata.

Theorem 3.4. Any general (basic) periodic evolutionary finite automaton F with the period k ą 1
is functionally equivalent to a periodic evolutionary finite automaton E with the period 1.

Proof. Let us consider an arbitrary basic periodic evolutionary finite automaton E “ tArts; t “
0, 1, 2, 3, ...u. By the definition of basic periodic evolutionary automata (cf. Section 2), the se-
quence tArts; t “ 0, 1, 2, 3, ...u of finite automata Arts is either finite or periodic, i.e., there is a
finite initial segment of this sequence such that the whole sequence is formed by infinite repetition
of this segment. Note that finite sequences are also treated as periodic (Burgin & Eberbach, 2010).
When the sequence tArts; t “ 0, 1, 2, 3, ...u of automata Arts from K is finite, then by Theorem 3.2,
the evolutionary machine E is functionally equivalent to a finite automaton AE. By the definition
of periodic evolutionary automata, AE is a periodic evolutionary finite automaton with the period
1. Thus, in this case, theorem is proved.

Now let us assume that the sequence tArts; t “ 0, 1, 2, 3, ...u of automata Arts is infinite. In this
case, there is a finite initial segment H “ tArts; t “ 0, 1, 2, 3, ..., nu of this sequence such that the
whole sequence is formed by infinite repetition of this segment H. By the definition of bounded
basic evolutionary automata (cf. Section 2), H is a basic n-level evolutionary finite automaton.
Then by Theorem 3.1 from (Burgin & Eberbach, 2010), there is a finite automaton AH functionally
equivalent to H. Thus, the evolutionary machine E is functionally equivalent to the basic periodic
evolutionary finite automaton B “ tBrts; t “ 0, 1, 2, 3, ...u in which all automata Brts “ AH for all
t “ 0, 1, 2, 3, ... Thus, B is a basic periodic evolutionary finite automaton with the period 1. This
concludes the proof for basic periodic evolutionary finite automata.

Now let us consider an arbitrary general periodic evolutionary finite automaton E “ tArts; t “
0, 1, 2, 3, ...u. By the definition of general periodic evolutionary automata (cf. Section 2), the se-
quence tArts; t “ 0, 1, 2, 3, ...u of finite automata Arts is either finite or periodic, i.e., there is a
finite initial segment of this sequence such that the whole sequence is formed by infinite repetition
of this segment.

At first, we show that when the sequence tArts; t “ 0, 1, 2, 3, ...u of automata Arts from K is
finite, i.e., E “ tArts; t “ 0, 1, 2, 3, ..., nu, then the evolutionary machine E is functionally equiv-
alent to a finite automaton AE . It is possible to assume that the automata Arts use transmission
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by the output when the automaton Arts uses two more symbols uup and udw in its output alphabet,
giving one of these symbols in its output in addition to the regular output Xrt ` 1s, i.e., the output
has the form pw, uupq or pw, udwq. If the second part of the output is uup , then Art ` 1s sends the
output generation Xrt ` 1s to Art ` 1s. If the second part of the output is udw, then Art ` 1s sends
the output generation Xrt ` 1s to Art ´ 1s.

We change all automata Arts to the automata Crts in the following way. If tq0, q1, q2, ..., qku is
the set of all states of the automaton Arts, then we take tqt,0, qt,1, qt,2, ..., qt,ku as the set of all states
of the automaton Crts pt “ 0, 1, 2, ..., nq and in the transition rules of Crts, we change each ql to
qt,l. In addition, we change the symbols uup and udw to the symbols ut,up and ut,dw in the alphabet
and in the transition rules of Crts.

By construction, the new system AE “ tCrts; t “ 0, 1, 2, 3, ..., nu is a finite automaton function-
ally equivalent to the general periodic evolutionary finite automaton E “ tArts; t “ 0, 1, 2, 3, ..., nu.
Then by the definition of periodic evolutionary automata (cf. Section 2), the automaton AE is a
general periodic evolutionary finite automaton with the period 1. Thus, in the finite case, theorem
is proved.

Now let us assume that the sequence tArts; t “ 0, 1, 2, 3, ...u of automata Arts is infinite. In this
case, there is a finite initial segment H “ tArts; t “ 0, 1, 2, 3, ..., nu of this sequence such that the
whole sequence is formed by infinite repetition of this segment H. By the definition of bounded
general evolutionary automata (cf. Section 2), H is a general n-level evolutionary finite automaton.
Then as we have already proved, there is a finite automaton AH functionally equivalent to H. Thus,
the evolutionary machine E is functionally equivalent to the general periodic evolutionary finite
automaton B “ tBrts; t “ 0, 1, 2, 3, ...u in which all automata Brts “ AH for all t “ 0, 1, 2, 3, ...
Thus, B is a general periodic evolutionary finite automaton with the period 1. This concludes the
proof for general periodic evolutionary finite automata. Theorem is proved.

Functional equivalence implies linguistic equivalence (Burgin, 2010). Thus, Theorem 3.4 im-
plies the following result.

Corollary 3.11. Any general (basic) periodic evolutionary finite automaton F with the period
k ą 1 is linguistically equivalent to a periodic evolutionary finite automaton E with the period 1.

As a periodic evolutionary finite automaton F with the period 1 consists of multiple copies of
the same finite automaton, we have the following results.

Theorem 3.5. Any basic periodic evolutionary finite automaton F is linguistically equivalent to a
finite automaton.

Proof. By Theorem 3.4, any basic periodic evolutionary finite automaton F with the period k ą 1
is functionally equivalent to a basic periodic evolutionary finite automaton E with the period 1. It
means that all levels in the evolutionary finite automaton E are copies of the same finite automaton.
As a finite automaton accepts (computes) a regular language (Hopcroft et al., 2001), the language
of the evolutionary finite automaton E is also regular. As the evolutionary finite automaton F is
linguistically equivalent to the automaton E, the language L of the evolutionary finite automaton
F is also regular. Then there is a finite automaton D that accepts (computes) L (Hopcroft et al.,
2001). Thus, the evolutionary finite automaton F is linguistically equivalent to the finite automaton
D. Theorem is proved.
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Corollary 3.12. Basic periodic evolutionary finite automata have the same accepting power as
finite automata.

Theorem 3.6. Any general periodic evolutionary finite automaton E is equivalent to a one-dimensional
cellular automaton.

Proof. By Theorem 3.4, any general periodic evolutionary finite automaton G with the period
k ą 1 is functionally equivalent to a general periodic evolutionary finite automaton E with the
period 1. By definition, E is a sequence of copies of the same finite automaton, which each of
them is connected with two its neighbors, and this is exactly a one-dimensional cellular automaton
(Trahtenbrot, 1974).

At the same time, taking a finite automaton A with a feedback that connects the automaton out-
put with the automaton input, we see that A can simulate a periodic evolutionary finite automaton
E with the period 1 because in E all level automata are copies of the same finite automaton.

In the theory of cellular automata, it is proved that for any Turing machine T, there is a cel-
lular automaton functionally equivalent to T (Trahtenbrot, 1974). Thus, Theorem 3.6 implies the
following result.

Corollary 3.13. General periodic evolutionary finite automata have the same accepting power as
Turing machines.

Consequently, we have the following result.

Corollary 3.14. General periodic evolutionary finite automata have more accepting power than
basic periodic evolutionary finite automata and than finite automata.

Note that we cannot apply Theorem 3.2 to periodic evolutionary finite automata because the
general evolutionary machine constructed in the proof of this theorem is not periodic.

These results also allow us to solve Problem 4 from (Burgin & Eberbach, 2010).

Problem 3.2. What class of languages is generated/accepted by periodic evolutionary finite au-
tomata?

Namely, we have the following results.

Corollary 3.15. The class of languages generated/accepted by basic periodic evolutionary finite
automata coincides with regular languages.

Corollary 3.16. The class of languages generated/accepted by general periodic evolutionary finite
automata coincides with recursively enumerable languages.

Note that for unrestricted evolutionary finite automata results of Theorems 3.5, 3.6 and their
corollaries are not true. Namely, we have the following result.

Theorem 3.7. The class GEAFA of general unrestricted evolutionary finite automata and the class
BEAFA of basic unrestricted evolutionary finite automata have the same accepting power.
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Proof. Indeed, as it is demonstrated in (Eberbach & Burgin, 2007), basic unrestricted evolutionary
finite automata can accept any formal language. In particular, they accept any language that gen-
eral unrestricted evolutionary finite automata accept. As general unrestricted evolutionary finite
automata are more general than basic unrestricted evolutionary finite automata, the class of the lan-
guages accepted by the former automata is, at least, as big as the class of the languages accepted
by the latter automata. Thus, these classes coincide, which means that the class of all general
unrestricted evolutionary finite automata and the class of all basic unrestricted evolutionary finite
automata have the same accepting power.

The results from this paper show that in some cases, general evolutionary machines are more
powerful than basic evolutionary machines, e.g., for all periodic evolutionary finite automata,
while in other cases, it is not true, e.g., for all evolutionary finite automata, general and basic
evolutionary finite automata have the same computing power. There are similar results in the the-
ory of classical automata and algorithms. For instance, deterministic and nondeterministic finite
automata have the same accepting power. Deterministic and nondeterministic Turing machines
have the same accepting power. However, nondeterministic pushdown automata have more ac-
cepting power than deterministic pushdown automata.

4. Conclusion

We started our paper with a description of Turings unorganized machines (u-machines) that
were supposed to work under the control of some kind of genetic algorithms (note that Turing
never formally defined a genetic algorithm or evolutionary computation). This was our inspira-
tion. However, our evolutionary machines are closely related to conventional Turing machines,
as well as to the subsequent definitions of genetic algorithms from 1960-80s. This means that
level automata of evolutionary machines are finite automata, pushdown automata or Turing ma-
chines rather than more primitive NAND logic gates of u-machines. We have introduced several
classes of evolutionary machines, such as bounded, periodic and recursively generated evolution-
ary machines, and studied relations between these classes, giving an interpretation of how modern
u-machines could be formalized and how plentiful their computations and types are. Of course,
we will never know whether Turing would accept our definitions of evolutionary automata and
formalization of evolutionary computation.

In this paper, we introduced two fundamental classes of evolutionary machines/automata: gen-
eral evolutionary machines and basic evolutionary machines, exploring relations between these
classes. Problems of generation of evolutionary machines/automata by automata from a given
class are also studied. Examples of such evolutionary machines are evolutionary Turing machines
generated by Turing machines and evolutionary inductive Turing machines generated by inductive
Turing machines.

There are open problems important for the development of EC foundations.

Problem 4.1. Can an inductive Turing machine of the first order simulate an arbitrary periodic
evolutionary inductive Turing machine of the first order?

Problem 4.2. Are there necessary and sufficient conditions for general evolutionary machines to
be more powerful than basic evolutionary machines?
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In (Burgin, 2001), topological computations are introduced and studied. This brings us to the
following problem.

Problem 4.3. Study topological computations for evolutionary machines.

As we can see from results of this paper, in some cases general evolutionary machines are
more powerful than basic evolutionary machines, e.g., for all evolutionary finite automata, while
in other cases, it is not true, e.g., for all periodic evolutionary machines.

Note that the approach presented in this paper has an enormous space to grow. First of all,
similar to natural evolution, our evolutionary automata/machines are not static, i.e., we cover the
case of evolution of evolution (currently explored in a very limited way in evolution strategies
by changing the σ parameter in mutation). Secondly, our evolutionary finite automata cover al-
ready both evolutionary algorithms (i.e., genetic algorithms, evolutionary programming, evolution
strategies and genetic programming)and swarm intelligence algorithms, being simple iterative al-
gorithms of the class or regular languages/finite automata. In the evolutionary automata approach,
there is a room to grow to invent new types of evolutionary and swarm intelligence algorithms
of the class of evolutionary pushdown automata, evolutionary Turing machines or evolutionary
inductive Turing machines.
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1. Introduction

Let N,R,C be the sets of all natural, real, and complex numbers respectively. We denote

2ω “ tx “ pxi jq : xi j P R or Cu,

showing the space of all real or complex sequences.

Definition 1.1. A double sequence of complex numbers is defined as a function X : Nˆ NÑ C.
We denote a double sequence as pxi jq where the two subscripts run through the sequence of natural
numbers independent of each other. A number aP C is called double limit of a double sequence
pxi jq if for every ε ą 0 there exists some N “ Npεq P N such that,

|pxi jq ´ a| ă ε, for all i, j ě N, (1.1)

(see (Habil, 2006)). Let l8 and c denote the Banach space bounded and convergent sequences,
respectively, with norm }x}8 “ sup

k
|xk|. Let v be denote the space of sequences of bounded

variation. That is,

v “ tx “ pxkq :
8
ÿ

k“0

|xk ´ xk´1| ă 8, x´1 “ 0u (1.2)

˚Corresponding author
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ameera173a@gmail.com (Sameera A.A. Abdullah), mhddaudkhan2@gmail.com (M. Daud Khan)
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where v is a Banach space normed by }x} “
8
ř

k“0
|xk ´ xk´1| (see (Mursaleen, 1983)). Let σ be an

injective mapping of the set of the positive integers into itself having no finite orbits. A continuous
linear functional φ on l8 is said to be an invariant mean or σ-mean if and only if:
1. φpxq ě 0 where the sequence x “ pxkq has xk ě 0 for all k,
2. φpeq “ 1 where e={1,1,1,1,......},
3. φpxσpnqq “ φpxq for all x P l8.

If x “ pxkq, write T x “ pT xkq “ pxσpkqq. It can be shown that

Vσ “ tx “ pxkq : lim
mÑ8

tm,kpxq “ L uniformly in k, L “ σ´ lim xu (1.3)

where mě 0, k ą 0.

tm,kpxq “
xk ` xσpkq ` .......` xm

σpkq
m` 1

and t´1,k “ 0, (1.4)

where σmpkq denote the mth-iterate of σpkq at k . In this case σ is the translation mapping,that is,
σpkq “ k ` 1, σ-mean is called a Banach limit and Vσ, the set of bounded sequences of all whose
invariant means are equal, is the set of almost convergent sequences. The special case of (1.4) in
which σpkq “ k ` 1 was given by (Lorentz, 1948), and that the general result can be proved in a
similar way. It is familiar that a Banach limit extends the limit functional on c in the sense that

φpxq “ lim x, for all x P c. (1.5)

Theorem 1.1. A σ-mean extends the limit functional on c in the sense that φpxq “ lim x for all
x P c if and only if σ has no finite orbits. That is, if and only if for all k ě 0, j ě 1, σ jpkq ‰ k,
(see (Khan, 2008))

Put
φm,kpxq “ tm,kpxq ´ tm´1,kpxq, (1.6)

assuming that t´1,kpxq “ 0. A straight forward calculation shows that (Mursaleen, 1983),

φm,kpxq “

#

1
mpm`1q

řm
j“1 Jpx j

σpkq ´ x j´1
σ pkqq, if m ě 1

xk, if m “ 0.

For any sequence x,y and scalar λ, we have φm,kpx ` yq “ φm,kpxq ` φm,kpyq and φm,kpλxq “
λφm,kpxq.

Definition 1.2. A sequence x P l8 is of σ-bounded variation if and only if:
(i)
ř

|φm,kpxq| converges uniformly in k,
(ii) lim

mÑ8
tm,kpxq, which must exist, should take the same value for all k.

We denote by BVσ, the space of all sequences of σ-bounded variation (see (Khan, 2008)):

BVσ “ tx P l8 :
ÿ

m

|φm,kpxq| ă 8, uniformly in ku.
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Theorem 1.2. BVσ is a Banach space normed by

}x} “ sup
k

8
ÿ

m“0

|φm,kpxq|, (1.7)

(see (Khan & Ebadullah, 2012)).
Subsequently invariant mean studied by (Mursaleen, 1983), (Ahmad & Mursaleen, 1988), (Raimi
& A., 1963), (Khan & Ebadullah, 2011), (Khan & Ebadullah, 2012), (Schaefer, 1972) and many
others.

Definition 1.3. A function M : r0,8q ÝÑ r0,8q is said to be an Orlicz function if it satisfies the
following conditions;
(i)M is continuous ,convex and non-decreasing,
(ii)Mp0q “ 0,Mpxq ą 0 and Mpxq Ñ 8 as x Ñ 8.

Remark. (see (Tripathy & Hazarika, 2011)). (i) If the convexity of an Orlicz function is replaced
by Mpx` yq ď Mpxq ` Mpyq, then this function is called Modulus function.
(ii)If M is an Orlicz function , then MpλXq ď λMpxq for all λ with 0 ă λ ă 1.

An Orlicz function M is said to satisfy 42-condition for all values of u if there exists a constant
K ą 0 such that MpLuq ď KLMpuq for all values of Lą 1(see (Tripathy & Hazarika, 2011)).
(Lindenstrauss & Tzafriri, 1971) used the idea of an Orlicz function to construct the sequence
space lM “ tx P w :

ř8

k“1 Mp |xk|

ρ
q ă 8 for some ρ ą 0}. The space l8 becomes a Banach space

with the norm

}x} “ inf
!

ρ ą 0 :
8
ÿ

k“1

M
´

|xk|

ρ

¯

ď 1
)

, (1.8)

which is called an Orlicz sequence space. The space lM is closely related to the space lp which is
an Orlicz sequence space with Mptq “ tp for 1 ď p ă 8. Later on, some Orlicz sequence spaces
were investigated by (Hazarika & Esi, 2013), (Maddox, 1970), (Parshar & Choudhary, 1994),
(Bhardwaj & Singh, 2000), (Et, 2001), (Tripathy & Hazarika, 2011) and many others. Initially,
as a generalization of statistical convergence, the notation of I-convergence was introduced and
studied by P. Kostyrko and Wilczynski(Kostyrko et al., 2000). Later on, it was studied by Hazarika
and Esi (Hazarika & Esi, 2013) and many others.

Definition 1.4. A double sequence x “ xi j P 2ω is said to be I-convergent to a number L if for
every ε ą 0, we have

tpi, jq P Nˆ N : |xi j ´ L| ě εu P I. (1.9)

In this case, we write I ´ lim xi j “ L.

Definition 1.5. Let X be a non empty set. Then, a family of sets I Ď 2X is said to be an Ideal in X
if
(i)φ P I;
(ii)I is additive; that is,A, B P I ñ AY B P I;
(iii)I is hereditary that is,A P I, B Ď A ñ B P I.
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An Ideal I Ď 2X is called non trivial if I ‰ 2X. A non trivial ideal I Ď 2X is called admissible if
ttxu : x P Xu Ď I.
A non trivial ideal I is maximal if there cannot exist any non trivial ideal J ‰ I containing I as a
subset.

Definition 1.6. A non empty family of sets F Ď 2X is said to be filter on X if and only if
(i)H R F ;
(ii) for, A, B P F we have AX B P F ;
(iii) for each AP F and A Ď B implies B P F . For each ideal I, there is a filter F pIq corresponding
to I. That is,

F pIq “ tK Ď N : Kc
P Iu, whereKc

“ N ´ K. (1.10)

Definition 1.7. A double sequence pxi jq P 2ω is said to be I - null if L=0. In this case, we write

I ´ lim xi j “ 0. (1.11)

Definition 1.8. A double sequence pxi jq P 2ω is said to be I-cauchy if for every ε ą 0 there exists
numbers m “ mpεq, n “ npεq such that

tpi, jq P Nˆ N : |xi j ´ xmn| ě εu P I. (1.12)

Definition 1.9. A double sequence pxi jq P 2ω is said to be I-bounded if there exists M ą 0 such
that

tpi, jq P Nˆ N : |xi j| ą Mu. (1.13)

Definition 1.10. A double sequence space E is said to be solid or normal if xi j P E implies that
pαi jxi jq P E for all sequence of scalars pαi jq with |αi j| ă 1 for all pi, jq P Nˆ N.

Definition 1.11. A double sequence space E is said to be symmetric if pxπpiqπp jqq P E whenever
pxi jq P E, where πpiq and πp jq is a permutation on N.

Definition 1.12. A double sequence space E is said to be sequence algebra if pxi jyi jq P E whenever
pxi jq, pyi jq P E.

Definition 1.13. A double sequence space E is said to be convergence free if pyi jq P E whenever
pxi jq P E and xi j “ 0 implies yi j “ 0, for all pi, jq P Nˆ N.

Definition 1.14. Let K=tpni, k jq : i, j P N; n1 ă n2 ă n3 ă ....and k1 ă k2 ă k3 ă ....u Ď N ˆ N
and E be a double sequence space.A K-step space of E is a sequence space

λE
k “ tpαi jxi jq : pxi jq P Eu.

Definition 1.15. A cannonical preimage of a sequence pxnik jq P E is a sequence pbnkq P E defined
as follows

bn,k “

#

an,k, for n , k P K
0, otherwise.
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Definition 1.16. A sequence space E is said to be monotone if it contains the cannonical preimages
of all its stepspaces.

Remark. If I “ I f , the class of all finite subsets of N. Then I is an admissible ideal in N and I f

convergence coincides with the usual convergence.

Definition 1.17. If I “ Iδ “ tA Ď N : δpAq “ 0u. Then I is an admissible ideal in N and we call
the Iδ -convergence as the logarithmic statistical convergence.

Definition 1.18. If I “ Id “ tA Ď N : dpAq “ 0u. Then,I is an admissible ideal in N and we call
the Id-convergence as asymptotic statistical covergence.

Lemma 1.1. ((Tripathy & Hazarika, 2011)). Every solid space is monotone.

Lemma 1.2. Let F pIq and M Ď N. If M R I, then M X K R I.

Lemma 1.3. If I Ď 2N and M Ď N.If M R I, then M X N R I.

2. Main Results

Recently (Khan & Khan, 2013) introduced and studied the following sequence space. For
m,ně 0

2BV I
σ “ tx “ pxi jq P 2ω : tpi, jq P Nˆ N : |φmni jpxq ´ L| ě εu P I, f or some L P Cu. (2.1)

In this article we introduce the following double sequence spaces. For m,ně 0

2BV I
σpMq “ tx “ pxi jq P 2ω : I ´ lim Mp

|φmni jpxq ´ L|
ρ

q “ 0, f or some L P C, ρ ą 0u (2.2)

2p0BV I
σpMqq “ tx “ pxi jq P 2ω : I ´ lim Mp

|φmni jpxq|
ρ

q “ 0, ρ ą 0u, (2.3)

2p8BV I
σpMqq “ tx “ pxi jq P 2ω : tpi, jq P Nˆ N D k ą 0 s.t Mp

|φmni jpxq|
ρ

q ě ku P I, ρ ą 0u

(2.4)

2p8BVσpMqq “ tx “ pxi jq P 2ω : sup Mp
|φmni jpxq|

ρ
q ă 8, ρ ą 0u. (2.5)

We also denote
2MI

BVσpMq “2 BV I
σpMq X 2p8BVσpMqq

and
2p0MI

BVσpMqq “ 2p0BV I
σpMqq X 2p8BVσpMqq.

Theorem 2.1. For any Orlicz function M, the classes of double sequence 2p0BV I
σpMqq,2BV I

σpMq,
2p0MI

BVσpMqq, and 2MI
BVσpMq are linear spaces.
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Proof. Let x “ pxi jq, pyi jq P 2BV I
σpMq be any two arbitrary elements, and let α, β are scalars.

Now, since pxi jq, pyi jq P 2BV I
σpMq. Then this implies that D some positive numbers L1, L2 P C

and ρ1, ρ2 ą 0 such that,

I ´ lim
i, j

M
´ |φmni jpxq ´ L1|

ρ1

¯

“ 0, (2.6)

I ´ lim
i, j

M
´ |φmni jpyq ´ L2|

ρ2

¯

“ 0. (2.7)

ñ for any given ε ą 0, the sets

ñ tpi, jq P Nˆ N : M
´ |φmni jpxq ´ L1|

ρ1

¯

ě
ε

2
u P I, (2.8)

tpi, jq P Nˆ N : M
´ |φmni jpyq ´ L2|

ρ2

¯

ě
ε

2
u P I. (2.9)

Now let

A1 “ tpi, jq P Nˆ N : M
´ |φi jpxq ´ L1|

ρ1

¯

ă
ε

2
u P I, (2.10)

A2 “ tpi, jq P Nˆ N : M
´ |φi jpyq ´ L2|

ρ2

¯

ă
ε

2
u P I. (2.11)

be such that Ac
1, A

c
2 P I. Let ρ3 “ maxt2|α|ρ1 , 2|β|ρ2u

Since M is non decreasing and convex function,we have

Mp
|φmni jpαx` βyq ´ pαL1 ` βL2q|

ρ3
q “ Mp

|pαφmni jpxq ` βφmni jpyqq ´ pαL1 ` βL2q|

ρ3
q

“ Mp |αpφmni jpxq´L1q`βpφmni jpyq´L2q|

ρ3
q

ď Mp |α||φmni jpxq´L1|

ρ3
q ` Mp |β||φmni jpyq´L2|

ρ3
q

ď Mp |α||φmni jpxq´L1|

ρ1
q ` Mp |β||φmni jpyq´L2|

ρ2
q

ď ε
2 `

ε
2 “ ε

ñ tpi, jq P Nˆ N : Mp |φmni jpαx`βyq´pαL1`βL2q|

ρ3
q ą εu P I

implies that , I ´ lim
i, j

Mp |φmni jpαx`βyq´pαL1`βL2q|

ρ3
q “ 0.

Thus αpxi jq ` βpyi jq P 2BV I
σpMq. As pxi jq and pyi jq are two arbitrary element then αxi j `

βyi j P 2BV I
σpMq for all xi j, yi j P 2BV I

σpMq, for all scalars α, β . Hence 2BV I
σpMq is linear

space. The proof for other spaces will follow similarly.

Theorem 2.2. Let M1,M2 be two Orlicz functions and statisfying 42 condition ,then
(a)XpM2q Ď XpM1M2q

(b)XpM1q X XpM2q Ď XpM1 ` M2q for X “ 2BV I
σ, 2p0BV I

σq, 2MI
BVσ , 2p0MI

BVσq.
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Proof. (a)Let x “ pxi jq P 2p0BV I
σpM2qq be an arbitrary element

ñ ρ ą 0 such that

I ´ lim M2p
|φmni jpxq|

ρ
q “ 0. (2.12)

Let ε ą 0 and choose δ with 0 ă δ ă 1 such that M1ptq ă ε for 0 ă t ď δ.
Write yi j “ M2p

|φmni jpxq|
ρ

q and
consider,

lim
i j

M1pyi jq “ lim
yi jďδ,i, jPN

M1pyi jq ` lim
yi jąδ,i, jPN

M1pyi jq. (2.13)

Now, since M1 is an Orlicz function so we have M1pλxq ď λM1pxq, 0 ă λ ă 1.
Therefore we have,

lim
yi jďδ, i, jPN

M1pyi jq ď M1p2q lim
yi jďδ, i, jPN

pyi jq. (2.14)

For yi j ą δ, we have yi j ă
yi j

δ
ă 1 ` yi j

δ
. Now, since M1 is non-decreasing and convex, it follows

that,

M1pyi jq ă M1p1`
yi j

δ
q ă

1
2

M1p2q `
1
2

M1p
2yi j

δ
q. (2.15)

Since M1 satisfies the 42- condition we have,

M1pyi jq ă
1
2

K
yi j

δ
M1p2q `

1
2

KM1p
2yi j

δ
q

ă
1
2

K
yi j

δ
M1p2q `

1
2

K
yi j

δ
M1p2q

“ K
yi j

δ
M1p2q. (2.16)

This implies that,
M1pyi jq ă K

yi j

δ
M1p2q. (2.17)

Hence,we have
lim

yi jąδ, i, jPN
M1pyi jq ď maxt1,Kδ´1M1p2q lim

yi jąδ,i, jPN
pyi jqu. (2.18)

Therefore from (2.12),and (2.13) we have

I ´ lim
i j

M1pyi jq “ 0.

ñ I ´ lim
i j

M1M2p
|φmni jpxq|

ρ
q “ 0.

This implies that x “ pxi jq P 2p0BV I
σpM1M2qq.Hence XpM2q Ď XpM1M2q for X “ 2p0BV I

σq. The
other cases can be proved in similar way.
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(b) Let x “ pxi jq P 2p0BV I
σpM1qq X 2p0BV I

σpM2qq. Let ε ą 0 be given.Then Dρ ą 0 such
that,

I ´ lim M1p
|φmni jpxq|

ρ
q “ 0, (2.19)

and

I ´ lim M2p
|φmni jpxq|

ρ
q “ 0. (2.20)

Therefore

I ´ lim
i j
pM1 ` M2qp

|φmni jpxq|
ρ

q “ I ´ lim
i j

M1p
|φmni jpxq|

ρ
q ` I ´ lim

i j
M2p

|φmni jpxq|
ρ

q,

from eqs (2.19) and (2.20)

ñ I ´ lim
i j
pM1 ` M2qp

|φmni jpxq|
ρ

q “ 0.

we get
x “ pxi jq P 2p0BV I

σpM1 ` M2qq.

Hence we get 2p0BV I
σpM1qq X 2p0BV I

σpM2qq Ď 2p0BV I
σpM1 ` M2qq.

For X “ 2BV I
σ, 2p0MI

BVσq, 2pMI
BVσq the inclusion are similar.

Corollary 2.1. X Ď XpMq for X “ 2pBV I
σq, 2BV I

σ , 2p0MI
BVσq and 2MI

BVσ .

Proof. For this let Mpxq “ x, for all x “ pxi jq P X. Let us suppose that x “ pxi jq P 2p0BV I
σq.

Then for any given ε ą 0 we have

tpi, jq P Nˆ N : |φmni jpxq| ě εu P I.

Now let
A1 “ tpi, jq P Nˆ N : |φmni jpxq| ă εu P I,

be such that Ac
1 P I. Now consider , for ρ ą 0,

Mp
|φmni jpxq|

ρ
q “

|φmni jpxq|
ρ

ă
ε

ρ
ă ε.

ñ I ´ lim Mp |φmni jpxq|
ρ

q “ 0, which implies that x “ pxi jq P 2p0BV I
σpMqq. Hence we have

2p0BV I
σq Ď 2p0BV I

σpMqq.

ñ X Ď XpMq

and the other cases will be proved similarly.
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Theorem 2.3. For any Orlicz function M, the spaces 2p0BV I
σpMqq and 2p0MI

BVσq are solid and
monotone.

Proof. Here we consider 2p0BV I
σq and for 2p0BV I

σpMqq the proof shall be similar.
Let x “ xi j P 2p0BV I

σpMqq be an arbitrary element ,ñ Dρ ą 0 such that

I ´ lim
i j

Mp
|φmni jpxq|

ρ
q “ 0.

Let αi j be a sequence of scalars with |αi j| ď 1 for i, j P N.
Now, M is an Orlicz function. Therefore

Mp
|αi jφmni jpxq|

ρ
q “ Mp

|αi j||φmni jpxq|
ρ

q

ď |αi j|Mp
|φmni jpxq|

ρ
q

ñ Mp |αi jφmni jpxq|
ρ

q ď Mp |φmni jpxq|
ρ

q for all i, j P N.

ñ I ´ lim
i j

Mp
|αi jφmni jpxq|

ρ
q “ 0.

Thus we have pαi jxi jq P 2p0BV I
σpMqq. Hence 2p0BV I

σpMqq is solid. Therefore 2p0BV I
σpMqq is

monotone. Since every solid sequence space is monotone.

Theorem 2.4. For any Orlicz function M,the space 2BV I
σpMq and 2pMBV I

σ
pMqq are neither solid

nor monotone in general.

Proof. Here we give counter example for establishment of this result. Let X “ 2BV I
σ and 2pMBV I

σ
q.

Let us consider I “ I f and Mpxq “ x, for all x “ xi j P r0,8q. Consider,the K-step space XKpMq
of XpMq defined as follows:
Let x “ pxi jq P XpMq and y “ pyi jq P XKpMq be such that pyi jq “ pxi j), if i,j is even and pyi jq “ 0,
otherwise.
Consider the sequence pxi jq defined by pxi jq “ 1 for all i, j P N. Then x “ pxi jq P 2BV I

σpMq and
2MBV I

σ
pMq, but K-step space preimage does not belong to BV I

σpMq and 2MI
BVσpMq. Thus 2BV I

σpMq
and 2MI

BVσpMq are not monotone and hence they are not solid.

Theorem 2.5. For an Orlicz function M, the spaces 2BV I
σpMq and 2BV I

σpMq are sequence algebra.

Proof. Let x “ pxi jq, y “ pyi jq P 2p0pBV I
σpMqqq be any two arbitrary elements. ñ ρ1, ρ2 ą 0 such

that,

I ´ lim
i j

Mp
|φmni jpxq|

ρ1
q “ 0,

and

I ´ limi jMp
|φmni jpyq|

ρ2
q “ 0.
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Let ρ “ ρ1ρ2 ą 0. Then

Mp
|φmni jpxq φmni jpyq|

ρ
q “ Mp

|φmni jpxq φmni jpyq|
ρ1ρ2

q

ñ I ´ lim
i j

Mp
|φmni jpxq φmni jpyq|

ρ
q “ 0.

Therefore we have pxi jyi jq P 2p0BV I
σpMqq. Hence 2p0BV I

σpMqq is sequence algebra.

Theorem 2.6. For any Orlicz function M, the spaces 2p0BV I
σpMqq and 2BV I

σpMq are not conver-
gence free.

Proof. To show this let I “ I f and Mpxq “ x, for all x “ r0,8q. Now consider the double
sequence pxi jq, pyi jq which defined as follows:

xi j “
1

i` j
and yi j “ i` j, @i, j P N.

Then we have pxi jq belong to both 2p0BV I
σpMqq and 2BV I

σpMq, but pyi jq does not belong to 2p0BV I
σpMqq

and 2BV I
σpMq. Hence, the spaces 2p0BV I

σpMqq and 2BV I
σpMq are not convergence free.

Theorem 2.7. Let M be an Orlicz function. Then

2p0BV I
σpMqq Ď 2BV I

σpMq Ď 2p8BV I
σpMqq.

Proof. For this let us consider x “ pxi jq P 2p0BV I
σpMqq. It is obvious that it must belong to

2BV I
σpMq. Now consider

M
´ |φmni jpxq ´ L|

ρ

¯

ď Mp
|φmni jpxq|

ρ
q ` M

´

|L|
ρ

¯

.

Now taking the limit on both sides we get

I ´ limi jMp
|φmni jpxq ´ L|

ρ
q “ 0.

Hence x “ pxi jq P 2BV I
σpMq.

Now it remains to show that 2pBV I
σpMqq Ď 2p8BV I

σpMqq. For this let us consider x “ pxi jq P 2BV I
σpMq ñ

Dρ ą 0 s.t

I ´ lim
i j

M
´ |φmni jpxq ´ L|

ρ

¯

“ 0.

Now consider

M
´ |φmni jpxq|

ρ

¯

ď M
´ |φmni jpxq ´ L|

ρ

¯

` M
´

|L|
ρ

¯

.

Now taking the supremum on both sides we get

sup
i j

Mp
|φmni jpxq|

ρ
q ă 8.

Hence x “ pxi jq P 2p8BV I
σpMqq. l
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