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Abstract

In this paper, firstly, the waves P and T in ECG of Kkittens and adult cats were converted to fuzzy sets. After,
using to entropy definition for fuzzy sets, we have assigned an entropy to waves P and T for kittens and adult cats.
Also, using to some new formulates, the graphical representation of waves P and T for normal or diseased heart of
cats were given.
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1. Introduction

The theoretical and practical applications of fuzzy sets have increased considerably since
Zadeh’s paper, (see (Abdollahian et al., 2010) ; (Bilgin, 2003); (Dhar, 2013); (Diamond & Kloe-
den, 1994); (Goetschel & Voxman, 1986); (Li et al., 1995); (Iwamoto & et al, 2007); (Kosko,
1986); (Matloka, 1986); Tong et al. (2007); (Zadeh, 1965) and (Zararsiz & Sengoniil, 2013)). In
medicine, cardiologists are try to predetermine some heart diseases from electrocardiographs and
this processes is also valid for veterinary medicine. Some fine details may not be seen in graphical
representation of the waves electrocardiographs of human or animals. It is a fact that, long time
can be spent for interpreting electrocardiographs (shortly; ECG) and sometimes small but impor-
tant details can be unnoticed or ECG’s can be misleading for junior vet or cardiologists. In this
paper, by using entropy concept, we have obtained numerical values for ECGs of kittens and adult
cats. These numerical values are the best way to observe fine details in the waves such as P, POR
complex and 7. The numerical values are also very clear and can be easily interpreted for any
person according to graphical representation of ECG’s. It will be seen that these computations are
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completely different than computations of (Czogala & Leski, 2000). Let us give some background
information on fuzzy sets and entropy of the fuzzy sets.

Let 2" be nonempty set. According to Zadeh, a fuzzy subset of 2" is a nonempty subset
{(x,u(x)) : x € Z'}of Z x]0, 1] for some function u : 2~ — [0, 1], (Diamond & Kloeden, 1994).
Consider a function u : R — [0, 1] as a subset of a nonempty base space R. The function u is
called membership function of the fuzzy set u.

Furthermore, we know that shape similarity of the membership functions does not reflect the
conception of itself, but it will be used for examining the context of the membership functions.
Whether a particular shape is suitable or not can be determined only in the context of a particular
application. However, that many applications are not overly sensitive to variations in the shape.
In such cases, it is convenient to use a simple shape, such as the triangular shape of membership
function. Let us define fuzzy set u on the set R with membership function as follows:

m ”uo(x up), Xx € [uo, ur)

u(x) = - ZI(X—M1)+hu’ x € [ur,us] (1.1)
0, others

where the notations 4, denotes height of the fuzzy sets u. For brief, we write triple (uo, u; : hy, us)
for fuzzy set u. Notation .% be the set of the all fuzzy sets in the form u = (ug, u; : h,, uy) on the
R.

Define the function S as follows:
2

1
S:¥x7 >R, S(u,v)_mln —Z
max{h,, h,} 3

|t — vill. (1.2)
The function S is called similarity degree between the fuzzy sets u and v. If S(u,v) = 1
then we say that u is full similar to v or vice versa, we say that v is completely similar to u. If
0 < S(u,v) < 1 then we say that the fuzzy set u is S - similar to the fuzzy set v (or the fuzzy set v
is S - similar to the fuzzy set u), if S (u,v) < 0 we say that, u is not similar to v. Similar definitions
can be found in (Sridevi & Nadarajan, 2009) and (Y1ldiz & Sengoniil, 2014).
If we capture numerous ECG for any human or animal, it can be considered as a finite sequence

of ECG’s. Therefore we will give some definitions and properties about sequences of fuzzy sets.
The set

w(F) ={w) | u: N = F,ulk) = ") = ((ub, u} : hy, ud))) (1.3)

is called sequence of fuzzy sets. Any element of the set w(.#) is called sequences of fuzzy sets,
where uf, ut, ut € R, uf < ub < uf and the mean of notation u¥ : h, is the k" therm of the sequence
(u¥) takes highest membership degree at u} and this membership degree is equal to /. . If for all
k € N, h, = 1 then the set w(.%) turns into sequence set of fuzzy numbers and if uf, = u} = u} and
hu§ = 1 the set w(.%) turns in to ordinary sequence space of the real numbers, respectively.

An another important class of the sequence set of the fuzzy sets is defined by
O(F) = {(u) € w(F) | Tko € N,Vk > ko : u* = 0}. (1.4)

Clearly, the sequences of fuzzy sets can obtain by fuzzification of the term by term of sequence of
real numbers with a suitable method.
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Definition 1.1. Let us define the function . as follows:

inf{h, , h, }

S W F)XW(F) = R, L (uy,v,) = W

1 : : n 1
[1—53?;;mk—wnzﬂ. (1.5)

The function . is called similarity degree between sequences of fuzzy sets (u,) and (v,). If
< (u,,v,) = 1 then we say that (u,) is completely similar to the sequence (v,), if 0 < % (u,, v,) =
A < 1 then we say that the sequence (u,) is A- similar to the sequence (v,), if 4 < 0 we say that,
(u,,) is not similar to (v,).

In the fuzzy set theory, the fuzziness of a fuzzy set is a important matter and there are many
method to measure the fuzziness of a fuzzy set. At first, the fuzziness was thought to be the
distance between fuzzy set and its nearest nonfuzzy set. Later, the entropy was used instead of of
fuzziness (de Luca & Termini, 1972) and has received attention, recently (Wang & Chui, 2000).
Well, then what is the entropy?

Definition 1.2. (Zimmermann, 1991) Let u € .% and u(x) be the membership function of the fuzzy
set u and consider the function H : % — R*. If the function H satisfies conditions below,

1. H(u) = 0 iff u is crisp set,

2. H(u) has a unique maximum, if u(x) = 1, for all x € R

3. Foru,v € Z, if v(x) < u(x) for u(x) < 3 and u(x) < v(x) for u(x) > 3 then H(u) > H(v),
4. H(u) = H(u), where u¢ is the complement of the fuzzy set u

then the H(u) is called entropy of the fuzzy set u.

Let suppose that © = u(x) be membership function of the fuzzy set u and the function & :
[0, 1] — [0, 1] satisfies the following properties:

1. Monotonically increasing at [0, %] and decreasing [%, 1],
2. h(x) =0if x=0and h(x) = 1if x = 1.

The function 4 is called entropy function and the equality H(u(x)) = h(u(x)) holds for x € R.
Some well known entropy functions are given as follows:
hi(x) =4x(1 — x), ho(x) = —xInx — (1 — x) In(1 = x), h3(x) = min{2x, 2 — 2x} and

_ 2x, x€e[0,1]
hA”‘{za—@,xegj]'

Note that the function A, is the logistic function, 4, is called Shannon function and /5 is the tent
function.
Let 2 be a continuous universal set. The total entropy of the fuzzy set u on the 2" is defined

e(u) = f . h(u(x))p(x)dx (1.6)

where p(x) is the probability density function of the available data in .2~ (Pedrycz, 1994), (Pedrycz
& Gomide, 2007). If we take p(x) = 1 in the (1.6) then the e(u) is called entropy of the fuzzy set
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u. It is known that the value of e(u) is depend on support of the fuzzy set u. Let u be fuzzy set on
the set R with membership function (1.1), then we see that the total entropy of fuzzy set u is equal
to

e(u) = ch, — ghi)é’(u) (1.7)

for p(x) = ¢ and h = h;, where f(u) = max{x —y : x,y € {x € R: u(x) > 0}}. We know that
each fuzzy set or a fuzzy number correspond to the fuzzy thoughts in the idea of user. So, any
sequence of the fuzzy sets can be seen as sequence of thoughts or sequence fuzzy information.
This sequence of fuzzy information may contain an useful information or not contain an useful
information. But we can use terms of this sequence to obtain meaningful information from this
sequence.

Definition 1.3. Let / be an entropy function, (u*) be a sequence of fuzzy sets (or fuzzy thought)
and py(x) be probability density function of the available data in R for every k € N. Then sequence

e(u’) = f h(u*(x)) pi(x)dx (1.8)
xeR

is called total entropy sequence of the fuzzy sets (u¥). If the probability density function p,(x) = 1
is fix, for all k € N, then the (1.8) is called entropy sequence of the fuzzy sets u = ().

If we take u = (u¥) € w(F), pu(x) = ¢ € (0,1] and h(u) = h;(u) then from (1.8) we have
e(u") = (ci(2hy — ghﬁk)f(uk)), (1.9)

here and other places in the text, the notation 2hik denotes second power of the /. If we choose
the probability density functions pi(x) = ¢ € (0,1] for all kK € N and h, = 1 for all k € N in the
(1.9) then we see that e(u’) = 2ct(ub).

Let us suppose that u = (u*) be sequences of the fuzzy numbers (that is i = 1), h(u) = h;(u)
and pi(x) = ¢ = 1 € (0, 1] for all k € N. Then the entropy e(u*) of the sequence of fuzzy numbers
(") is equal to

e(u’) = gf(u"). (1.10)

Clearly, if £(u*) = 0 for every k € N then the sequence (u*) returns to sequence of real numbers.
In this case the entropy of the total entropy sequence is zero for sequences of real numbers. For
example, let u = (u¥) be ((1,1 : 1, 1)), then from (1.10) we obtain zeros sequence. Furthermore,
the entropy sequence (e;) can not be convergent but be bounded.

Definition 1.4. Let o/ = (a,;) be a lower triangular infinite matrix of real or complex numbers
and

Z o f WUk () pe(x)dx — E, n — oo, (1.11)

k xeR

The real number E is called total .<7-entropy of the sequence (u*) of fuzzy sets, if it exists.
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Definition 1.5. Let suppose that the u = (u*) be a sequence of fuzzy sets, py(x) = cx, (cx € (0,1])
for all k € N and

4
lim Z o f Rk () p(x)dx = lim Z i (Qh — ghik)f(uk) = E,. (1.12)
" xeR "%

€

The real number E| is called total .o/~ entropy according to entropy function /& and p;(x) = ¢, is
probability density functions of the sequence u = (u*) of fuzzy sets, and it is shown by T (u¥).

Letn,k € N, @ > —1, pi(x) = ¢ and (”_ﬁiz_l), (";“) are binomial confidence. Let us define

infinite matrices A = (a) and C* = (c7,) as follows:

n—k+a—1
I, 0<k<n Ca) g<k<n
i = . and ¢ =4 D :
0, otherwise 0 otherwise

If we write the matrices A and C“ instead of <7 in the expression (1.12) then we have

limZ f h(u () pr(x)dx = TAUb) (1.13)
n k=0 xeR
and
1 2 - - 1 . @
lim — (n k+C]: )f h(u' (X)) pre(x)dx = TS (), (1.14)
n ( n ) k=0 n-— xeR
respectively.

The expressions (1.13) and (1.14) are called A- total entropy and total Cesaro entropy of or-
der a of the sequence u = (u*) of fuzzy sets, according to probability density functions pi(x),
respectively. If we take @ = 1 and p(x) = ¢, from (1.14) we see that

| , 1 < 4
T () = lim — Z ce(2hy — §hif)f(uk) (1.15)
k=0

which is called Cesaro normalized entropy of order 1 (shortly, Cesaro entropy) of the sequence
u = (u*) of fuzzy sets.
It is easily prove that, if

1 ¢ 4
7€ () = lim —— kzz(; ex(2hyy = )l = a
then

Clyky 1 s N\ 4, ky _
T, (u) = 11rrln p—— kZ:(;Ck(zh”'f 3hu,{){’(u )=a
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where r, s € R. For example, the Cesaro entropy of sequence (1) = ((ﬁ -1, ﬁ 1, % +1))1s
. 2(I2 + tl) -
TE W) = lim —— : 1.16
Sty =lim 2D (1.16)
k=0
where we assume that #; < #, and #1,#, € R and A, = 1 for all k € N. If the series }; ¢; is con-
vergent then the value 7', (u*) exists every time. As a comment of the (1.13) and (1.16), we point
out that we can obtain an useful information from infinite fuzzy information by a suitable method.
But, the total entropy and Cesaro entropy of the sequence v defined by v = ((v§, v, 1)) = ((—k, 1 :
1,k + 2)) is infinite. This means that, the sequence v does not contain any useful information for
us.
Since, every real number is also a fuzzy number then we can give following corollary:

Corollary 1.1. Let the sequence r = (*) be a convergent or divergent sequence of real numbers.
Then the all entropies of the r = (rX) are zero.

Corollary 1.1 can be interpreted as, in the any information sequence, if the elements of infor-
mation sequence are crisp information then we obtain a crisp information from this sequence.

Proposition 1.1. If the fuzziness of the any sequence of fuzzy set is constantly increasing then
the entropy is constantly grow and maybe is infinite. On the contrary if the fuzzyness of the any
sequence of fuzzy set is constantly decreasing then the entropy is decreases and becomes 0.

It is calculated in (Chin, 2006) that the entropy of any fuzzy number is M Therefore, in
generally, if we take 4 = h; and p;(x) = ¢, for every i € N, then entropy of the sequence of fuzzy
numbers is given with (1.10).

In next section, we will investigate entropy of the electrocardiogram for cats and give some
comments. We know that, an electrocardiogram is an important test for any relevant heart diseases
of human or animals, the shortest way of identifying heart problems and you can detects cardiac
(heart) abnormalities, as an example heart attacks, an enlarged heard or abnormal heart rhythms
may cause heart failure, abnormal position of heart can be given, by measuring the electrical
activity generated by the heart as it contacts, (for more, see (de Luna, 1987)).

2. The Applications to ECG’s of the Idea Entropy and Some Comments

It is a fact that, the long time can be spent for interpreting electrocardiographs results by cardi-
ologists or vet and sometimes small but important details can be unnoticed because of complexity
of the ECG. The same situation is also valid for computerized electrocardiography. According
to us, numerical values for ECG outputs can be more reliable for cardiologists and vet for inter-
preting ECG results. Furthermore, if the outputs are numerical then the consultation may be easy
than consultation of the ECG papers. In this section we have proposed a new consultation method
for cardiac problems of cats which will be based upon numerical value of ECGs, ( see (Brady &
Rosen, 2005); (Khan, 2003) for ECG).

Quite simply every heart beats can be considered as term of a sequence. Using to the waves
P, ORS complex and 7', we can construct the waves sequence ((Py, (ORS )i), Tx)), where k is beat
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number or number of measurements and is finite. The graphical shapes of the waves P, ORS
complex and 7 can imagine a membership functions a fuzzy set. With this idea, we can appoint
an entropy value using to these membership functions which will be described below.

The entropy of the sequence ((Py, (ORS)i), T})) can compute for finite or infinite many k and
this computation gives to us a numerical value, not graphical. From numerical value, we can
determine some cardiac problems. Namely, the sequence ((Py, (ORS );), T)) can divide three part
for calculate entropy as follows:

1. The entropy of the sequence (P;) waves,
2. The entropy of the sequence ((QRS );)) complexes,
3. The entropy of the sequence (7}) waves.

In this case, we can assume that the total entropy of the heart is equal to
& = e(Py) + e((QRS i) + e(Ty). 2.1

Now we will summarize some information about electrocardiographs without deepening the
subject.

The electrocardiograph records the electrical activity of the heart muscle and displays this data
as a trace on a screen or on paper and, later, this data is interpreted by a medical practitioner.
ECG’s from healthy hearts have a characteristic shape. Any irregularity in the heart rhythm or
damage to the heart muscle can change the electrical activity of heart which leads to change in the
shape of ECG’s according to patients. Using this changes, we can investigate entropy of the heart
rhythm or damage entropy of the heart muscle. It is known that, the QRS complex reflect the rapid
depolarization of the right and left ventricles. The ventricles have a large muscle mass compared
to the atria so the QRS complex usually has a much larger amplitude than the P- wave.

Furthermore, the heart movements are kept in check by various charges and pulses that change
slightly on exertion, blood chemistry and strain. According to us, residence of skin and conduc-
tivity of blood are important for ECG, too. The conductivity and residence of the skin are vary
according to some minerals in the blood plasma such as calcium, chloride, potassium or glucose
concentration in a diabetic patients blood. So we have to consider the conductivity of blood in the
calculations of transmitting electric current and therefore in the entropy calculations for a heart.
For blood conductivity properties, you can read to (Hirsch & et al, 1950).

2.1. The Entropy of The Waves Sequence (P;) and Some Comments

Primary wave of a heart in ECG, is called P wave and shortly denoted with P, have an entropy
value and it can be compute as follows:

e(P) = f hi(P(x))r(x)dx, 2.2)
xeR

where the function P(x) is membership function of the fuzzy & set that we will correspond to
wave P and the function r(x) is conductivity function (generally the function r is fix) of the body .

Experimental measurements showed that to us for kittens, the wave P has maximal height
about 0.12mV, duration is shorter than 0.3 seconds but these values for adult cats are 0.2mV
second and 0.04 (Lourenco & Ferreira, 2003).
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Using the maximal height and duration of wave P as 0.12 second and 0.3 mV, respectively,
the membership function P;(x) of the fuzzy & set which is correspond to wave P for kittens can
write as follows:

0.8x, x€]0,0.15]
Pi(x) ={ 0.24 -0.8x, x€(0.15,0.30] . (2.3)
0, otherwise

Furthermore, the membership function P,(x) of the fuzzy &, set which is correspond to wave P
for adult cats is

10x, x€[0,0.02]
Pr(x) =< 0.4-10x, x€(0.02,0.04] . 2.4)
0, otherwise

It is clear that the support of the fuzzy set &, is duration of the wave P and height is maximum
height of wave P.

Let us take supp Z; =]0,0.30[, supp S, ~]0,0.04[ and closure of the supp &, and supp S,
be supp??, = [0,0.30] and suppP?, = [0,0.04] where the notations suppZ?, and supp ¥, de-
notes support of the &, and &, .

3.2x —2.56x*, x€[0,0.15]
In this case, we see that h;(P;(x)) = { 0.7296 — 1.664x — 2.56x>, x € (0.15,0.30] . Simi-
0, otherwise
40x — 400x>, x €[0,0.02]
larly to ;(P;(x)), we have hj(P>(x)) = { 0.96 — 8x — 400x?, x € (0.02,0.04] .
0, otherwise

Let us denote P, and P, of wave P for kittens and adult cats, respectively. If we choose r(x) = ¢

in (2.2) then we see that the the entropy of wave P, is equal to

e(Py) = 662.4 x 10~ (2.5)
for normal wave P for kittens. The P, wave entropy for adult cats is
e(Py) = 138.667 x 10™*c. (2.6)

If we compare (2.5) and (2.6) then we see that the P wave entropies of the kittens and adult cats
are different.

Definition 2.1. The total Cesaro entropy of the sequence (Py) is

1 < . 4
C! _ i i
T, (Py) = 1 i:EO c,a2(2hal 3hall)S (Py, P), 2.7

where ¢; is resistance of the dry skin in the i sample, k is number of sample of P wave and
S (Py, P) 1s similarity degree between of the waves P, and P.
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Table 1. Non-clinical P waves data for adult cats

Gender: Male Age:xx Weight:xx Height:xx

Days 1 2 3 4 5 6 7 8 9 10
m(h 1) 0.2 0.2 0.19 0.21 0.23 0.23 0.19 0.2 0.18 0.15
k
m(alé) 0.04 0.04 0.03 0.05 0.05 0.05 0.045 0.044 0.043 0.043
e(Py) 0,0138672 0,0138672 0,009956361 0,018060735 0,019474215 0,019474215 0,017526794 0,014602663 0,013622864 0,011610323
S(Py.P) 1 1 0,94525 0,947619048 0,865217391 0,865217391 0,867391304 0,9481 0,89865 0,748875

Let the resistance of the dry skin be fix that is if ¢; equal to ¢ at the each every i. place then the
(2.7) is turn to

k
1 C : 4
7' (Py) = T Z ay(2h, — ghz,.l )S (P, P). 2.8)
i=0

Example 2.1. Let us suppose, the wave P values as height and width as given in Table 1 for any
adult cat for 10 measurements with fix conductivity of blood and residence of the skin. Note that
these data are not clinical measures. In this mean, the sequence (Py) is in the set ¢(.#). The
notations m(hai) and m(a’é) in Table 1 denotes measured height and durations of the wave P in
day. Then from (2.8), we see that the Cesaro total entropy of the wave P of adult cats according to
Table 1 is

TC' (Py) = 137.94345 x 10~4¢ (2.9)

for 10 beats. If we compare (2.5) and (2.9), the P wave properties of the adult cat heart which
given above example is very low than normal value. Using to (1.7), we can give a graphic for 10
sample of wave P which given in the Table 1 (see, Figure 2) .

ot
] D
-
-
-
-

2000

Figure 1 Figure 2
Graphical representation of e(Py) of the normal  Graphical representation of e(P;) for Table 1
P wave for adult cats. values for adult cats.

The Figure 1 is entropy graphic for the normal wave P of adult cats. If we compare the Figures
1 and 2 then we see that the height and duration of the P wave when changed with any effect,
the all entropy zones are curl to upward at adult cats as in humans. It can be consider that the
magnitude of the curl is P wave degenerations.
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Figure 3 Figure 4
The values h, nearly fix but values as variable  The values a4 nearly fix but the values hy
for adult cats. variable for adult cats.

If the hai is fix but the value a} be variable and conversely the ha}( is variable but the value a}
be fix then graphical representation of the entropy zones are shown as in Figure 3 and Figure 4,
respectively.

As similar to (2.7), the A- entropy of the sequence wave P is

TA(Py) = 1379.43446 x 107%¢ (2.10)

from (1.13). But normal A-entropy value for 10 beats of adult cats should be 6624 x 10~*¢ and the
P wave value in (2.10) very low than 6624 x 10~*c. where c is resistance of the dry skin in the i’
time.

Comment 1.

We know that the value of the S (P, P) must be 0 < S(Py, P) < 1 for every k € N. After a
certain place, if P, waves is not exists, or the similarity values S (P, P) nearly to the zero then the
entropy of atrial depolarization of the heart, the T%(P;) is near to zero. In this case we can say that
this is a risk (for example, it can indicate hyperkalemia or hypokalemia or right atrial enlargement
for this heart in the future as in human.

Comment 2.

Respectively, if the values e(P;) and e(P,) less than 662.4x10~*c and 138.667 x 10~*¢ for kitten
and adult cats then, we can say that, there is a risk (for example, it can indicate hyperkalemia or
hypokalemia or right atrial enlargement as in human for this heart in the future.

3. Comparison with the ECG

1. Long time can be spent for interpreting electrocardiographs results by cardiologists or vets
and sometimes small but important details can be unnoticed because of the complexity of
ECG.

2. Numerical values are more reliable than graphical representations.

3. If the outputs are numerical then the consultation may be easy than consultation of the ECG
papers.
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4. Weakness of This Model

The weakness of this model is that the data may be incomplete and not accurate enough be-
cause of the system that we use when we collect the data. Kittens adaptation to ECG machines is
an important factor in the measurement phase since heart rates can change under stress and differ-
ent circumstances. The numerical values may not reflect the reality if the information is not in the
near proximity of real world assessment, shortly wrong inputs can produces misleading results.

5. Conclusions and Suggestions

The conclusions can be summarized as follows:

1. The entropy of the wave P for normal heart of the kitten should be 1379.43446 x 10~*c and
should be 6624 x 10~*c for adult cats.

2. The graphical representation of the normal wave P of kittens should similar to Figure 1.

3. If the duration is fix but height is being altered by any reason then lines in graphical repre-
sentation of the wave P becomes steeper.

4. The lines in the graphical representation of the wave T should be almost parallel to horizon-
tal axis.

As a suggestion, clearly, one can define entropy value and graphical representations of QRS com-
plex and wave T to similar entropy value wave P. So any numerical value can obtain for (2.1). If
entropy value of the QRS complex and wave P are calculate then we can give a numerical entropy
value for (2.1).
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1. Introduction

Throughout this paper, let the functions of the form

[ee)

p@) =ciz= Y el (1> 056, 20), (1.1)

n=2

and .
W@ =diz= ) d?"  (di>0:d, 2 0) (1.2)

n=2

which are analytic and univalent in the unit disc
U={z:zeCand |7 < 1};

also, let

f@=243" a2 (a>0:a,20) (13)
< n=1

*Corresponding author
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a |\ n
@)=+ a2 (@0 > 05,2 0), (1.4)
z n=1
by <~ "
8@ ==+>"b"  (by>0:b,20), (1.5)
Z n=1
g.(z):@Jrib 2" (bo; > 0;b,; > 0) (1.6)
J z - n,j ,J sUn,j = . .

which are analytic and univalent in the punctured unit disc
U'={z:zeCand 0 < |7 < 1}.

A function f(z) € X is meromorhpically starlike of order « if

—Re{zﬁg)}>a(zeU*;OSa< 1. (1.7)

A function f of the form (1.3) is said to be in the class UZS ;(a, ) of meromorphic uniformly g
-starlike functions of order « if it satisfies the condition:

2f'(@) 2f'(2)
—Re{ 10 +a} >/3' I +1

Also, a function f of the form (1.3) is said to be in the class UZCy(a, 8) of meromorphic uniformly
B -convex functions of order « if it satisfies the condition:

(zeU;0<a<1;8>0). (1.8)

—Re{l " Z]]:(g) +a/} >,8'2 + Z]]:;S)'(z cU0<a<1;8>0). (1.9)

It follows from (1.8) and (1.9) that
feUZCy(a,B) & —zf € UZS (a,p). (1.10)

The classes UXS j(a,pB) and UZCo(a,pB) have been studied by (Aouf et al., 2014), (Atshan &
Kulkarni, 2007), and others. We note that

(1) UZS (@, 0) = S (a) and UZCy(a,0) = C,(a) (see (Aouf & Silverman, 2008), with n = 1);
(i1) UZS j(@,0) = Z,8 (a,y) and UXCy(a,0) = Z£,C,(a,y) (also see (R. M. El-Ashwah & Hassan,
2013), withn=p =7y = 1);

(iii) UZS (@, 0) = Z§ ) (@) and UZCy (@, 0) = K, (@, B) (see (Mogra, 1991)).

Lemma 1.1. Let the function f defined by (1.3). Then f € UZS; (a, ) if and only if

D n(1 +B) + (@ +B)la, < (1 - @), (1.11)

n=1
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Lemma 1.2 (3). Let the function f defined by (1.3). Then f € UXCy («a,B) if and only if

(9]

D nln(1+B) + (@ +Pla, < (1 - a)ap. (1.12)

n=1

Definition 1.1. Let the function f defined by (1.3). Then f € UXS,, (o, ) if and only if

(89

D n"[n(1 +B) + (o + B)lay < (1 - a)ap, (1.13)

n=1
where (0 < 8 < o), (0 < @ < 1) and m any positive integer number.

We note that UXS | (@, 8) = UZCy (o, ) and UZS (@, B) is equivalent to UXS (@, ) . Further,
UXS,, (a,p) c UZS, (a,p) if m > r > 0, the containment beign proper. Whence, for any positive
integer m, we have the inclusion relation

USS o (@, B) C USS oy (@, ) C ... C USS, (a0, B) € USCy (@, f) USS; (. ).

Also, we note that for nonnegative real number m the class UXS ,, (@, ) is nonempty as the func-
tions of the form

[ee)

a (1 - 0y )
10=2% ) ot T B+ @ BT

n=1

where gy > 0, and } 1, < 1, satisfy the inequality (1.13). For the functions

n=1

+ian,jz”(an,j20;j: 1,2). (1.14)

n=1

N =

fi@ =

We denote by (f; * f») (z) the Hadamard product (or convolution) of functions f; (z) and f; (z), that
is

1 (o]
(hsf)@=—+ ;an,lan,zz”. (1.15)

Similarly, we can define the Hadamard product of more than two functions. The quasi-Hadamard
product of two or more functions ¢(z) and ¥(z) given by (1.1) and (1.2), (see (Kumar, 1987)).

[59)

(0 + Q) = cidiz= Y cudy" (1.16)

n=2

In this paper, we can discuss certain results concerning the Hadamard product of functions in the
classes UXS (@, B) , UXS , (@, B) and UZCy (@, B) .
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2. Main results

Theorem 2.1. Let the functions fi(z) defined by (1.4) be in the class UXCy (a, ) for every i =
1,2,...,m, and suppose that the functions g;(z) defined by (1.6) be in the class UZS ;(a,p) for
every j = 1,2, ...,q. Then the Hadamard product (fi * fo * ... * fi, * g1 * &2 * ...8,)(2) belongs to the
class ULS ypig-1 (@, ) .

Proof. It is sufficient to show that

2 {nz”””_] {n(1+p) + (o +p)} ﬁ[ Qi 111[ bn,j:|} <(l-o llﬂl[ ao,i 111[ bo,,] . (@D
n= i= Jj= i= =
Since fi(z) € UXCy (a,B), we get
i nn(1+p6)+(@+pP)la,; < (1 -a)ag; (=1,2,..,m). (2.2)
n=1
Therefore,
1-e) 2.3)

Wi S A+ B+ @+ B

which implies that
ani <N %ag; (i=1,2,..,m). (2.4)

Similarly, for g;(z) € UXS (a,8) , we obtain

D In(1+B) + (@ + B)lby; < (1= @by, (2.5)
n=1

for j =1,2,...,q. Hence we have
buj <n'bo; (j=1,2,...9). (2.6)

Using (2.4) fori=1,2,...,m, (2.6) for j = 1,2,...,q — 1, and (2.5) for j = g, we have

[ m q
{ 1+ + @+ [ Jaui ] | b’””

[ m q-1
{n2m+q—l {I’l(l +ﬁ) + (Q +ﬂ)} n—2mn—(l/—1) n aoi bO,j] bn,q}

e

n=1

Me

B
—_

m—1 q—1
ao,i

I
| ——

ad m q
bo,,-] D+ B+ @+ Pbug| < (1 =) [ aoi [ [ bo.s

i J=1 n=1 i=1 j=1

Hence (fi * fo*...% fru* g1 %82 %...8,)(2) € UXS 9141 (@, B) . The proof of Theorem 1 is completed.
O
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Theorem 2.2. Let the functions fi(z) defined by (1.4) be in the class UXCy(a, ) for every i =
1,2,...,m, then the Hadamard product (f| * f> * ... * f,,)(z) belongs to the class UXS ,,,_ (@, 5) .

Proof. 1t is sufficient to show that

m
| |an1

i=1

> {nz'" Ha(l +B) + (@ + B)

n=1

} <(1-a [H ao,i] . 2.7)

i=1

, the mequahtles (2.1) and (2.2) hold for every i = 1,2,.
2,. —1,and (2.1) fori = 1,2, ...,m, we have

{nz’”“ (n(1+p) + @+ ] | an,l-]}

L i=1

Since fi(z) € UXCy (o, B)
Using (2.2) fori =1,

Mz

n=1

NgE

r m—1
{n2m—l {n(l +ﬁ) + (a/ +ﬁ)} n—z(m—l) 1—[ aO,i:| an’m}
L i=1

] -

m

Il
[

1 00 m
ao,,-] D ntn(1 + ) + @+ B awn] < (1 =) | | aos.
n=1

i=1

Hence (f1 * f5 * ... * f,)(2) € UZS 2,,-1 (@, B) . The proof of Theorem 2 is completed. O

i=1

Theorem 2.3. Let the functions fi(z) defined by (1.4) be in the class UXS | (a,p) for every i =
1,2, ...,m, then the Hadamard product (f * f> * ... * f,,)(z) belongs to the class UXS ,,_1 (a,B) .

Proof. Since fi(z) € UZS [ (a, ) , we have
D (1 +B) + (@ + B)lay; < (1 - ay;, (2.8)
=1

. . (1—(1/)
for every i = 1,2, ..., m. Therefore, we obtain a,; < AT+ HaiB)

ap,; which implies that
an; <nlag; (i=1,2,..,m). (2.9)
Using (2.9) fori=1,2,...,m -1, and (2.8) fori = 1,2, ..., m, we have

%WWM+m+w+m}rh4}

L i=1

1M 1D

[ m—1
< {nm_l {n(1 +B) + (@+p)}|n"" n aO,i] Cln,m}
| i=1
m—1 0 m
= [ ao,i Z [(n(1+B) +(@+P)}awm] < (1 -a) 1_[ ao,i.
i=1 pr) i=1
Hence (fi * f> * ... * fu)(z) € UZS ,._1 (@, B) , which completes the proof of Theorem 3. O

Remark. Taking 8 = 0 in our main results, we obtain the results obtained by Mogra (Mogra, 1991).
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Abstract

The paper treats the general concept of uniform #h-stability, as a generalization of uniform exponential stability
for evolution operators in Banach spaces.
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also criterias for uniform /-stability using Lyapunov functions. As particular cases, we obtain the results for uniform
exponential stability.
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1. Preliminaries

One of the most important asymptotic properties studied for evolution operators is the uniform
exponential stability. This concept was treated in a large number of papers and of the most impor-
tant we recall (Coppel, 1965), (Lupa et al., 2010), (Megan et al., 2001), (van Neerven, 1995) and
(Stoica & Megan, 2010).

In the last years, are considered more general concepts of stability, as A-stability ( see (Megan,
1995) ) or (h, k)-stability ( see (Fenner & Pinto, 1997), (Megan & Cuc, 1997), (Minda & Megan,
2011) ), where h and k are growth rates ( i.e. nondecreasing functions with different properties ).

In this paper is considered the concept of uniform A-stability, with 4 : R, — [1, +00) a growth
rate ( more precisely a nondecreasing function with [l_1>r+rio h(t) = 400 ), for evolution operators in

Banach spaces.
Are obtained necessary and sufficient conditions for this notion and as consequences, we empha-
size the results for the case of uniform exponential stability.

In what follows, X represents a real or complex Banach space, X* its topological dual and B(X)
the Banach algebra of all bounded linear operators on X. We will denote the norms on X, on X*

*Corresponding author
Email address: mihit.claudia@yahoo.com (Claudia-Luminita Mihit)
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and on B(X) by || - ||.
Also, A is the set of all the pairs (¢, s) € R? with ¢ > s and I represents the identity operator on X.

Definition 1.1. A mapping ® : A — B(X) is called evolution operator on X if

(eo1) @(t,1) =1, for every t > 0;
(e0y) @(t, s)D(s,ty) = D(t, 1), for all (¢, s) and (s, y) € A.

We consider @ : A — B(X) an evolution operator and £ : R, — [1, +00) a growth rate.

Definition 1.2. We say that ® has a uniform h-growth if there exists N > 1 such that for all
(t,5,x) e AXX:
h($)I|D(, $)xI| < Nh(D)||x]].

If h(r) = e, with a > 0, then we say that ® has a uniform exponential growth.

Definition 1.3. The evolution operator @ is called uniformly h-stable if there exists S > 1 such
that for all (¢, 5,x) e AX X :
h(ONID(z, s)xI| < S h(s)lIx].

at

In particular, if h(¢) = e, with @ > 0, then we recover the concept of uniform exponential
stability and « is called stability constant.

Remark. If @ is uniform A-stable, then it has a uniform /s-growth. In general, the converse impli-
cation is not valid.

Example 1.1. Considering the evolution operator @ : A — B(X), defined by

O(t, s) = %, forall (z,5) € A,

it is easy to observe that ® has a uniform A-growth, but @ is not uniformly /4-stable.

Remark. The evolution operator ®@ has a uniform A-growth if and only if there exists N > 1 with
h(IID(2, 10)xoll < NR(O|D(s, 10)xoll,

for all (¢, s), (s,t)) € A, xg € X.
Remark. @ is uniformly h-stable if and only if there is S > 1 such that

hOID(, 10)xoll < S A()ID(s, 2o)xoll,
for all (¢, s), (s,t)) € A, xg € X.

Definition 1.4. We say that ® : A — B(X) is
(i) strongly measurable if for all (s, x) € R, X X the mapping

t — ||D(¢, 5)x|| is measurable on [s, +00);
(i1) *-strongly measurable if for all (¢, x*) € R, X X* the mapping

s b ||D(z, 5)" x*|| is measurable on [0, £].
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2. Necessary conditions for uniform k-stability

In this section we will denote by H the set of the growth rates 4 : R, — [1,+0c0) with the
property that there is a constant M > 1 such that

+o00

dt M
— < —, f 11s>0.
f we - (s o

N

Also, H, represents the set of the growth rates /2 : R, — [1, +00) with the property that there exist
a growth rate iy : R, — [1, +00) and a constant M; > 1 with

+00

hy (1) hi(s)
f 0 dt < M, s’ for all s > 0.

N

Remark. Denoting by & the set of functions /2 : R, — [1,+00), A(t) = ¢*, with @ > 0, it results
that & ¢ H N H,.

Remark. The growth rate o : R, — [1,+o0) is in H if and only if there exists a growth rate

h(t
hy : R, — [1, +00), defined by h,(f) = hL(t))’ for all ¢ > 0 such that i, € H.
1
A first result concerning the connections between the uniform exponential stability and uni-

form h-stability of an evolution operator ® : A — B(X) is

Theorem 2.1. Following statements are equivalent:

(i) @ is uniformly exponentially stable;
(ii) there exists h € H\ such that ® is uniformly h-stable;
(iii) there exists h € H such that @ is uniformly h-stable.

Proof. (1) = (2). It results for h(t) = e, with @ > 0.
(2) = (3). From the hypothesis, there is a growth rate 4, : R, — [1,+0c0) and M; > 1 with

+00

Mm@ u(s)
f ) dt < M, s’ forall s >0

N

and using the second Remark from this section it follows that 4, € H.
Thus, for all (¢, s, x) € A X X we have

h
I (DD, 5)x] = %(?)ncb(z, ol <
h(s)
< Sl < (ol

which shows that @ is A,-stable.
(3) = (1). It is immediate from the first Remark of this section. O
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We consider @ : A — B(X) a strongly measurable evolution operator and a first necessary
condition of Datko-type, due to R. Datko ( (Datko, 1972)) is

Theorem 2.2. If ® : A — B(X) is uniformly h-stable with h € H, then there are a growth rate
hy : R, — [1, +00) and a constant D > 1 such that

+00

fhl(t)llq)(t, to)xolldt < Dhy (s)I|(s, o) Xoll,

s

forall (t,s), (s,ty) € A, xg € X.

Proof. Ttis immediate for D = M, S, where M| and h, are given by definition of H, and S is given
by Definition 1.3. O]

Corollary 2.1. If ® : A — B(X) is uniformly exponentially stable, then there are the constants
B> 0and D > 1 such that

+0o0
f PN, to)x0lldt < DeP||O(s, 10)xoll,

forall (t,s), (s,t)) € A, xp € X.

Proof. Itis a particular case of Theorem 2.2.

Definition 2.1. A mapping L : A X X — R, is said to be a h-Lyapunov function for © if

t

L(t, 1, xo) + f h(OIIO(T, fo)xolldT < L(s, 19, Xo),

N

for all (¢, s), (s,t)) € A, xg € X.

In particular, if A(f) = e, with @ > 0, then the function L is called exponential Lyapunov
function.

The importance of the Lyapunov functions in the study of the stability property is described for
instance in (Barreira & Valls, 2008), (Barreira & Valls, 2013).

Another significant result for the uniform /-stability of an evolution operator is given by

Theorem 2.3. If the evolution operator @ is uniformly h-stable with h € H,, then there exist a
growth rate hy : R, — [1,+00), a hy-Lyapunov function for ® and D > 1 such that

L(s, s, x0) < Dhy(s)||xoll,
forall (s, xp) € Ry X X.
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+00
Proof. Let L: AXX — Ry, L(t,s,x) = [ hi(DI®(x, s)xolldr.

t
Thus, L is a hy-Lyapunov function for @ and using Theorem 2.2 we obtain

+00

L(s, s, x) = fhl(T)H(D(T, $)xolldT < Dhy(s)||xoll,

N

for all (s, xg) € R, X X. O
In particular, we obtain

Corollary 2.2. If ® : A — B(X) is uniformly exponentially stable, then there are the constants
B >0, D > 1 and an exponential Lyapunov function L for ® with

L(S’ A )C()) < Deﬂsllx()”,
for all (s, xp) € Ry X X.

We consider now the set H of the growth rates i : R, — [1, +00) with the property that there
is a growth rate h; : R, — [1, +00) and a constant M > 1 with

t

h(t) _ (1)
fhl(‘r)dT < Mm, forall r > 0.

0

Remark. 1t is easy to see that the functions & € & ( considered in Remark 2 ) are in H.

Let ® : A — B(X) be a *-strongly measurable evolution operator. A first result for this type
of evolution operators is proved by E. A. Barbashin ( (Barbashin, 1967) ) in the case of uniform
exponential stability.

Concerning the uniform A-stability, we prove

Theorem 2.4. If © is uniformly h-stable with h € H, then there is a growth rate hy : R, — [1, +00)
and B > 1 with

NI
hi(7) hy(7)
forall (t,x") e R, X X*.
Proof. Tt results using Definition 1.3 and the definition of H, for B = S M. []
As a consequence of the above result, we obtain

Corollary 2.3. If ® is uniformly exponentially stable, then there are the constantsy > 0 and B > 1

such that
t

f e NO@, )" xldr < Be™||x7l,
0
forall (t,x") e R, x X*.
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3. Sufficient conditions for uniform /-stability

In what follows, we will denote by H, the set of the functions & : R, — [1, +00) with the

property
h(s+1)
sup

>0 ]’l(S)
Remark. We observe that all the functions /& € & (defined in Remark 2 ) are in H,, i.e. & C H,.

=M, < +o00.

We consider @ : A — B(X) a strongly measurable evolution operator and a sufficient criteria
of Datko-type is

Theorem 3.1. Let @ : A — B(X) be an evolution operator with uniform h-growth and h € H,. If
there is D > 1 such that

+00

f hOI|D(1, to)xolldr < Dh(s)||D(s, to)Xoll,

N

forall (t,s), (s,ty) € A, xg € X, then @ is uniformly h-stable.

Proof. LetS = M3ND.
Case 1. We consider (t, s), (s,t) € Awitht > s+ 1, xg € X. Thus,
t
hOID(, 1) xol| < f OO, 7| - |D(7, fo)xolldT <

t—1

" oh
<N f h(t)%lld)(r, ) xolldr <
t—1

< NM;3 fh(T)H(D(T, t0)XolldT < S h(s)||D(s, o) Xoll-

It results that
hOID(z, o) xoll < S h($)I|D(s, o) xoll,

for all (z, s), (s,t0) € Awitht> s+ 1, xg€ X.
Case 2. Let (¢, 5), (s,1)) € Awitht € [s, s+ 1], xo € X. We have

hOND(, 10)x0ll < ROND(E, I - |D(s, to)Xoll <

h*(t)
=)

h(HIDC(s, 20)xoll < S AHIIDCs, 70)xo]l-

In conclusion,
hOID(z, o) xoll < S h($)I|D(s, o) xol,

for all (¢, 5), (s,1)) € A, xo € X, which shows that ® is uniformly A-stable. O]
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Corollary 3.1. Let ® : A — B(X) be an evolution operator with uniform exponential growth. If
there is D > 1 such that

+00

f e"lD(2, to)xolldt < De™[|O(s, to)xoll,

N

forall (t,s), (s,ty) € A, xo € X, then © is uniformly exponentially stable.

Proof. Tt results from Theorem 3.1. ]

Theorem 3.2. Let @ : A — B(X) be an evolution operator with uniform h-growth and h € H,. If
there exist a h-Lyapunov function for ® and D > 1 with

L(s, s, x0) < Dh(s)||xoll,
for all (s, xp) € R, X X, then @ is uniformly h-stable.

Proof. From Definition 2.1, for s = f, we obtain

t

f h(OIIO(T, $)xolldT < L(s, 5, X0) < Dh(s)l|x0ll,

for all (7, s, x0) € A X X and for t — +o0, it follows that @ is uniformly A-stable.
In particular, a sufficient condition for the uniform exponential stability is given by

Corollary 3.2. Let ® : A — B(X) be an evolution operator with uniform exponential growth. If
there exist an exponential Lyapunov function for ® and D > 1 such that

L(s, 5, o) < De™||xoll,
for all (s, xp) € R, X X, then @ is uniformly exponentially stable.

A sufficient condition of Barbashin-type for the uniform A-stability of a *-strongly measurable
evolution operator ® : A — B(X) is

Theorem 3.3. We consider ® an evolution operator with uniform h-growth and h € H,. If there is
B > 1 with

t
1P, )" X7 B .
————dt < — ||,
h(t) h(t)
for all (¢, x*) € R, X X*, then @ is uniformly h-stable.

Proof. We consider S = NM;B.
Let(z,s) € A,t> s+ 1and (x, x*) € X X X*. Then,

s+1

h(H)] < x*, O, 8)x > | = fh(t)l <O, 17)x", D(t, 5)x > |dr <

N
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s+1

< k(1) f 0@, )" x| - |O(7, s)xlldT <

s+1
PGz, )" x| H(7)
< Nh(t) e 720s)

h(s)drl||x|| <

< Sh()llxl - llxl.

Considering the supremum relative to [|x*|| < 1 it results that
h(t)||D(t, s)x|| < Sh(s)||x||, forallt > s+ 1, x € X.
Letnow r € [s,5 + 1], x € X. We obtain

h2(1)
h@|| @2, s)x|| < N——|lx[| < S h(s)||x]],
h(s)
forallr e [s,s+1], x e X.
In conclusion, @ is uniformly A-stable. L]

As a particular case, we obtain

Corollary 3.3. Let ® be an evolution operator with uniform exponential growth. If there is B > 1

with
t

f e~ O, T)" x"||dT < Be™™||x"|,
0

for all (¢, x*) € R, X X*, then @ is uniformly exponentially stable.
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Abstract

In this note, the reader is invited to a walk through tropainifields and the places where they border on
“ordinary” algebra. Though mostly neglected in today'stlees on algebra, we point to the places where tropical
structures inevitably pervade, and show that they fredquemtcur in ring theory and classical algebra, touching at
least functional analysis, and algebraic geometry. Spatlifj it is explained how valuation theory, which plays
an essential part in classical commutative algebra andegegeometry, is essentially tropical. In particular, it
is shown that Eisenstein’s well-known irreducibility eriton and other more powerful criteria follow immediately
by tropicalization. Some applications to algebraic equegtiin characteric 1, neat Bézout domains, and rings of
continuous functions are given.
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1. Introduction

Mathematical ideas quite often originate from natural scés where experiments help to un-
derstand what happens behind reality. In chemistry, thalusethod to analyse a matter is by
heating until the components begin to separate. “Tropicathematics did not quite emerge in
that way, but at least one of its founders (Imre Simon) waskimgron it in the sunny regions of
Brazil.

To illustrate the basic process, consider the function

a+pb:=(a"+bP)YP

for positive real numbera, b. At “room temperature”|y = 1), the functiora +; b is just ordinary
addition inR. Now turn on the heating - proceed unpil— oo to get the real number system to
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melt. Recall that F. RiesR{esz 1910 made such an experiment already in 1910, which led him
to the invention of Lebesgue spadeqR). If pis replaced by the Planck constant= —:; the
limit processh — 0 is known as aequantizatiorfLitvinov, 2009. Indeed, the passage frdrhto
L* bears a certain analogy to the correspondence principleantgm mechanic8phr, 1920.

Now what remains after melting the real number system?pFerco, ordinary additiora + b
in R turns intoa v b := max{a, b}. The additive group oR becomes a semigroup, the fiétdof
real numbers turns into the semifiéig,., of tropical real numbersinvestigated in the 1987 thesis

of Imre Simon E§imon 1987). A remarkable feature d& . is that its addition is idempotent:

ava=a

Thus, if there would exist additive inverses, the whole exystvould collapse into the zero ring.
So is there any reason to regard the elemeniinf as numbers? Before taking up this question
seriously, let us content ourselves for the moment withrrigfg back to F. Riesz’ early work on
LP-spaces. Here the connection betwgea 1 andp = « is very tight:L*(R) is just the Banach
space dual oE*(R).

Hilbert once placed the number system between the threerdiional space and the one-
dimensional time, saying that numbers are ‘two-dimengioaich a statement would still have
shocked the mathematical community in the days of Euler vdiled imaginary numbers “im-
possible” Euler, 1911). Nowadays, the two-dimensionality is firmly justified byadytical and
algebraic reasons, the latter consisting in the algebtagedness of. On the other hand, two-
dimensionality would not make sense without reference edtise fieldR which is “really” fun-
damental.

In the tropical world, there is no such distinction: the degid of tropical reals is “alge-
braically closed”. Making this precise is a good exercise an invitation to be more careful in
stating the ‘fundamental theorem of algebra’. To be suee|atier does not mean thaterycom-
plex polynomial has a root - the non-zero constants have exbleided. This triviality becomes
relevant in the wonderland of tropical algebra: there avpital semifields where (non-constant)
linear equations need not be solvable. Roots and solutiigmslynomial equations fall apart, and
quadratic equations need not be solvable by radicals. Oottiee hand, every algebraic equation
can be reduced to quadratic ones.

In this paper, classical algebra is revisited with regarttdpical structures, and it is shown
that they occur at various places. Apart from a revision ohifelds of characteristic 1, we
add new characterizations for their algebraic closednBssagrem6.1). A connection with neat
Bézout domains is given in Corollary 2. As a second appboatve show that if the semifield of
characteristic 1 corresponding to &group%’(X) of contiuous functions on a completely regular
spaceX is algebraically closed, the spa¥emust be an F-space, that is, the corresponding ring
C(X) of continuous functions is a Bézout ring (Corollary 3).

Another motivation to study semifields of characteristicoines from a recent, highly con-
jectural branch of arithmetic geometry. Since André Wkédtshed his diagonal argumem/éil,
194Q 1941)) to tackle the Riemann hypothesis, some research groupslgaglve under the sur-
face ofZ, searching for its “base field” to make(a ring of Krull dimension one) into an algebra
over that field (see, e. gGConnes & Consanl01Q 2011, Deitmar, 2008 Soulé 2011)). The way
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to this non-existing, mysterious, “field” of characteristi inevitably leads through the tropical
region. By Propositior2.2, this hot region is nothing else than the vast and well-desd theory
of lattice-ordered abelian groups.

2. The forgotten characteristic

To include the result of a dequantization, we are advisedtwsider semifields instead of
fields. More generally, @aemiringis an abelian monoidA; +, 0) with a multiplicative monoid
structure(A; -, 1) satisfying the distributive laws aral 0 = 0-a = 0 for alla € A. If the group of
(multiplicatively) invertible elements, thenit group A, coincides withA\ {0}, we callA asemi-
skewfield If, in addition, the multiplicative monoid is commutativ& is said to be aemi-field
For example, the above mention&., is a semifield.

A morphismin the category of semirings is a mdp A — B which satisfies

f(a+b)
f(a-b)

f(a)+ f(b), f(0)=0
f 1.

f
@-f(b),  f(1)=

Like in the category of rings, there is an initial object, gemiringN of non-negative integers:
For any semi-ringA there is a unique morphisot N — A. The image ot is the intersection
of all sub-semirings oA, the prime semiringof A. Similarly, every semi-skewfielé contains a
smallest sub-semi-skewfield. If it coincides wahwe call A a prime semi-skewfield

In general, the kernel Ker:= {n e N | ¢(n) = 0} is not of the formNp for somep € N. For
example] := N\ {1,2,4,7} is an ideal of the semirinly which occurs, e. g., as the grading of a
simple curve singulatityGreuel & Knorrer 1985. ThusN/I is a finite semiring with Kefc) = 1.
On the other hand, there exist congruence relation¥ arhich do not come from an ideal, even
if Ais a semifield. For example, 18t:= {0, 1} be the semifield with + 1 = 1. Thenc: N — B
satisfiexc(n) = 1 forn = 0. Soc has a trivial kernel, while it is far from being a monomorphis

Note thatB is the prime a sub-semifield &, ... Therefore, we writa v b for the addition in
B. SoB is a Boolean algebra with A b := ab. The reader will notice tha can be derived from
the prime fieldF, viaa v b = a+ b + ab, but not vice versa.

Definition 2.1. We define theharacteristiccharA of a semiringAto be the smallestinteger> 0
with c(n + p) = c(n) for somen € N. If such an integep does not exist, we set char.= 0.

In analogy to the theory of skew-fields, we have (&ufnp 2015, Proposition 1)

Proposition 2.1. Every prime semi-skewfield is a semifield. Up to isomorphilsenprime semi-
fields areQ*, B, and[F, for rational primes p. In particular, the prime semifieldsatetermined
by their characteristic.

Proof. LetF be a prime semi-skewfield. Assume first that dhar 0. ThenN can be regarded
as a sub-semiring df. Every non-zeram € N has an invers% in F which commutes with all
elements olN. Hence{T | m,ne N, n > 0} is a sub-semifield isomorphic to the positive cdpe

of Q.
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Now assume thagt := charF = 0. Then there is an integare N with c(n) + c(p) = ¢(n). As
this equation holds for almost ail we can assume thatis a multiple ofp. Adding multiples of
c(p) on both sides, the equations obtained in this way imply¢hat+ c(n) = c(n). If c(n) = 0,
thenc(p) = 0, and the usual argument shows tb@f) ~ F, for a primep. Otherwise, we obtain
c(1) + c(1) = c(1), which yieldsc(N) ~ B. O

So the possible prime semifields are

Q+’ B? ]E‘z’ F3’ FS’ F?’ AR

including the prime field& , and a natural sub-semifield @ Note that formallyQ™* carries more
information thanQ: The positive cone provide® with its natural ordering. Thuf)* connects
arithmetic (the semiringy) with algebra and analysis (the ordered fi€dind its completiorR),
while the newcomeB bridges the gap between algebra and logic.

Every semifield contains one of the prime semifields accgrtbnts characteristic. For fields,
this is a well-known piece of algebra. So the question aiig®e the “logical” semi-skewfields,
those containind, look like. By Propositior2.1, they are of characteristic 1, which means that
they satisfy the equationdl = 1. Recall that a partially ordered group is said tddigce-ordered
or an{-groupif the partial order is a lattice. For the theory &froups, the reader is referred to
(Anderson & Fei) 1988 Bigardet al,, 1977 Darne| 1995 Glass 1999. The commutative case
of the following result is due to Weinert and Wiegandiginert & Wiegandt1940. Similar ideas
have been developed independently by several authorsGasee(la201Q Lescof 2009, and the
literature cited there).

Proposition 2.2. Up to isomorphism, there is a one-to-one correspondencedsst/-groups and
semi-skewfields of characteristic 1.

Proof. Note first that a semi-skewfiel is of characteristic 1 if and only & + a = a holds
for allae F. Then it easily checked that

a<b:=a+b=>b (2.2)

makesF into a v-semilattice witha v b := a + b. Furthermore, the distributivity shows that
is an¢-group. Conversely, everrgroupG can be made into a semi-skewfigid:= G L {0} by
adjoining a smallest element 0 wit@- a0 = 0 for alla € G. SinceG* = G andF* = F, the
correspondence is bijective. O

In particular, semifields of characteristic 1 are equivaterabelian/-groups, and our prime
semifieldB corresponds to thé-group of order one. For those who would like to prove the
Riemann hypothesis, we should add tBas not identical with the desperately sought fi&ld- it
is still “too big™!

3. Tropical semi-domains

To study field extensions, one has to understand polynomgs first. Thus, in characteristic
1, we have to deal with polynomials over the semifiéldf an abeliarf-groupG. For an arbitrary
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field K, there are many integral domains with quotient figldIf K is an algebraic number field,
there is a canonical subring - the ring of integers - with quotient field. Similarly, any semifield
G of characteristic 1 has a canonical sub-semi@ng = G~ L {0}, whereG™ is the negative cone
of G. (Since 0 is the smallest element@fthe cone that touches 0 is the negative one.)

Definition 3.1. We define asemi-domaino be a commutative semiringy satisfyingac = bc =
a = bfor ab,c e Awithc = 0. We callA tropical if there exists an abeliaftgroupG with
A=G.

In particular, a semi-domain has no zero-divisors. An isic description of tropical semi-
domains is obtained as follows. Recall thah@op (Blok & Ferreirim, 2000 is a commutative
monoidH with a binary operation- such that the following are satisfied for allb, c € H:

a—a=1
ab—-c=a—-(b—c
(a— b)a= (b— a)b.

Every hoop is ax-semilattice with respect to theatural partial order
a<b < dceH:a=cbh < a—>b=1

A hoop is calledself-similar (Rump 200§ if it is cancellative. (For an explanation of the ter-
minology and equational characterizations, $eenip 2008, Proposition 5.) Every self-similar

hoopH has a group of fractions, thetructure group GH) of H, which consists of the fractions

abwitha be H.

Proposition 3.1. Up to isomorphism, there is a one-to-one correspondencedsst
(a) semifields of charatceristic 1,
(b) tropical semi-domains,
(c) abelian¢-groups, and
(d) self-similar hoops.

Proof. The equivalence between (a) and (c) follows by ProposRi@nwhile the equivalence
between (b) and (c) is obvious. For an abeliagroupG, we define

a—>b:=batlsrl

fora,b e G~. By (Rump 2008, Section 5, this makeS~ into a self-similar hoop with structure
groupG. Conversely, the structure gro@jH) of a self-similar hoogH is an abeliarf-group with
G(H)~ = H by (Rump 2008, Proposition 19. O]

Note that PropositioB.1implies that a self-similar hooH is a lattice. Explicitly, the join is
given by the formula
avb=(a—b)—b

which is well known from the theory of BCK algebradséki & Tanaka1978.
The concept of Grothendieck groupafg 1965 extends to semirings as follows.
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Definition 3.2. Let A be a commutative semiring. We define i@eal of A to be an additive
submonoid which satisfies
acA bel = abel. (3.2)

We say that an ided is primeif A~ P is a submonoid oA.
Let| be an ideal of a commutative semiring. Then
a~b < dcel:a+c=b+c

is an equivalence relation, and it is easily checked thatat congruence relation. So the equiv-
alence classes form a commutative semiwg, the factor semiringmodulol. There is also a
concept of localization.

Proposition 3.2. Let P be a prime ideal of a commutative semiring A. There €&ishorphism
q: A — Ap of semirings with ¢A \. P) < AJ such that every morphism: fA — B of semirings
with f(A~ P) < B* factors uniquely through g.

Proof. Define an equivalence relation on the multiplicative morid (A . P):
(a,b) ~ (c,d) ;<= Ise A~ P:ads=bcs (3.2)

Thenx ~ yimpliesxz ~ yzfor all x,y,z€ A x (A~ P). So~ is a congruence relation on
A x (A~ P). As usual, we writg for the equivalence class ¢, b). So the equivalence classes
form a commutative monoids with a morphismg: A — Ap given byq(a) := . Moreover,
d(A~ P) < AJ. Furthermore, it is easily checked that

a ¢ ad+bc

b d ~ " bd
is well defined and make&p into a commutative semiring such thmbecomes a morphism of
semirings. Now the universal property is straightforward. ]

We call Ar thelocalizationof A at P. If the zero ideal is prime, the localization at O yields the
quotient semifield KA) of A.

Note that there are semiringswhere 0 is prime, buf is not a semi-domain. For example, let
K be a semifield. We define(formal) polynomiako be an expression

f=ay+aXx+ax+ -+ aX

with g € K. If f = 0, say,a, = 0, we call deg := nthedegreeof f. Thus, with the usual
operations, the formal polynomials make up a semiidg), and 0 is a prime ideal. To see that
K{x) need not be a semidomain, consider the casekcharl, that is,K = G for an abeliar¢-
groupG. Consider two elements b € G with a < b. Then the two formal polynomiabsy bxv x?
anda v (av b)x v x? are distinct. However,

(@ v bxv x)(av x) = (@ v (avbxvx¥)(avx),
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which shows thaG(x) fails to be a semi-domain! That is the reason why we spedbrofial
polynomials.
If Ais a semidomain, the equivalen@32) simplifies to
a ¢

which implies that all localization8p can be regarded as sub-semidomainis @F).

Example. Let A be a semidomain of characteristic 1. The quotient semiKgW) is of the form
K(A) = G with an abeliart-groupG, and the monoidh ~. {0} = A n G is a v-sub-semilattice.
However,A n G need not be the negative cone®f Indeed, this happens if and only Af is

tropical. Assume this from now on. By Definitich2, an ideal ofA is the same as &-sub-

semilattice which is a downset. So the complen@nt A~ P of a prime ideaP of A is a convex
submonoid ofc~ with the property

avbeQ = aeQorbeQ,

that is,Q is the negative cone of a prinfddeal inG (see Darnel| 1995, Definitions 8.1 and 9.1).
In other words, there is a one-to-one correspondence betgraeae ideals oA and primef-ideals

of G. According to Darne| 1995, Proposition 14.3, the prime ideals Afcan be identified with
the prime filters of the negative coe (with the reverse ordering). Note that the zero ideahof
corresponds t&, the “trivial” prime ¢-ideal of G, which should not be excluded from the prime
spectrum ofG.

Definition 3.3. Let K be a semifield. The elements of the quotient semifiglg) of K(x) will be
calledrational functionsin x. We write K[x] for the image of the natural magp(x) — K(x) and
call the elements df[x] polynomialsn x.

4. Divisors in characteristic 1

In classical algebraic geometry, divisors are intimatelgreected with line bundles, invertible
sheaves, linear systems, and embeddings into projectaeesp Therefore, they play a decisive
role. Here we shall study their behaviour in characteristi

Thus, letG be an abelia-group. As a latticeG is distributive. So the elements &f can
be regarded as functions on a set. Let us take the simplestdeereG satisfies the ascending
chain condition. By a theorem of Birkifia[Birkhoft, 1942, this implies that is a cardinal sum
G = pePZ with basisP. (Such¢#-groups naturally arise as groups of fractional ideals of a
Dedekind domain.) So each interfa b] := {c € G|a < ¢ < b} has a composition series
a=Cy<C < < C, = bwith atomic interval§c, ¢, 1] = {ci, ci,1}. For a diagram

avb

N\
N

anb

(4.1)
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with a,b € G, the intervalda A b,a] and[b,a v b] are said to bésomorphic in analogy with
the isomorphism theorem in group theodisomorphisnbetween intervals is then defined by finite
sequences of elementary isomorphisihg)( So each paia, b € G can be connected by a finite
chaina = ¢y, ¢y, ..., C, = bin G, with atomic intervaldc, ¢, 1] or [¢i,1, G]. If we attach a factor
—1totheintervals of the second type, the total count of isguiniem classes of atomic intervals on
such a connecting path merely depends on the pair of end@int Regarding the isomorphism
classes of atomic intervals as “points”, every elengeniG is completely determined by the formal
Z-linear combination of points encountered on a path betWesarda which is independent of the
chosen path. For algebraic curves, a forffxdinear combination of points is calleddavisor.

In general, there are no atomic intervals. So we have to wattHor a substitute. This
naturally leads to the following

Definition 4.1. Let G be a (multiplicative) abeliafi-group, and leD be the subgroup of the free
abelian grouZ(©) generated by the elements

(avb)+(anb)—a—Db

with a, b € G. The factor group Di{G) := Z(® /D will be called the group oflivisorsof G. The
natural mags — Div(G) will be denoted bya — [a].

In the special case of a noetherian gra@ipt is clear that the homomorphis@& — Div(G) is
injective. In general, this follows sind@ — Div(G) admits a retraction DiG) — G, given by
the map

Mmlay] + -+ nfa]— ar---ar.

The retraction is well defined by virtue of the equation
(av b)(anb)=ab,
which holds in every abeliaftgroup. However, even fdg = Z, the embedding
G — Div(G)

is far from being surjective. Instead, the group @Y tells us much about the polynomial semi-
domainG[x].

Let G(x) := (§(x)X be the abelia-group which is freely generated & and a single inde-
terminatex. Similarly, we seG[x] := G[x] n G(x). The degree of non-zero polynomials extends
to a homomorphism

deg:G(x) — Z.

of abelian/-groups. For ordinary fields, the degree function ded<(x)* — Z is also important,
but it is not a homomorphism of rings. So the degree of a patyabor rational function in
classical algebra signalizes a tropical structure!

The reader may check that

(xv (@avh))(xv(@anab))=(xva)xvb)
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holds for alla,b € G. To generalize this fact, recall that an abeliagroupG is divisibleif every
a € G admits am-th root for each positive integex or equivalently, the pure equation

X'=a

is solvable for anya € G. (If G is written additively, this just means th@&tcan be regarded as a
Q-vector space.) Now we haveRigmp 2015, Theorem 1):

Fundamental theorem for abelian¢-groups. Let G be a divisible abeliafi-group, and let K:=
G be the corresponding tropical semifield. Every non-zefyrpomial f € K[x] has a unique
factorization

f=a(xvd)(Xvdy): - (Xvdy (4.2)

withaeGandd <d, < --- <d,inK.

ForK = R}, this theorem is known as the “fundamental theorem of tamtgebra” (see,
e. g., Cuninghame-Green & Meijed980). Two things are remarkable. First, theots d <

- < d, have to be put into linear order - otherwise, they won't bequei The roots of a
polynomial are in fact nothing else than its divisor. So imtrast to divisors of algebraic curves,
tropical divisors are not unique as unordered point setsmiiltiplicities. For the divisofa] + [b],
the equivalence tfa v b] + [a A b] can be seen from the basic relation of Definitibf.

Secondly, the rootd; < - -- < d, are not the zeros, because no non-zero polynofriakK | x|
satisfiesf(a) = O for anya € G. Only equationsf (x) = g(x) for a pair of polynomials are
sensible! So the question whether polynomial equationdeasolved irG is not answered by the
fundamental theorem. We will come back to this in Section 5.

By the fundamental theorem, there is a well-defined map
div: G[x] — Div(G%) (4.3)
for any abeliart-groupG with divisible closureGY, given by
div(f) := [di] + [d2] + - - - + [dn]
for a non-zero polynomial(2). Every rational functiorf € G(x) can be written as
f=axXx(xvd)"(xvdy)? - (xvd)™ (4.4)

with a,dy,...,d; € G, andno,...,n, € Z. In contrast to polynomials wherg,...,n, € N, the
d; cannot be put into linear order, which means that they areinigjue! Howevera andng are
unique. So le(x)° denote the subgroup of rational functiohg G(X) with a = 1 andng = 0.
Then Rump 2015, Theorem 2, yields

Theorem 4.1.Let G be a divisible abeliadi-group. The mag4.3) extends uniquely to a group
isomorphism
div: G(x)° =~ Div(G)
with inverse mapal — (x v a).
This gives a complete description of the divisor group (Giyand its relationship to the unit

group ofG(x), namely,
G(x) = G x Z x G(x)°.
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5. Dequantization of Prifer and Bézout domains

Proposition3.1 suggests a study of abeligrgroups via semi-domains. A first step of this
program has already been taken in Section 3, where a decdmopax polynomials into linear
factors has been achieved. Now let us come “back to the ro®ts8 good news is that they are
most easily calculated from the d@ieients. For an abeliafigroupG and a polynomialf =
ag+ X+ a4+ -+ apx" e é[x] with apa, = 0, it is not hard to show that all céiientsa; can
be assumed to be non-zero, that is, they belor@.t¢This is of course not true for polynomials
over a field, but note that in the tropical case, the zero etnsethe absolutely smallest one,
smaller than every element &) By (Rump 2015, Propositions 3 and 4, we have the following
explicit formula for the rootsd; = bi_lbi‘l, where

b :=a; v \/ (@8 )=,

i<j<k

So the rootg, of each polynomial are expressible in termskah roots, wheré does not exceed
the degree of the polynomi&l Compared with theféorts of classical algebra up to the final stroke
after Rufini, Abel, and Galois - a quick victory!

However, as already mentioned, roots are not solutionseftleiess, the decomposition into
linear factors indicates a close relationship to classoaitions. Indeed, here is a point where
tropical algebra applies to the classical case.

Recall that aractional ideal of an integral domairfR with quotient fieldK is a non-zerd=-
submoduld of K such that — Rafor somea € K*. A fractional ideall is said to banvertible
if there is a (necessarily unique) fractional idéat with 1711 = R. Note that every invertible
fractional ideal is finitely generated. An integral dom&ns said to be &rufer domain(see
(Gilmer, 1992, chap. IV) if the non-zero finitely generated ideals aresitible. If every non-zero
finitely generated ideal dRis principal (hence invertibleR is called aBézout domain

The invertible fractional ideals of a Prufer dom&iform an abeliaf-groupG(R) with respect
to inclusion. Note that

IT+HUnIJ) =13

holds forl,J € G(R), which shows thaG(R) is closed under finite intersection. In the special
case thaRis a Bézout domain/G(R); o) can be identified withkK* /R*, thegroup of divisibility
of R (see Gilmer, 1992, section 16).

For a Prufer domaif, the finitely generated ideals form a tropical semi-don#(R) ", the
dequantizatiomf R. By Propositior8.2and the J&ard-Ohm correspondencégfard, 1953 Ohm,
1966, every tropical semi-domain occurs as the dequantizati@enBézout domain. Thus, trop-
ical algebra makes noftlerence between Priifer domains and the more special Bdnouains.
SinceA(R)~ is a semi-domain, we consider its quotient semifig{&), consisting of all finitely
generatedR-submodules oK. There is a natural map

t: K > AR) (5.1)

from the quotient fielK of R to A(R), given byt(a) := Ra Note thatt is a monoid homomor-
phism, but not a morphism of semirings sirkf@ + b) need not be equal Ra+ Rb.
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This is by no means an anomaly. To the contrary, here is anptiiet where tropical concepts
enter the classical world. Recall thavaluationof a fieldK is a functionv: K — I' into a totally
ordered abelian group, augmented by an elementwith @ + o = oo for all @ € T L {00} such
that the following are satisfied:

v@a=w < a=0 (5.2)
v(ab) = v(a) + v(b) (5.3)
v(a+ b) = min{v(a), v(b)}. (5.4)

In a time where order-theoretic terms have been almost cagipleliminated from the standard
curriculumt, such a functiorv which is not a morphism in any sense should sting in the eyé! Le
us rewrite 6.2)-(5.4) as follows. Endow" with the opposite order and write it multiplicatively.
Thenoo becomes O witlr - 0 = O for all @ € T Ly {0}, and the inequalityg.4) turns into

v(a+b) <v(a) v v(b).

Sol' := I' L {0} becomes a tropical semifield. The map1j is characterized by the following
universal property:

Proposition 5.1. Let R be a Prifer domain with quotient field K. Then every atidin v: K — r
with V(R) < 1 factors uniquely through:tk — A(R)

t
K

AR)
 f (5.5)
v
r

such that f A(R) — I is a morphism of semifields.

Proof. Definef: A(R) — I' by f(I) := \/{v(a) | a< I}. Since every € A(R) is of the form
| = Ra+---+Ra, everya=ria;+ - +rya, € | withr; € Rsatisfies/(a) < v(ay) v--- v Vv(ay),
which shows thaf is well defined and renderS.6) into a commutative diagram. The uniqueness
of f is obvious. [

For an abeliaf-groupG, the pure polynomial 1/ X" is “purely inseparable”:
1vx'=(1vx"

Therefore, the Frobenius identity
(avb"=a"vp

LIt seems that Grothendieck’s aversion against valuatiansits bearing on this. In a letter of October 26, 1961,
Serre complained: “You are very harsh on Valuations! | mtrsonetheless in keeping them, for several reasons ...".
Grothendieck’s unrepentant response (October 31, 198bur‘argument in favor of valuations is pretty funny ...”
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holds inG, and Darnel| 1995, 47.11, implies thaG is a subdirect product of linearly ordered
abelian groups. Thus, for a Prifer dom&irnthe diagram.5) can be expressed by a single map

K< -5 AR — [T,

wherel runs through the value groups of all valuationgiMoreover.t is surjective if and only

if Ris a Bézout domain. Examples of Bézout domains aboundnidst prominent examples are
the ring of algebraic integerséplansky 1974, Theorem 102) and the ring of entire functions
(Helmer, 1940. The ring IntZ) of integer-valued polynomial € Q[x] is an example of a Prufer
domain which is not a Bézout domaiBr{zolis, 1979 (cf. (Narkiewicz 1995, VII). In contrast

to Z[x], which is not a Prifer domain, If#£) has an uncountable number of maximal ideals, while
both rings have Krull dimension 2.

The valuations’: R — T or rather their extensions
v:K >T

to K are just the components of the tropicalizatiofhus, ifV is a valuation domain with quotient
field K, the corresponding valuation is just the tropicalization

t: K — A(V),

andA(V)* is the value group o¥. There is a natural extensitn K[x] — A(V)[x] viat'(x) := x.
Explicitly:

t'(a0 + @ X + @aX® + - - + anX") = t(ag) v t(a)x v t(a) X% v - - - v t(a,)X".

Note thatK[x] is even a principal ideal domain. We add a prime to make sut’tbannot be
confused with the restriction of K(x) — A(K[x]) to K[X].

For higher rank valuations, Hensel’'s lemma, which rougléyes that coprime factorizations
of polynomials modulo the maximal ideal can be lifted, is ander valid (seeEngler & Prestel
2005, Remark 2.4.6). What remains is that the topology of a fi€ldith a complete valuation
extends uniquely to fields which are finite oveK (Roquette 1958. The proper substitute for
complete valuation rings (where Hensel's lemma merely fioidank 1) are thélenselianlocal
rings, introduced by Azumayagumaya 1951) and developed by NagatBldgata 1962, which
satisfy Hensel's lemma by definition. For equivalent chemazations, seeRibenboim 1985.
The most important characterization of Henselian locadgral domains is that every integral
extension is local ({agata1954), Theorem 7). For Henselian valuations of a figldthis means
that they uniquely extend to the algebraic closkre

Proposition 5.2. Let V be a Henselian valuation domain with quotient field KefTh K — A(V)
extends uniquely to the algebraic closieof K, which gives a commutative diagram

K — s A(V)

]

K — A(V)4.
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For every non-zero polynomiald K[x] with rootsas, . .., a, € K, the roots of{ f) are t(a1), . . ., t(an).

Proof. SinceV is Henselian, the integral closugof V in K is local, hence a valuation ring
((Bourbakj 1972, V1.8.6, Proposition 6). Furthermoré(S) can be identified with the divisible
closure ofA(V). If ais the leading caficient of f, we havef = a(x — a;) - - (X — an) in K[X].
Sincet’ is multiplicative, this implies that'(f) = t(a)(x v t(ay)) - - (X v t(an)). AsA(V)? is
linearly ordered, this proves the claim. ]

Propositiorb.2is the basis for Newton’s method, which makes use of thevialig result. Its
first part is essentially due to Ostrowskigtrowskj 1935.

Proposition 5.3. Let V be a Henselian valuation domain with quotient field Kd &t f = a5 +
aix + - -+ + apX" € K[x] be a non-zero polynomial. If f is irreduciblé(t) has a single root in
A(V)4. Conversely, if't f) has a single root in AV)4, and there is no divisor d 1 of n such that
A(V)* contains a d-th root of(pa; !), then f is irreducible.

Proof. Let S be the integral closure &f in the splitting fieldL of f. Every element- of the
Galois groupG(L|K) leavesS invariant:o-(S) = S. Hence, iff is irreducible, every zera of f
satisfies(o(a)) = t(a) for all o € G(L|K). So there is a single robfa) of t'(f) of multiplicity
degf.

Conversely, assume thtitf) has a single root i\(V)Y, and that there is no divisat > 1
of n such thatA(V)* contains ad-th root oft(apa;?). Letg be a monic irreducible factor df.
Without loss of generality, we can assume taat= 1. Then the single roat of t'(f) satisfies
t'(f) = (x v @)"anda" = t(ay). If gis of degreem, thent’(g) = (x v @)™. Letd > 0O be
the greatest common divisor af andn. Thend = pm+ gnfor some integerp, q € Z. Hence
h:= (xva)! = t(QPt'(f)d e AV)[x], andd|m implies thatt’(g) = h™9. Furthermore, the
absolute terna := o of h belongs toA(V)*, anda"? = t(ay). By assumption, this gives = n.
Whencef = g = his irreducible. []

Propositiorb.3reduces irreducibility of polynomials ové&r almost completely to the tropical
semifieldA(V), where the complete factorization is obtained by stragtérd calculation. Con-
trary to a remark inKhanduja & Sahal997), the condition of the criterion is not necessary, as
the trivial example 1+ x + X2 € Q,[x] shows. (The mistake is caused by rewriting the special
version of Popescu and ZaharesBPwjescu & Zaharesc@995 in a logically diferent way.) In
particular, we have the following

Corollary. Let V be a Henselian valuation domain with quotient field Kd &t f = ag + ayx +
-+ + apX" € K[X] be a non-zero polynomial. If(tf) has m distinct roots, f splits into m relatively
prime factors.

Newton’s method was applied already in the early days ofatada theory, invented by Hensel
(Hense] 1908, and developed by KiirschaKijrschak 1913; Kiirschak 1913), Ostrowski Os-
trowski, 1916 1917, 1933, and Rychlik Rump & Yang 2008 Rychlik, 1924). Newton’s method
also appears in a paper of RelRg]la 1927), but in essence, it can even be traced back to Newton
himself via Puiseux’s theorem which states, in modern tetha the field of Puiseux series over
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C is the algebraic closure of the fiel@{ (x)) of formal Laurent polynomials, the quotient field of

ClIx]-

Here the fieldC((x)) not only builts a bridge between algebraic curves and coxrgutelysis;
in addition, it is maximally close to its tropical shadow: éty finite extension field o€((x)) is
isomorphic toC((x)), the extension being just given be extracting sowik root of x. So if S
denotes the the integral closuseof C[[x]] in the algebraic closure @ ((x)), the tropical picture
is encoded in the commutative diagram

C((%) —— AC[[X]]) = Z

T(0) —— A(S) = Q.

A lot of irreducibility criteria can be derived from Propten 5.3, which seems to be the “true
metaphysics” behind polynomial factorization. Eisenstein’s criterisrjust the first of a series
of irreducibility criteria (e. g., Dumas 1906 Kurschak 1923 Ore 1923 1924 Rella, 1927,
MacLane 1938 Azumaya 1951)) which follow the same “tropical” pattern.

6. Algebraic equations in characteristic 1

Now we return to the problem that solutions of equations betwtropical polynomials cannot
just be read fi from the roots. Let us start with linear equations

axvb=cxvd (6.1)

in a tropical semifieldK. Looking quite innocent, they already bear a mild challerigecontrast
to classical algebra, such an equation is not always savabb avoid trivialities, assume that
a,b,c,d e G := K*. Thenx cannot be zero, unless= d. To solve Eq. §.1), consider the map
p: G — G given by

p(x) := ((ad v be)x v bd) (acx v (ad v be)) . (6.2)

Note the expressioA := ad v bc which looks like a determinant! The roots of the left- and
right-hand side of Eq.G.1) are respectively

a:=ab, p:=cld
Proposition 6.1. The map(6.2) is idempotent and maps G onto the interval

[ AB,avpl. (6.3)

Every solution x of Eq(6.1) is mapped into a solution(p).

2A common expression of the 18th century (s€arot 1860; or (Speiser 1956, Chapter 17, concerning La-
grange who considered groups as “la vraie métaphysiqualgebraic equations).
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Proof. To verify thatp? = p, note first than\? > abcd Now Eqg. 6.2) can be written as

(x) = AX v bd
P = aexv &
So we have
(P(X)) = A(Ax v bd)(acxv A)™* v bd  A(Ax v bd) v bd(acxv A)
PLRLY) = ac(Ax v bd)(acxv A)-1v A ac(Ax v bd) v A(acxv A)
(A% v abcdx v Abd  A?xv Abd  Ax v bd
- > = 5 = = p(X).
acAx v (A% v abcd) acAxv A acxv A
Furthermore,

p(x) = (Ax v bd)(acxv A)™* = (Axv bd)(a™*cIxt A AT
=Ax@cixtAAa ) vbdatcixtAAT
<Aa'ctvbdAt=atbvcld,

and similarly,p(x) = (Ax v bd)a=lc™x™t A (Axv bd)A™? > Aa~'c! A bdA™! = a7tb A c71d.

Thusp maps into the intervdl A8, avB]. Forx e [a B, av], we haveacx < ac(a tbvcid) =
A, and secondlyhd < (adv bc)(a™tb A c7'd) < Ax. Hencep(x) = (Axv bd)A™! = AxA™1 = x.

Finally, if xis a solution of Eq. &.1), then(ap(x) v b)(acxv A) = a(Ax v bd) v b(acxv A) =
aAxvbA = (cxvd)A = (cAvacd)xvd(bcvA) = c(Axvbd)vd(acxvA) = (cp(x)vd)(acxvA),
which shows thap(x) is a solution of Eq. §.1). O]

By Proposition6.1, the solutions of Eq. §.1) are the fibers of the solutions in the interval
(6.3) under the projectiop. So it remains to consider solutions in the inten&B). To solve the
equation, we consider another mstpG — G with

s(x) := a *d(ax v b)(cxv d)~%. (6.4)

Proposition 6.2. The map(6.4) satisfies $= p. In particular, s is an involution on the interval
(6.3).

Proof. We have

S(s(x)) = a~d- a-aldaxv b)(cxvd)™tvb _ 1y d(axv b) v b(cx v d)
c-a!d(axv b)(cxvd)~tvd cald(axv b) v d(cxv d)
d(axv b) v b(cxvd) Axv bd
~ claxvb)valcxvd) acxvA P(X). 2

Corollary. The following are equivalent.
(@) Eq.(6.1) is solvable.
(b) ad A bc< ab< ad v bc.
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(c) ad A bc<cd<adv bc.
If Eq. (6.1) is solvable, the unique solution in the interyél3) is x= (b v d)(av ¢)~.

Proof. The equivalence of (b) and (c) follows by symmetry. Condit{g) is equivalent to
ald e [@ A B,a v B]. Furthermore, Eq. §.4) shows thats maps every solution of Eq.6(2)
to a~'d. Hence, if Eq. 6.1) is solvable, there is a solution e [@ A B,a v B], which yields
ald = s(x) = sp(x) = $*(X) = ps(X) € [@ AB, @ Vv B]. Thus (c) is necessary for the solvability of
Eqg. 6.1). Moreoverx = p(x) = $*(x) = s(a id) = a~*d(dvb)(ca'dvd)~* = (dvb)(cva)™t.

Conversely, ifa~'d € [@ A B,a v B], thenx := s(a~'d) satisfiess(x) = p(a~'d) = a~'d.
Hence Eq. §.4) implies thatx is a solution. ]

Our discussion of linear equations already shows thatisolsineed not exist, even for non-
trivial equations. Therefore, a concept of algebraicalbsed semifield has to take this into ac-
count. So we arrive at the following

Definition 6.1. A semifieldK is said to bealgebraically closedf every equationf (x) = 1 with
f € K(x) which is solvable in some extension semifieldoadmits a solution irK.

Note that an equatiof(x) = 1 in K(x) can also be written in the form

9(x) = h(x)

with polynomialsg,h € K[x]. We mention here that polynomials K[x| can be regarded as
functions. Namely, for a non-trivial abeliaiigroup G, Proposition 5 of Rump 2015 implies
thatf e G[x] is uniquely determined by the corresponding functforG® — G on the divisible
closure ofG. ForG = R, it is convenient to writeR* additively via the logarithm. SG&
is turned into the additive group @&, and O becomes-cc. The graph of a polynomial is then
piecewise linear, a classical Newton polygon. For exantpkepolynomial

—1v (=24 2x) v (-4 + 3X)

looks as follows:
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Here the cofficients are ir, while the roots are igZ, because the linear term is missing. The
root% is of multiplicity 2. Thus, if we add a linear term to get thelypggomial into the normal
form, the codficient of x would be—%.

The corollary of Propositiof.2shows that in the tropical case, linear equations are nadltri
and that roots only play a certain rdle with respect to tHetsamns. In compensation for this initial
difficulty of tropical equations, Theorem 4 &¥mp 2015 states that we don’t have to go beyond
guadratic equations! Precisely, the theorem says thapacticsemifieldK is algebraically closed
if and only if the/-groupG := K* is divisible, that is, the pure equatior% = a are solvable in
G, and the quadratic equations

(av)x¥*v(@vbvil)xv(a®va)=axva (6.5)

are solvable for alf, b € G. Note that the solvablity clause (in an extension semifiefd)efini-
tion 6.1is missing. In fact, we have

Proposition 6.3. The equation$6.5) are solvable in any totally ordered abelian group.

Proof. Fora > 1, Eq. 6.5 becomesx v (a?v b)xva? = ax* va. We show that this equation
holds for allx > a v a~!b. Indeed, the latter implies that® > ax(a v a“b) = (a? v b)x > a2.
So the equationg(5) is solved. Fom < 1, the equation becomed v (b v 1)x v a = ax v a.
Here we choos& < a(b v 1)~1. Thenx < aand(b v 1)x < a. Henceax? < x < a, which solves
the equation. 0

Corollary 1. For any tropical semifield, there exists a (tropical) extenssemifield where Eq.
(6.5) is solvable.

Proof. This follows since every abeliaftgroup G is a subdirect product of totally ordered
abelian groups @arne| 1995, 47.11). ]
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Furthermore, Theorem 4 oRUmp 2015 implies

Corollary 2. Let G be a totally ordered abelian group. Thénis algebraically closed if and only
if the pure equation k= a is solvable for all positive integers n anceaG.

To analyse Eq. §.5), consider an additive abelialhgroupG. The proof of Propositior®.3
then tells us that in the totally ordered case, solutionspf(&5) exist, but depending on the sign
of a, they must be either large enouglaif- 0 or small enough i& < 0.

It is this point where geometry enters the scene. By tliaihOhm correspondence, every
abelian/-groupG occurs as a tropicalized Bézout dom&nBy (?), Proposition 7, the structure
sheaf ofR can be transferred 6, which yields a sheab on a spectral spacé with totally or-
dered stalks such thatX, G) ~ G. In the archimedean cag8,is a sheaf of germs of continuous
functions. Therefore, the sensitivity of Ed.9) against sign change afis best illustrated by the
following

Example. Let G be the¢-group ¥ [—1, 1] of continuous real functions on the closed interval
[—1,1]. Multiplying Eg. (6.5 by a-*x~1, it takes the symmetric form

axvcvatx?t=|x (6.6)

withae Gandc > |a

, Where|a| ;== av a“!and

a:=av 1, a=a‘vl
Writing Eqg. (6.6) additively, it becomes
(@ +x)vev (@ —x) =|x.

Passing tog’[—1, 1], let ¢ be the constant function— 1, and leta be arbitrary withja] < c. If
X(t) = 0, this implies thak(t) = |x|(t) > 1, while x(t) < 0 gives—x(t) > 1, thatis,x(t) < —1.
Thus Eq. 6.5 cannot be solvable by a continuous function.

Recall that an element> 1 of a (multiplicative) abeliad-groupG is said to be aveak order
unit (Darnel 1999, 54.3) ifu A a = 1 implies thata = 1. Fora € G*, we writeG(a) for the
¢-ideal generated bg. It consists of the elemenise G with x| < a" for somen € N.

Definition 6.2. (McGovern 2005 An abelianf-groupG is said to beveakly complementetifor

any paira,be GwithaA b = 1, there exist/,by e Gwitha < a andb < b/ suchthat/ Ab/ =1
anda’ly’ is a weak order unit dB. If G(a) is weakly complemented for @le G*, thenG is called
locally weakly complemented

The following result shows that the solvability of Eq6.%) merely depends on the lattice
structure ofG. To state it, we need a very weak form of projectability. Rletteat an abelian
¢-groupG is strongly projectabléDarnel| 1995 if the polar

I+ :={aeG|Vbel:|a A b =1}



46 W. Rump Theory and Applications of Mathemati&sComputer Science 6 (1) (2016) ZH-

of any¢-ideall is a cardinal summand = 1-@1+L. Ifthis holds for principat-idealsl = G(a),
thenG is calledprojectable More generallyG is said to besemi-projectabl&(Bigardet al., 1977
if

(anb)t =a'bt
fora,b e G*. (For a geometric characterization, sBeihp 2014, corollary of Theorem 1.) Still

more generally, we calb z-projectabl§Rump 2014) if
(ab)J_J_ _ aJ_J_bJ_J_

holds fora,b e G*. Thus

strongly projectable—> projectable—> semi-projectable—> z-projectable

All these concepts are pairwise inequivalent. The line gblications could even be enlarged
to seven types of projectabilityRUmp 2014 which all have their particular relevance (cf. the
hierarchy of T-spaces in general topology). Now we are ready to prove

Theorem 6.1.Let G be an abeliad-group. The following are equivalent.

(a) The quadratic equation®.5) are solvable in G.
(b) Fora,b,ce Gwithan b=1andc> av b, there existab' € Gwithd > aandb > b

suchthataan b’ =1andd v b =c.
(c) G is semi-projectable and locally weakly complemented.
(d) G is z-projectable and locally weakly complemented.

Proof. (a) = (b): By assumption, there exists a solutiere G of Eq. (6.6) with ab™! in-
stead ofa. Thenbx < x"x~ andax! < x*x—, which gives(x~)? > b and(x*)? > a. Define
a = (x")2Ancandb ;= (x )2 Ac. Thenad Al =1landa vb = ((x")?v (x)?) rc=c.

(b) = (c): LetP = Q be minimal primef-ideals of G. Choosea € P n G* ~. Q. Since
P is minimal,a A b = 1 for someb ¢ P. For anyc > a v b, the elements/, b’ in (b) satisfy
a e bt andb’ € a*. Hencea'b' = G. Sincea: < Q andb* < P, we obtainPQ = G, which
shows thaG has stranded primes. BRigardet al,, 1977, Proposition 7.5.1, this implies thé&t
is semi-projectable. Moreover, (b) implies ti@ats locally weakly complemented.

(c) = (d): By (Rump 2014, Proposition 4, every semi-projectable abelfagroup isz
projectable.

(d)= (a): Leta,b,ce Gwitha A b = 1 andc > a v b be given. By the equivalence of Eq.
(6.5 and Eq. 6.6), it is enough to solve the equation

axv cvbx?t=]x. (6.7)

3Some authors replace this term by “having stranded primes$&rring to an equivalent form proved iBif
gardet al, 1977, Proposition 7.5.1. DarneD@rne| 1995 argues that “semi-projectable” does not come close
to “projectable” (referring perhaps to the “projectiond’acardinal sum). Note, however, the equivalent version
aAb=1= albt = G, which gives half of a cardinal sum: “sem¥ “projectable”.
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By assumption, there exist,b’ ¢ G with @ > aandb’ > b such thata A b¥ = 1 and
(@)t n G(c) = {1}. SinceG is zprojectable, this yields € (a'b')**+ = (a)**(b')*+. So
there arep € (&)*+ n G* andq € (b)**+ ~ G* with ¢ = pg. In particular, this implies that
parg=1 Hencea=ana(pvqg) =(anp)v(anqg) =anp. Sowe hava < p, and similarly,
b < q. Thusx := qp ! solves Eq. §.7). O

By (Rump 2015, Theorem 4, we obtain

Corollary 1. Let G be an abeliai-group. The tropical semifiel is algebraically closed if and
only if G is divisible and its underlying lattice satisfieqdition (b) of Theoren®.1

Recall that a rinqR is said to beclean(Nicholson 1977) if everya € Ris a sum of an idem-
potent and a unit. NicholsomN{cholson 1977 proved that a clean ring satisfies thexchange
property(Crawley & Jonssonl964 Warfield 1972, which means that for every decomposition
M =R®N = @, M of modules, there are submoduld$ = M; with M = R® @, M!. For
example, commutative von Neumann regular rings, and sefagieings, are clean. For various
characterizations, se®1¢Govern 2005. If every non-isomorphic homomorphic image Rfis
clean, the rindR is calledneat(McGovern 2005.

Corollary 2. A Bézout domain is neat if and only if its group of divisilyibatisfies the equivalent
conditions of Theorerfi.1

Proof. By (McGovern 2005, Theorem 5.7, a Bézout domain is neat if and only if its groti
divisibility is semi-projectable and locally weakly conephented. Thus Theorelapplies. []
Remark. Note that the underlying lattice of an abeliésgroup is self-dual viax — x~*. Thus,
for a Bézout domaii, Corollary 2 remains valid if the group of divisibility isp&aced by the unit
groupA(R)* of the tropical semifieldA(R). In particular, Corollary 2 gives a characterization of
Bézout domain® with A(R) algebraically closed.

Finally, we consider the abeligihgroup%’(X) of continuous real valued functions on a topo-
logical spaceX. Note that#’(X) is also a ring. To avoid confusion, let us denote this ring by
C(X). By (Gillman & Jerison 1960, Theorem 3.9, there is no loss of generalit)ifs assumed
to be completely regular. It is known th&tX) is a Bézout ring (that is, every finitely generated
ideal is principal) if and only iX is anF-space which originally was just defined by this property
(Gillman & Henriksen 1956. For equivalent characterizations, s€llfnan & Jerison 1960,
Theorem 14.25. One of these characterizations statesothewéry f € C(X) there is an element
g € C(X) with f = g|f]|.

—~——

Corollary 3. Let X be a completely regular space. If the tropical semif#&(X) is algebraically
closed, then X is an F-space.

Proof. Let f € C(X) be given. Therff* A1) A (f~ A1) =0and(ft A1) v (f~ A1) <1,
Thus, by Corollary 1, there exigth € ' (X) with f* A1 < gandf- Al < hsuchthaganh=0
andg v h = 1. We claim thatf = (g — h)|f|. If f(t) > 0, then O< f*(t) A 1 < g(t). Hence
h(t) = 0, and thugg — h)(t) = 1. Similarly, f(t) < 0 implies that O< f~(t) A 1 < h(t), which
yields(g — h)(t) = —1. ThusXis an F-space. O
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Abstract

In this paper, we have introduced a new subclass of p-valent harmonic meromorphic and orientation preserving
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1. Introduction

Let C be the field of complex numbers. A continuous function f(z) = u + iv is a complex
valued harmonic function in a domain D C C, if both u and v are real harmonic in D. Hengartner
and Schober [5], among others, investigated the class of functions of the form f(z) = h(z) + 2(2),
which are harmonic, meromorphic, orientation preserving and univalent in U= {z 1 |z| > 1} so that
f(o0) = oo . It is known that f(z) admits the representation

f@) = h(z) + g(z) + Alogle] (1.1)
where . .
o) =az+ ) a", g() =P+ ) b (12)
n=0 n=0
For 0 < |B| < || and a(z) = f is analytic and satisfies |a(z)] < 1 for z € U. Since the affine
transformation )

af - pf — aay + Pag
laf? - |BI?
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is again in the class studied by Hengartner and Schober see (Hengartner & Schober, 1987). Re-
cently, Jahangiri (Jahangiri, 2000) assumed @ = 1, 8 = 0 and removed the logarithmic singularity
by letting A = 0 in (1.1) and focused on the study of the family of harmonic meromorphic func-
tions.

For fixed positive integer p, consider the family 4(p) consisting of functions

@) =h@) +g@) (1.3)

which are p—valent harmonic meromorphic functions in U, where

h(z) = P + Z an+p—lz_(n+p_l)9

n=1

@)= Y buprZ ™V, byl < 1 (1.4)
n=1

we call h(z) the analytic part and g(z) is co-analytic part of f(z). ForO <y < 1,k > 1 and 0 <
a < 2rm, we define a new subclass as follows: Let Zy(p,y, k) consist of functions f(z) satisfying
the conditions

Re {(1 + ke )z’f(z)

pke"“} > py, (1.5)
, 0 ) .
where 7/ = %z with z = re', r > 1 and 6 is real.

Further, let Z;(p, v, k) denote the subclass of Zy(p, v, k) consisting of functions f(z) = h(z) + 2(2)
such that h(z) and g(z) are of the form

h@) =2+ ) lanpale "7,

n=1

82) == ) Ibuepal ™0, byl < 1 (1.6)
n=1

Note that, various other subclasses of harmonic p—valent meromorphic functions have been stud-
ied rather extensively by Ahuja and Jahangiri (Ahuja & Jahangiri, 2003) and Murugusundaramoor-
thy (Murugusundaramoorthy, 2003), we also note that, X4(1, v, 1), the class of harmonic meromor-
phic functions, was studied by Rosy (T. Rosy & Jahangiri, 2001). Among other things, Ahuja and
Jahangiri (Ahuja & Jahangiri, 2003), proved that if, f(z) = h(z) + g(z) is given by (1.4) and if,

D+ p = Dlanepl + by i) < p, (1.7)

n=1

then f(z) is harmonic, sense -preserving and p—valent in U and f € Zu(p).
In the present paper, we have obtained coefficient bounds, extreme points, distortion bounds, con-
volution conditions and convex combinations for functions in the class X(p, v, k).
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2. Coefficient Bounds

First we state and prove the coeflicient bound for the class Xy(p, v, k).

Theorem 2.1. Let f(2) = h(z) + g(z) with h(z) and g(z) given by (1.4) . If

Apip-1 |

D+ p= 1)1+ + plk +9)]

n=1

+[(n + p - DA + k) = plk + P |baspei| < p(1 =),

then f(z) is harmonic, orientation preserving and p—valent in U and feZulp,v, k).

Proof. Suppose that (2.1) holds. Then we have

Rt ke)(zh' (2) = 28'(2) = pke(h(z) + () _ AQ2)
e >

— = 2 pY,
h(z) + g(2) B(2)
wherez=re?, 0<r<1,0<y<1,k>1,0<a < 2r,
here, we let ‘ ‘ L
A(z) = (1 + ke') (2l (2) — 28'(2)) — pke'* (h(z) + g(2))
and

B(2) = (h(z) + g(2)).

Using the fact that Rew > py, if and only if |p — ¥ + w| > |p + ¥ — w], it suffices to show that

|A(2) + p(1 = y)B(2)| = |A(z) = p(1 +¥)B(2)| = 0.

Substituting the expressions for A(z) and B(z) in (2.5), we obtain

53

2.1

(2.2)

(2.3)

(2.4)

2.5)

IAQ@) + p(1 = Y)BQ@)| - |AR) - p(1 +Y)B@)| = |p(1 = y)h(@) + (1 + ke™)zh' (2)) — pke™h(2)|
+|p(1 = y)g(2) = (1 + ke'™)zg'(z) — pke"“g(z)| = p(1 + Y)h(z) — (1 + ke")zl' (z) + pke'*h(z)

+p(1 +¥)g(2) + (1 + kei®)zg'h(z) + pkeg(2) |

[

n=1

= > [ +ke")n+p=1)+p(l — ke = p=y)]

n=1

P = ) [ +ke*)n+p = 1)+ plke™ + 1 +7)]

n=1

PR =) = Y [ +ke™)n+ p = 1)+ pke™ = p = )] ayeprz """
bn+p—1| Z—(n+p—l)|

—(n+p-1)
Apyp-1 | < P
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(o)

= Y I(1 + kei®)(n + p = 1) = plkei® + 1 + )]

n=1

bn+p— | | Z—(n+p— 1)

—(n+p—1
Apapr| 127D

2p(1L =)l = Y 2+ p =11 +0) +2p(k +7)

n=1

=Y 20+ p =11+ k) = 2p(k +7)

n=1

- -1
Bpap| 12+

0

2127 {p(l =y = Y (4 p= 1)1 +k) + plk +7)

n=1

- -2
an+p—1| |Z| ntp )}

+ > 1+ p= 1A +8) = plk + ) [bapoa |1 "7

n=1

an+p—1|

>2{p(1=y) = ) (n+p= D1+ 0+ plk +7)

n=1

+ > (n+p =11 +K) = plk+7)

n=1

bn+p—l |} > 0’

by (2.1). O
Remark 2.2. It is natural to ask if the condition (2.1) is also necessary for functions f € Zy(p,y, k).
In the next theorem we show that the answer to that question which is in affirmative.

Theorem 2.3. Let f(z) = h(z) + (@ be such that h(z) and g(z) given by (1.6). Then f(z) €
2. 7(p, v, k), if and only if the inequality (2.1) holds for the coefficients of f(z) = h(z) + g(2).

Proof. In view of Theorem I, we only need to show that f(z) ¢ >.7(p, v, k), if the condition (2.1)
does not hold. We note that for f(z) € >, 4(p, vy, k), we have

. {(1 T ke )2 (2) - 78 (D) — pke®(h(z) + g(z))}
e — 2 py
h(z) + g(z)

This is equivalent to

. {(1 + ke') (' (2) — 28'(2)) — pke®(h(z) + @)} _
e —— —pY =
h(z) + g(2)

Re{ 1 (1 =)

2P+ Yoy Anap1 27 PTD = 300 by por P

= Y I+ ke™)n + p = 1) + pke™ + pylag., 12 ")

n=1
[ee]

- Z[(l +ke)(n +p — 1) — pke™ — pylbn+p_1z‘<”+f7‘1>]} >0

n=1
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The above condition must hold for all values of z such that |z| = r < 1. Upon choosing the values
of z on the positive real axis, we must have

1 [eS) . '
R 1- —E 1 +ke™)(n+p—1)+ pke™ + apt 07D
e{l + Z;ozl(arﬁp—l - bn+p—1)r_(n_l) [p( 7) [( ¢ )(n P ) pre p’)/]a r i

n=1

= D [+ ke™)n+ p 1) = phe'® - py]bn+p_1r“”‘”]} =0

n=1

If the condition (2.1) does not hold, then the numerator in (2.5) is negative for r sufficiently close
to 1. Thus there exists zop = ro > 1, for which the quotient in (2.5) is negative. This contradicts the
conditions for f(z) € X7(p,y, k) and this completes the proof. O

3. Distortion Bounds and Extreme Points

The determination of the extreme points of a compact family of harmonic univalent functions
enables us to solve many extremal problems for the family. The fundamental reason for con-
sidering extreme points for starlike and convex functions is to more easily categorize extremal
properties under continuous linear functionals acting on these classes. In this section, we shall
obtain distortion bounds for functions in X7(p, v, k) and also determine the extreme points for the
class X#(p, v, k).

Theorem 3.1. If f(z) € Z75(p, v, k) then r? — p(1 —y)r? < |f()| <P + p(1 —y)rPlzl=r <1

Proof. We only prove the inequality on the right. The argument for the inequality on the left is
similar. Let f(z) € X(p, ¥, k). Taking the absolute value of f(z), we obtain

(o8] [ee] (o8]
_ —1 — -1 — -1
|f(Z)| < |+ Z Apyp-13 (ntp=1) _ Z bn+p—IZ (n+p=1) <r’+ Z(an+p—] + bn+p—l)r (etp=1)
n=1

n=1 n=1

(9] (o)
- - -1
< r’ + Z(an+p—l + bn+p—l)r b < rf + Z(aer—] + bn+p—l)r (ntp-1)

n=1 n=1
<P+ Nl p = DA+ k) + plk + Y)ansp-1] + X5 [(n+ p— DA + k) — pk + X)buspi]
<r+(p-yr’
by (2.1). Our next result shows how f(z) € Zz(p, v, k) looks like. We precisely proved. O]
Theorem 3.2. f(z) € Z5(p., v, k), if and only if f(z) can be expressed as

F@ = > Gonpthupo1 + Ynep-18usp1) (3.1)

n=1
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where z € U ,

hp—] (Z) = Zp’

p(1-7y) =D =1,2,3,..)).

hn+P—l(Z) ="+ (n+ p— D +k)+ p(k + 7)

gp-1(2) = 2,

p(l _y) —(n+p-1) _
ntp-D+k-phk+y)° (=123,

gn+p—1(Z) =z’ +

Z(-xnﬂ/)—l +yn+p—l) = 1,-xn+p—1 2 0 and Yn+p-1 = 0.

n=1

Proof. For the functions f(z) given by (3.1), we may write,

(o)

f(Z) = Z (xn+p—1hn+p—1 +yn+p—1gn+p—1)

n=1

N p(l _7) —1
_ B h o+ - o+ o p+ (n+p-1)
Ap=1lp-1 T Vp-18p-1 Zx”’ 1@ (n+p—1)(1+k)+p(k+7))Z

n=1

_ p(I—7) —(n+p-1)
R s ey S
Then,
N _ p(1-7y)
—; (1 + k) +p 1>+p(y+k>>((1+k)(n+p_1)+p(y+k)xn+,,_l)
p(1-7v)
+({(I+kn+p-1) —p(*y+k))((1 ySTS— _p(y+k)yn+p_1).

= p(l _y)zxn+p—l +yn+p—l < P(l - Y)a

n=1

and so f(z) € Z5(p, v, k). Conversely, suppose that f(z) € Z7(p,y, k). Set

_(+kn+p-1+ply+k)

a4 p-1]
p(1—7) a

n

and
_(I+k)n+p-1)+ply+k)

p(1—-7v)

|bl’l+p—1|a (n = 1’ 27 3, "')

n
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Then note that by Theorem 2,0 < x,_; < 1.

Yp-1 = 1 - Xp-1 — Z(xn+p—l +yn+p—1)’

n=1
we obtain

f(Z) = Z(xn+p—1hn+p—1 + yn+p—1gn+p—1)

n=1

as required. L

4. Convolution and Convex Linear Combination

In this section, we show that the class X#(p, ¥, k) is invariant under convolution and convex
combinations of its members. For harmonic functions

- -1 =\— -1
f(Z) = Zp + Z Apip-12 rep=l) Z bn+p—1(z) trep=1)
n=1 n=1

and o .
F(7) = 7P A —(n+p-1) _ B =\~ (n+p-1)
(Z) =z + n+p-1% n+p—1(Z)

n=1 n=1

we define the convolution of f(z) and F(z) as

(f * F)(Z) = Zp + Z an+p—]An+p—1Z_(n+p_l) - Z bn+p—an+p—1(Z)_(H+p_l) (41)

n=1 n=1

Using this definition, we show in the next theorem that the class X7(p, ¥, k) is closed under convo-
lution.

Theorem 4.1. For 0 <<y <1, let f(2) € Zz(p, v, k) and F(z) € Z5(p, B, k). Then

f(@) * F(z) € Z(p, v, k) € Zg5(p, B, k). (4.2)

Proof. Let

—(n+p-1 — —(n+p-1
F@ =2+ Y Hanepal 70 = 3 [y | @
n=1 n=1

- -1 =\— -1
F(Z) = Zp + ZAnﬂ?—lZ tep=h) Z Bn+p—l(z) rep=l)

n=1 n=1

Note that A,,,-1 < 1 and B,,,-; < 1. Obviously, the coeflicients of f and F must satisfy

conditions similar to the inequality (2.1). So for the coefficients of f * F' we can write,
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Z(l +Kk)n+p—1)+ ply + Olansp-14np-1l + (L + k) + p — 1) = p(y + K)|bysp-1Brs p-1|
n=1
<(A+k)m+p—1+ply+blap,-1l+ (1 +kn+p—1) = ply + k)b pl.

This right hand side of the above inequality is bounded by 2 because f(z) € Z7(p, v, k). By the
same token, we can conclude that f(z) * F(z) € Z5(p,y,k) C Zg(p,B, k). Our next result shows
that X7(p, ¥, k) is closed under convex combination of its members. O]

Theorem 4.2. The family X(p,y, k) is closed under convex combination

Proof. Fori=1,2,3,..,let fi(z) € Zz(p,y, k) where f;(z) is given by

ﬁ(Z) = Zp + Z |ai,n+p—1|(z)(n+p_1) + Z |bi,n+p—1|(z)_(n+p_l).
n=1 n=1
Then by (2.1),

Z(l +k)(n+p =1+ ply + Blaipp-1| + (1 + )+ p=1) = p(y + B)|binsp| < p(1 —y) (4.3)

n=1

for 307, t; = 1,0 < ; < 1, the convex combination of f;(z) may be written as

o0

Z tifi(z) = 2" + Z(li|ai,n+p—1|)2 ey Z(fi|bi,n+p—1|)(2) (ntp=1),
n=1 n=1

n=1

Then by (4.2),

DA+ +p=1)+ply+ R D (tlainep Dl + (1 + K+ p— 1)

n=1 n=1

—p(y + B ) (tilbinep-i )
n=1

Zzi{ D (L+00+p =1+ ply + Baineps + (1 + K+ p—1)

n=1 n=1

~ply + k)bi,m,,_l} <> -y =1-.
n=1

Since this is the condition required by (2.1), we conclude that Z t:fi(z) € Zg(p,y, k). This com-
n=1

pletes the proof of Theorem (2.1). [
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Abstract

The main object of this paper is to give an application of a linear operator H,, 7 (1) f(z) involving the general-

ized hypergeometric function. We define subclasses of the meromorphic function class X, ,, by means of operator
Hy,g.s(1) f(2)-
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1. Introduction and definitions

Let X, ,, denote the class of functions of the form:

fla)=z27"+ 2 a (peN={1,2.1}), (1.1)
k=m

which are analytic and p-valent in the punctured unit disc U* = {z: z€ Cand 0 < |z| < 1} =
U\{0}. We alsodenote X,,_, =X, .

A function f € £, , is said to be in the class £S % (@) of meromorphically p-valent starlike functions
of order a in U if and only if

2f (2)
f(z)

<—a (zeU;0<a<p). (1.2)

*Corresponding author
Email addresses: bafrasin@yahoo.com (B. A. Frasin ), ekram_008eg@yahoo.com (E. E. Ali)
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Also a function f € X,,, is said to be in the class XC,(@) of meromorphically p-valent convex of
order @ in U if and only if

w1+ L@, (zeU;0<a<p). (1.3)
f(z)
It is easy to observe from (1.2) and (1.3) that
2f (2) e
f(2) € 2Cy(0) = ——= e X5 (a). (1.4)
For a function f € X, ,,, we say that f € 2K, (B, @) if there exists a function g € £S5 () such that
%(Zf((§)> < B (zeU;:0<a.f<p). (1.5)
8\Z

Functions in the class ZK),(8, @) are called meromorphically p-valent close-to-convex functions
of order 8 and type a. We also say that a function f € X, is in the class ZK7 (B, @) of meromor-
phically quasi-convex functions of order 8 and type « if there exists a function g € XC,(a) such
that

w (R g (ze U;0<a,B < p). (1.6)
g (2)
It follows from (1.5) and (1.6) that
f(2) € IK*(B,a) < Y p(z) e 3K, (B, ),

where XS ¥ (@) and ZC () are, respectively, the classes of meromorphically p-valent starlike func-
tions of order @ and meromorphically p-valent convex functions of order @ (0 < a < p)(see Aouf
(Aouf, 2008) and Frasin (Frasin, 2012)).

For a function f(z) € Z,,,, given by (1.1) and g(z) € X, ,, defined by

a0
g(z) =z7"+ Z biz*,
k=m
we define the Hadamard product (or convolution) of f(z) and g(z) by

fR)+gx) = (f+8)z) =27+ > aid = (g+ f)(2) (peN).

k=m

For real or complex numbers

ay, ... and By,....B; (Bj ¢ Z, =1{0,—1,-2,..}; ]

|
[E—
M
[\9]
B
3
[
~—
<
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we consider the generalized hypergeometric function ,F s(ag, ..., @, P, -, Bs; 2) by (see, for exam-

ple, (Kiryakova, 2011, p.19))

F (a, a ﬁ :8 'Z) _ i (a1>k"'(at1)k Z_k
qt s 1o eees Lbgs P15 -5 P> = (ﬂl)k.“(ﬁs_)k .k!
(g<s+1;q,seNg=Nu{0};ze U),
where (), is the Pochhammer symbol defined, in terms of the Gamma function I, by
(g)v =

I'(0) 6—1)..(0+v—1) (veN;0€C).

Corresponding to the function ¢, (a1, ..., @, Bi, ..., Bs; 2) given by

¢p(a,1’ sy aq;ﬁl’ ’ﬁs’z) = Z_p qu(ala sy aq;ﬁl’ $ﬁs’z) b

we introduce a function ¢, (a1, ..., @4 B, ..., Bs; z) defined by

1
Z”(l — Z)u+p

(u> —p;ze U%).

¢p(al’ eeey aq;ﬁla ---’ﬁs;Z) * ¢p,,u<al9 eeey aq;ﬁla ---’ﬁs;Z) =

We now define a linear operator Hy ' (@1, ..., @3 B1s s Bs) : Zpu — Zpm DY

HZis(al’ ""aq;ﬁl’ ’ﬁs)f(z) = ¢p,ﬂ(al7 ~-"a'q;ﬁl9 --wﬁs;Z) * f(Z)

(cx,»,,Bj eC\Zyii=1,..,q,j=1,..,8 ;4> —p,f€X, iz € U*) .

For; convenience, we write

Hl”,f;fs(al, s @3 B, s Bs) = H,’;f;fs(al)

and

H () = B (@) (4> —p).

If f(z) is given by (1.1), then from (1.7), we deduce that

0

H () f(z) =277+ ).

= (@1) pske--(@g) pri

(1 + P)psk(B1) ke (Bs)pik

It is easily follows from (1.8) that

’

2 (Hyt (@) f(2)) = (u+ p)Hpi () f(2) — (u+ 2p)Hyt! (1) f(2).

@+ v) :{ (1 (v =0;0e C\{0} = C*),
0

azr (u>—p;ze U").

(1.7)

(1.8)

(1.9)
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From the identity (1.9), we readily have

¢ (Hp (@) £(2)) = (et p— DHPE (@) f(2) — (u+2p — DHES (@) fz) (110)

and

2 (H (@) £(2)) = (et p+ DHE () f() = (u+2p + DHPE () f(2). (111
The linear operator H

vas(@1) was introduced by Patel and Palit (Patel & Palit, 2009) .

We note that the linear operator H),;';() is closely related to the Choi-Saigo-Srivastava oper-
ator (Choi et al., 2002) for analytic functions and is essentially motivated by the operators defined
and studied in (Cho & Noor, 2006) ( see also, (Dziok & Srivastava, 1999), (Dziok & Srivastava,
2003), (Srivastava, 2007) and (Srivastava & Karlsson, 1985)).

Specializing the parameters u, ;(i = 1,2,...q),8;(j = 1,2, ...s),q and s we obtain the follow-
ing :

@ Hy5 (p,pip)f(2) = Hyy (P + 1. p3p)f(2) = [f(2);

N . /
(i) szll(p,p;p)f(z) — M

(iii) Hm21(p—|—l pp)f(z) = %’

Z
(iv) H" P(c + 1,1;0)f(2) = Jep(f)(2) = =5 §etP7 f(0)dt (¢ > 0,z € U*), this integral
0

p.1,1
operator is defined by

Z

o
D@ = 255 f £ (e 0:F € Xp),
0
Z
V) Hyyy(p+ 1, ps p)f =%(S) PP f(n)de s (peNyze U*);
(vi) H' o (@ 1ia)f(2) = m = D""P71f(z) (n > —p), the operator D"*P~! studied by

Ganigi and Uralegaddi (Ganigi & Uralegaddi, 1989), Yang (Yang, 1995), Aouf (Aouf, 1993), Aouf
and Srivastava (Aouf & Srivastava, 1997) and Uralegaddi and Patil (Uralegaddi & Patil, 1989);

(vii) H}5' (e, p + usa) f(z) = Ly(a, c) f(z) (a,c € R\Z; u > —p) (see Liu (Liu, 2002));

(viii) H121( + 1L,n+ Liu)f(z) = L,f(z) (0> 0;n > —1) (see Yuan et al. (Yuan er al.,
2008)).

We also observe that, form = 0, p = 1 replacing u by u—1, we have the operator HY gsl@)f(2) =

H, ,s(a1)f(z) defined by Cho and Kim (Cho & Kim, 2007).

The object of the present paper is to investigate some properties of meromorphic p- valent
functions by the above operator H, () f(z) given by (1.8).

Definition 1.1. Let H the set of complex valued functions h(r, s, t) : C3 — C such that

h(r, s, t) is continuous in a domain D < C3;

(1,1,1)e D and |h(1,1,1)] < 1;
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. 1 +p—1. 1 2 +p—1.
I’l 616, + M 14 619 + 6, + M P etO+
H+Dp H+p pu+p pu+p+1 p+p+1

1 (u+p—1)0e? + [6 + B — 6%
0+ , >
ptp+l (ut+p+ )+ u+p—Du+p+e?+ (u+p+1)s

whenever

. 1 1, 1 2 -1,
(e"’, GHEEPZ ey 5, GREP ey
p+p  pEp p+p ptp+1l p+p+1
1 5t (u+p—1)0e" + [6 + B — 6% cD
ptp+1l (wtp+)+pt+p—DE+p+1)e?+ (u+p+1)0
with R(B = 6(6 — 1)) for real 8, § = 1 and A > 0.

2. The Main Result

In order to prove our main result, we recall the following lemma due to Miller and Mocanu
(Miller & Mocanu, 1978).

Lemma 2.1. Let w(z) = a+wyz" + .......be analyticin U = {z : z€ Cand |z| < 1} withw(z) # a

andn = 1. If zo = rpe” (0 < rg < 1) and |w(zo)| = |max \w(z)|. Then
z|<ro

w (z0) = 6w(zo) 2.1)
and
R P COR S (2.2)
w'(z0)
where § is a real number and
w(zo) — af’ Iw(zo)| — |al

w(z0)|* — laf” ~w(zo)| + lal

Theorem 2.1. Let h(r, s,t) € H and let f € X,,, satisfies

( Hot (@) f(2) Hpst (a0 f(2) Hpt 2(“‘)f(z>> cDc

(2.3)

’

Hyt ) f(z) Hpgs(@)f(@) " Hys () f(2)
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and
A ( H () f(2) H ) () Hp 2(“'>f(Z)> <1 04
Hy () f(2) Hpas(@)f(2) T Hp (00 £(2)
for all z € U and for some m € N.Then we have
‘ﬁ%ﬂmV@ <1 (zeUsp>—-p,0<a<p;peN).
H,ys (o) f(z)
Proof. Let
Hﬁ%@ﬁf&):zw&> (2.5)

Hy () f(2)
Then it follows that w(z) is either analytic or meromorphic in U, w(0) = 1 and w(z) # 1. Differ-
entiating (2.5) logarithmically and multiply by z, we obtain

’

2 (H () f(2) ¢ <H%;1(C¥1)f(z)> W (2)
Hyg.s(@)f(2) H™ Y ay) f(2) w(z)

Using the identities (1.6) and (1.10) , we have

H™ o) f(z 1 +p—1 1 zw'(z
Hyos(a)f(z)  u+p  u+p p+p wi)
Differentiating (2.6) logarithmically and multiply by z, we obtain
mu+1 ' ’ +p—1 zw,(,) '
(M @)Q) mmere) el SEO ]
mu+1 - [_I’"»“c o 1 +p—1 1 ' (2) '
Hpg.s (Cl’l)f(Z) P58 (al)f(z> e + %W(Z) + T W)

, " ’ 2
/ w () |, 2w (2) w (2)
(:u +p— I)ZW (Z) + l w(z) + w(z) - ( w(z) ) ]

w (2)

L+ (u+p—1)w(z) + 55
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Using the identities (1.9) and (1.11) , we have

H 42 () f(2) Hya (1) f(2)
1) 2 - 1+
(u+p+ %$£Wmﬁk) m+p)pwwﬂﬂ@
(u+p—1zw'(2) + [ZW A (Z:I(S)Y]

1+ (/1+P_1 () w(z)

= 1+ [1 +u+p—Dw(z) + ZW/(Z)] +

/ " ’ 2
! w(z) | 2w (2) w (2)
(u+p—1zw (z) + [ wo T we) ( w(z) ) ]

w (2)

L+ (u+p—Dw(z) + 55

We claim that |w(z)| < 1 for z € U. Otherwise there exists a point zo € U such that ‘rr|1ax lw(z)| =
Z|<ro

Iw(zo)| = 1. Letting w(zo) = € and using Lemma 2.1 with a = 1 and n = 1, we have

Hyy(a1) f(2) i
Hyr' @) f(2)
Hya () f(z) 1 p+p—1, 1
é%ﬂMﬂd T ourp | mtp w+u+pd
Hy (o) f(2) 2 (wtp=1) 4 1
HY () £(2) w+p+1)  (w+p+1)  (u+p+1)

N (p+p—1)5ei9+[5+ﬁf52]

w+p+ )+ p+p+)u+p—1e’+ (u+p+1)8

b

where

B = and o> 1.

Further, an application of (2.2) in Lemma 2.1 given R (3 = §(6 — 1). Since h(r, s,t) € H, we have

, ( Hyo(@)f(@) Hya (@) () Hzf;fﬁ(al)f@)
Hyii (@) f(2) Hpasl@)f(2) " Hpgd (o) £(2)

L1 +p—1. 1 2 +p—1,
:V<w’ LHEP—L N N ESNN
H+Dp H+p pu+p pu+p+1 p+p+1
1 5 (u+p—1)6e + [6 + B — 6% -
ptp+1 (ptp+ )+ tp-u+p+De?+u+p+1)s)|
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which contradicts the condition (2.4) of Theorem 2.1. Therefore, we conclude that

‘ Hy,y's(a) f(2) <1 (zeU).

Hygs (@) f(2)

The proof is complete. U

Lettingu = 1,g = 2,5 = 1,0y = p+ l,a, = p and §; = p in Theorem 2.1, we have the
following result.

Corollary 2.1. Let h(r, s,t) € H and let f(z) € Z,,, satisfies

2pf(z) +2f () pl2p+ Df(2) +2f (2)]
pf(m) " (p+1)[2pf(2) +zf (2]

(2p+2)2p + V)f () +4(p+ Vaf @O +2F @)\ _ e
(P +2)2p+ 1)f(2) +2f (2)

and

i 20f(2) +2f (2) P[P+ 1)f(2) +2f (2)]
pf(z) T (p+1)[2pf(2) +2f (2)]°

(2p +2)2p + 1)f(2) + 4(p + zf (2) + 22f’ <z>>

<1

(P+2)2p+1)f(2) +2f'(2)

forall z € U. Then we have

2pf(z) +2f (2)
pf(z)

<1l (zeU).
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Abstract

The exponential dichotomy is one of the most important asymptotic properties for the solutions of evolution
equations, studied in the last years from various perspectives. In this paper we study some concepts of uniform
exponential dichotomy for skew-evolution semiflows in Banach spaces. Several illustrative examples motivate the
approach.
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1. Introduction

The property of exponential dichotomy is a mathematical domain with a substantial recent
development as it plays an important role in describing several types of evolution equations. The
literature dedicated to this asymptotic behavior begins with the results published in Perron (1930).
The ideas were continued by in Massera & Schiffer (1966), with extensions in the infinite dimen-
sional case accomplished in Daleckii & Krein (1974) and in Pazy (1983), respectively in Sacker
& Sell (1994). Diverse and important concepts of dichotomy were introduced and studied, for
example, in Appell et al. (1993), Babutia & Megan (2015), Chow & Leiva (1995), Coppel (1978),
Megan & Stoica (2010), Sasu & Sasu (2006) or Stoica & Borlea (2012).

The notion of skew-evolution semiflow that we sudy in this paper and which was introduced in
Megan & Stoica (2008) generalizes the skew-product semiflows and the evolution operators. Sev-
eral asymptotic properties for skew-evolution semiflows are defined and characterized see Viet Hai
(2010), Viet Hai (2011), Stoica & Borlea (2014), Stoica & Megan (2010) or Yue et al. (2014).
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In this paper we intend to study some concepts of uniform exponential dichotomy for skew-
evolution semiflows in Banach spaces. The definitions of various types of dichotomy are illustrated
by examples. We also aim to give connections between them, emphasized by counterexamples.

2. Preliminaries

Let (X,d) be a metric space, V a Banach space and B(V) the space of all V-valued bounded
operators defined on V. Denote Y = X x Vand T = {(t, ) ER: 11> to}.

Definition 2.1. A mapping
varphi : T x X — X is said to be evolution semiflow on X if the following properties are satisfied:

(esl) ¢(t,t,x) = x, (V)(t,x) e R}y x X;
(CSZ) ¢(t’ S, ¢(S’ [0,)6)) = ¢<t’ lo,X), (V)(t, S)’ (S, tO) € T,X €X.

Definition 2.2. A mapping ® : T x X — B(V) is called evolution cocycle over an evolution
semiflow ¢ if:

(ecl) @(t,t,x) =1, (V)t = 0,x € X (I - identity operator).
(ec2) @(t,s,P(s, 19, x))D(s, 1o, x) = D(t, 19, x), (V)(2,5), (s,80) € T, (V)x € X.

Let @ be an evolution cocycle over an evolution semiflow ¢. The mapping C = (¢, @), defined
by:
C:TxY—Y,C(ts,x,v) = (pts,x),0ts,x)v)

is called skew-evolution semiflow on Y.
Example 2.1. We will denote C = C(R, R) the set of continous functions x : R — R, endowed

with uniform convergence topology on compact subsets of R. The set C is metrizable with the
metric

c 1 di(xy) unde d,,(x,y) = sup |x(z) — y(?)]
n=1 21 + dn(x’ y) , o e[=nn]

For every n € N* we consider a decreasing function

d(x,y) =

1 1 1
w Ry — ,— |, limx,(t) = .
* * (2n+1 Zn) [ngx() 2n +1

We will denote
x,(t) = x,(t + ), Vt,s = 0.

n

Let be X the closure in C of the set {x},n € N*, s € R, }. The application

0:TxX—>X, o(t,s,x) = x,_y, unde x,_(1) = x(t — s + 1), V7 = 0,
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is a evolution semiflow on X. Let consider the Banach space V = R? with the norm ||(v{, ;)| =
lvi| + |v2|. Then, the application

O: T xX—B(V), Ot,s,x)v = (e‘“ fix(ros)dry, g0z SEX(T’S)dTm) ,

where (a1, ;) € R? is fixed, is a cocycle aplication of evolution over the semiflow ¢, and C =
(¢, @) is a evolution cocycle on Y.

Let us remind the definition of an evolution operator, followed by examples that punctuate the
fact that it is generalized by an skew-evolution semiflows.

Definition 2.3. A mapping E : T — B(V) is called evolution operator on V if following properties
hold:

(e1) E(t,t) =1, Vi e Ry;

(e2) E(t,5)E(s,t0) = E(t,19), Y(t,5),(s,19) € T.

Example 2.2. One can naturally associate to every evolution operator E the mapping
Op: T x X — B(V), Og(t,s,x) = E(t, ),

which is an evolution cocycle on V over every evolution semiflow ¢. Therefore, the evolution
operators are particular cases of evolution cocycles.

Example 2.3. Let X = R, . The mapping
0:TxRy >Ry, o(t,s,x) =t—5+x
is an evolution semiflow on R .. For every evolution operator E : T — B(V) we obtain that
O : T xRy — B(V), Op(t,s,x) = E(t — s + x,x)
is an evolution cocycle on V over the evolution semiflow ¢. It follows that an evolution operator
on V is generating a skew-evolution semiflow on Y.
3. Sequences of Invariant Projections for a Cocycle

Definition 3.1. A continuous map P : X — B(V) which satisfies the following relation:
P(x)P(x) = P(x),(V)xe X

is called projection on V.

Definition 3.2. A projection P on V is called invariant for a skew-evolution semiflow C = (¢, ®)

; P(g(t. 5.x)) (. 5.x) = ®(1, 5, 1) P(x),

forall (¢,5) € T and x € X.
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Remark. If P is a projection on V, than the map
Q:X—B(V), Q(x) =1—-P(x)
is also a projection on V, called complementary projection of P.
Remark. If the projection P is invariant for C then Q is also invariant for C.

Definition 3.3. We will name (C, P) a dichotomy pair where C is a skew-evolution semiflow and
P is invariant or C.

4. Concepts of Uniform Exponential Dichotomy for Skew-Evolution Semiflows

Definition 4.1. Let (C, P) be a dichotomy pair. We say that (C, P) is uniformly strongly exponen-
tially dichotomic (u.s.e.d) if there exist N > 1 and v > 0 such that:

(usedl) ||@(¢, s, x)P(x)| < Ne (=9
(used2) N||@(t, s, x)Q(x)| = e
for all (1, s) € T and x € X.

Definition 4.2. We say that (C, P) is uniformly exponentially dichotomic (u.e.d) if there exist
N = 1 and v > 0 such that:

(uedl) |@(z, s, x)P(x)v| < Ne™=9||P(x)v|
(ued2) N|®(1, s, x)Q(x)v]| = 9| Q(x)v|
forall (r,x) € T x X and forall v e V.

Definition 4.3. We say that (C, P) is uniformly weakly exponentially dichotomic (u.w.e.d) if there
exist N > 1 and v > 0 such that:

(uwedl) |®@(z, s, x)P(x)| < Ne 9| P(x)|
(uwed2) N[®(z, 5,x)Q(x)| = | Q(x)]
for all (f,x) € T,X and forallve V.

Proposition 1. If (C, P) is (s.u.e.d) then

sup ||P(x)| < +co. 4.1

xeX

Proof. Consider in (usedl) ¢t = s. Then we have
|®(1, 1, x)P(x)|| = [P(x)]| = |P(x)| < N (4.2)

for all x € X. [
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Proposition 2. If (C, P) is (u.s.e.d) then (C, P) is (u.w.e.d).
Proof. If (C, P) is (u.s.e.d) then by (used1), for x € X, we have that |P(x)| < N and hence
Q)| = I = P(x)] < 1+ [P(x)] <2N.

We have from (usedl) and (used2) that:

|®(t, 5, x)P(x)| < Ne™).1<Ne"|P(x)| 4.3)

< 2N%eU9||P(x)). (4.4)

AN?| (2, 5, x)Q(x)| = 2Ne'=9) = =9 Q(x)|, (4.5)

hence (C, P) is (u.w.e.d) O

Proposition 3. If (C, P) is (u.e.d) then (C, P) is also (u.w.e.d)
Proof. Tt follows immediately by taking the supremum over all v € V with |jv| = 1. O

Definition 4.4. We say that C has a uniform exponential growth (u.e.g) if there exist M > 1,
w > 0 such that
| (1, 5,x)| < Me™,

forall (¢,s) € T and x € X.

Theorem 4.1. Assume that a dichotomy pair (C, P) is (u.w.e.d) and C has a uniform exponential
growth. Then:

sup ||P(x)| < +c0.

xeX
Proof. Let N,v given by the (u.w.e.d) property of (C,P) and M, w given by the (u.e.g) of C.
Consider s > 0 fixed, t > sand x € X.

1 1
e =N 1P < e I00)] - Ne P
(1,5, 0)0(0)] || - @ 5. )P(x)]

NN

(1, 5, x)|| < Me®=,

Let t, > 0 be such that

Ay = —e" — Ne7 "0 > (.

" 2N
From the above estimation is follows that for t = 7, + s,

Me®h

1P(x)] < , (V)xeX.
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from where the conclusion follows.

Remark. In the following section we will see that for a dichotoomic pair (C, P):

1. (u.s.e.d) does not imply (u.e.d)
2. (u.e.d) does not imply (u.s.e.d)
3. (u.w.e.d) does not imply (u.e.d)
4. (u.w.e.d) does not imply (u.s.e.d)

5. Examples and Counterexamples

Example 5.1. Define, on R?, the family of projections
P(x) (V] s V2, V3) = (V] . 0, O)

and the evolution cocycle on R*:

b 2 b t =
O(t, 5, x)(vi, V2, v3) = {(Vl v2:v3) °

(e vy, e ,,0), 1> s,

with the following norm:
lx = || + ] + ], x = (21,30, 33) € R
We have that for all (¢, s) € T,x € X and v € R?
[©(z, 5. x)P(x)v]| = €'vi = | P(x)v]

from where we get that
|©(z, 5, x)P(x)]| < e[[P(x)]

and
1Q(x)v]l, 1 =5

<e?|o(x)v
. oty

|@(2, 5, x)Q(x)v| = {

, 1> 8
hence
|@(, 5, ) 0(x)| < [Q(x)].
Choose (0,1,0) € R*. Then
|z, 5, %) Q(x)(0,1,0) | = [ Q(x)(0, 1,0)]
from where we finally obtain that:
|0z, 5, x)Q(x) ]| = | Q(x)],

hence (C,P) is (u.w.e.d). Assume by a contradiction that (C, P) is (u.e.d). Then there exists,
N > 1, v > 0 such that

N|@(1, 5, %) Q(x) (v, v2,v3)| = &I [Q(x) (v1, v2, 3)]. (5.1)
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Put r > s and (vi,vp,v3) = (0,0, 1). Then |Q(x)(vi,v2,v3)| = 1 and
") < |D(1, 5, x) (v, va, v3)|| = |D(2, 5, x)(0,0,1)] = 0,
which is a contradiction.

Example 5.2 (u.e.d does not imply u.s.e.d). On V = R? and (X,d) = (R,,d) endowed with the
max - norm. Consider,

P(x) : R* = R?, P(x)(vi,v2) = (vi + xv2,0)

it follows that
[P(x)[| =1+ x,(V)x=0 (5.2)

Define the skew - evolutiv cocycle
O(t,5,x) = 'P(x) + 7°Q(x).
We have that

|®(z,5,x)P(x)| = e[ P(x)] and
[@(2,5,x)0(x) | = €[ Q(x)]
Hence (C, P) is (u.e.d). It can not be (u.s.e.d) because of (5.2).

(5.3)

Remark. From the above example, by taking the sup norm in (5.3) over |v| = 1, we get that (C, P)
is also (u.w.e.d). Hence (C, P) is (u.w.e.d) but not (u.s.e.d).

Remark. The connection between the three concepts studied in this paper is summarized in the
below diagram

(u.s.e.d) = (ued) = (uw.ed) < (u.s.e.d)

(u.s.ed) <= (u.ed) <= (uw.ed) = (u.s.e.d).
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Abstract

This work introduces informative and interesting Vororajions through measures utilizing probability density
functions and qualities of Voronoi cells of digital imageimgpatterns. Global mesh cell quality exhibits a fairly
horizontal behaviour in its range of convergence acrossraéeategories of digital images. Simulation results un-
ambiguously show that Shannon entropy does not expose teeinformation in Voronoi meshes although it’s in
the range 1k B < 2.5 for which information is maximized. Mesh information iseseto be generally a non-linear,
non-decreasing function of image point patterns. Some itappbmathematical theorems on quantities and optimality
conditions are proved.
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1. Introduction

This article introduces an approach to measuring the irdtion levels Voronoi tessella-
tion (mesh) cells via Rényi entropy. The focus is on the Rémtropy of Voronoi meshes
with varying quality. Letp(xy),...,p(X),..., p(X,) be the probabilities of a sequence of events
X1,...,%,..., % and let3 > 1. Then the Rényi entropyRenyi 2011) Hz(X) of a set of evenkK is
defined by

Hp(X) = ——In Z P’ (%) (Rényi entropy)

1:8|1
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Rényi’s entropy is based on the work by R.V.L. Hartlélaftley, 1928 and H. Nyquist Nyquist,
1924 on the transmission of information. A proof thie(X) approaches Shannon entropy as
B — lis givenin Bromileyet al, 2010, i.e,,

: 1 4 . n
ﬁ!ﬂlrﬁm; PP(x) =~ i=1"pinp.
The information of ordelB contained Quaity
in the observation of the evemt with re-  °*| 3 q
spect to the random variablkeis defined by g / S ,/ ‘ /
H(X). In our case, it is information level of °‘58’\,, \ / \'\\//\ ‘ P
the observation of the quality of a Voronoi °*} J \/
mesh cell viewed as random event that is
considered in this study. The principle ap- °*;
plication of the proposed approach to mea- **r oo 20 T ey
suring the information levels of mesh cells
is the tessellation of digital images.
A main result reported in this study is Figure 1. Rényi entropy
the correspondence between image quality and Rényi enfoypyifferent types of tessellated
digital images. In other words, the correspondence betwieerRényi entropy of mesh cells
relative to the quality of the cells varies foifidirent classes of images. For example, with Voronoi
tessellations of images of humans, Rényi entropy tends todheer for higher quality mesh cells
(see,e.qg, the plot in Fig.1 for different Rényi entropy levels, ranging frggn= 1.5 to 2.5 in 0.5
increments).

0.60

0.54 |-

2. Literature Review on Voronoi Diagrams

It is known that generating meshes is a fundamental and s&gestep in several domains
such as engineering, computing, geometric and scientifiicgtions (eibon & Letscher200Q
Owen 1998 Liu & Liu, 2004. No matter what their domain application and the specifie te
minology used, the resultant meshes have structures omeslthat result from the geometry of
surfaces, dimension of the space and placement or orgamzdtgenerator&beida & Mitchell
2012 Mitchell, 1993 Persson2004). Meshes may be generated for purposes of image processing
and segmentatior(beldaez & Cohen2006), clustering Ramellaet al,, 1998, data compression,
guantization, analysis of territorial behavior of anim@ersson2004 Persson & Strang2004
Du et al, 1999 to name a few. Applications of meshes are growing but wonkthe direction
of exploiting pattern nature and information are lackinge &ve therefore of the view that under-
standing the pattern and the underlying process couldlgieanefit applications.

Voronoi diagrams were introduced by the Ukrainian mathanaat G. Voronoi Yoronoi, 1903
1907,1908 (elaborated in the context of proximity and quality spasjeaces inReters2019,c,a;
A-iyeh & Peters2015 Peters2016) provide a means of covering a space with regular polygons.
The process allows us to understand fundamental propeftedements of the space by exploiting
properties of the meshes. The properties of the space mayode have remained inaccessible.
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In telecommunications, Voronoi diagrams have furnishexbafor analysis of binary linear block
codes Agrell, 1996 governing regions of block code and performance of Gansgiannels.

In musicology, Voronoi diagrams have demonstrated thdityu¢ McLean 2007). For ex-
ample, they have been successfully applied in automatiepgng of polyphony Hamanaka &
Hirata 2002. Other works bordering on applications of Voronoi meshesrareservoir modeling
(Mgller & Skare 2001) and cancer diagnosi®émir & Yener, 2005.

The fact that the partitioning algorithm divides the plam®iEuclidean neighborhoods permits
exploitation of proximity relations while féering the flexibility of modeling the space as a con-
tinuous image-like point pattern representing the spadeerzhe substantial utility of Voronoi
tessellations their applicability in additional areasliling point pattern detection and image
analysis is currently being investigated vigorously.

In this work meshes are generated for the purposes of cleaircy a point pattern informa-
tion using multiple measures for the individual mesh cellfie major focus here goes beyond
tessellating a space with meshes. Additionally we searcinfportant cues that may be funda-
mental for basic pattern understanding which in turn may keaidentifying and understanding
the underlying pattern.

3. Preliminaries

In this section, the grounding theory entropy, quality dfscand Voronoi diagrams based on
point pattern distributions is set. Some useful definitiaresgiven prior to facilitate the process.

3.1. Notation and Definitions

A subset of points ifR" is denoted bys. A partition of the space db ¢ R" according to the
Voronoi criterion into contiguous non-overlapping polygas denoted by the séV = F,&,S =
N} whereF, £ are the faces and edges of graph regions respectively. prigperties of cells such
as length of edges of polygons are representeld, layea byA, quality of cells byg, and entropy
by Hrg.

Definition 3.1. Given a point pattern s€& c R" of three or more non-collinear points and a
distance functiorl,, the set{V,S = {N} is called a Voronoi tessellation & if V; nV; + & for

i # ] ¢ S. A Voronoi tessellation is a set of polygons with their edged vertices that partition a
given space of points.

Definition 3.2. The Voronoi region of an image point is a polygon about thit siThe set of
all regions partition a plane of image points based on amtistdunction| - |. This results in a
covering of the plane with polygons about the points.

Definition 3.3. Consider the seb = {s,,..., &}, a plane(vi, Vv;) is a Voronoi edge of the Voronoi
regionV; if and only if there exists a point such that the circle centered»aand circumscribing
v; andv; does not contain in its interior any other pointéf. A Voronoi edge is a half plane
equidistant from two sites and bounds some part of the Vardiagram. Every edge is incident
upon exactly two vertices and every vertex upon at leasetadges.
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Definition 3.4. A Voronoil neighborhood of a poinp in the vicinity of pointq is the locus of
bisectors or half planes equidistant frgmandg. The union of half planebl§ (Hy) is the locus of
points nearer t@ than tog. The intersection of half plang3,.s 4., Hp defines a region generated
atp.

Definition 3.5. A Voronoi vertex is the center of a circumcircle through thsées.

Definition 3.6. A set of pointsS is a convex set if there is a line connecting each pair of goint
within S.

Definition 3.7. The convex hull of Voronoi regions abogtis the smallest set which contains the
Voronoi regions as well as the union of the regions.

Definition 3.8. A point pattern is a set of points of the signal representogations of signal
features. For example sets of corners, keypoints etc. Beed to as point or dot patterns.

Definition 3.9. The quality of a Voronoi cell is a dimensionless real numissigned to the cell
based on the extent to which the sides of the cell match.

Definition 3.10. An open pattern point is a point such that a disk centered conitains the point
as an interior point.

Definition 3.11. A closed pattern point is a point such that a disk centered @mnitains the point
as well a boundary.

Definition 3.12. Let V be a Voronoi diagram ifiR?. The skeleton o¥; € V, is the open se(Q)
from which the Voronoi diagram is generated.

Definition 3.13. The Voronoi quality of visual information given by a pointrgeator is defined
as the aggregate of measure of cells comprising the tessellaln other words it shows the
organization of a point pattern.

Definition 3.14. A point pattern is feasible when there exists a condtarii such that at least one
guality measure of the Voronoi cells is at lefast

3.2. Voronoi Diagrams

The spatial distribution of point sets informs the naturd arganizations of the pattern. This
in turn influences the graph geometry of the Voronoi diagraengdoint set. Assume we have a
finite setS of point locations called sites in a spaceR". Computing the Voronoi diagram with
respect téS entails partitioning the space 8finto Voronoi regionsV(s) in such a way that the
regionV(s) contains all points o§ that are closer tg; than to any other objes, i # jin S.

More elaborately, given the generator set

S={s,...,x:1eN},
the Voronoi regiorV(s) is defined by

V(s)={xeR": |x-s]| < |x-s,sceS,i+k},



E. A-iyeh et al/ Theory and Applications of Mathemati&sComputer Science 6 (1) (2016) B5- 81

where|., .| is the Euclidean norm (distance between vectors). The set
V(S) = USV(S')
Se

is called the n-dimensional Voronoi diagram generated bypttint setS. In R?, this dfectively
covers the plane with convex and non overlapping graphsfarresach generating point i8. By
the definition of a Voronoi region above, the region aboutexssatisfies

d(x.s) <d(xs) < ||x-s|?<||x-s*Vs €S.
Manipulating the expression of a Voronoi region gives

2 | |2
W(s) = (s syx< BEBEE g sy
The immediate expression is recognized as an ordinaryrlgystem of equations whehis finite
(Goberneet al,, 2012. For a partitioned space in which all the individual reg@ne triangles, the
optimal tessellation of the point set which maximizes theaimum angle in each triangular graph
is the Delaunay triangulation. The Delaunay triangulatd is the triangulation DT(S) where
the circum-circles of all cells contain only the three psifdrming the triangle. Since a Delaunay
image triangulation can be obtained from the correspondargnoi image graph our focus shall
be on the latter. Point patterns in Delaunay image trianguia are informative and can be used
to study the nature of the underlying tessellated process.

The advantage of Voronoi diagrams in studying patternsasitlassociates the local neigh-
borhood of a point with the information in the region inclddgy the point as opposed to point
estimates only. Consequently measures may be aggregatgidlial pattern information gather-
ing.

Figure 2. Voronoi mesh pattern

Fig. 3.2displays a Voronoi diagram generated by a point set (not showR?2. The diagram
shows how a space partitioned into regions of influencestahewgenerators in the form convex
non-intersecting polygons. The nature of the pattern inftes the distribution of the point set
as well as the structure of the partitioned space. For exapydiygons in regions of higher point
densities are of smaller sizes or areas compared to polygoregions with with lower point
densities.
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4. Patterns and Information Theory

Information in signals and patterns is commonly charao¢eriusing information theoretic
approaches such as entropy and characteristics of a trared@pace of the pattern such as quality
measures of Voronoi cells. In the following subsections vesent those tools.

4.1. Entropy

Entropy has long been an indicator of information and infation content whose utility has
since extended to other fields besides thermodynamics vithemgerged. In thermodynamics, it
was first used for understanding molecular structure. Pgtrow finds applications in several
other fields including portfolio selection and financial id&mn making Zhouet al,, 2013, distri-
bution analysisChapman1970 where it's founded on probability density functions dedvrom
random variables.

Some general observations on entropic information arederdoefore proceeding. If all the
realizations of a random variable have equal chance of baisgrved, then the variables have
equal probabilities. Relating this to Voronoi cells thisang we have a simple pattern formed by
repetition of a unit. Consequently the same informationoistained in all cells of the pattern.
This scenario corresponds to maximization of entropy.

When a measure of information in a pattern is maximized th@atians of the pattern primi-
tives must be minimal and one variable or cell and its attalisirepresentative of the pattern. This
situation also means there is no other information in theepabther than the fact that the random
variables of the pattern are uniformly distributed. On tbatcary variations in a random variable
indicates interestingness, disorder, complexity or ramuess in the pattern and most importantly
a distribution of variables that is anything but uniform.

4.1.1. Renyi Entropy

Renyi entropy is a general information criterion of whichaBhon entropy and others are
special casesXu & Erdogmuns 2010. This generality is useful in diversity and dissimilarity
characterizationRaq 1982 of pattern structure. Recall that the area of a Voronoi satisfies
0 < A < oo and so the probabilityer(.) of the area random variable assuming a value in the
range of areas is defined in<OPr(A;) < 1. Let At be the total planar surface area of a Voronoi
tessellatiorV. It follows that the probability of the random variabAeis defined by

Pr(A) = 5

and
> Pr(A) =1
A general entropy criterion utilizing the probability démss of the random variables is defined
by:
H=—In Zn: Pr/
A=
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wherePr(A;) = Pr;. A noteworthy property of Renyi entropy is majorization.sfigne two finite
probability vectord? andQ of length 1< k < n. P is said to majoriz&) if

P1+P2+---+Pk2Q1+Q2+"~+Qk.

This means thaP exhibits a stronger tendency towards uniformity tf@rand thus has more
entropy. This is an important indicator for understandimgnature of the distribution of a random
variable.

4.2. Cell Quality

Mesh quality in the literature is fliciently developed with guarantees for triangular and tetra
hedral elementsBern & Eppstein1995. However this is not so for mesh elements of four or
more sides as well as hexahedra. As a result this researeleessitated in the direction of mesh
elements from planar Voronoi diagrams which mostly have domore sides towards their quality
guarantees. This is where the potential utility and impéotesh qualities in this work is directed.
The quality of a mesh depicts a way of investigating patteganization with a measure of geo-
metric structure. The quality of a cell is defined by the lengths of the sides of the polylgand
its areaA. To illustrate consider a quadrilateral Voronoi cell. Itgatity is defined by

A
T2 212,120
1T+ 15+ 15+ 15

q

Quiality factors of diferent kinds of polygons are adopted to the criteriegSbfgwchuk2002 Bha-
tia & Lawrence 1990 Knupp 2001). Quality measures are defined to assume valuesig € 1.
A quality value of zero corresponding to a degenerate megbmevhilst a value of one corre-
sponds to a region with equal polygonal side lengths.

5. Theorems and Observations on Voronoi Diagrams
Let{q},i =1,2,..,n < oo be the set of qualities of cells resulting from a Voronoi ¢édasion.
Theorem 5.1. Qualities of cells satisfy the inequality
(Q1+ 0+ O3+ ... + Qn)? < 2.
Proof. Without loss of generality assunme- 4. Notice thag € [0, 1]
(O + 0 + O3 + 0a)? = O + 2010 + O3 + s + 0aGla + GoCs + pGla + O3 + 2050 + G0, i)y < 1.

Each of the individual terms is potentially less than its maxn value since all the qualities may
not haveqg; = 1. So the squared sum of the qualities is equal’td and only if all cells have a
quality of 1. The quality inequality must be as it is to takescaf qualities other than the extremes
of zero and unity. Thus we must have

(Q1+ o+ 03+ ... +Qn)2 < 1P,

for n < oo. O



84 E. A-iyeh et al/ Theory and Applications of Mathemati&sComputer Science 6 (1) (2016) B5-

Theorem 5.2. For a Voronoi cell of quality g= 1 there exists a point inside the cell to which all
vertices are equidistant.

Proof. See A-iyeh & Peters2015. ]

Theorem 5.3. For every Voronoi cell with g 1 there exists a polygon whose edge lengths are not
unequal.

Proof. See A-iyeh & Peters2015. O

Lemma 5.1. Let A(Vs) be the area of the smallest polygon in a Voronoi mesh and (1gt) Ae
the area of the polygon with the largest area in the same méshinmtermediate polygonal areas
AV1)...,A(Vn). Then

A(Vs) cAV)

and
A(Vs) c A(V1) S AV2) - € A(Vh) € AW)

for a mesh with i 2 polygons.

Lemma 5.2. The sequence of all ordered elements of the projectiong®®sand B, i.e., {a,}
and{b,}, n=1,2,3,... form a metric space.

Consider polygonal elements Bf with elementsx = (X3, X2, ....., Xn), Y = (Y1, Y2, ...,Yn). Let
p(A1,By) = Inf{|x-y| : xe Aq,y € By} be the distance between functions of bounded elem&nts
andB; of the space. Again lgbr,(Ar) = Inf{X e A|3Xs, Xo..., Xn_1 € R: X = (Xg, X0, Xn-1) € Ar}
be the projection of s&§; onto the f-coordinate space & andA,, ;_, represents polygons(half-
open meshes) of the fortiyh,lI;h+h] x---x (I,_1h,I,_1h+h]. his the edge length arig, I, ..., 1, 1
are integers.

Theorem 5.4.1f A; and B, be bounded polygons in a Voronoi with with a function of thiggans
(A1, B1) = 80 > 0, then a family of polygonsa } ., A, ¢ R"-1 exists such that

ern—l(AU B) c H,

N
i=1
forany a if x € A, ye B, plgsiy, Priryniy € Ak, then|Xy — Yo = [praX — pray| > 6 = 2.

Proof. Assumeh € (0,60(2n)~%2). LetDy, k, , = Ak.k4r- ThenDy k. , possesses the following
properties

1. Ukl,...kn,]_EZ Dkla---kn—l =R"

2. DiﬂDjZQ

yeee
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Considerx,y € D and assump,—Yq| = |prax—pray| < do/2. Then we havp(x,y) = [(Xg—y1)?+-- -+
(%= Yn)2] 12 < (24 +h2+63/4). Forhe (0,50(2n)742), p(x.y) = (63(n-1)/(2n) +353/4) 42 <
do. This is untrue. Hence, property 3 is proved.

For property 2Au B # @ and the union of the bounded sets is bounded8p2> Au B. Thus
the union of all the polygons covers the sp@feand that proves property Iprg.:(UY, D;) =
pren1(UR, AkR) 2 pree1(AuB) andUy ; 2 pree-1(AuB). These statements imply that foe A,
y € Bwe can finday such thap(x,y) > 6o by assumption, so tha{ prpX, pray) = |Xn—VYn| > 60/2 =
d. O

Theorem 5.5. Symmetry is a condition for optimality of Voronoi meshes.

Proof. Note thatV for a sites can be expressed 85s) := {(sk— S)X < w s €S} To
show optimality we need
oV (s)

s
This gives
NG 2]

0s 2
The immediate expression is equivalent to

o s, if x>0,
s, if x<0,

which is a mathematical expression for symmetry. ]

Propertyl. Given a measure functiay(.) for a Voronoi diagram of an > 3 point set the Voronoi
tessellation consists of quality functions equal in nunibehe number of Voronoi cells.

Property 2. The Voronoi diagram of a s& consisting ofn > 3 non-collinear objects with a
measure for the polygons has at mosh2 5 vertices and 8- 6 edges, respectively.

Theorem 5.6. The quality of a scaled Voronoi cell is scale invariant.

Proof. Consider a triangular cell with quality= 1 before scaling. Now assume the edges of the
cell have been scaled with a multiplier> 0. The quality before scaling is given by

0.5l2
=435 = b

The quality, after scaling, is expressed by

2 /3
1243 05(miy2,/3 B

(mh2+ (mh2+ (m2
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6. Applications

The utility of Voronoi tessellations has often been limitedspace partitioning and not un-
derstanding the pattern as evidenced by numerous artiOgg to this an abysmal number of
works explore the potential of Voronoi diagrams beyond spagtitions. Even fewer works exam-
ine properties of Voronor cells with the viewpoint of undargling underlying nature of patterns.
We attempt a way of representing part of a signal space frowird pet sample distribution that
summarizes the pattern by its equivalent Voronoi signailinese points in the pattern form gener-
ators for Voronoi diagrams. Keypointimage patterns ofdings, animals, humans and mountains
as previously utilized inA-iyeh & Peters 2015 were sampled from images of dimensidvioy
N to summarize the signals. These point patterns consist oih&6 corresponding to the most
prominent in the images. To establish a fair basis for crosgdyais the same number of point
sets is sampled for all images. In addition all the imageagyare gray scale of their respective
categories from the dataset &%éanget al,, 2001 (Fig. 4).

With the preamble in place we tessellate and cover the patfEces with Voronoi polygons. Itis
expected that since point patterns are distinct their ordragrams would exhibit discriminatory
properties. This could be key in pattern discriminatiomgshe computed quantities.

Upon identifying the subset representing an image spacapyky the Voronoi partition algo-
rithm to the generators in the signal space. The result isseliated space of Voronoi polygons.
Open polygons are typical of Voronoi partitions as such enrttathematical formulation of some
derived features of the tessellated spaces we adopt temmifat allow the infinite polygons as
well as the finite ones to be well behaved.

To help examine the nature and bahaviour of patterns, pfatgreous quantities are given. There
are as many qualities as cells so we define a global qualigxindfidelity to capture the geometry
of the pattern. Using all cell qualities in a tessellatiois ilefined by

1 n
anl = H;qi,

wheren is the total number of cells angl is the quality of celli. This enables a one-to-one
correspondence between quantities.

Due to the finite nature of digital image, we limit the geonuetrextent of the point patterns
to their convex sets. The information content of images ssessed using a general entropy crite-
rion. A special case of the the general entropy criteHooccurs wherg = 2. This is the so called
Renyi entropy denoted hekk. Simulation results are included 8= 2,1.5,2.5. This range of
captures a range of entropies including the Shannon enéigby 2.

The choice of3 in the neighborhood of 2 is not arbitrary. The reasons aretk on the one
hand we are close to Shannon entropy which enables us taabtarmation on the distribution
of elements. On the other hand it gives us information on hoitswf a point pattern influence
their distribution. Just al andl., norms represent extremes of the smallest and largest elemen
of a setH, andH., are the extremes of information measures of whigh,. .. gives a tradefb.

The simulation process is summarized in the following atgar.
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Mesh Quality(q)

for each Voronoi regiol¥; € V of S do
Access the number of sides and coordinates of the verticie qfolygon.
Using the coordinates, compute the lendttend Area A of the polygon.
Usel; andA in the appropriate expression to compute its quality

end for

Q={a}

Mesh Entropy(H)

for each Voronoi regioi’; € V do
ComputePr;
UsePr; to computeH;
H = {Hi}

end for

Remark 6.1. The assumption made here is that the lengths of the side®of ¥@ronoi region
polygon are measurable. Unfortunately, this is not alwégsdase in, for example, Voronoi tessel-
lations of 2D digital images, since some of the sides of \ircggion polygons along the borders
of an image have infinite length and border polygons have untied areas. To cope with this
problem, the lengths of all border polygons are a measurkdive to one or more image borders.

Example 1. Consider a completely regular pattern tessellated as shofig. 3.

L L L L L L L L
100 200 300 400 100 200 300 400

3.1: Mesh 3.2: Probability 3.3: Quality

Figure 3. Perfectly Regular Image Graph Space and Quantitie

In Fig. 3 all Voronoi cells have the same area resulting in a uniforstrithution of their prob-
abilities. Also all cells have the same quality. Now there 400 cells in the tessellation andldo
attains its maximum value 0f$9146 and the global quality index also attains its maximate/
of unity. From the distribution of the probability of cellaétheir qualities it’s straight forward to
see that a plot of general entropy against global qualiticesiwould be a straight horizontal line.
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4.1: Building set 4.2: Horse set 4.3: Human set 4.4: Mountain set

Figure 4. Data sets
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Figure 5. Image Graph Spaces
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Figure 6. Image Graph Spaces

7. Results and Discussion

Most polygons typically have non-zero areaRg is defined for all regions in the plane. In
the following image Voronoi graphs, probability functiomiscells, image cell qualities and plots
of quantities are shown. Also quality of cells and inforroatare studied by examining the nature
of the plots. The results of our simulations are shown foy dhtee images per category of the
data set given in Figd for space reasons although the results are presented fentine data set
of 20 images per category amounting to 80 images in totalrgSponding cell area probabilities
and distribution of cell qualities are shown next to tesgetl spaces in Fi§-Fig. 16in that order.

Point patterns consist of a maximum of 50 keypoints and sodbelting cells are usually 50
in number. Notice the nature of the distributions of probabs and qualities. Probability distri-
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Figure 7. Image Graph Spaces
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Figure 8. Image Graph Spaces

butions range from the extreme of only a few influential c&isells exhibiting higher tendencies
of equal influences. This corresponds to a few large peakheprbbability distributions and a
spread out distribution respectively. The qualities ofd¢bks portray the exhibited behaviour.
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Figure 9. Image Graph Spaces
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12.1: Mesh
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Figure 10. Image Graph Spaces
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Figure 11. Image Graph Spaces
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Figure 12. Image Graph Spaces
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Entropies of tessellations and global quality indices amedensed into the following plots.
For 50 Voronoi cells exihibiting a uniform probability digtution the maximum value possible
for Renyi entropy is 3.912. All entropy values fall short bigtvalue. Plots of entropies and global
qualities are shown for the buildings, horses, humans anthtam scenery categories in Fiby.
Notice the flat nature of the global qualities for the imag®enyi entropies as a function of the

images is non-decreasing.

In the following, plots of global qualities, Renyi entropiand plots of entropies against qual-

ities are shown.

Notice the monotonically increasing entropies and globalitjes in Fig.17. Also observe that
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Figure 13. Image Graph Spaces
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Figure 14. Image Graph Spaces
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Figure 15. Image Graph Spaces

the quantities are distinct across categories. Most impdst entropic information is decreases
for g =1.5,2.0,2.5in that order. Recall th@= 2 yields Shannon entropy from the general entropy
criterionH. It is interesting to note the oscillating (Fi$j8) as opposed to uniform relationship

between entropy and global quality. This confirms the deparof the images from the less
interesting case of completely regular patterns.
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Figure 17. Quantity Relations

8. Conclusion and Future Work

Non-linear probability distribution distribution funciis as opposed to uniform ones are ob-
served. However, recall that a uniform distribution maxes the entropy so that implies that
the point patterns are more informative and interestingpamed to completely regular patterns.
Although the patterns are not uniform the information partenrange of k g < 2.5 maximizes
the information content of Voronoi cells. This shows tha Renyi entropy is more informative
than Shannon entropy. This is due to the variations in patigucture. Owing to the non-linear
relationship between entropy and cell qualities, we seetliepatterns are not simple patterns
because of the variations.

Notice that the global qualitieg,, for all image categories practically follow a linear distri
bution with a gradient close to zero. So given a global gualita tessellation converging in the
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Figure 18. Quality Signatures

neighborhood of & < gy < 1.0, the point pattern is not completely regular and could benfa
digital image. This range of global qualities observed shthat point pattern primitives of digital
images may not be simple and completely regular features.

Image point patterns with global quality deients in the range.b < g, < 1.0 are stable.
This indicates that the image physical system t&ciently modeled. This is the so called fidelity
of solution of the physical system offtkrential equations represented by the mesh. A completely
regular pattern with a global index or fidelity of unity is thmst stable (Fig3) so that an unstable
system has an index of zero or close to zero.

Since the point patterns are not completely regular theyatomore information than regular
ones because their global indices are less than unity aicetiteopies are less than the maximum
value.

Notwithstanding this quality guarantees for meshes of @unore sides which is hardly studied
and much less developed is seen to be stable and guarantbed@ported range.

Finally it has been shown that the distribution of digitakbige point patterns is anything but
uniform. Therefore future work should reveal the applieadiktribution(s).

It goes without saying that although the method is simpleetfettive in characterizing pat-
tern information and structure the assignment of zero poitibias to infinite Voronor cells is a
disadvantage. This however is a natural consequence ohvopartitioning for which the choice
has to be made whether the information is attributed to a féwite cells or otherwise.
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Abstract

Main objective of this paper is to study further properties of fuzzy pseudo near compactness via ps-ro closed fuzzy
sets, fuzzy nets and fuzzy filterbases. It is shown by an example that ps-ro fuzzy continuous and fuzzy continuous
functions do not imply each other. Several characterizations of ps-ro fuzzy continuous function are obtained in terms
of a newly introduced concept of ps-ro interior operator, ps-ro g-nbd and its graph.
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1. Introduction

In (Ray & Chettri, 2010), while finding interplay between a fuzzy topological space (fts, for
short) (X, 7) and its corresponding strong @-level topology(general) on X, the concept of pseudo
regular open(closed) fuzzy sets and ps-ro fuzzy topology on X was introduced, members of which
are called ps-ro open fuzzy sets and their complements are ps-ro closed fuzzy sets on (X, 7). In
(Ray & Chettri, 2011), in terms of above fuzzy sets, a fuzzy continuous type function called ps-ro
fuzzy continuous function and a compact type notion called fuzzy pseudo near compactness were
introduced and different properties were studied.

In this paper, fuzzy pseudo near compactness has been studied via ps-ro closed fuzzy sets,
fuzzy nets and fuzzy filterbases. Further, it is shown by an example that ps-ro fuzzy continuous
and fuzzy continuous functions are independent of each other. An interior-type operator called
ps-ro interior is introduced and several properties of such functions are studied interms of this
operator, ps-ro q-nbd and its graph.

*Corresponding author
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We state a few known definitions and results here that we require subsequently. A fuzzy point
X, 1s said to g-coincident with a fuzzy set A, denoted by x,gA if @ + A(x) > 1. If A and B are not
g-coincident, we write A §B. A fuzzy set A is said to be a g-neighbourhood (in short, g-nbd.) of a
fuzzy point x, if there is a fuzzy open set B such that x,gB < A (Pao-Ming & Ying-Ming, 1980).
Let f be a function from a set X into a set Y. Then the following holds:
G) f~'(1 — B) = 1 — f~1(B), for any fuzzy set Bon Y.
(i) A; < Ay = f(A)) < f(A,), for any fuzzy sets A; and A, on X. Also, By < B, = f}(B)) <
f~1(B,), for any fuzzy sets B and B, on Y.
(iii) ff~'(B) < B, for any fuzzy set B on Y and the equality holds if f is onto. Also, f~!f(A) = A,
for any fuzzy set A on X, equality holds if f is one-to-one (Chang, 1968). For a function f : X —
Y, the graph g : X — X x Y of f is defined by g(x) = (x, f(x)), for each x € X, where X and Y
are any sets. Let X, Y be ftsand g : X — X x Y be the graph of the function f : X — Y. Then
if A, B are fuzzy sets on X and Y respectively, g7'(A x B) = A A f~1(B)(Azad, 1981). Let Z, X,
Ybe ftsand f; : Z — X and f, : Z — Y be two functions. Let f : Z — X x Y be defined by
f(2) = (fi(2), f2(z)) for z € Z, where X x Y is provided with the product fuzzy topology. Then if
B, U, U, are fuzzy sets on Z, X, Y respectively such that f(B) < U; x U,, then fi(B) < U, and
f2(B) < U, (Bhattacharyya & Mukherjee, 2000). A function f from a frs (X, 7) to frs (Y,0) is
said to be fuzzy continuous, if f~!(u) is fuzzy open on X, for all fuzzy open set u on Y (Chang,
1968). For a fuzzy set u in X, the set u* = {x € X : u(x) > a} is called the strong a-level set of X.
In a fts (X, 1), the family i, (7) = {u* : € v} forall @ € I, = [0, 1) forms a topology on X called
strong a-level topology on X (Lowen, 1976), (Kohli & Prasannan, 2001). A fuzzy open(closed)
set w on a fts (X, 7) is said to be pseudo regular open(closed) fuzzy set if the strong a-level set
u® is regular open(closed) in (X, i, (7)), Ya € I,. The family of all pseudo regular open fuzzy sets
form a fuzzy topology on X called ps-ro fuzzy topology on X which is coarser than 7. Members of
ps-ro fuzzy topology are called ps-ro open fuzzy sets and their complements are known as ps-ro
closed fuzzy sets on (X, 7) (Ray & Chettri, 2010). A function f from a fts (X, 1) to another fts
(Y, ;) is pseudo fuzzy ro continuous (in short, ps-ro fuzzy continuous) if f~!(U) is ps-ro open
fuzzy set on X for each pseudo regular open fuzzy set U on Y. For a fuzzy set A, A{B: A < B, B
is ps-ro closed fuzzy set on X} is called fuzzy ps-closure of A. In a fts (X, 1), a fuzzy set A is said
to be a ps-ro nbd. of a fuzzy point x,, if there is a ps-ro open fuzzy set B such that x, € B < A.
In addition, if A is ps-ro open fuzzy set, the ps-ro nbd. is called ps-ro open nbd. A fuzzy set A
is called ps-ro quasi neighborhood or simply ps-ro g-nbd. of a fuzzy point x,, if there is a ps-ro
open fuzzy set B such that x,gB < A. In addition, if A is ps-ro open, the ps-ro g-nbd. is called
ps-roopen g-nbd. Let {S,, : n € D} be a fuzzy net on a fts X. i.e., for each member n of a directed
set (D, <), S, be a fuzzy set on X. A fuzzy point x, on X is said to be a fuzzy ps-cluster point
of the fuzzy net if for every n € D and every ps-ro open g-nbd. V of x,, there exists m € D, with
n < m such that S,,qV. A collection B of fuzzy sets on a fzs (X, 7) is said to form a fuzzy filter
base in X if for every finite subcollection {By, Bs, ..., B,} of B, /\7:1 B; # 0 (Ray & Chettri, 2011).

2. Fuzzy Pseudo Near Compactness

It is easy to observe, as pseudo regular open fuzzy sets form a base for ps-ro fuzzy topology,
replacing ps-ro open cover by pseudo regular open cover, we may obtain pseudo near compact-
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Definition 2.1. Let x, be a fuzzy point on a fts X. A fuzzy net {S, : n € (D,>)} on X is said to
ps-converge to x,, written as S, 5 x, if for each ps-ro open g-nbd. W of x,, there exists m € D
such that S ,,gW for alln > m ,(n € D).

Definition 2.2. Let x, be a fuzzy point on a fts X. A fuzzy filterbase 8 is said to

(i) ps-adhere at x, written as x, < ps-ad.8B if for each ps-ro open g-nbd. U of x, and each B € B,
BqU.

(i1) ps-converge to x,, written as 88 2 x, if for each ps-ro open g-nbd. U of x,, there coresponds
some B € B suchthat B < U.

Theorem 2.1. A fts (X, 1) is fuzzy pseudo nearly compact iff every {B,, : @ € A} of ps-ro closed
fuzzy sets on X with A__, B, = 0, there exist a finite subset Ay of A such that A weng B, =0.

Proof. Let {U, : @ € A} be a ps-ro open cover of X. Now, A _, (1 —=U,) = (1—v, U,) =0. As
{1 — U, : @ € A} is a collection of ps-ro closed fuzzy sets on X, by given condition, there exist a
finite subset Ay of A such that A 1-U,) =0=1-v JUo=0.1e,1=v_ U, So, X
is fuzzy pseudo nearly compact.

Conversely, let {B, : @ € A} be a family of ps-ro closed fuzzy sets on X with A _, B, = 0. Then
l=1—nA,B,=1=v,_, (1 —B,). By given condition there exist a finite subset A, of A such
that 1 = v, (1 —B,) = 1= (1 — A, Ba) Hence, A, Bo < (A, Ba) A (1= A,y Bo) = 0.
Consequently, A

aEN( a
B = 0.

agl ( a€A a€A

aEA
aEN(

a

Theorem 2.2. For a fuzzy set A on a fts, the following are equivalent:

(a) Every fuzzy net in A has fuzzy ps-cluster point in A.

(b) Every fuzzy net in A has a ps-convergent fuzzy subnet.

(c) Every fuzzy filterbase in A ps-adheres at some fuzzy point in A.

Proof. (a) = (b): Let {S, : n € (D,>)} be a fuzzy net in A having fuzzy ps-cluster point at
Xo < A. Let Q,, = {A : Ais ps-ro open g-nbd. of x,}. For any B € Q, , some n € D can
be chosen such that S,¢B. Let E denote the set of all ordered pairs (n, B) with the property that
neD, Be Q,, and S,¢B. Then (E, >) is a directed set where (m,C) > (n, B) iff m > nin D and
C <B.ThenT : (E >) — (X,7) given by T(n,B) = S, is a fuzzy subnet of {S, : n € (D, >)}.
Let V be any ps-ro open g-nbd. of x,. Then there exists n € D such that (n,V) € E and hence
S,.qV. Now, for any (m,U) > (n,V), T(m,U) = S,,qU <V = T(m,U)qV. Hence, T > x,.

(b) = (a) If a fuzzy net {S, : n € (D,>)} in A does not have any fuzzy ps-cluster point, then
there is a ps-ro open g-nbd. U of X, and n € D such that S, {U,V m > n. Then clearly no fuzzy
subnet of the fuzzy net can ps-converge to x,.

(¢) = (a) Let {S, : n€ (D, >)} be a fuzzy net in A. Consider the fuzzy filter base ¥ = {T,, : n €
D} in A, generated by the fuzzy net, where T,, = {S,, : m € (D, >) and m > n}. By (c), there exist
a fuzzy point a, < A A (ps-ad¥ ). Then for each ps-ro open g-nbd. U of a, and each F € F,
UqF,ie., UqT,,V n € D. Hence, the given fuzzy net has fuzzy ps-cluster point a,.

(a) = (c) Let F = {F, : @ € A} be a fuzzy filterbase in A. For each @ € A, choose a fuzzy point
x,, < F,, and construct the fuzzy net § = {x, :F, € ¥} in A with (¥,>>) as domain, where
for two members F,, Fg € ¥, F, >> Fgiff F, < Fg. By (a), the fuzzy net has a fuzzy ps-cluster
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point say x; < A, where 0 < ¢ < 1. Then for any ps-ro open g-nbd. U of x, and any F, € ¥, there
exists Fg € ¥ such that Fg >> F, and xp,qU. Then FgqU and hence F,qU. Thus ¥ adheres at
X;.

Theorem 2.3. If a fts is fuzzy pseudo nearly compact, then every fuzzy filterbase on X with at
most one ps-adherent point is ps-convergent.

Proof. Let ¥ be a fuzzy filterbase with at most one ps-adherent point in a fuzzy pseudo nearly
compact fts X. Then by Theorem ( 2.2), # has at least one ps-adherent point. Let x,, be the unique
ps-adherent point of 7. If ¥ does not ps-converge to x,, then there is some ps-ro open g-nbd. U
of x, such that foreach F € F with F < U, FA(1—=U) # 0. ThenG = {FA(1-U): Fe F}is
a fuzzy filterbase on X and hence has a ps-adherent point y,(say) in X. Now, U §G, forall G € G,
so that x, # y;. Again, for each ps-ro open g-nbd. V of y, and each F € F, Vg(F A (1 = U)) =
VqF =y, is a ps-adherent point of #, where x, # y;. This shows that y, is another ps-adherent
point of 7, which is not the case.

3. ps-ro Fuzzy Continuous Functions

We begin this section by introducing an interior-type operator, called ps-interior operator and
observe a few useful properties of that operator.

Definition 3.1. The union of all ps-ro open fuzzy sets, each contained in a fuzzy set A on a fts X
is called fuzzy ps-interior of A and is denoted by ps-int(A). So, ps-int(A) = v{B: B < A, Bis
ps-ro open fuzzy set on X}

Some properties of ps-int operator are furnished below. The proofs are straightforward and
hence omitted.

Theorem 3.1. For any fuzzy set A on a fts (X, 1), the following hold:
(a) ps-int(A) is the largest ps-ro open fuzzy set contained in A.
(b) ps-int(0) = 0, ps-int(1) = 1.

(c) ps-int(A) < A.

(d) A is ps-ro open fuzzy set iff A = ps-int(A).

(e) ps-int(ps-int(A)) = ps-int(A).

(f) ps-int(A) < ps-int(B),ifA < B.

(g) ps-int(A A B) = ps-int(A) A ps-int(B).

(h) ps-int(A v B) = ps-int(A) v ps-int(B).

(i) ps-int(ps-int(A)) = ps-int(A).

(G) 1 — ps-int(A) = ps-cl(1 — A).

(k) 1 — ps-cl(A) = ps-int(1 — A).

Now, we recapitulate the definition of ps-ro fuzzy continuous functions.

Definition 3.2. A function f from fts (X,7;) to fts (¥,7,) is pseudo fuzzy ro continuous (in
short, ps-ro fuzzy continuous) if f~'(U) is ps-ro open fuzzy set on X for each pseudo regular
open fuzzy set U on Y.
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The following Example shows that ps-ro fuzzy continuity and fuzzy continuity do not imply
each other.

Example 3.1. Let X = {a,b,c} and Y = {x,y,z}. Let A, B and C be fuzzy sets on X defined by
Aa) = 0.2,A(b) = 0.4,A(c) = 04, B(t) = 0.4,Vt € X and C(¢) = 0.2,Vt € X. Let D and E be
fuzzy sets on Y defined by D(¢) = 0.2,Vr € Y and E(x) = 0.6, E(y) = 0.7, E(z) = 0.7. Clearly,
71 = {0,1,A,B,C} and 7, = {0, 1, D, E} are fuzzy topologies on X and Y respectively. In the
corresponding topological space (X, i,(71)), Va € I} = [0, 1), the open sets are ¢, X, A%, B* and C*,

X, fora < 0.2
X, fora<04 X, fora <0.2
where A* = < {b,c}, for0.2<a<04,B"= and C* =
¢, fora>04 ¢, fora>0.2
o, fore > 04

For 0.2 < @ < 0.4, the closed sets are on (X, i,(7;)) are ¢, X and {a}. Therefore, int(cl(A%)) = X.
So, A” is not regular open on (X, i,(7;)) and hence, A is not pseudo regular open fuzzy sets on
(X,7;) for 0.2 < @ < 0.4. Similarly, it can be seen that 0, 1, B and C are pseudo regular open
fuzzy set on (X, 7). Therefore, ps-ro fuzzy topology on X is {0, 1, B, C}. Again, E is not pseudo
regular open fuzzy set for 0.6 < @ < 0.7 on Y. Therefore, ps-ro fuzzy topology on Y is {0, 1, D}.
Now, ps-cl(B) = 1 — B and ps-cI(C) = 1 — B where, (1 — B)(r) = 0.6, Vt € X. Define a function
f:X — Yby f(a) = x, f(b) = yand f(c) = z. Then, f~(D)(t) = 0.2 = C(t),Vt € X. Hence,
f~Y(U) is ps-ro open fuzzy set on X, for every ps-ro open fuzzy set U on Y. Therefore, f is
ps-ro fuzzy continuous function. But, f is not fuzzy continuous as f~!(E) is not fuzzy open on
X. Clearly, every ps-ro open fuzzy set is fuzzy open but not conversely, as for an example here A
is fuzzy open but not ps-ro open fuzzy on X. This implies that a fuzzy continuous function need
not be ps-ro fuzzy continuous. Hence, ps-ro fuzzy continuous and fuzzy continuous functions are
independent of each other.

The following couple of results give characterizations of ps-ro fuzzy continuous functions.

Theorem 3.2. Let (X,7) and (Y,0) be two fts. For a function f : X — Y, the following are
equivalent:

(a) f is ps-ro fuzzy continuous.

(b) Inverse image of each ps-ro open fuzzy set on Y under f is ps-ro open on X.

(¢) For each fuzzy point x, on X and each ps-ro open nbd. V of f(x,), there exists a ps-ro open
fuzzy set U on X, such that x, < U and f(U) < V.

(d) For each ps-ro closed fuzzy set F on Y, f~!(F) is ps-ro closed on X.

(e) For each fuzzy point x, on X, the inverse image under f of every ps-ro nbd. of f(x,) on Y is
a ps-ro nbd. of x, on X.

(f) For all fuzzy set A on X, f(ps-cl(A)) < ps-cl(f(A)).

(g) For all fuzzy set Bon Y, ps-cl(f~'(B)) < f~'(ps-cl(B)).

(h) For all fuzzy set Bon Y, f~!(ps-int(B)) < ps-int(f~'(B)).

Proof. (a) = (b) Let f be ps-ro fuzzy continuous and u be any ps-ro open fuzzy set on Y. Then
u = v, where y; is pseudo regular open fuzzy set on Y, for each i. Now, f~(u) = f~'(v.u) =
v f~Yu;). f being ps-ro fuzzy continuous, f~!(y;) is ps-ro open fuzzy set and consequently,
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f~Y(u) is ps-ro open fuzzy set on X.

(b) = (a) Let the inverse image of each ps-ro open fuzzy set on Y under f be ps-ro open fuzzy
set on X. Let U be a pseudo regular open fuzzy set on Y. Every pseudo regular open fuzzy set
being ps-ro open fuzzy set, the result follows.

(b) = (c) Let V be any ps-ro open nbd. of f(x,) on Y. Then there is a ps-ro open fuzzy set V;
on Y such that f(x,) < Vi < V. By hypothesis, f~!(V}) is ps-ro open fuzzy set on X. Again,
Xo < f7H(V)) < f7Y(V). So, f71(V) is a ps-ro nbd. of x,, such that f(f~!(V)) < V, as desired.
(c) = (b) Let V be any ps-ro open fuzzy set on Y and x, < f~'(V). Then f(x,) < V and so
by given condition, there exists ps-ro open fuzzy set U on X such that x, < U and f(U) < V.
Hence, x, < U < f~Y(V). i.e., f71(V) is a ps-ro nbd. of each of the fuzzy points contained in it.
Thus f~!(V) is ps-ro open fuzzy set on X.

(b) < (d) Obvious.

(b) = (e) Suppose, W is a ps-ro open nbd. of f(x,). Then there exists a ps-ro open fuzzy set U
on Y such that f(x,) < U < W. Then x, < f~'(U) < f~'(W). By hypothesis, f~'(U) is ps-ro
open fuzzy set on X and hence the result is obtained.

(e) = (b) Let V be any ps-ro open fuzzy seton Y. If x, < f~'(V) then f(x,) < Vandso f~'(V)
is a ps-ro nbd. of x,.

(d) = (f) ps-cl(f(A)) being a ps-ro closed fuzzy set on Y, f~!(ps-cl(f(A))) is ps-ro closed
fuzzy set on X. Again, f(A) < ps-cl(f(A)). So, A < f~'(ps-cl(f(A))). As ps-cl(A) is the
smallest ps-ro closed fuzzy set on X containing A, ps-cl(A) < f~'(ps-cl(f(A))). Hence, f(ps-
cl(A)) < ffH(ps-cl(f(A))) < ps-cl(f(A)).

(f) = (d) For any ps-ro closed fuzzy set Bon Y, f(ps-cl(f~'(B))) < ps-cl(f(f~'(B))) < ps-
cl(B) = B. Hence, ps-cl(f'(B)) < f~'(B) < ps-cl(f~'(B)). Thus, f~'(B) is ps-ro closed
fuzzy set on X.

(f) = (g) For any fuzzy set Bon Y, f(ps-cl(f~'(B))) < ps-cl(f(f~'(B))) < ps-cl(B). Hence,
ps-cl(f~'(B)) < f~'(ps-cl(B)).

(g) = (f) Let B = f(A) for some fuzzy set A on X. Then ps-cl(f~'(B)) < f~'(ps-cl(B)) = ps-
() < ps-cl(f~(B)) < f~(ps-cl(£(A))). So, f(ps-cl(A)) < ps-cl(f(A).

(b) = (h) For any fuzzy set Bon Y, f~!(ps-int(B)) is ps-ro open fuzzy set on X. Also, f~!(ps-
int(B)) < f~'(B). So, f~!(ps-int(B)) < ps-int(f~'(B)).

(h) = (b) Let B be any ps-ro open fuzzy seton Y. So, ps-int(B) = B.Now, f~(ps-int(B)) < ps-
int(f~Y(B)) = f~YB) < ps-int(f~'(B)) < f~'(B). Hence, f~!(B) is ps-ro open fuzzy set on
X.

Theorem 3.3. Let (X,7) and (Y,0) be two fts. A function f : X — Y is f is ps-ro fuzzy
continuous iff for every fuzzy point x, on X and every ps-ro open fuzzy set V on Y with f(x,)qV
there exists a ps-ro open fuzzy set U on X with x,qU and f(U) < V.

Proof. Let f be ps-ro fuzzy continuous and x, a fuzzy point on X, V a ps-ro open fuzzy set
Von Y with f(x,)qV. So, V(f(x)) + @ > 1 = f~1(V)(x) + @ > 1. So, x,q(f~'(V)). Now,
ff~1(V) < Vis always true. Choosing U = f~!(V) we have, f(U) < V with x,qU.

Conversely, let the condition hold. Let V be any ps-ro open fuzzy set on Y. To prove f~!(V) is
ps-ro open fuzzy set on X, we shall prove 1 — f~!(V) is ps-ro closed fuzzy set on X. Let x, be any
fuzzy point on X such that x, > 1x — f~1(V). So, (1 — f~1(V))(x) < @ = V(f(x)) + @ > 1. So,
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f(x4)qV. By given condition, there exists a ps-ro open fuzzy set on U such that x,qU and f(U) <
V. Now, U(t) + (1 — f~1(V))(¢) < V(f(t)) + 1 — V(f(¢)) = 1,V t. Hence, U k(1 — f~1(V)).
Consequently, x, is not a fuzzy ps-cluster point of 1 — f~!(V). This proves 1 — f~!(V)is a ps-ro
closed fuzzy set on X

Theorem 3.4. Let X, Y, Z be fts. For any functions f; : Z — X and f, : Z — Y, a function
f:Z — X xYisdefined as f(x) = (fi(x), fo(x)) for x € Z, where X x Y is endowded with
the product fuzzy topology. If f is ps-ro fuzzy continuous then f; and f, are both ps-ro fuzzy
continuous.

Proof. Let U, be a ps-ro g-nbd. of fi(x,) on X, for any fuzzy point x, on Z. Then U; x ly is a
ps-ro g-nbd. of f(x,) = (fi(xs), f2(xs)) on X x Y. By ps-ro continuity of f, there exists ps-ro
g-nbd. V of x, on Z such that (V) < U; x ly. Then f(V)(r) < (U; x 1y)(t) = Uy (1) A 1y(2) =
U,(t),Y t € Z. So, f1(V) < U,. Hence, f is ps-ro fuzzy continuous. Similarly, it can be shown
that f; is also ps-ro fuzzy continuous.

Theorem 3.5. Let f : X — Y be a function from a f7s X to another frs Y and g : X — X x Y be
the graph of the function f. Then f is ps-ro fuzzy continuous if g is so.

Proof. Let g be ps-ro fuzzy continuous and B be ps-ro open fuzzy set on Y. By Lemma 2.4 of
(Azad, 1981), f~'(B) = 1x A f~1(B) = g7 !(1x x B). Now, as lx x B is ps-ro open fuzzy set on
X x Y, f~1(B) becomes ps-ro open fuzzy set on X. Hence, f is ps-ro fuzzy continuous.
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Abstract

In this paper, we introduce and investigate two subclasses Ay, (4; @) and As, (1;8) of X, consisting of ana-

lytic and m-fold symmetric bi-univalent functions in the open unit disc U . For functions in each of the subclasses
introduced in this paper, we obtain the coefficient bounds for |a,,+1| and |az,+1]-
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1. Introduction
Let A denote the class of functions f(z) which are analytic in the open unit disk
U={z: zeCand|z] < 1}

and normalized by the conditions f(0) = 0, f'(0) = 1 and having the following form:

f@) =2+ ad (1.1)
k=2

Also let S denote the subclass of functions in A which are univalent in U (for details, see
Duren (1983)).

The Koebe One Quarter Theorem (e.g.,see (Duren, 1983)) ensures that the image of U under
every univalent function f(z) € A contains the disk of radius 1/4. Thus every univalent function
f has an inverse f~! satisfying

7 (fz) =z (ze )

*Corresponding author
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and

f(f_l(W)) =w <|w| < ro(f), ro(f) = %) .

In fact, the inverse function f~! is given by
gw) = f 1 w) =w—aw’ + (2a5 — a3)w’ — (5a3 — Sazaz + ag)w* + - - - .

A function f € A is said to be bi-univalent in U if both f(z) and f~'(z) are univalent in U.
We denote by X the class of all bi-univalent functions in U given by the Taylor-Maclaurin series
expansion (1.1).

For a brief history and examples of functions in the class X, see (Srivastava et al., 2010) (see
also (Brannan & Taha, 1988), (Lewin, 1967), (Taha, 1981)).

In fact, the aforecited work of Srivastava et al. (Srivastava et al., 2010) essentially revived
the investigation of various subclasses of the bi-univalent function class X in recent years; it was
followed by such works as those by Ali et al. (Ali et al., 2012), Srivastava et al. (Srivastava et al.,
2015b)(see also (Akin & Siimer-Eker, 2014), (Deniz, 2013), (Frasin & Aouf, 2011), (Srivastava,
2012), Xu et al (Xu et al., 2012a), (Xu et al., 2012b) and the references cited in each of them).

Letm e N = {1,2,...}. A domain E is said to be m-fold symmetric if a rotation of E about
the origin through an angle 27r/m carries E on itself (e.g.,see (Goodman, 1983)). It follows that, a
function f(z) analytic in U is said to be m-fold symmetric in U if for every z in U

f(eZHi/mZ) _ eZm’/mf(Z).
We denote by S,, the class of m-fold symmetric univalent functions in U.
A simple argument shows that f € S, is characterized by having a power series of the form

©0]
f@) =2+ apmpid™ (ze U, me N). (1.2)
k=1
Each bi-univalent function generates an m-fold symmetric bi-univalent function for each inte-
ger m € N. The normalized form of f is given as in (1.2) and the series expansion for f~!, which
has been recently proven by Srivastava et al.(Srivastava et al., 2014), is given as follows

gW) =w— a4 [(m + l)a,zn+l — a2m+1] w2t (1.3)

1
— E(m +1)(3m + 2)61,3,1Jrl — (3m + 2)ay s 1Gomit + Aapyr | W4

where f~! = g. We denote by ¥, the class of m-fold symmetric bi-univalent functions in U.
Recently, certain subclasses of m-fold bi-univalent functions class X, similar to subclasses
of Z introduced and investigated by Stimer Eker (Siimer-Eker, 2016), Altinkaya and Yal¢in (Altinkaya
& Yalgin, 2015), Srivastava et al (Srivastava et al., 2015a).
The aim of this paper is to introduce new subclasses of the function class bi-univalent func-
tions in which both f and f~! are m-fold symmetric analytic functions and derive estimates on
initial coefficients |a,,; | and |ay,, | for functions in each of these new subclasses.



S. Siimer Eker/ Theory and Applications of Mathematics & Computer Science 6 (2) (2016) 103—109 105

2. Coefficient Estimates for the function class Ay (1; @)

Definition 2.1. A function f(z) € X, given by (1.2) is said to be in the class A, (1; @) (0 < @ <
I, 0 < A < 1) if the following conditions are satisfied:

2f'(z)  AZ2f"(z) an
s (g G| < T eew @D
and
wg'(w) | Aw?g"(w) an e
arg( sw) | g(w) ) N web) 22

where the function g is given by (1.3).

Theorem 2.1. Let f € As, (L) (0 <a <1, 0< A< 1) be given by (1.2). Then

2a
] < m/2a[l +24(m + D] + (1 — @)[1 + Am + )2 @3

and

am+ 1)1+ |a—1]]

il < = A+ 1] @4
Proof. From (2.1) and (2.2) we have
af'(z) | AZf"(2) o
= 2.5
and for its inverse map, g = f~!, we have
/ 2,
wg ) | W) 06

g(w) g(w)
where p(z) and g(w) are in familiar Caratheodory Class P (see for details (Duren, 1983)) and have
the following series representations:

p(Z) =1+ pmzm + p2mZ2m + P3mZ3m + - (27)

and

aw) = 14 guW" + @™ + @auw™ + - - - . 2.8)

Comparing the corresponding coefficients of (2.5) and (2.6) yields

m[l + A(m + 1)]ans1 = ap,, (2.9)
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ala—1)

2m[1 + A2m + D]azu1 —m[l + Am + 1)]as,; = apo, + 5 2 (2.10)
—m[l + A(m + 1)]|ani1 = agn (2.11)

and

2 ala—1) ,
m[2m+1)+A(m+1)(4m+1)]a,., —2m[1 +A2m+ 1)|azus1 = aqom + — 5 (2.12)
From (2.9) and (2.11), we get

Pm = —qm (213)

and
2m*[1 + Am + ))a,,,, = *(ph + q5,)- (2.14)

Also from (2.10), (2.12) and (2.14), we get

207 (1 +24(m + D]y = @(pan + qan) + ——— (3 + ,)-

Therefore, we have

: @ (P2m + Gom)

" m2 [2af1 + 24(m + D]+ (1 —a)[1 + A(m + 1D)]?]
Note that, according to the Caratheodory Lemma (see (Duren, 1983)), |p,,| < 2 and |g,| < 2

for m € N. Now taking the absolute value of (2.15) and applying the Caratheodory Lemma for

coefficients p,,, and g,,, we obtain

a (2.15)

2a
mA/2a[1+24(m + )]+ (1 —a)[1 + A(m+ D]*
This gives the desired estimate for |a,, | as asserted (2.3).

|am+l| <

To find bounds on |ay, 1|, we multiply (2m + 1) + A(m + 1)(4m+ 1) and 1 + A(m + 1) to the
relations (2.10) and (2.12) respectively and on adding them we obtain:

4m*[1 + A2m + D][1 + 22(m + 1)]azms

=af{[Cm+1)+Am+ 1)(4m+ 1)] pa + [1 + A(m + 1)] qom}
a(a

2O @m 1)+ A+ ) 1] [0+ A+ D]

Now using p2, = ¢2, and the Caratheodory Lemma again for coefficients p,,, p2,, and ¢, we obtain

a(m+ 1)1+ |a— 1]
m?[1 +2A(m + 1)]
This completes the proof of the Theorem 2.1.

|aomi1| <
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3. Coefficient Estimates for the function class Ay (1; B)

Definition 3.1. A function f(z) € X, given by (1.2) is said to be in the class As, (4;8) (0 < A <
1,0 < B < 1) if the following conditions are satisfied:

2f'(z) | A2f"(2)
Re{ @ + Q) } > B (zeU) (3.1)
and
wg () g’ (w) i
Re{ ) + 2(w) } > f3 (wel) (3.2)

where the function g(w) is given by (1.3).

Theorem 3.1. Let f € Az, (4;8) (0<A<1, 0<B < 1) be given by (1.2). Then

2(1-p)
fams] < \/m2[1 oA m 1 1] (3-3)

and
(1-p)m+1)
o] < m?[1 +24(m + 1)] 34
Proof. It follows from (3.1) and (3.2) that
') | A2f"(2)
— 1 — 3.5
and
wg'(w) | Aw’g"(w)
= 1 — 3.6

where p(z) and g(w) have the forms (2.7) and (2.8), respectively. Equating coefficients (3.5) and
(3.6) yields

m[l + A(m + 1)]|an1 = (1 —B)Pms (3.7)
2m[1 + A2m + Daguer — m[1 + Am + D]az, = (1 = B)pam, (3.8)

—m[1+ A(m + Dldmsr = (1 = B)gm (3.9)
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and

m[(2m+ 1) + Am + 1)(dm + )]s, — 2m[1 + 2A2m + )]azmss = (1 —B)gom-  (3.10)

From (3.7) and (3.9) we get

Pm = —4nm (311)
and
2m*[1+ A(m + 1))a5, = (1= B)*(pp + d3)- (3.12)
Also from (3.8) and (3.10), we obtain
2m?[1+ 2A(m + 1)]as,, = (1 = B)(pam + Gam)- (3.13)
Thus we have
1-p)
) (
am+1‘ = 2m2[1 4 2/1(171 + 1)] (‘p2m| + ’q2m|)
2(1-p)

m?[1 +2A(m + 1)]’

which is the bound on |a,,, | as given in the Theorem 3.1.
In order to find the bound on |ay,,+1|, we multiply (2m+1)+A(m+1)(4m+1) and 1 +A(m+1)
to the relations (3.8) and (3.10) respectively and on adding them we obtain:
4m*[1 + A2m + D][1 4 24(m + 1)]azms
= (1= {[@Cm+ 1)+ A(m + 1)(4m + 1) pom + [1 + A(m + 1)]qom}

or equivalently

(1=P)[2m+ 1)+ A(m+ 1)(4m + 1)|pam + [1 + A(m + 1)]qom
4m?[1 + A2m + 1)][1 +2A(m + 1)]
Applying the Caratheodory Lemma for the coefficients p,,, and ¢,,,, we find

(1-B)m+1)
m?[1 +2A(m + 1)]’

Dm+1 =

|a2m+l | <

which is the bound on |a,,, 1] as asserted in Theorem 3.1.

Remark. For 1-fold symmetric bi-univalent functions, if we put 4 = 0 in our Theorems, we obtain
the Theorem 2.1 and the Theorem 3.1 which were given by Brannan and Taha (Brannan & Taha,
1988).
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Abstract

Some subordination properties are investigated for functions belonging to each of the subclasses V(4, A, B) and
‘W(A, A, B) of analytic p- valent functions involving the Srivastava-Wright operator in the open unit disk, U with
suitable restrictions on the parameters A, A and B. The authors also derive certain subordination results involving the
Hadamard product (or convolution) of the associated functions. Relevant connections of the main results to various
known results are established.
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Argument estimates.
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1. Introduction

Let A (p) be the class of functions of the form
fQ=2+) a (p<kpkeN:={1,23.)), (1.1)
n=k

which are analytic and p—valent in the unit disc, U := U(1), where U(r) = {z € C : |z] < r}. Also,
let A(p) = Aps1 (p) and A = A(1). For the functions f € Ay (p) of the form (1.1) and g € Ay (p)

given by g(z) = 2 + 2 b,7", the Hadamard product (or convolution) of f and g is defined by
n=k
(f*8)@) =2+ ) ab2", ze U,
n=k

*Corresponding author
Email addresses: bafrasin@yahoo.com (B. A. Frasin ), h.aaisha@gmail.com (H. Aaisha Farzana),
adolfmcc2003@yahoo.co.in (B. Adolf Stephen)
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If f and g are two analytic functions in U, we say that fis subordinate to g, written symbolically
as f(z) < g(z), if there exists a Schwarz function w, which (by definition) is analytic in U, with
w(0) = 0, and [w(z)| < 1 for all z € U, such that f(z) = g(w(z)), z € U.

If the function g is univalent in U, then we have the following equivalence, (c.f (Miller &
Mocanu, 1981, 2000)):

f(2) < gz) & f(0) =g(0) and f(U) c g(U).

Letai, Ay, ..., A and By, By, ..., Bs, By(q, s € N) be positive and real parameters such that

The Wright generalized hypergeometric function

F(Cl’,' + I’lAl) n

N Z
M@ Ay B B2l = ) S ————= (€ 1),
n=0 F(,B, + I’ZBZ) n

“ l:Q

IftA,=1(=1,..,g9) and B; = 1(i = 1, ..., s), we have the following relationship:
quPs[(a'i’ Ai)l,q; (ﬁi, Bi)l,s;z] =q Fs(al’ SRR aq;ﬁl, v ,ﬁs; Z)a

where (Fy(ai,...,a,p1,...,Bs; 2) 1s the generalized hypergeometric function and

(1.2)

Now we define a function WH ,[(a;, A1 4; (Bi, B s; 2] by
(Wwp[(a/i’Ai)l,q; (Bi» B2l =Q2F q\I"x[(a'iaAi)l,q; Bi, Bi)1.s; 2]
and also consider the following linear operator

00 [(@is Ad1.g5 Bis Bs; 2l - A (p) = Ar (p)

defined using the convolution

00 (@i, A1 Bir B1.s1f(2) = WH ,[(i, Args (Bir B.ss 2] * f(2).

We note that, for a function f of the form (1.1), we have

01 (@i AD1g; (B BI1LIFR) = 2+ ) Qo pl@n)an?, (1.3)
n=k
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where Q is given by (1.2) and o, ,(a) is defined by
I'(a; +Ai(n—p))...I'(a, + A,(n — p))

T ) = B i— p). T+ By — p)n— )l 19
If for convenience, we write
645 (@) (@) = 0% [(@1, AD) ... (@ A: (Br. BY) ... (B, BYIS(2)
then we can easily verify from (1.3) that
A (05 (@) f@) = (1.5)

@107 (a1 + 1) f(2) = (a1 — pADE; (@) f(2) (A > 0).

For A; = 1(i = 1,..,¢9) and B; = 1(i = 1,..., 5), we obtain 67’ [a1f(z) = H,,f(z), which is
known as the Dziok-Srivastava operator; it was introduced and studied by Dziok and Srivastava
(Dziok & Srivastava, 1999, 2003). Also, for f(z) € A, the linear operator 6]"[a]f(z) = 0[a]
is popularly known in the current literature as the Srivastava-Wright operator; it was systemati-
cally and firmly investigated by Srivastava (Srivastava, 2007).(see also (Kiryakova, 2011; Dziok
& Raina, 2004) and (Aouf et al., 2010)).

Remark. For f € A(p),A;, = 1(1 = 1,2,...,9),B; = 1(i = 1,2,...,5),q = 2and s = 1
by specializing the parameters @, @, and B, the operator 67"(a,) gets reduced to the following
familiar operators:

6)) Hf;l[a, L;clf(z) = Ly(a, c)f(z)[see Saitoh (Saitoh, 1996)];

(i) 6'[u + p, ;11f(z) = D**P7'f(z) (u > —p), where D**P~! is the u + p — 1- the order
Ruscheweyh derivative of a function f € A(p). [see Kumar and Shukla (Kumar & Shukla,
1984a,b)]

(iii) 9?,’1[1 + p,1;1 + p — ulf(2), where the operator 4" is defined by [see Srivastava and Aouf
(Srivastava & Aouf, 1992)];

r(l+p-—
QP f(z) = (F(T—:ﬂ

#DEf() O<u<l;peN),
where D is the fractional derivative operator.

@iv) 012,’1[1/ +p, Liv+p+11f() = J,,(f)(z), where J,, is the generalized Bernadi-Libera-
Livingston-integral operator (see (Bernardi, 1996; Libera, 1969; Livingston, 1966) );

V) 65' [+ p,a;clf(z) = I}(a,0)f(2) (a,c € R\Zy; A > —p), where I}(a, ) is the Cho-Kwon-
Srivastava operator (Cho et al., 2004);

Definition 1.1. For the fixed parameters A and B, with0 < B<1,-1<A<Band0<A<p,pe€
N and for a analytic p— valent function of the form (1.1) we define the following subclasses:

Jo @nr@] A) 1+ Az} w6

1
(V(/l,A,B) = {f € ﬂk(p) . p— /l( gg,s(a])f(z) 1+ Bz
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and

1

W(,A,B) = {f € Ap) : —(1 +
p—A4

2[0%° (1) f(2)]” ) 1+ Az}
- —a)<—==b
[0 (@) f ()] 1+Bz

The subclass V(A, A, B) was discussed by Aouf et al., (Aouf et al., 2010) for multivalent ana-

lytic functions with negative coeflicients, also coefficients estimates, distortion theorem, the radii
of p—valent starlikeness and p—valent convexity and modified Hadamard products were inves-
tigated. In (Murugusundaramoorthy & Aouf, 2013) Murugusundaramoorthy and Aouf obtained
similar results for the meromorphic equivalent of the class W(4, A, B). Sarkar et al., (Sarkar et
al., 2013) presented certain inclusion and convolution results involving the operator 6%°(e;) for
functions belonging to certain favoured classes of analytic p-valent functions.
Motivated by the aforementioned works, in the present study we obtain certain strict subordination
relationship involving the subclasses V(4, A, B) and W(A, A, B). Some subordination properties
involving the linear operator defined in (1.3) are also considered. An argument estimate result is
also obtained.

(1.7)

2. Preliminaries

Let #,, denote the class of function of the form
f@=1+a,2" +ana2"" +... 2.1)

that are analytic in the unit disc,U. In proving our main results, we need each of the following
definitions and lemmas.

Definition 2.1. (Wilf, 1961)
A sequence {b,},cn of complex numbers is said to be a subordination factor sequence if for
each function f(z) = Y a;2*, z € U, from the class of convex (univalent) functions in U, denoted

k=0
by S¢, we have

> bua < fz) (where a; = 1).
n=1

Lemma 2.1. (Wilf, 1961) A sequence {b,} is a subordinating factor sequence if and only if

Re[l +2 Z b,,z") >0, zeU. 2.2)

n=1

Lemma 2.2. (Miller & Mocanu, 1981, 2000) Let the function h be analytic and convex (univalent)
in U with h(0) = 1. Suppose also that the function ¢ given by (2.1). If

29’ (2)
Y

o(2) + <h(z) (Rey=0, yeC, 2.3)
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then
Z

ﬂ@<M@:%{$fﬁﬂmmm<m@
0

and { is the best dominant.

Lemma 2.3. (Nunokawa, 1993)
Let the function p be analytic in U, such that p(0) = 1 and p(z) # 0 for all z € U. If there exists
a point zy € U such that

o
|arg p(z)| < > Jor 2| <zl

and s
bis
|arg p(zo)| = > (6 >0),

then we have

20P"(20) — ik,
P(20)
where
1 1 0
k>—|c+ -], when argp(z) = i
2 c 2
and | .
o)
k<—-=|c+—-]|, when argp(z) = —ﬂ—,
2 c 2
where

p(z)'° = +ic, and c¢>0.

Lemma 2.4. (Whittaker & Watson, 1927)
For the complex numbers a,b and c, with ¢ ¢ Z; = {0,-1,-2,...}, the following identities
hold:

! T(b)(c—b
‘f‘ﬁ_%l—tf4kkl——gyﬂdt:-l—lii——leﬂaJucuﬂ,zeEL (2.4)
0 I'(c)
for Rec > Reb > 0, (2.5)
2Fi(a,b;e;2) = (1 —2)™F,; (a, c—b;c; Ll) ze U, (2.6)
Z —_—

and
b+ 1),Fi(1,b;b+1;2)=(b+ 1)+ bz, Fi(1,b+1;b+2;2), z€ U. 2.7
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3. Coeflicient estimates and subordination results for the function classes ‘W (A, A, B) and
YV, A, B)

Unless otherwise mentioned, we shall assume throughout the sequel that 0 < 1 < p,p €

N and 0 < B < 1. First, we will give sufficient conditions for a function to be in the classes
WA, A, B).

Lemma 3.1. A sufficient condition for an analytic p-valent function f of the form (1.1), to be in
the class W(A,A, B) is

D Yaplanl < p(B=A)(p - A) (3.1)
n=k
where
Yap = Qo p(@)nl(n = p)(1 + B) = (A= B)(p = D], (n 2 ). (3.2)

Proof. An analytic p—valent function f of the form (1.1) belongs to the class W(A, A, B), if and
only if there exists a Schwarz function w, such that

1 ( 265 (1) f(2)]” ) 1+ Aw(z)
1+ 2 _| = A,
[65° (@) f(2)) 1 + Bw(z)

Since [w(z)| < |z] for all z € U, the above relation is equivalent to

165" (@) f()) + 206, (@) f ()] = pl6;" (@) f @)V <1
(165" (@) f @V + 265" (@) f(]” = pl6y" (@) f(D])B = (p = V(A = B[, (@) f ()

Thus it is sufficient to show that

e U.

p—A4

|[9;1,’S(011 V@1 + 2007 (@) f(2]” = plo)*(a: )f(z)]’|
— (8% (@) fY + 205 (@) f(@)]” - plo% (@) f(D])B = (p — (A - B)E* (1) f ()]

<0, zeU.

Indeed, letting |z| = r (0 < r < 1) and using (3.1), we have

(64 (@) f @) + 264 (@) f )] = plo%’ (@) f ()Y
165 (@) f@ +2[6%° (@) f@)]” = pl6%* (@) f (@) = (p = DA = B0 (@) f@T

< )" nn = Qo y(anlalr” - (B - Ap(p - ) r*!
n=k

(o)

+ Y (= p)B = (A = B)(p = DIQo, y@lanlr” = 7 3 yupla "™ = (B = A)p(p - 1) < 0.
n=k n=k

Hence f € ‘W(A, A, B). O



116 Frasin et al. /| Theory and Applications of Mathematics & Computer Science 6 (2) (2016) 110-124

Similarly, we have the following Lemma which gives sufficient condition for a function to be
in the class V(4, A, B).

Lemma 3.2. A sufficient condition for an analytic p-valent function f of the form (1.1), to be in
the class V(A,A, B) is

D Gigland < (B=A)(p - 1) (3.3)
n=k
where
61,5 = Q@)1 = p)(1 + B) = (A = BYp = D], (n> k. (3:4)

Our next result provides a sharp subordination result involving the functions of the class
W(A, A, B).

Theorem 3.1. Let the sequence {y, p}.en defined in (3.2) be a nondecreasing sequence. If a func-
tion f of the form (1.1) belong to the class W(A,A, B). and g € §°, then

(e(z"7) * 8) @ < 8. (3.5)
and
Re(z'7f(z)) > —i, ze U, (3.6)
Yi.p

whenever € = .
2[(B=A)p(p = D]+ yip
Moreover, if (k — p) is even, then the number € cannot be replaced by a larger number.

Proof. Supposing that the function g € 8¢ is of the form

g(z) = anz”, z€U (where b =1),

n=1
then -
> dub,t = ((c"7f) % 8) @) < 80,
n=1
where
€, if n=1,
d, =10, if 2<n<k-p,

€dpip-1, If n>k—p.
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Now, using the Definition 2.1, the subordination result in (3.5) holds if {d,} is a subordinating
factor sequence. Since {y,,,}.en 18 @ nondecreasing sequence we have,

= yk,p
Re|l+2 ) d,7"'|= Re(l + + (3.7)
[ Z ] p(p— DB =A)+Yip

Il

n=1

i yk,p n—p
apz >
i p(p = DB —A) +Vip
yk,p

1- r—
p(p = )(B=A) +¥ip

r [s]
Onplanl, Izl =1 <1.
p(p = V(B —A) + Y, Z:,; ’

Thus, by using Lemma 3.1 in (3.7) we obtain

(o] yk’p
Re[1+2 ) ¢,7'"|>1- r—
( Z‘ ) pP(B—=A)p -+ vy

p
pPB—=A)p -+,

B-A)p(p-1)>0,zel,

which proves the inequality (2.2), hence also the subordination result asserted by (3.5). The in-
equality (3.6) asserted by Theorem 3.1 would follow from (3.5) upon setting

Z (o9
= L -V zeu
8@ =7 ;z z€

We also observe that whenever the functions of the form

L B-Ap(p-1),

Yn.p

fop@) =27 ,z2€U(n>k),

belongs the class ‘W(A, A, B) and if (k — p) is a even number, then

1

1-p - __
z fk’p(Z) 7=—1 2¢’

and the constant € is the best estimate. O
Using the same techniques as in the proof of Theorem 3.1, we have the following result.

Theorem 3.2. Let the sequence {6, ,}nen defined by (3.4) be a nondecreasing sequence. If the
function g of the form (1.1) belongs to the class V(A, A, B) and h € §¢, then

(1 (2") % 1) @) < h(2), (3.8)
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and

Re (zl_pf(z)) > —i, ze U, 3.9

where i}
p= i
2[(B-A(p-D]+0,,

Moreover; if (k — p) is even, then the number u cannot be replaced by a larger number.

4. Subordination Properties of the operator HZ’s(aq)
In this section we obtain certain subordination properties involving the operator 67°(a1).

Theorem 4.1. For f € Ai(p) let the operator Q be defined by

( ) S )
Qf@)=|1-7- TlA—’“eq @)f@ |+ [0 + DFE), (.1)
for Ay #0and 1> 0.
(i) If
QY f(z ! 1+ Az _
JOP I (v 0<j<p), (42)
P~ p! + Bz
, then
q,S NI (])
[ @f@- 0" _ 144 i
. < < —, .
7 p! 8(z) 1+ Bz (4.3)
where for m positive, g is given by
i‘+( ——)(1+Bz) 2F1( LTy B ) B0
) = Y 1B . ™ 1+B
1+ Z( T+1Tp) , if B=0,
l-7+7(m+ p)
and g is the best dominant of (4.3).
(ii)
QY f(2) p!
Re( = )>(p_j)!0',zeU 4.4)
where
A l-7v+71p B )
E+@——y1—m ﬂﬁ(l = +LB_J,U‘B¢Q

7= Al =T +1p)

- , f B=0.
l-7+7(p+m) 4

The inequality (4.4) is the best possible.
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Proof. From (1.5) and (4.1) we easily obtain

Q1@ = (1 =+ e @nf@]” + o @nro] " zeu.

Letting

5 ) .
|68 @) f @] (- )
ZP—jp! ’
with f € Ai(p), then g is analytic in U and has the form (2.1). Also, note that
N R ()]
8 (@) = .

zP=ip!

8(z) =

(I-7+7p) g(z)+1

Then, by (4.2) we have
1+ Az

1+Bz

T ’
g(z)+—1_T+szg(z)<

-7+
Now, by using Lemma 2.2 for y = L

-
followed by the use of the identities (2.5), (2.6) and (2.7), we deduce that

s ()] .
[9?;’ (a/l)f(z)] p-nN' _ (1-7+ Tp) EL) ( Uiy 1+ At
<3 = ) t

. dt
P~ p! ™ 1+ Bt
0
A A l-7+71p Bz )
—+(1-=)+B) ', F|1,1; 1; , if B#0,
_ B+( B)(+Z) “( E— 1+Bz) e
N A(l -1+
d=r+7p) if B=0,
l-7+71(p+m)
which proves the assertion (4.3) of our Theorem.
Next, in order to prove the assertion (4.4), it sufficies to show that
inf {Reg(z) : z € U} =g(-1).
Indeed, for |z] < r < 1 we have
1+Az 1-Ar
€ > ,
1+Bz  1-Br
and setting
1+A -7+ —T+7,
¥(5,2) = —=2 and  du(s) = —— L=y 0<s<1)
1+ Bsz

which is a positive measure on the closed interval [0, 1] whenever 7 > 0, we get

1
7@ = fo (5,2 du(s),

119

4.5)

(4.6)

and whenever y > 0, by a changing of variables

4.7)
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and |
— 1—-Asr —
ReZG)> [ du(s) = =), < 7 < 1.
o 1—Bsr
Letting r — 17 in the above inequality we obtain the assertion (4.7) of our Theorem. The estimate
in (4.4) is the best possible since the function g is the best dominant of (4.3). ]
2a(p — ))!
Taking g = 2and s = 1,for A; = B; = l,a; = l,ap = f1and A = 1 — U—Cy(:;-i-rg)p! and
B = —1 in Theorem 4.1 we get the following result:
Corollary 4.1. Let Qf(z) = (1 — 1) f(z) + 12f'(2), where f € A(p). Fort >0
) - ! -7+ !
ReQ f(z)(p /) >a,z€U (0§a< w, OSjSp),
?p! (p =)
implies that
@)
RIE @
P l-7v+71p
! 1- 1
p. - @ o F 1,1;ﬂ+1;——1,z€U
p-nN! l—-71+71p ™ 2
The above inequality is the best possible.
Theorem 4.2. For f € Ai(p) let the operator Q be given by (4.1), and let T > 0.
M 1If "
Ky J
o0 @)f @) U<t
e . >p, Z€ < )
i p ==
then Qv
j
Re f(;) >p(l —1+71p), |zl <R,
zP=J
where
1
™m ? ™m '
R = 1+ - . 4.8
(1—T+Tp) I-7+71p (4.8)
(i) If
|68 @n )] |
Re ! - - <p,Z€U (p>La)7
(=1)z7p7/ (p - N
then Qv
J
Re p{fZ) <p(l=7+1p), [Z <R.
Z

The bound R is the best possible.
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Proof. (i) Defining the function ® by

|

|6 @ f2)]”

Zp_j

then @ is an analytic function of the form (2.1) with positive real part in U. Differentiating (4.9)
with respect to z and using (4.5) we have

Q(j) f(Z)

Zp_j

p!
——p
(p—N!

Now, by applying in (4.10) the following well-known estimate (MacGregor, 1963)

—p(l-1+71p) = [ ] [1 =7+ 1p)D(2) + 720 (2)] . (4.10)

Q@) 2mr”

Red() = T—pm A=r<l @11
we have
()
Re[Q f@—p(l—pr)]z 4.12)
ZP—]
‘ m
Red(z)| —2— —p (1—T+Tp)—m ll=r<l1.
»-)! =

Now, it is easy to see that the right hand side of (4.12) is positive whenever r < R, where R is
given by (4.8). In order to show that the bound R is the best possible, we consider the function
f € Ai(p) defined by

[0 @ )]

oy p! 1+27"
P Pro= P T=
Then,
[0)]
Q f(Z)—p(l—T+Tp):
zP=J
p!
— =P
(p_.])' 1 1 2m 2 m _0
W[( —T+Tp)( -2z )+ T™mz ]— ,

forz=R exp%r , and the first part of the Theorem is proved.
Similarly, we can prove part (ii) of the Theorem.

5. An argument estimate

In this section we obtain an argument estimate involving the operator 65°(e;) and connected
with the linear operator Q.
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1
Theorem 5.1. For f € A(p), let the operator Q be defined by (4.1), and let 0 < 7 < 7 Af
QVf(z)| =#6 ]
‘arg pray 502 eU (5 >0,0<j< p), (5.1

then 0
s J

0@ f@]"|  7s

arg , <—,z€el.
b4 2

Proof. For f € Ai(p), if we let

6@ f@]” (- iy

ZP_j p'

q(z) =

then ¢ is of the form (2.1) and it is analytic in U. If there exists a point zy € U such that

o o
larg g(2)| < > |zl <lzol and |argq(zo)| = > 0 >0)),

then, accorollaryding to Lemma 2.3 we have

209 (20) =ik and q(z0)"° =+ic (c>0).
q(zo)

Also, from the equality (4.5) we get

QY f(z0) _ p!
& (p—n!

) - 209’ (20)
(1 T+TP)Q(Z°)[1+ I-7+1p 4(20) ]

0
If arg g(z9) = %, then

arg Q) f(z0) _ 76

) 0
. — +arg 1+;ik(5 :7T—+tan_1 ;kd Zﬂ—,
P 2 l-7+71p 2 l-7+71p 2
0

1 1 1
whenever k > 3 (c + —) and 0 < 7 < 1 , and this last inequality contradicts the assumption

c -p
(5.1).

0
Similarly, if arg g(zo) = —%, then we obtain

QY f(z0) 7o

ag—, 5 ="
)

which also contradicts the assumption (5.1).

0
Consequently, the function g need to satisfy the inequality |arg g(z)| < % z € U, ie. the

conclusion of our theorem. OJ
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1. Introduction

Harmonic functions are famous for their use in the study of minimal surfaces and also play
important roles in a variety of problems in applied mathematics (e.g. see Choquet (Choquet,
1945), Dorff (Dorff, 2003), Duren (Duren, 2004)). A continuous function f = u + iv is a complex
valued harmonic function in a complex domain C if both « and v are real harmonic in C. In any
simply connected domain D c C we can write f = h + g, where h and g are analytic in D. We
call & the analytic part and g the co-analytic part of f. A necessary and sufficient condition for
f to be locally univalent and sense- preserving in D is that |h' (z)| > |g' (z)| in D; see (Clunie &
Sheil-Small, 1984).

Denote by S H the class of functions f = h+g that are harmonic univalent and sense-preserving
in the unit disk

U={z:z€eCand |7 < 1}

for which f(0) = f;(0) — 1 = 0. Then for f = h + g € S H, we may express the analytic functions
h and g as

hz) =z + Zakzk, g(2) = Zbkz"- (1.1)
k=2 k=1

*Corresponding author
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Therefore

f@=z+ ) ad+ ) b bl <1
k=2 k=1

Note that S H reduces to the class S of normalized analytic univalent functions in U if the
co-analytic part of f is identically zero.

In 1984 Clunie and Sheil-Small (Clunie & Sheil-Small, 1984) investigated the class S H as
well as its geometric subclasses and obtained some coefficient bounds. Since then, there has been
several related papers on S H and its subclasses such as Avci and Zlotkiewicz (Avci& Zlotkiewicz,
1990), Silverman (Silverman, 1998), Silverman and Silvia (Silverman, 1999), Jahangiri (Jahangiri,
1999) studied the harmonic univalent functions.

The differential operator Dg,ﬂ(/l, w) (n € Ny) was introduced by Bucur et al. (Bucur et al.,
2015). For f = h + g given by (1.1), we define the following differential operator:

D! (AW f@) = Dl (A wh) + (=)D (L, w)g(@),

where

Dl A wh@) =z+ ) [k = Dw' - a) + k| ad
k=2

and

(o)

DL (A w)g@) = > [tk + D(w' - ) + k| by,

k=1

where p, A, w > 0,0 < a < uw?, with D2 (A, w)f(0) = 0.
Motivated by the differential operator Dg,ﬂ(/l, w), we define generalization of the differential
operator for a function f = h + g given by (1.1).

DY) (A w)f(2) = D’ f(2) = h(z) + g(2),

D}, (A4, w)f(2) = (@ = pwh)(h(z) + 8(2)) + (uw' — @ + 1)(zh () - 2¢' (2),

Dl (A w)f(2) = D (D, (A w)f (). (1.2)
If f is given by (1.1), then from (1.2), we see that

D! (A w)f() = z+z |k = D(w* = ) + k| akzk+(—l)”2 |k + D@w' — ) + k] B (13)
k=2 k=1

When , w = @ = 0, we get modified Salagean differential operator (Salagean, 1983).
Denote by S H(4, w, n, @, 8) the subclass of S H consisting of functions f of the form (1.1) that
satisfy the condition
% [DZT,} (A, w)f(2)

Dz,ﬂu,wmz)) 2B O=p<D), (1.4)
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where D’ (A, w)f(z) is defined by (1.3).

a,u o
We let the subclass S H(A, w, n, @, 5) consisting of harmonic functions f, = h+ g, in SH so
that 4 and g, are of the form

[ee)

W@ =z- ), 8@ = (1)) b @ b= 0. (15)

k=2 k=1

By suitably specializing the parameters, the classes S H(A, w, n, , 8) reduces to the various
subclasses of harmonic univalent functions. Such as,
1) SH(0,0,0,0,0) = S H*(0) (Avct (Avai& Zlotkiewicz, 1990), Silverman (Silverman, 1998),
Silverman and Silvia (Silverman, 1999)),
(1) SH(0,0,0,0,8) = S H*(B) (Jahangiri (Jahangiri, 1999)),
S H(0,0,0,0,8) = S y(1,0,8) (Yalgin (Yalgin, 2005)),
(i11) SH(0,0,1,0,0) = KH(0) (Avcl (Avcai& Zlotkiewicz, 1990), Silverman (Silverman, 1998),
Silverman and Silvia (Silverman, 1999)),
(iv) SH(0,0,1,0,8) = KH(B) (Jahangiri (Jahangiri, 1999)),
SH(0,0,1,0,8) = S 5(2,1,8) (Yalgin (Yalcin, 2005)),
(v) SH(0,0,n,0,B8) = H(n,B) (Jahangiri et al. (Jahangiri et al., 2002)),
SHO,0,n,0,8) = §H(n + 1, n,8) (Yal¢in (Yal¢in, 2005)),
The object of the present paper is to give sufficient condition for functions f = h+g where /h and
g are given by (1.1) to be in the class S H(4, w, n, @); and it is shown that this coefficient condition is
also necessary for functions belonging to the subclass S_H(/l, w,n,a,8). Also, we obtain coeflicient
bounds, distortion inequalities, extreme points and inclusion results for this class.

2. Coefficient Bounds

Theorem 2.1. Let f = h + g be so that h and g are given by (1.1). Furthermore, let
D =By [t = D@w' = @) + k| lail + Yk + B[tk + D' —a) + k| il < 1=, @2.1)
=2 k=1

where u,A,w > 0,0 < @ < uw', n € Ny, 0 < B < 1. Then f is sense-preserving, harmonic
univalent in U and f € SH(A,w,n,a,p).

Proof. 1f 21 # 2o,

- k _ k
@) - f@) PEACEES

h(z1) = h(z2)

8@ - 8(z2)
h(z1) — h(z2)

(o8]
@ -2)+ La (25 - 25)

2k |byl
k=1
> 1-—
1= Y kla
=
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o kB e+ D(uw-a)+k]"
2 -
k=1 B

s (k= B[k = Dw' —a) + k|
— Z -
k=2 B

|Di]

\%
—
|

|a|

%

0,

which proves univalence. Note that f is sense preserving in U. This is because

o © (k- B) [tk = D(uw' — ) + k|’
W@l = 1- kau > 1) | 5 | o
= k=2

k + ) (k+1)(,uw —a)+k]

2 ), — IV

=1
> |g'@l.
Using the fact that R(w) > Bif and only if |1 — 8+ w| > |1 + 8 — w|, it suffices to show that
|1 - B)DL (A, w) + DN (A, w) )| = |1+ B)DL (A4, w) = DiL (A, w)| = 0. (2.2)
Substituting for DZ“(A, w)f(z) and Dy, (4, w)f(2) in (2.2), we obtain

(1= BD% (A, w) + DIt (A w) f@)| = (1 +B)D, (A, w)f(2) = Dl (A, w)f ()|

(o)

20-p) = Y [tk +1=p)+ (k= D(w' - )| [k = Dew' = @) + k] laud |21

k=2

W%

(k= 148) + (k= Diaw' = @] [k + DGow' — @) + k] 1bi] It

= 1=p)+ (= D' = )] [k = D@w' = @) + k] sl 2

DM 1M T

[+ 14 8) + (k= D(w' — )] [k + D(uw - @) + k] [l Iz

>~
1l
—_

\%

|cty ]

= (k= B) |tk = D' = a) + k|
20-p)ld|1- > | 5 ]
k=2

(k +P) (k+1)(yw —a)+k]

—Z = bl |.

This last expression is non-negative by (2.1), and so the proof is completed. O]
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Theorem 2.2. Let f, = h+3, be given by (1.5). Then f, € S H(A, n, ) if and only if
Z(k —B) |tk = D(uw' - @) + k| ay + Z(k +B) |k + D' - )+ k| B < 1-8,. (23)
k=2 k=1

where u,A,w>0,0<a <uw',ne Ny, 0<p<1.

Proof. The ”if” part follows from Theorem 2.1 upon noting that S_H(/l, w,n,a,) C SH(A,w,n,a,).
For the “only if” part, we show that f ¢ S_H(/l, w, n, a, ) if the condition (2.3) does not hold. Note
that a necessary and sufficient condition for f,, = h + g, given by (1.5), to be in S_H(/l, w,n,a,f) is
that the condition (1.4) to be satisfied. This is equivalent to

(1 =B = Lk =Pk = D' - ) + k] a2

R

(o)

2= 3 [tk = D(uwt — ) + K" a2k + X [k + 1w — ) + k" b
k=1

k=2

~S k4B [k + D' - @) + K] b
= > 0.

[Se]

72— 2 [tk = D(uwt — @) + k]" axz* + i (k+ 1D [(k+ Duw! —a) +k]" bz
k=1

k=2
The above condition must hold for all values of z, |z| = r < 1. Upon choosing the values of z
on the positive real axis where 0 < z = r < 1 we must have

(=P = Sk=B)|tk= D'~ ) + k[ @t

1= 3 [k = D(awt — @)+ kI a1 + 3 [k + 1wt — @) + k] bk
k=2 k=1

—i(k +5) [(k + D(uw* — ) + k]” b
k=1

o~ = > 0. 2.4)
1= X [(k=1D(uwt—a) + k]" ar*=" + 3 [(k + D)(uw? — @) + k" byrk!
k=2 k=1

If the condition (2.3) does not hold, then the numerator in (2.4) is negative for r sufficiently
close to 1. Hence there exist zo = rg in (E) for which the quotient in (2.4) is negative. This
contradicts the required condition for f, € S H(4, w, n, @, 8) and so the proof is complete. ]

3. Distortion Inequalities and Extreme Points

Theorem 3.1. Let f, € S_H(/l, w,n,a,8). Then for|z] = r < 1 we have

(1-p) L) 2(pwt-a)+1]" ) 2
@1 < (14 b+ (gt - by ) 2,

and

|fn<z>|z<1—b1>r—( -5 —“*’3’[2(“W”‘“>+1]"b1)r2.

Q-B)[puw! —(Y+2]n Q-B)[uw? —(y+2]n
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Proof. We only prove the right hand inequality. The proof for the left hand inequality is similar
and will be omitted. Let f, € S H(4, w, n, @, 8). Taking the absolute value of f,, we have

A@I < A+b)r+ Y (a+b)rt
k=2

IA

(L+b)r+ > (a+b)r

= (I+by)r+

[ax + byl

(-pr__$@=P o'~ + 2|
Q-plww'-a+2'y (A-p

(1-pr

< (1 +b1)r+ (Z—ﬁ)[ﬂwﬁ—a-i-Z]n
(k=pB) (k— Duw' —a) + k
XZ[ 1 —ﬁ ] ayg
(k+B) |k = D(uw' — ) + k| }
+ bk
-5
(1-p) A+p 2w —a)+1]" ]
< (1+b1)r+(2—ﬁ)[/uwﬂ—a+2]"[l =3 b |r
(1-p) A+p2(wt-a)+1] |,
= d +b‘)r+((2—ﬁ)[pwﬂ—a+2]" TG A+ |
The following covering result follows from the left hand inequality in Theorem 3.1. [

Corollary 3.1. Let f, of the form (1.5) be so that f, € SH(A,w,n,a,p). Then

. Q-p)[pw'-a+2]"-1+p
{W Hwl < Q-p)|pwi-a+2]"

Q-p)[pwt-a+2]"-(1+B)[ 2w -a)+1]"
B Q-p)|uwi-a+2]" = f”(U)

Theorem 3.2. Let f, be given by (1.5). Then f, € S H(A, w,n, a, B) if and only if

7@ = ) (Xihul2) + Yign (),
k=1



Sahsene Altinkaya et al. /| Theory and Applications of Mathematics & Computer Science 6 (2) (2016) 125-133 131

where

— - _ 1-B k.
h](Z) - Z’ hk(Z) =z (k_ﬁ)[(k_l)(’uwﬁ_a)_'_k]nz l (k Z 2)a

n 1- =k
gnk(z) =z+ (=D (k+,3)[(k+1)(;f}v\//l—(t)+l’<]nZ > kz2),

> X+ Y =1X2>0,Y,>0.
k=1

In particular, the extreme points of SH(A,w,n, a,B) are {h} and {g,,,).

Proof. For functions f, of the form (1.5) we may write

A = (K@) + Yign, ()
k=1
_ N N 1-8
_ ;(Xk+Yk)Z ;(k BT Do~ T & X2
n N 1 _'/3 —k
1) ;(k B[k + D —a) A
Then
i(k—ﬁ)[(k—l)(,uw”—aﬂk]"( -5 )
= 1-5 (k—pB) [(k— D(uw! —a) +k]" k
(k+p) (k+1)(/lw —a)+ k[ 1-p
+Z -B ((k +B) [k + D)(uw! — @) + k]" Y")

= ZXk+ZYk =1-X; <1, andso f, ES_H(/l,w,n,a/,ﬁ).

k=2 k=1

Conversely, if f, € S_H(/l, w,n,a,3), then

< 1-5
“7 k=P [k - Dw! —a) + k"
and
< 1-5
2k +B) [k + D(uwt — ) + k"
Setting

k=) |tk = Duw' — @) + k]
1-p

X = ai; (k= 2),
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(k+B) [k + Duw' — a) + k|
1-p

Xi=1- [ZXk + ZYk)

= bis (k> 1),

and

where X; > 0. Then
F@) = Xiz+ ) XihilD) + D Yig (2)
k=2 k=1

as required.

4. Inclusion Results
Theorem 4.1. The class S_H(/l, w,n,a, ) is closed under convex combinations.

Proof. Let f,, € S_H(/l, w,n,a,p) fori=1,2,..., where f, is given by

(o)

f@=2- ) @ + (- 1)"Zbk

k=2
Then by (2.3),

(k- ) (k—l)(,uw ~ )+’ (k + B) (k+1)(pw ~ )+
Z -B “k*Z -8
;)

For Zti = 1,0 <t; <1, the convex combination of f,, may be written as

i=1
itifn,-(z) == i (itiak,)zk + (_l)ni (itibki]zk
i=1 k=2 \i=1 k=1 \i=1

i(k B) (k—l)(,uw —a)+k [itak)

k=2

Then by (4.1),

0 (k+,8)[(k+1)(pw —a)+k| (&
+k:1 1-v [thkl)
= (& k=)= Diw' —a) + k|
X [Z [y o
(k + B) (k+l)(/Jw —a)+k 0
+Z - ] S

This is the condition required by (2.3) and so Y%, (z) € S H(A, w,n, a, B).
i=1

bkiﬁl.

4.1)
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Abstract

In this paper we introduce the notions approximation properties (APs) and bounded approximation properties
(BAPs) in the setting of intuitionistic fuzzy normed linear spaces (IFNLSs). Further, we define strong intuitionistic
fuzzy continuous and strong intuitionistic fuzzy bounded operators and using them we prove the existence of an
IFNLS which does not have the approximation property. In addition, we give example of an IFNLS with the AP
which fails to have the BAP.

Keywords: Intuitionistic fuzzy normed linear space, approximation property, bounded approximation property.
2010 MSC: 55M20, 54H25, 47H09.

1. Introduction

In analysis many problems we study are concerned with large classes of objects most of which
turn out to be vector spaces or linear spaces. Since limit process is indispensable in such problems,
a metric or topology may be induced in those classes. If the induced metric satisfies the translation
invariance property, a norm can be defined in that linear space and we get a structure of the space
which is compatible with that metric or topology. The resulting structure is a normed linear space.
There are situations where crisp norm can not measure the length of a vector accurately and in such
cases the notion of fuzzy norm happens to be useful. There has been a systematic development
of fuzzy normed linear spaces (FNLSs) and one of the important development over FNLS is the
notion of intuitionistic fuzzy normed linear space (IFNLS). The study of analytic propertis of
IFNLSs, their topological structure and generalizations, therefore, remain well motivated areas of
research.

*Corresponding author
Email addresses: debnath.pradip@yahoo.com (Pradip Debnath ), nabnitakonwar@gmail.com (Nabanita
Konwar)
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The idea of a fuzzy norm on a linear space was introduced by Katsaras (Katsaras, 1984).
Felbin (Felbin, 1992) introduced the idea of a fuzzy norm whose associated metric is of Kaleva
and Seikkala (Kaleva & Seikkala, 1984) type. Cheng and Mordeson (Cheng & Mordeson, 1994)
introduced another notion of fuzzy norm on a linear space whose associated metric is Kramosil and
Michalek (Kramosil & Michalek, 1975) type. Again, following Cheng and Mordeson, one more
notion of fuzzy normed linear space was given by Bag and Samanta (Bag & Samanta, 2003a).

The notion of intuitionistic fuzzy set (IFS) introduced by Atanassov (Atanassov, 1986) has trig-
gered some debate (for details, see (Cattaneo & Ciucci, 2006; Dubois et al., 2005; Grzegorzewski
& Mrowka, 2005)) regarding the use of the terminology “intuitionistic” and the term is considered
to be a misnomer on the following account:

e The algebraic structure of IFSs in not intuitionistic, since negation is involutive in IFS theory.
¢ Intuitionistic logic obeys the law of contradiction, IFSs do not.

Also IFSs are considered to be equivalent to interval-valued fuzzy sets and they are particular cases
of L-fuzzy sets. In response to this debate, Atanassov justified the terminology in (Atanassov,
2005). Apart from the terminological issues, research in intuitionistic fuzzy setting remains well
motivated as IFSs give us a very natural tool for modeling imprecision in real life situations which
can not be handled with fuzzy set theory alone and also IFS found its application in various areas
of science and engineering.

With the help of arbitrary continuous -norm and continuous #-conorm, Saadati and Park (Saa-
dati & Park, 2006) introduced the concept of IFNLS. There has been further development over
IFNLS, e.g., the topological structure of an intuitionistic fuzzy 2-normed space has been stud-
ied by Mursaleen and Lohani in (Mursaleen & Lohani, 2009). Recently, a number of interesting
properties of IFNLS have been studied by Mursaleen and Mohiuddine (Mursaleen & Mohiuddine,
2009a,b,c,d). Further, generalizing the idea of Saadati and Park, an intuitionistic fuzzy n-normed
linear space (IFnNLS) has been defined by Vijayabalaji et al. (Vijayabalaji et al., 2007b). More
properties of IFnNLS have been studied by N. Thillaigovindan, S. Anita Shanti and Y. B. Jun
in (Vijayabalaji et al., 2007a). Some more recent work in similar context can be found in (Deb-
nath, 2015; Debnath & Sen, 2014a,b; Esi & Hazarika, 2012; Mursaleen et al., 2010a; Sen &
Debnath, 2011).

In classical Banach space theory, some most important properties are “Approximation proper-
ties” which were investigated by Grothendick (Grothendiek, 1955). We say that a Banach space X
has the approximation property (AP) if, for every compact K and € > 0, there is a bounded finite
rank operator 7 : X — X such that ||T(x) — x|| < ¢, for all x € K, i.e. I(x)-the identity operator
on X- can be approximated by finite rank operators uniformly on compact sets. Also X has the
bounded approximation property (BAP) if for every compact K and € > 0, there is a bounded
finite rank operator 7 : X — X with ||T'|| < A such that ||T(x) — x|| < € for all x € K for some
A > 0. The APs play very crucial role in the study of infinite dimensional Banach space theory
and also in the investigation of Schauder bases. Some of the important references from related
works being (Choi et al., 2009; Enflo, 1973; Kim, 2008; Mursaleen et al., 2010b; Szarek, 1987).

Yilmaz (Yilmaz, 2010a) introduced the notion of the AP in fuzzy normed spaces and estab-
lished some interesting results on it. Very recently Keun Young Lee (Lee, 2015) identified some
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limitations in Yilmaz’s definitions regarding the continuity of fuzzy operators. He modified Yil-
maz’s definitions and studied approximation property (AP) and bounded approximation property
(BAP) on fuzzy normed spaces.

In this article we address the questions raised by Keun Young Lee (Lee, 2015) and also gener-
alize the work of Figel and Johnson (Figel & Johnson, 1973) in the context of AP and BAP in the
new setting of IFNLS.

First we recall some basic definitions and results which will be used subsequently.

Definition 1.1. (Saadati & Park, 2006) The 5-tuple (X, u, v, *,0) is said to be an IFNLS if X is a
linear space, = is a continuous #-norm, o is a continuous z-conorm, and y, v fuzzy sets on X x (0, c0)
satisfying the following conditions for every x,y € X and s, > O:

(@) p(x, 1)+ v(x 1 <1,
(b) p(x,1) >
©) p(x,t) = 1 1f and only if x = 0,
d) plax,t) = pu(x X1 |)f0reachcy7é0
() p(x1) = p(y, s) < p(x+y,t+5),

(f) p(x,1):(0,00) — [0, 1] is continuous in ¢,
(2) lim, o u(x,t) = 1 and lim,_,o u(x,1) = 0,
(h) v(x, 1) <1,

(i) v(x,7) = O0if and only if x = 0,

(G) v(ax,t) = v(x, r ‘) for each a # 0,

k) v(x,1) ov(y,s) = v(x+y,t+s),

(1) v(x,1):(0,00) — [0, 1] is continuous in ¢,
(m) lim, o v(x,1) = 0 and lim,_,q v(x, 1) = 1.

In this case (u, v) is called an intuitionistic fuzzy norm. When no confusion arises, an IFNLS will
be denoted simply by X.

Definition 1.2. (Debnath, 2012) Let X be an IFNLS. A sequence x = {x;} in X is said to be
convergent to & € X with respect to the intuitionistic fuzzy norm (y, v) if, for every € € (0, 1) and
t > 0, there exists kg € N such that u(x, — &,1) > 1 —eand v(x; — &,1) < eforall k > k. It is
denoted by (1, v) — lim x; = &.

Definition 1.3. (Saadati & Park, 2006) Let X be an IFNLS. A sequence x = {x;} in X is said to be
a Cauchy sequence with respect to the intuitionistic fuzzy norm (u, v) if, for every a € (0, 1) and
t > 0, there exists kg € N such that u(x; — x,,,1) > 1 — @ and v(x; — x,, 1) < a for all k,m > k.

Definition 1.4. (Debnath & Sen, 2014a) Let X be an IFNLS. Then X is said to be complete if and
only if every Cauchy sequence of X is convergent.

Definition 1.5. (Lael & Nourouzi, 2007) Let (X, i, v, *,0) be an IFNLS. A subset S in X is said to
be compact if each sequence of elements of S has a convergent subsequence.



Pradip D. et al. | Theory and Applications of Mathematics & Computer Science 6 (2) (2016) 134-149 137

Definition 1.6. (Debnath, 2012) Let (X, u, v, *, 0) be an IFNLS. For ¢ > 0, we define an open ball
B(x,r,t) with center at x € X and radius 0 < r < 1, as

B(x,r,t) ={ye X :u(x—y,t) > 1 —rv(x—y, 1) <r}

Proof of the following lemma is similar to its analogue in case of fuzzy normed spaces (Bag &
Samanta, 2003b).

Lemma 1.1. Let (X, u, v, *,0) be an IFNLS with the condition
u(x,t) > 0and v(x,t) < 1 implies x = 0, forallt € R". (1.1)

Let |x|, = inf{t € R : u(x,t) > a and v(x,t) < 1 — a} for each @ € (0,1). Then {|| - || : @ €
(0,1)} is an ascending class of norms on X. These norms are called a- norms on the intuitionistic
fuzzy norm (u,v).

Definition 1.7. (Mursaleen et al., 2010a) Let (x,) be a sequence in an IFNLS (X, u, v, *,0). It is
said to be basis of X if for every x € X there exists a unique sequence (a,) of scalars such that

(1, v) —lim >} apxe = x.
that is, for each a € (0, 1) and € > 0, there exists nyp = no(a, €) € N such that n > n, implies,

pulx =0 arxi, €) > 1 —aand v(x — Yp_ axxi, €) < a, where x = D7 | aix;.

2. Main Results

Now we are ready to discuss our main results. First we define some important notions in
connection with approximation property in IFNLS.

Definition 2.1. Let (X, u, v, *,0) be an IFNLS. A complete IFNLS is said to have the approxima-
tion property, briefly AP, if for every compact set K in X and for each @ > (0, 1) and € > 0, there
exists an operator 7 of finite rank such that

w(Ty(x)—x,€)>1—aand v (T, (x) — x,€) < @
for every x € K.

Definition 2.2. Let A be a real number. An IFNLS (X, u, v, =, 0) is said to have the A-bounded
approximation property, briefly 1-BAP, if for every compact set K in X and for each @ € (0, 1) and
€ > 0, there exists an operator T € F (X, X, 1) such that

u(T (x) —x,e) >1—aand v (T (x) — x,€) < a
for every x € K.

Definition 2.3. Suppose that an IFNLS (X, u, v, », o) has a basis (x,). For each positive integer m,
the m™ natural projection P,, for x,, is the map
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S AnXy — Yo GnX, from (X, 1, v, %,0) to (X, i1, v, %, 0).

Definition 2.4. Let (X, u, v, *,0) and (Y, wv o) be two IFNLS and T : X — Y be a linear
operator where (u,v) and (i, V') are intuitionistic fuzzy normed. Then

1. The operator T is called strongly intuitionistic fuzzy (shortly sif) continuous at a € X if, for
given € > 0, there exists 6 > 0 such that, for all x € X,

W (T(x) —T(a),€) = u(x —a,6) and v (T (x) — T(a),€) < v(x — a,d).

If T is sif-continuous at each point of X, then T is said to be sif-continuous on X.

2. The operator T is called strongly intuitionistic fuzzy bounded on X if there exists a positive
real number M such that g (T(x),1) > p(x, %) and v (T(x),1) < v(x,%) for all x € X
and r € R. We will denote the set of all strongly intuitionistic fuzzy (shortly sif) bounded
operators form X to Y by F(X, Y). Then F(X, Y) is a vector space. Forall M > 0, F(X, Y, M)
is denoted by

{Te FX,Y): 1 (T(x),1) = pu(x, L),v(T(x),1) < v(x, L), Vx e X,Vt € R},
where M is a positive real number.
For some M > 0if S = F(X,Y, M) then S is called a bounded subset of F(X,Y). Again
the set of all finite rank sif-bounded operators from X to Y is denoted by F (X, Y). Then
F(X,Y) is subspace of F(X,Y). Similarly, we can say that F(X, Y, M) is also a subspace of
F(X,Y,M) for some M > 0.

Proof of the following is similar to its fuzzy analogue in (Bag & Samanta, 2005).

Lemma 2.1. Let (X, u,v,*,0) and (Y,,ul, v, o) be two IFNLSs satisfying condition 1.1 and T :
X — Y be a linear operator. Then T is sif-bounded if and only if it is uniformly bounded with
respect to a- norms of (u,v) and (i1 ,v'). That is, there exists some M > 0, independent of a, such
that ||T (x)||e < M||x||e forall @ € (0,1).

Remark. If (X, u, v, =,0) and (¥, WV o) be two IFNLSs satisfying the conditions:

u(x,t) > 0and v(x,f) < 1 implies x = O for all r € R" and

for x # 0, u(x, 1) is continuous and strictly increasing on {f : 0 < u(x,1) < 1}, while v(x, ) is
continuous and strictly decreasing on {z: 0 < u(x,7) < 1} and M > 0. Then we obtain

FX,,M)={T e F(X,Y) : ||T(x)||le < M]||x||e,Vx€ X,V e (0,1)}.
Hence F(X, Y, M) and F(X, Y, M) are bounded convex subsets of F(X,Y).

Theorem 2.1. Let X be a Banach space and (x,,) be a Schauder basis in X. Then (x,) is a basis
for an IFNLS (X, u, v, =, 0) where

i 155 N
R bl

0, ifr<|l,
v(x, 1) = = :HiH’ ift> |||
’ L if e <],

and every natural projection is sif-continuous.
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Proof. Given that (x,) is a basis for an IFNLS (X, u, v, =, 0).
It is enough to show that -
natural projection P, : (X, u, v, *,0) — (X, u, v, »,0) is sif-bounded for each x € N.
Letne N,te R, xe X.
Consider M = ||P,]|.
If t+ < 0, the result is trivial.
Assume that 7 > 0. Then it is enough to show that

p(Py(x),t) = p(x, %) and v (P, (x),1) < v (x,%).

The proof of y (P, (x),7) > p (x, %) can be established in a similar manner as in Proposition

3.4 of (Lee, 2015).
Now considering for v, we have

t> Mi|x[],

then

1
' 3 =1l
v(x —) =1- .
* M 7 x|

By the assumption,

t> Ml|x|| = [[Palll[x]| = [[Pn () ]

and

=PI 3=
[P = g7+l

Therefore, we have

—||Pa(x a7 — 1]l
v(Py(x),1) = 1 = 2 < 1= 25—y (x, 1),

] w112

Hence
v (Py(x),1) <v(x5)
Secondly,
t< [[Mx]],

then

v(Mx,t) = 1.
Thus,

]

So, we have the existence of an IFNLS having a basis such that every natural projection is
sif-continuous. Now provide modified definitions of APs and BAPs in IFNLSs by incorporating
the continuity of approximating operators.
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Definition 2.5. Let (X, u, v, *,0) be an IFNLS. Then X is said to be have the approximation prop-
erty, briefly AP, if for every compact set K in X and for each a € (0, 1) and € > 0, there exists an
operator T € F (X, X) such that

u(T (x) —x,e) >1—aand v (T (x) — x,€) < a
for every x € K.

Definition 2.6. Let (X, u, v, =,0) be an IFNLS and A be a positive real number. Then X is said to
be have the A- bounded approximation property, briefly A - BAP, if for every compact set K in X
and for each a € (0, 1) and € > 0, there exists an operator T € F (X, X, A) such that

u(T (x) —x,€) >1 —aand v(T (x) — x,€) < a
for every x € K. We can also say that X has the BAP if X has the A-BAP for some 4 > 0.

Theorem 2.2. Let (X, u, v, *,0) be an IFNLS. Then the following are equivalent.

1. (X,u,v,*,0) has the AP,
2. If (Y., ,*,0) is an IFNLS, then for every T € F(X,Y), every compact set K in (X, i1, v, #,0)
and for each a € (0,1) and t > 0, there exists an operator S € F(X,Y) such that

W (S(x) =T(x),t)>1—aandv (S(x) - T(x),1) < a

foreach x € K.
3. If(Y,,u/, v, o) is an IFNLS, then for every T € F(Y, X), every compact set K in (Y,/,t/, v, o)
and for each a € (0,1) and t > 0, there exists an operator S € F (Y, X) such that

pS ) =TW),0) > 1 —aandv(S(y) —TV).1) <«
foreachy e K.
Proof. (i) = (ii)

Let T € F (X,Y) and K be a compact set in (X, i, v,*,0) and @ € (0,1) and# > O and ¢ € R.
Then there exists a positive real number M such that

p (T (x),8) = p(x %) and v (T (x),1) < v (x, L)
for all x € X.
Since (X, u, v, *, 0) has the AP, there exists an operator R € F (X, X) such that

p(R(x)—x,L)>1—aandv(R(x) —x, %) <a

for every x € K.
Now we put § = TR. Since T and R both are sif-bounded operators, therefore S is also a
sif-bounded operator.
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K (S (x) =T (x),1) = u (TR (x) = T (x) ,1)
t

>,u<R(x)—x,M)

and

for every x € K.
(i) = (iii)
Let T € F (¥, X) and K be a compact setin (¥,u',v, ,0) and@ e (0,1) and# > Oand ¢ € R.
Since (X, u, v, , 0) has the AP and T (K) is compact set in (X, u, v, *, o), there exists an operator
R € F (X, X) such that
UR(x)—x,t)>1—aandv(R(x) — x,t) < @

for every x € T (K).
Now we put, S = RT € F (Y, X). Then we have,

u(S (y) =T (y).t) =u(RT (y) =T (y).1)
>1—a.

and

v(S () =T (),1) =v(RT (y) =T (y),?)

foreachy € K.
Since (i) implies both (ii) and (iii), hence (i), (ii) and (iii) are equivalent.
Hence proposition is proved.

Proof of the following Lemma is similar to Lemma 4.2 of (Lee, 2015).

Lemma 2.2. Let (X,u,v,*,0) be an IFNLS and K be a subset in X. If K is a compact set in
(X, 4, v, =, 0), then for every a € (0, 1) and t > 0, there exists a finite set {x,xa,...,X,} in K such
that for every x € K we have x € B (x;, a,t) for some x;.

Theorem 2.3. Let (X, u,v,*,0) be an IFNLS with intuitionistic fuzzy norm (u,v) and M > 0.
Suppose that there exists a sequence (T,) € F (X, X, M) such that T, (x) —> x for every x € X,
then (X, u, v, =,0) has the AP.
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Proof. Let (T,) be a sequence in F (X, X, M) such that
T, (x) — x for every x € X.

Leta € (0,1) and ¢ > 0, and K be a compact set in (X, u, v, *,0).

By the above Lemma, there exists a finite set {xi, X2, ..., x,} < K such that for x € K we have
x € B(x;, , t) for some x;.

Then there exists N;, N, € N such that if n > N;, N, we have,

w(T, (x;) — xi,t) > 1 —aand v (T, (x;) — x;,1) < «

for each i.
Let x € K and choose i such that x € B (x;, a, ), that is,

u(xi—x,t)>1—aandv(x; — x,1) < a.

Then for n = Ny, N,,

p (T (x) = x,8) = p (T (x) + (=T (%)) + (T (1)) + (=) + X3 + (=) ,7)
S AR I R DY)
i (i) (10 2 )
>1-—a.
And
V(T (x) = x,1) = v (T, (x) + (=T, (%)) + (To (1)) + (=x3) + X + (=), 1)

t
< max {u (T,, (x —xi),

() e <)
t

< max {,u (x — X, 3_M> » M (Tn (xi> - Xis %) M (xi - %>}

< Q.

Therefore, u (T, (x) — x,1) > 1 —aand v (T, (x) — x,1) < a.
Hence (X, u, v, *, 0) has the AP. O

By using the above result we derive the following.
Theorem 2.4. Suppose (X, u, v, =, 0) has a basis {x,} and every natural projection
Py (X, (1,v) — (X, (7))
is sif-continuous. Then (X, u, v, *,0) has the AP but the converse is not necessarily true.

Theorem 2.5. An IFNLS (X, 1, v, =, 0) satisfying condition 1.1 has the AP if and only if for every
compact set K in (X, u,v,,0) and for each a € (0,1) and € > 0, there exists an operator T €
F (X, X) such that
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1T (x) = x[[e <€
for every x € K.

Theorem 2.6. Let (X, u, v, *,0) be an IFNLS satisfying condition 1.1 and A > 0. Then (X, u, v, *,0)
has A-BAP if and only if for every compact set K in (X, u, v, =, 0) and for each a € (0, 1) and € > 0,
there exists an operator T € F (X, X, A) such that

1T (x) — x[l < €
for every x € K.

Proof of the above two results follow from (Yilmaz, 20105b).

3. Examples

In this section, we give answers to the following interesting questions with proper examples:

1. Does every IFNLS have the AP?
2. Does in an IFNLSs the AP imply the BAP?

Now we are going to solve (in negative sense) the problem (i) and (ii) with the help of follow-
ing two examples.

Example 3.1. As we know that there exists a Banach space (X, || -||) which fails to have the
approximation property, similarly there exists an IFNLS (X, u, v, *, o) which fails to have the AP.
Let us define a function,

u,v:X xR —10,1] by

(1) = 1, ifr> ||«
KD =0, ifr < ||x.
and
(x,1) 0, ifr>||x||
VWWEUZA00, it < )y,
where (u, v) is the intuitionistic fuzzy norm and ||x||, = ||x||, for every @ € (0, 1).

Now suppose that (X, u, v, =, o) has the AP.

Let @ € (0,1) and € > 0 and K be a compact set in X. Since ||x||, = ||x|| for each @ € (0, 1),
K is compact in (X, y, v, ,0). Then by Theorem 2.5, there exists an operator T, € F (X, X) such
that

1T (x) = xllo < €

for every x € K.
Hence we have,
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1T (x) = x|[ = [|T (x) — x|l < €

for every x € K, which is a contradiction as (X, || - ||) fails to have the approximation property.
(X, u, v, =, 0) has fails to have the AP.

As in Example 4.9 of (Lee, 2015), we give below an example of the existence of an IFNLS
which has the AP but fails to have BAP.

Example 3.2. Enflo and Lidenstrauss (Enflo, 1973; Lindenstrauss, 1971) has proved the existence
of a Banach Space X, which has the metric approximation property but its dual space X fails to
have the approximation property. There is a sequence (|| - ||,) of equivalent norms on X, so that
(Xo, || - |[) fails to have the n- BAP. Consider X, = (Xo,|| - |[»). Thus (3, ®X,),, fails to have the
BAP where (3 @X,), is a Banach space whose elements are sequence of the form (x;, x,...),
where > | ||x,||> < o and x, € X,.

1
Now we consider, X = (},@X,),, and define ||x|| = (3,7, ||x,|[2)* and ||x[[; = sup,]|x]]
for all x = (x1, x2,...) € X.
Let us defined a function,

u,v:X xR —[0,1] by

1, ifr> [|x]
plx,t) =< 5, i [lx|[ < <|[|x]]
O, iftéHle,
and
0, ifr> ||
v(x,t) = < 5, if[x[ <7< |]x|
1, ifzr<||x||s,

where (u, v) is the intuitionistic fuzzy norm.
Consider the a-norms as-

] = x|, ifl>a>
“ l|lx][1, if0<a<

B =0 | —

Suppose that (X, u, v, =, 0) has the BAP. Let us assume that K be a compact set in (X, || - ||).
Then we have to show that K is a compact set in (X, , v, *, o).

Let € > 0 and (x,) be a sequence in K. As K is compact subset in (X, || - ||), there exists
subsequence (x,, ) in (X, || - ||). Therefore there exists an x € X and integers u, v > 0 such that for
k> pu,v

|, — x|| < €.
Since ||x||; < ||x|| for all x € X, therefore for k > pu,v

X, — x[|lo < €
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forall @ € (0,1).

Hence K is a compact set in (X, u, v, #,0).

Next consider @ € (1,1) and € > 0. As K is a compact set in (X, 4, v, *,0) and using @ € (1, 1)
and € > 0 we have 1 > 0 and T, € F (X, X, 1) such that

|To.e (x) — x[|o < € forevery x € K.

Then we have ||T, (x) — x|| < € and ||T,. (x) || < A||x||, which is a contradiction as (X, || - ||)
fails to have the BAP.

Hence (X, u, v, #, o) has fails to have the BAP.

Finally, we have to show that (X, i, v, =, o) has the AP. Let € > 0 and K be a compact subset in

(X,pt,v,%,0). Againlet P; : X —> <Z£=1 (—BX,,)I2 be the projection given by
P((x)) = (x1,x2, .0, X;).

Since K is a compact set in X, therefore by Theorem 2.4 of (Choi et al., 2009) there exists a natural
number m € N and a finite rank operator 7' : (3", ®X,), — (O, ®X,) , such that

b
|[KT'P,, (x) — x|| < €
for every x € K, where k is the map defined as k : (3;_, ®X,), — X such that
k (X1, %05 ey X)) = (X175 X2, ey X, 0, ...).

Now we put T = kT'P,,. As T is a finite rank operator defined as 7 : X — X and ||x||;, < ||x]|
for all x € X, we have

T (x) —x[i <€
that is, for every a € (0, 1), we have
1T (x) — x|, <€

Next we have to show that T is sif-bounded on X. Since (3},_, ®X,), and (3},_, ®X,), are
equivalent, there exists M’ > 1 such that

(=t [l )

D=

< M/S’/‘pl<n<m||xn||n-
Then,
IT)[1 < T (X)]] = |KT Ppu(x)|

/ “ 1
< (KT Ixal2)?
n=1

KT [[M5up, <, <y 6]

< |
< (KT [ | M[[x] s

Taking M = max {||T||,||kT"||, M'}, we have to show that
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p(T (x),1) = p(x, %) and v (T (x),1) < v(x, %)

forall xe X and r € R.
If t < 0, the result is trivial.
Assume that ¢ > 0. Then it is enough to show that

w(T (x),t) = p(Mx,t)and v (T (x),t) < v(Mx,t), forall xe X and r € R.

Now first consider for u:
For the first condition:

t> M||x||
then
u(Mx,t) =1
By the assumption,
t> M||x|| = [[T|[[[x]| = |IT (x) ]
we have
w(T (x),t) = 1.
Hence
u(T (x).1) = p(Mx, 1).
For the second condition:
[[Mx| <1< [[Mx]]
then
p(Mx,t) = 1.
By the assumption
t> M||x|ly = [IKT||M||x][ = [T () []s

we have

T[N

p(T (x),1) =
Hence
p(T (x),1) = p(Mx,t).

For the third condition :
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t< Ml|x||
we have
u(Mx,t) =0.
Then by the assumption trivially we obtain,
u(T (x),1) = pu(Mx, ).

Next considering for v :
For the first condition :

t> M||x||
then
v(Mx,t) = 0.
By the assumption,
t> M||x|| = [|T[|x[| = ||IT (x) ]|

we have
Hence

For the second condition:
| Mxl|y <1< ||Mx]]
then
v(Mx,t) =1
By the assumption
t > Mllx|ly = [|kT']|M]|x][ = [IT (x) |1,
thus
v(T (x),1) <

=

Hence

v(T (x),t) < v(Mx,t)
For the third condition :

t < M||x|;.
Then
v(Mx,t) = 1.

By the assumption trivially we have,

v(T (x),1) <v(Mx,1).

Hence (X, u, v, *,0) has the AP.

147
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4. Conclusion

In this paper we introduced and investigated the concepts of AP and BAP in the context of an
IFNLS. We have shown that there are IFNLSs which fail to have the AP and also there are IFNLSs
with AP but not the BAP. The current results give us a better understanding of the analytical struc-
ture of an IFNLS.
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Abstract

In the research of underlying algebraic structures of real world phenomena, we can find some behavior anomalies
that depend on external parameters that are not ruled by their axiom systems. These are not visible straightaway
and we have to deduce their existence from the effects they cause. To add them in mathematical constructions, we
introduce co-universal extensions of algebras and co-algebras based upon the dual construction of the Kleisli category
associated to a monad.

To illustrate this topic we introduce two applications. The first one is an artificial example. In the second applica-
tion we analyze language algebraic structures with a method that states a bridge between language and logic blindly,
that is to say, handling statements through their expressions in those languages satisfying some adequate conditions,
and disregarding their meanings.

Keywords: Algebraic extensions, hidden parameters, algebraic language structures, co-monad, Kleisli categories,
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1. Introduction

When we investigate the mathematical structures of real world phenomena, we can observe
some anomalies that depend on parameters that are not ruled by those axioms that define their
algebraic structures. For instance, the states of a Turing machine, contexts when we interpret
sentences in any language, environments, positions, etc. Recall that only tape symbols are the
visible part of Turing machines. By contrast, moves and states are not displayed in their tapes.
They work in the background as hidden parameters, but we can deduce their existence from the
behavior changes they cause.

In positional notations, the meaning of each word or symbol depends on their position. For
instance, consider the following sentences: 1) “Programmers know how to write code fast;” and 2)
“Programmers know how to write fast code.” Both consist of the same words, but their meanings
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are order-dependent. We can consider both orders as hidden parameters, and the meanings of the
former sentences depend on them. Accordingly, to define a map u sending each sentence in the
English language FE into its meaning in M, we have to add a parameter set H the members of
which are associated to orders, contexts and styles. Thus, the domain of u must be the Cartesian
product E x H; where E denotes the set of all English sentences.

We can also find hidden parameters in psychology, physics, and random phenomena. For
instance, the probability of remembering a name increases with the occurrence frequency, or when
some noticeable fact is associated to it. Thus, frequency and remarkable facts can work as hidden
parameters that can modify probabilities. In section 4, we analyze an artificial example of this
kind.

To learn and interpret any language, we have to handle abstractions and inferences between the
definitions of sentence meanings (Tudor-Razvan & Manolescu, 2011). The topic goes as follows.
If two words, say W, and W,, have the same meaning, when we swap them in any sentence, we
obtain an equivalent one. We introduce language structure conditions to build the inverse method.
Thus, we can find logical relations and abstractions between the meanings of W; and W, when
we observe that some set of proper sentences 7, becomes T, when we swap W; and W, and each
member of T, is a proper sentence too. To know that 7, consists of right sentences, we need not
know their meanings. It is sufficient to find them in any scholar paper. The method works as a blind
logic and can give rise to many ambiguities, that we can avoid deducing the existence of hidden
parameters. This topic is an enlargement of what Newell stated in (Newell & Simon, 1976). We
do not dive in this topic deeply, because we only expose these ideas to illustrate applications of
co-universal algebraic extensions that we introduce.

The main aim of this article consists of introducing an algebraic device to enrich categories
with sets of external (hidden) parameters that are not ruled by the axioms defining them. We term
these constructions co-universal because are based upon co-monads together with the associated
dual constructions of Kleisli categories. Well-known universal extensions of Set, associated to
monads, are categories of sets with fuzzy subsets (Mawanda, 1988). These extensions of Set arise
from an endofunctor that sends each ordinary set X into X X M, where M is a monoid of truth-
values. We introduce co-universal extensions by a similar endofunctor X — X X M such that M is
the set of hidden parameters.

2. Preliminaries

To simplify expressions, we state some auxiliary definitions and notations. We write in bold
face font those symbols denoting categories. In particular, Set denotes the category of ordinary
sets and maps. We use the symbol < as an end-of-definition marker.

Notation. For each couple of sets X and Y, we denote by XY, the subset of X” defined as follows.

XL, ={f e X" | #(img(f)) > n}.

For instance, X!, consists of every non-constant map in X”.

For each subcategory C of Set and every non-empty set H, we denote the members of the set
(Home(X, Y ))W by symbols with the accent”to indicate that are maps from an arbitrary set H into
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a homset. For each member f* of (Homc¢(X, Y ))(H we write the values of the independent variable
H as subscripts. Thus, the expression f, € Homc(X, Y) denotes the image of €  under f.

Definition 2.1. Let C be a subcategory of Set. For every set H with cardinality greater than 1, we
term H-extension of C the category C[H], with the same object class as C, such that, for every
couple of sets X and ¥,

Homeya(X, ¥) = Home(X, Y)|_| { | Jtha)

h € (Home(X, Y))‘;;}. 2.1)
aceH

Since C is a subcategory of C[H], we only have to define those compositions involving mor-

h € Homc(X, Y ))Z{z} We denote this composition by the infix symbol ¢. For

v

phisins in {1,cplh)
every couple of morphisms f : X — Y € Hom¢(X, Y) and [],ex (8.} € Homeg (Y, Z) we define

their composition as follows.
([ ]tza))or=]Jtzaon (2.2)

acH acH

Likewise, the composition of f and [[,c4{8,} € Homce (T, X) 1s
fo(] @)= oz (2.3)
aeH acH
Finally, we define the composition of two morphisms [ [,cx{fs) € Homc4(X, Y) and [[,cq {80} €

Homcy4(Y, Z) by
(1 1) e (] Jtir) = | Juze o 2.4)
aeH

aeH aeH

Since C is a subcategory of C[H] with the same object class, identities are the same in both
categories. <

Theorem 2.1. Let C, and C, be two subcategories of Set. For every set H with cardinality greater
than 1, and each functor T : C; — C,, the following statements hold.

1) There is an extension T* : C{[H] — C,[H] of T with the same object-map.
2) If X, N T(X») is a T-universal arrow, then X, N T*(X,) is a T*-universal one.

3) Ifforevery a € H, X, SN T(Xy) is a T-universal arrow, then

]_[ae’l-{{d—n}

X, ———— T°(X»)
is a T*-universal one.

Proof.
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1) We define the extension 7 of T in the following terms. The object-maps of both 7" and 7~ are
the same. Recall that, by definition, Obj(C;) = Obj(C,[H]). The images T'(f) and T*(f)
of every morphism f € Mor(C,) are the same. The image of each morphism [ [,cx{fs} €
Mor(C,[H]) \ Mor(C,) is given by

(| ) = | Jerdn (2.5)

aeH aeH

The former definition is possible because, by equation (2.1), f, belongs to Mor(C,), for
every a € H.

It remains to be shown that 7" preserves morphism composition and identities. Since the
restriction of 7" to Mor(C,) coincides with T, the extension 7™ preserves identities and
compositions between members of C;. We only have to show that 7 preserves morphism
compositions involving some members of Mor(C,[H]) \ Mor(C;). For compositions like
(2.2), taking into account (2.5),

(] Ji@o ) = | [T o =] [r@) o T =

aeH aceH aeH
(Lr@n)orn=1(] ) T) 6
aeH aeH
The proofs for compositions of the form (2.3) and (2.4) go as in the preceding case.

2) We have to show that, for every object Y and every morphism f : X; — T7(Y) there is a unique
f*: X5 — Y such that the following triangle commutes.

X T > TX,) (2.7)
7 lT*(f*)
T*(Y)

If f € Mor(C,), by hypothesis, this condition must be satisfied. Now, suppose that f =
[Haexlfo). Since for every @, the morphism f, : X — T7(Y) belongs to Mor(C,), there is a
unique f; : X, = T*(Y) = T(Y) such that the following diagram commutes.

X < T (X)) = T(X2) (2.3)
> LT*(fﬂ:T(ﬁ,)
ﬁlf
T*(Y) = T(Y)

By virtue of (2.2) the following triangle is also commutative

X = T*(X3) 29

b T*( Uaert /")
L[(ye’l-{{fa} (U Hf )

(V)
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Uoaenl o) ) . )
3) Let X; LN T*(Y) be a C;-morphism. By assumption, for every @ € H, there is a
C,-morphism f; such that the following diagram commutes.

o

X

T(X,) (2.10)
jT(ﬁ,)
T(Y)

Ja

hence, the following triangle is also commutative.

To

Xi T(X>) (2.11)

o T € { :1}
Uae‘H{fzr} (H Hf )

()

The uniqueness of [[,exuf f;} is a consequence of being unique each f; that satisfies the
commutativity of (2.10), for every a € H.

]

3. Co-universal algebraic extensions with hidden parameters

For every subcategory C of Set, being stable under Cartesian products, and each non-empty
set H in Obj(C), we denote by H' : C — C the functor sending each set X € Obj(C) into X x H,
and every map f : X — Y into

HI(f) = fxidy : X xH - Y xH. (3.1

Notation. For every endofunctor H' : C — C, we denote by r the natural transformation
H' —— 1Id such that, for each set X, the map 7y : X X H — X is the canonical projection;

where Idc : C — C denotes the identity endofunctor. Likewise, H X HToHT is the natural
transformation
Uy = XXH - XX HxH (3.2)

that sends each (x,v) € X x H into (x,v,v) € X X H X H.
Proposition 3.1. Let C be a subcategory of Set being stable under Cartesian products. For every

nonempty set H € Obj(C), the endofunctor H' : C — C together with both natural transforma-
tions m and u form a comonad (H', r, ).
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Proof. We show that the following diagrams commute.

H Mgt o i T gy (3.3)
. M
id id
7.{1‘
HE o HT o HE <L gt ot (3.4)
uH? u
HT o HT H

u

Let X be a set and (x, v) any member of H'(X) = X x H. By straightforward computations we
obtain
s (x (X, V) = Toex (X, v, v) = (X, v);

accordingly, 7" o u = id. The proofs for the right triangle and quadrangle (3.4) are similar. [
Definition 3.1. Let C be a subcategory of Set being stable under Cartesian products. For each

set H € Obj(C) with cardinality greater than 1, a co-universal H-extension of C with hidden
parameters is the category Cqy defined as follows.

1. The object-classes of both Cg; and C are the same.
2. For each couple of objects X and ¥, the set Homc,, (X, Y) consists of all maps from H (X) =
X X H into Y such that there is f € (Hom¢(X, Y ))(H that satisfies the relation

Vo e H: f(x, @) = fo(x).

3. The composition f * g of two Cy;-morphisms g€ Homc,, (X, Y) and f € Homc,, (Y, Z) is given
by
frg=foH (g opux (3.5)
4. The identity associated to each Cq-object X is the projection
ax cH X)) =XxH - X.

<

Notation. As in the preceding definition, for every co-universal H-extension Cy, of a subcategory
C of Set, we denote the morphism composition by the infix symbol *.

Definition 3.2. Let C be a subcategory of Set such that there is the co-universal H-extension Cgy.
We say a Cy-morphism f : X X H — Y to be n-factorizable whenever there is f* € Hom¢(X, Y)
that satisfies the equation f = f* o my. <
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Lemma 3.1. Let C be a subcategory of Set, being stable under Cartesian products. For every set
H € Obj(C) and each Cy-object X, the associated Cy-identity nty is n-factorizable. In addition,
JT;} = ldx

Proof. Setting ry, = idy, the relation 7y = idy o 7y leads to mx = 7y o 7y . ]

Lemma 3.2. A Cy-morphism f(x,@) = fo(x) is n-factorizable if and only if f € Home(X, Y)* is
constant.

Proof. Assume f to be a constant map, therefore the value of f(x, @) depends only on x. Thus,

[

setting f*(x) = fy(x), for every (x,@) € X X H, the relation f = f* o mx holds. The proof for the
converse implication is similar. [

Lemma 3.3. The composition of n-factorizable morphisms is again n-factorizable.

Proof. Let fonmy : XX H — Yand gony : Y X H — Z be two n-factorizable morphisms.
According to (3.5)

(gomy) * (fomy) =(gomy) o H'(fomy)oux =
(gomy)o((fomy)Xidy)opux =go fony (3.6)
therefore (g o y) % (f o myx) = (g o f) o ;yx is m-factorizable. O]

Definition 3.3. Let C be any subcategory of Set, being stable under Cartesian products. For each
set H with cardinality greater than 1, and each @ € H, we define the map I', 4 : Mor(Cy) —
Mor(C) as follows. For every couple Cy-objects X and Y, and each f € Homc,, (X, Y):

frif f = f* o nx 1s m-factorizable
oa(f) =1, ; ) | (3.7)
fo where f € (Homc(X, Y))S, otherwise.
being f the map such that Y(x, @) € X x H: f,(x) = f(x, ). <

To agree with Lemma 3.2, in the former definition, when f = f* o my is m-factorizable, its
image I', 4(f) does not depend on the parameter a.

Proposition 3.2. Let Cy be a co-universal H-extension of a subcategory C of Set with hidden
parameters. For every a € H, the map Ty 4 : Mor(Cy) — Mor(C) preserves identities and
morphism compositions.

Proof. We have to show that, for every couple of morphisms f : X xH —» Yandg: Y XH — Z,
and each @ € H, the map I', 4 satisfies the following relation.

Loa(g * ) =Toa(g) o Laalf) (3.8)
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If both f = f* oy and g = g* o my are n-factorizable, then

Loa(g * ) =Toa((g" omy) * (f* omx)) =
Toa((g" o mty) o HI(f* o mx) o ux) =
Loa((g" o my) o ((f o mx) X idyy) o pux) =
Loa(g o ffomx))=g"of =Taa(g)oTaalf) (3.9)

Thus, I', 4 preserves the composition of w-factorizable morphisms.
For non-rn-factorizable morphisms, the expression (g * f)(x, @) can be written explicitly as
follows.

Yix,0) e XXH: (gxfx,a)=
(g o H'(f) o ux)(x, @) = (g o (f X idy) 0 py)(x, @) =
@(f(x, @), @) = Za(fa(X)) = (Za © fo)(0); (3.10)
and by definition, I', o(f) = ﬁ, and I', 4(g) = 8,; therefore
Loa(@* )= (8% Vo =& © fo = Tan(@ o Taalf); (3.11)

hence I', 4 also preserves the composition of non-r-factorizable morphisms.
If g = g" o my is m-factorizable and f is not, the same procedure yields

Va) e XXH: (g% )xa)=(@(flx,a),a) = g (fa(x); (3.12)

and this equation leads to (3.11). The proof when f is n-factorizable and g is not, is similar.
It remains to be shown that I, 4 preserves identities. According to Lemma 3.1 and equation
(3.7), Lo a(my) = idy. O

Corollary 3.1. With the same assumptions as in Proposition 3.2, for every fixed a € H, the identity
Id : Obj(Cyg) — Obj(C) and the map I, 4 : Mor(Cyg) — Mor(C) form a functor T'y, = (1d, 'y 4).

Proof. By definition, the object classes of C4, and C are the same; hence the identity can be the
object map of I',. By Proposition 3.2 the map I',, A preserves identities and morphism composi-
tion. ]

Notation. For every subcategory C of Set being stable under Cartesian products, and each set
‘H e Obj(C) with cardinality greater than 1, the expression

Fy14 : Mor(Cgy) — Mor(C[H])
denotes the map such that, for each pair X and Y in Obj(Cy) and every f € Homc, (X, Y):

I',(f) if f is n-factorizable
HaerdTo(P)} = Laend fo} otherwise.

where I',, is the functor defined in Corollary 3.1.

Foa(f) = { (3.13)
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Theorem 3.1 (Main). For every subcategory C of Set being stable under Cartesian products, and
each set H € Obj(C) with cardinality greater than 1, the following statements hold.

1) The identity 1d : Obj(Cy) — Obj(C[H]) together with the arrow map
Fy1.4 : Mor(Cg) — Mor(C[H])
Sform an isomorphism Fg; = (1d, Fgy o) between both categories Cy and C[H].

2) If D is a subcategory of Set, being stable under Cartesian products such that H belongs to
Obj(D), then every functor T : C — D gives rise to another one TL : Cy = Dyy, having
the same object map as T, which satisfies the following relation.

VfeMor(Cy): T,oTi(f)=Tol,(f) (3.14)

3) With the same conditions as in the preceding statement, if for every a € H, the C-morphism
X AN T(X,) is a T-universal arrow, then X SN T;{(Xz) is a T;{—universal one; where o
denotes the Cyi-morphism o : X{ X H — T;{(Xz) such that, Y(x,a) € X, X H: o(x,a) =

Fo(X).

4) With the same assumptions as in Statement 2), every T®-algebra (co-algebra) is the extension
with hidden parameters of an ordinary Tg{—algebm (co-algebra).

Proof.

1) We have to show that Fy, is a functor. For every object X, the Cy-identity is 7y : X X H — X.
According to Proposition 3.2, its image under Fy, is [',(nx) = idx. Thus, Fg; preserves
identities.

To show that F¢; preserves morphism composition, let f = ffony : X X H — Y and
g =g ony:YXH — Zbe two n-factorizable morphisms. By equation (3.13) and taking
into account Lemma 3.3,

Fu(gx ) =Talg* f) =
To(g" omy o HI(f* omx) o pux) = To(g" 0 f* o my) =
g of =Tu(g) ol (f)=Tu(g) o Tu(f); (3.15)

therefore
Fp(gx f) =Ta(g *x ) =To(g) ¢ To(f) = Fpu(g) © F(f). (3.16)

If f and g are two non-r-factorizable morphisms, by definition,

(g * /)x,@) = (g o H(f) o ) (x, @) =
(g0 (f xidy) o ux)(x, @) = g(f(x,@),@) (3.17)
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Let f € (Home(X, Y))(H and g € (Homc(Y, Z))(H be the maps such that

Vi, @) e XX H:  fo(x) = f(x,a) (3.18)
VO,a) €Y X H 1 gu(x) = gy, ). '
These relations together with (3.17) lead to
Vx e X : (g X)) = g((f(x,@), @) = Zo(fo(x) = (Ba © o)), (3.19)

for every fixed @ € H. Consequently, by virtue of (2.4) and (3.13),

Futg» 1) = | [t fid = (| [tza)o ([ [Ui)) =

aeH aeH aeH

(] ]m@t)e (] [ran) = Fut@ o Fur). 320y

aeH aeH

If g = g o my is m-factorizable and f is not, the same procedure yields,

Fugx = [tg"o fir =g o (] [Ui)) =

aeH aeH

ru@ e (| [ = Fu@ o Fuh. G21)
aeH
By the same method, we can build the proof when f is w-factorizable and g is not.

Since Fy¢, preserves identities and morphism composition, it is a functor.

To be an isomorphism, Fg : Cg — C[H] must be full, faithful, and bijective on objects.
By definition, the object-classes of C, Cy, and C[H] are the same. Because the object map
Id of Fy, is the identity, F¢, is bijective on objects.

It remains to be shown that Fg is full and faithful. The class Mor(C[7]) consists of the
ordinary maps in Mor(C) together with the coproduct class

Cprd(C, H) = { U{ila}

acH

i € (Home(X, Y))’4) A (X, ) € Obj(C) x Obj(C)}

For every map f : X — Y in Mor(C) there is the preimage F,‘Hl( f) = f o my, because
Fu(f onx) = To(f om,) = f. Likewise, for each C[H]-morphism [[,c (/) lying in
Cprd(C, H) € Homgy (X, Y), the preimage is the morphism f : X X H — Y that satisfies

(9

the relation f(x, @) = f,(x), for each fixed @ € H and every x € X; hence Fy, is full.

To see that Fy, is faithful, we split the class Mor(Cg) into the subclass Cy , of m-factorizable
morphisms and its complement EMor(CH)CHﬂ. If the images of two n-factorizable morphisms
f:XXH — Yand f : XXH — Y are the same, then I',(f) = I',(g); sothen f = I',(f)ony =
ra(g) omx = §&.
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Since the image of every n-factorizable morphisms belongs to C, we only have to show that,
the restriction of F¢ to each homset in CMor(CmC(H,ﬂ is also injective. Let f : X X H — Y
and g : X x H — Y be two morphisms with the same image [ [,cs{%}. By definition, for
every (x,a) € X X H: f(x,a) = T,(f)(x) = Ea(x) = I(g)(x) = g(x,@); therefore f = g.
Finally, the image under Fy; of each m-factorizable morphism f belongs to Mor(C), while
the image of every non-n-factorizable one g lies in Cprd(C, H). Since both sets are disjoint,

Fyu(f) # Fr(g).

2) According to the preceding statement, there is the isomorphism Fg, : C¢4 — C[H]; hence we
can define Tg{ by

T =F;l oT o Fy (3.22)

where T* : C[H] — D[H] is the extension of T defined in Theorem 2.1. Taking into
account (3.13), every mr-factorizable morphism f € Mor(Cy) satisfies the equation,

oo Ty (f) =Tyo Fyl oT" o Fy(f) = T* o To(f) (3.23)

because I', = Fg. Since f is m-factorizable, I',(f) € Mor(C), hence T o I',(f) = T o T, (f).
Thus, the former equation leads to

L0 T3 (f) = T o Tu(f) (3.24)
For each non-z-factorizable morphism f : X X H — Y,

Ty o Ti(f) =Ty o Fyl oT" o Fy(f) =

I,oF;l o T*(U{f;}) =

BeH

T, o F;;( | i fﬁ)}) =T,(h) (3.25)

BeH
where h : T(X) X H — T(Y) is the map defined by
Vx,a) e TX)XH :  hix,a) = T(f,)(x).

Thus, To(h) = hy, = T(f,) = T(Lo(f)). This relation and equation (3.25) lead to equation
(3.14).

3) The image of o under Fy/ is [[,ex{o}. Since Ti[ = F;{‘ oT" o Fgy and Fyg, is a category
isomorphism, statement 3) is a consequence of Theorem 2.1.

4) If (X,0x) is a Ti[-algebra, for every @ € H, its image [',(X,0x) = (['o(X),[,(0x)) under
I, is a T-algebra. By definition, every set X € Obj(C) remains unaltered under I',. Ac-
cordingly, (I'y(X),['(0x)) = (X,T4(0x)). In addition, although oy : T;{(X) XH — Xis
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a Cg/-morphism, its image under I, is an ordinary map. According to statement 2), and
taking into account (3.7),

u ox u To(ox)
F(I T«}.((X) — X|= r(y © T«H(X) E— F(I(X) =

Lo(ox) La(ox)

Tol,(X) —>TI,(X)=T(X) — X (3.26)

therefore, (X,T,(0x)) is a T-algebra, where I',(0y) is either the image of @ under the
map 0y € (HomC(T(X),X))(H whenever oy is not nr-factorizable, or the map o such that
ox = 0y o rx otherwise. Likewise, if f: (X,0x) — (¥,0y) is a morphism between two
T;{—algebras, the following quadrangle commutes.

ax

b
i (X) X (3.27)
Tﬂ,(f)l ‘f
:
T3(Y) — Y

Consequently, taking into account Statement 2), its image under I,

Fo(0x)

T(X) X (3.28)
(o f))l lra(ﬂ
T(Y) Feloy) Y

is also commutative, and both (X,T,(0yx)) and (Y,I',(0y)) are ordinary T-algebras. The
proof for co-algebras is the dual one.

O

Remark. The main application of the former result consists of considering most 7-algebras (co-
algebras) as restrictions or particular cases of Ti{—algebras (co-algebras) when we observe behavior
changes. The members of /H that work as parameters need not be ruled by the axioms of the
extended constructs, and remain hidden until we observe either any anomalous event, or some
behavior changes. In the following sections we expose two illustrative applications.

4. Bernoulli distribution with hidden parameters.

Probability spaces can be formalized as co-algebras. For instance, let (€2, &, P) be a probability

space; where Q is the set of outcomes, & the set of events, and P : & — [0, 1] the probability
assignation. If 7 : Set — Set is the endofunctor sending each set into [0, 1], and every map
f + X — Y into the identity id : [0,1] — [0,1], then P : & — T(E) = [0, 1] gives rise to a
co-algebra. A map f : & — &, is a morphism whenever the following quadrangle commutes.

& —>T(E)

fl lT(f)=id

& —-T(&)
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We can interpret these co-algebras as restrictions of those with hidden parameters, such that the
probability assignations P; and P, depend on some parameter set /. The following paragraphs
illustrate these ideas.

Let X be a random variable, with Bernoulli distribution, like tossing a coin n-times. Let (7', P)
be the associated co-algebra, where P denotes the probability assignation. Let S = fi, f5, f5... f»
be the observed relative frequency sequence of the event X = 1 (success) in some experiment.
Suppose that the sequence S converges in probability to %, and the relative frequencies satisfy the
relation Yn € N : f, < 1. By the weak law of large numbers we know that p = ¢ = 1 and both
events (success and failure) are equiprobable. Nevertheless, the relation Vn € N : f, < % leads
to P(f, < %) = 1. This relation is not a consequence of probability laws. By contrast, it does not
satisfy the expected symmetry in equiprobable situations. We can interpret this fact introducing
hidden parameters as follows.

We can consider (7, P) as a particular case of an extension (Th , P) with a hidden parameter
set H = {t, w}, where the probability assignation is a Set-morphism P : X x H — T(X) = [0, 1]
defined as follows.

Lif (X, @) = (0,7)

Tif(X,@) = (1,7)

PED =i X ) = 0,0 @D
0if (X,a) =(1,w)
Now, suppose that
wifn=1
VaeN: a=4tifn>1land f,_ <3 4.2)

2

With these conditions the relative frequency sequence of the event X = 1 converges in proba-
bility to % and keeps always less than or equal to % Notice that the parameter « takes the value w
whenever the event f, = % occurs; otherwise keeps equal to 7.

In the former example, we can see that hidden parameters correspond to “events” or ‘“situa-
tions” that can occur in real world phenomena. This example is artificial, but there are natural
random phenomena whose probability assignation can be modified by hidden parameters. For
instance, the frequency under which a word “w” occurs increases its probability occurrence. How-
ever, in smart text, under excessive repetition the probability occurrence of "w” can vanish. Aca-
demic style, smartness, and word repetition can be regarded as hidden parameters that modify the
occurrence probability of any word.

wifn>1land f, | =

5. Structured Languages

As in (Palomar Tarancén, 2011), for each nonempty object-class C, we denote by C" the
generic object of C. For instance, if C is the set {n € N | n = 1 (mod 2)}, then C" denotes the
concept of odd positive integer. To avoid any exception, we apply the same operator to singletons
or one-member classes. The generic object of any singleton {O} coincides with its unique member;
hence

{0} = 0. 5.1
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Definition 5.1. A predicate P(X) € Pr is self-contradictory provided that =P(X) is a tautology. <

It is straightforward consequence of the preceding definition that if P(X) is a tautology, its
negation —P(X) is self-contradictory. If P(X) is not self-contradictory there is at least one object
O such that P(O) is true; otherwise —P(X) would be true for every value of X, hence a tautological
predicate.

In this section, Pr denotes a predicate class of higher-order logic, being stable under con-
junctions, disjunctions and negations. Likewise, Mc(Pr) denotes an object class satisfying the
following axioms.

Axiom S5.1. If a predicate P(X) € Pr is neither self-contradictory nor tautological, the class
Mc(Pr) contains the generic object {O | P(O)}".

Axiom 5.2. For every O € Mc(Pr) there is P(X) € Pr such that

{Q € Mc(Pr) | P(Q)} = {O}.

Definition 5.2. An attributive definition for a member O of Mc(Pr) is any predicate P(X) € Pr
such that O = {Q € Mc(Pr) | P(Q)}". If the class {Q € Mc(Pr) | P(Q)} is a singleton, we say P(X)
to be a strictly attributive definition of O. <

Remark. In natural languages, most words denote generic objects of equivalence classes. For
instance, the word “polygon” denotes a class that contains “triangles” and “quadrangles among
others. Each of these words again denotes some object class. Attributive definitions consist of an
attribute or property that is stated by a predicate P(X). The defined object O is the generic one of
the class that satisfies P(X). Thus, if O, is a concretion of O obtained by adding another property
Q(X), that is, if O, is the generic object of the class {R | P(R) A Q(R)}, then P(X) A Q(X) = P(X).

Lemma 5.1. Each predicate P(X) € Pr that is neither tautological nor self-contradictory, gives
rise to a strictly attributive definition for some object O € Mc(Pr).

Proof. Let P*(Y, P(X)) denote the predicate
“Y is the generic object of the class C = {0 € Mc(Pr) | P(0)}.”

The class C is nonempty because, by hypothesis, P(X) is not self-contradictory (see Defini-
tion 5.1). According to Axiom 5.1 there is the generic object C" in Mc(Pr), besides, taking
into account (5.1),

{0 € Mc(Pr) | P*(O,P(X)}" ={C"}" =C".

Consequently, it is a strictly definition. ]

Definition 5.3. The class Mc(Pr) can be enriched with an order relation < such that, between
every couple of objects O, and O,, the relation O; < O, holds whenever there are two attributive
definitions Py, (X) and Py, (X) for O, and O,, respectively, such that Py, (X) = Po,(X). <
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Enriched with the relation <, the class Mc(Pr) satisfies the structure of a category Mc(Pr, <)
such that, for every couple of objects O; and O,, the set Hompgepr <) (01, O2) either is empty or
it is the singleton {O; < O,}. From now on, we assume that the category Mc(Pr, <) satisfies the
following axiom.

Axiom 5.3. The object-class of Mc(Pr, <) contains with each subset {O; | i € I} its coproduct
Lic; Ois where I is any nonempty index set.

Notation. For each phrase W in any meaningful language, we denote by ||W|| the meaning associ-
ated to W.

Remark. Let P(X), P,(X), and P(X) be attributive definitions for Oy, O,, and O, [ [ O,, respec-
tively. According to the definition of <, the following relations are true: P{(X) = P(X) and
P,(X) = P(X). Thus, P(X) is the more restrictive definition that both objects O; and O, satisfy.
In other words, O; [ O, is the more concrete abstraction of both objects O; and O,. For instance,

||Large positive integerl| U |[small positive integer|| = ||positive integer||.

Notation. For every object O in Mc(Pr) the expression |O| denotes the predicate class {P(X) € Pr |
P(0)}.

Lemma 5.2. For every object O € Ob (Mc(Pr, <)) and each predicate Q(X) € |O)|, the statement
YP(X)€|0|: QX)) = P(X) (5.2)
is true if and only if Q(X) is a strictly attributive definition for O.

Proof. First assume Q(X) to be a strictly attributive definition for O, and let P(X) be a member
of |O|. Suppose that (5.2) is false; hence there is O; such that the conjunction Q(O;) A (=P(O))
is true. Since Q(X) is a strictly attributive definition for O, this relation leads to O = O; because,
by Definition 5.2, the set {X | Q(X)} must be a singleton. Consequently, these relations lead to
—P(0), which contradicts the initial assumption P(X) € |O].

Now suppose that (5.2) holds, and let Q;(X) be a strictly attributive definition for O. As we
have just seen, Q;(X) = Q(X). Since O must satisfy its own definition Q;(X) € |0]. As a
consequence of (5.2) this membership relation leads to Q(X) = Q,(X); consequently Q;(X) &
Q(X), and Q(X) is also an attributive definition for O. O

Definition 5.4. From now on, we term structured language on a category Mc(Pr, <) each 4—tuple
£=(A,A*,A™, M) such that,

1. The set A is a finite collection of symbols (alphabet).

2. The set A is a partial (syntactic) free-monoid generated by A. We term “word” each member
of A™.

3. The set A™ is a partial free-monoid generated by A*. We say each member of A** to be a
phrase.
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4. The symbol M denotes a nonempty subset of A** each of its members has a meaning lying
in Mc(Pr). The set A* contains words denoting the concepts of conjunction, disjunction,
and negation. In addition, M is stable under conjunctions, disjunctions and negations.

5. The set M contains with each subset {W; | i € I} a phrase the meaning of which is the
coproduct [ [;;/IIWill, (see Axiom 5.3). <

The members of M can be also single words because each meaningful word can be regarded
as a one-word phrase. As usual, we term sentence each meaningful phrase. Likewise, statements
are truth-valued sentences.

Notation. For each structured language £ = (A,A*,A™, M), we denote by 1" a variable ranging
over all phrases in A**. This notation allows us to write patterns obtained from any phrase. For in-
stance, consider a phrase W = wywy ... wiwiy ... Wiy ... w,, Where the w; are the involved words.
Substituting the sub-phrase V = w;w;;...w;; by L, we obtain the pattern Wy(L") that sends
each phrase U = uy,uy ... u, € A™ into

Wy(U) = wiwy .. ujlly . . W gy ... Wy
For instance, let W be the phrase
We can evaluate the area of every polygon.
If we substitute the one-word phrase “polygon” by 1", we obtain the pattern
Wy (L") = We can evaluate the area of every 1.

The subscript V in the expression Wy denotes V to be the sub-phrase that we substitute by the
variable 1. If U = “regular triangle,” then

Wy (regular triangle) = We can evaluate the area of every regular triangle.

Definition 5.5. Let £ = (4, A*, A**, M) be a structured language. A pattern Wy (L") is continuous
provided that for every couple U, and U, of phrases in M the following conditions hold.

1. If both relations Wy(U;) € M and ||U,|| < ||U,|| are true, then Wy (U,) € M.
2. Let D = {U; | i € I} € M be a subset with cardinality greater than 1. If a phrase R € M
denotes the object [ [,;||U;ll, and for every i € I: Wy (U;) € M, then Wy(R) € M. <

Example 5.1. Let Wy (L") be the English pattern “The area of every L' is finite.” Let U; denote
the word “triangle” and U, the phrase “regular triangle.”” If M denotes the class of meaningful
English sentences, then the phrase Wy (U,)= “The area of every triangle is finite” belongs to M.
Likewise, the relation ||U,|| < ||U;|| holds because if ||U;|| is a regular triangle, it is also a triangle.
Indeed, Wy(U>) € M. Finally, ||U,|| LT [|U2|l = [|U1]], and by assumption, Wy(U;) € M.

Since the conjunction of a set of phrases is again a phrase, it is a straightforward consequence
that the conjunction of a set of patterns is again a pattern. By definition, there is some symbol
or word in each structured language that denotes conjunction. From now on, we denote by the
symbol A the conjunction in any structured language. Thus, if the considered language is the
English one, A stands for the word “and”.
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Proposition 5.1. The conjunction of a set of continuous patterns is again continuous.

Proof. Let £ = (A, A*,A*, M) be a structured language. Let P = {Wy.(L") | i € I} a set of patterns
in £ and P(L") = A,;Wy,(L") the conjunction of all members of P. Let Uy € M and U, € M be
two phrases such that ||U,|| < ||Uy|| and

Yiel: Wy (Uyp)eM (5.3)
By continuity,

VYiel: Wy(U)eM 5.4)
hence, taking into account Definition 5.4, P(Uy) € M and P(U,) € M. O

Theorem 5.1. For every continuous pattern Wy(L") the following statements are true.

1. There is a <-maximum element in the class
W =A{lIUll| Wy(U) € M)}
2. If |U|| is the <-maximum element of W, the predicate
P(X) = X is the maximum element of W

is a strictly attributive definition of ||U||, whenever P(X) € Pr.

Proof.

1. Ifevery element in a chain ||U|| < ||U|| < - -+ < ||U, || lies in W, by Definition 5.5, so does its

upper bound [ [,.;,||Uill. Thus, W satisfies the conditions of Zorn’s Lemma. Accordingly,
there is, at least, one <-maximal element ||U/|| in W.
To see that ||U,]| is the maximum element of W, let ||U|| € W be any member. By virtue of
both Definition 5.4 and Definition 5.5, there is a phrase R in M such that ||R|| = ||U|| L] ||U1ll;
hence there are the Mc(Pr)-morphisms ||U;|| < [|R|| and ||U]| < ||R||. Since ||U;|| is maximal
these relations lead to ||R|| = ||U,|| and ||U|| < ||R|| = ||U4||. Accordingly, ||U,|| is comparable
with every member of W.

2. Itis a straightforward consequence of the maximum-element uniqueness.

]

Definition 5.6. Let £ = (A, A*, A**, M) be a structured language. A pattern class Pt = {W;y.(L") |
i € I} is compatible provided that there is at least one phrase U in M such that, for every i € [ :
Wi,Vi(U) eEM. <

Recall that, by virtue of statement 4) in Definition 5.4, the conjunction of all phrases in Pt
again belongs to M.
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Notation. By €° we denote the “sub-phrase/phrase” relationship. For instance, if
W= WiWp .o . WiWigp oo o Wigjo oo Wy
is a phrase, the following expression denotes the word sequence w;w, ... w;,; to be a sub-phrase.
b
WiWitl .o Wit € WiWo .. . WiWiip .o . Wigj... Wy

From now on, for each phrase set A and every V € A™, the expression A}’ denotes the subset
Ay ={W € A | V €9 W}. Likewise, [A*, M] denotes the phrase-set collection

(A, Ml = | (X Ay IVeX) (5.5)

VeM

Finally, for every couple of phrases V; and V,, the expression (V; <= V,) : M — M denotes
the result of substituting each occurrence of the sub-phrase V; in W by one of V,. If W does not
contain any occurrence of Vy, then (V| < V,)W = W. Likewise, the infix operator <= can be used
to obtain patterns; for instance (V, = L)W = Wy, ().

Notation. From now on, for each V € M and every X C A}/, the expression Pat(X) denotes the
pattern class defined as follows.

Pat(V,X) = (VS LYW | W € X}
Proposition 5.2. If £ = (A, A", A", M) is a structured language, for every V € M, each subset E
of A} satisfies the following statements.

1. The pattern class Pat(V,E) = {{V = 1'YW | W € E} is compatible.

2. Let Ey a nonempty subset of E. Let Uy(L") and Vy(L") be the conjunctions of the pattern
classes Pat(V, E) and Pat(V, Ey), respectively. If both patterns Uy (L") and Vy(L") are con-
tinuous, the maximum elements ||U|| and ||Uy|| of the classes W = {||X|| | Uy(X) € M} and
Wy = {|IX|| | Vv(X) € M} respectively, satisfy the relation ||U|| < ||Uy||.

Proof. 1. By definition, for each W € E: Wy (V) = W; hence
YWy € Pat(V,E) : Wy (V) e M.

2. Since Pat(V, E) is a subset of Pat(V, E), for each phrase P the relation Uy (P) € M leads to
Vy(P) € M; therefore ||U|| belongs to W. By assumption, ||Uy|| is the maximum element of
the class Wy, then ||U|| < [|Uo||.

[
Lemma 5.3. For every E € [A™, M], there is a unique V € M such that E C A} and V € E.

Proof. 1t is a straightforward consequence of (5.5). O]
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Definition 5.7. For each structured language £ = (A,A", A", M), the expression Ph(£) denotes
the small category the object class of which is

Ob (Ph(£)) = [A™, M]

For every pair of objects E; and E,, the homset Hompy¢)(E), E») consists of eachmap f : E; — E;
that satisfies the following condition.

YWeE, : (VIS VW= f(W) (5.6)
where V; and V, are members of M such that E; C Ay and E, C Ay, <

Recall that, by virtue of Lemma 5.3, for every Ph(£)-object E, there is V € M such that
ECAandV € E.

The map %, : Ob (Ph(£)) — Ob (Ph(£)) sending each set E' € A} into the singleton To(E) =
{V} is the object-map for an endofunctor ¥ : Ph(£) — Ph(£) that sends each morphism f €
Hom(E, E») into the map T(f) : {V;} — {V>} such that V| + V,. Indeed, this map definition
satisfies the condition (V, <= V,)V; = V,. We denote this endofunctor by %.

Proposition 5.3. Let £ = (A, A*,A™, M) a structured language. Let V| and V, two members of M.
If two T-algebras (Ey, 01) and (E,, 0,) satisfy the following hypotheses

1. There is a morphism f : (Ey,01) — (E;, 07).

2. The sets Ey and E, are subsets of A}, and Ay, respectively. In addition, all members of both

pattern classes 1
Pat(Vy,o1(V1)) = (Vi S LYW | W € o (V)

and
Pat(Vz, 0'2(V2)) = {<V2 = J-Y>W | W e O-Z(VZ)}

are continuous.
3. The objects ||V1|| and ||V,|| are the <-maximum elements of the object classes Wi = {||X]| |
P(X) € M} and W, = {||X|| | Po(X) € M}, respectively; where

Yy — A !
Pi(L)= /\W(ﬂ)ePat(Vl,O'l(Vl))W(J_ -

and

o

. Y
Py(L) = /\W(ﬂ)ePat(Vz,(fz(Vz))W(J_ :

respectively.
then the phrases V\ and V, satisfy the relation ||V,|| < ||V}

Proof. By the definition of T, and taking into account hypothesis 2), the following relations are
true.

T(E) ={Vi}
UE) = {V2}

5.7
O'](V]) - E] ( )

o2 (Va) CE,



J.-E. Palomar/ Theory and Applications of Mathematics & Computer Science 6 (2) (2016) 150—-169 169

The existence of the morphism f leads to the relation

YWeoai (V) : (Vi S VW= f(W)eoy(V,) (5.8)
therefore Pat(Vy,01(Vy)) € Pat(V,,0,(V,)). By virtue of Proposition 5.2, this relation leads to
IVall < [IVAll. O

Remark. By the former proposition we know that ||U;|| < ||U,||; accordingly if P(X) and P,(X)
are attributive definitions of ||U|| and ||U,||, respectively, the relation P,(X) = P;(X) holds (see
Definition 5.3). We can deduce this relation, simply, by knowing that substituting V; by V, in every
member of the phrase set (V) we obtain a subset of o7;(V>). This property is a straightforward
consequence of the Ph(£)-morphism definition. Thus, observing occurrences of some sub-phrases
in two phrase sets we can find logical implications between attributive definitions of their meanings
blindly, that is, without knowing what they mean. Nevertheless, several meanings can be assigned
to the same phrase in natural languages or artificial ones, depending on the context, state, style,
among other circumstances. Accordingly, contexts, states, styles work as hidden parameters in
a set H. Consequently, to apply the method arising from the preceding result, and to interpret
sentences in a language properly, we must consider that each T-algebra (E, o) is a particular case
of a ‘I;{—algebra; where the members of H denote states, contexts, styles, frequencies and any
other event modifying the meaning of any phrase.

6. Conclusion

Hidden parameters are handled implicitly in Computer Science and Linguistics. We can find
noticeable instances almost in each subject. This is a very exciting research field. Theorem 3.1 is
the bridge between structured sets, namely, algebras (co-algebras), and any set of hidden param-
eters that modify their behavior. For instance, the research of those relative frequency anomalies
that can be interpreted as the action of hidden parameters is an open problem.
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Abstract

The main goal of this paper is the further development of the foundations of evolutionary computations, con-
necting classical ideas in the theory of algorithms and the contemporary state of art in evolutionary computations.
To achieve this goal, we develop a general approach to evolutionary processes in the computational context, build-
ing mathematical models of computational systems, called evolutionary machines or automata. We introduce two
classes of evolutionary automata: basic evolutionary automata and general evolutionary automata. Relations between
computing power of these classes are explored. Additionally, several other classes of evolutionary machines are in-
vestigated, such as bounded, periodic and recursively generated evolutionary machines. Different properties of these
evolutionary machines are obtained.
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1. Introduction

The classical theory of algorithms has been developed under the influence of Alan Turing, who
was one of the founders of theoretical computer science and whose model of computation, which
is now called Turing machine, is the most popular in computer science. He also had many other
ideas. In this report the National Physical Laboratory in 1948 (Turing, 1992), Turing proposed a
new model of computation, which he called unorganized machines (u-machines). There were two
types of u-machines: based on Boolean networks and based on finite state machines.

e A-type and B-type u-machines were Boolean networks made up of a fixed number of two-
input NAND gates (neurons) and synchronized by a global clock. While in A-type u-
machines the connections between neurons were fixed, B-type u-machines had modifiable
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switch type interconnections. Starting from the initial random configuration and applying
a kind of genetic algorithm, B-type u-machines were supposed to learn which of their con-
nections should be on and which off.

e P-type u-machines were tapeless Turing machines reduced to their finite state machine con-
trol, with an incomplete transition table, and two input lines for interaction: the pleasure and
the pain signals.

Although Turing never formally defined a genetic algorithm or evolutionary computation, in
his B-type u-machines, he predicted two areas at the same time: neural networks and evolutionary
computation (more precisely, evolutionary artificial neural networks), while his P-type u-machines
represent reinforcement learning. However, this work had no impact on these fields (Eberbach et
al.,2004), although these ideas are one of the (almost forgotten) roots of evolutionary computation.

Evolutionary computation theory is still very young and incomplete. Until recently, evolution-
ary computation did not have a theoretical model that represented practice in this domain. Even
though there are many results on the theory of evolutionary algorithms (see, e.g., (Michalewicz &
Fogel, 2004), (He & Yao, 2004), (Holland, 1975), (Rudolph, 1994), (Wolpert & Macready, 1997),
(Koza, 1992, 1994; Koza et al., 1999), (Michalewicz, 1996), very little has been known about
expressiveness, or computational power, of evolutionary computation (EC) and its scalability. Of
course, there are many results on the theory of evolutionary algorithms (again see, for instance,
(Michalewicz & Fogel, 2004), (He & Yao, 2004), (Holland, 1975), (Rudolph, 1994), (Wolpert
& Macready, 1997), (Koza, 1992, 1994; Koza et al., 1999), (Michalewicz, 1996)). Studied in
EC theoretical topics include convergence in the limit (elitist selection, Michalewiczs contractive
mapping GAs, (1+1)-ES), convergence rate (Rechenbergs 1/5 rule), the Building Block analysis
(Schema Theorems for GA and GP), best variation operators (No Free Lunch Theorem). However,
these authors do not introduce automata models - rather they apply a high-quality mathematical
apparatus to existing process models, such as Markov chains, etc. They also cover only some
aspects of evolutionary computation like convergence or convergence rate, neglecting for example
EC expressiveness, self-adaptation, or scalability. In other words, EC is not treated as a distinct
and complete area with its own distinct model situated in the context of general computational
models. This means that in spite of intensive usage of mathematical techniques, EC lacks more
complete theoretical foundations. As a result, many properties of evolutionary processes could
not be precisely studied or even found by researchers. Our research is aimed at filling this gap
to define more precisely conditions under which evolutionary algorithms will work and will be
superior compared to other optimization methods.

In 2005, the evolutionary Turing machine model was proposed to provide more rigorous foun-
dations for EC (Eberbach, 2005). An evolutionary Turing machine is an extension of the con-
ventional Turing machine, which goes beyond the Turing machine and belongs to the class of
super-recursive algorithms (Burgin, 2005). In several papers, the authors studied and extended
the ETM (evolutionary Turing machine) model to reflect cooperation and competition (Burgin &
Eberbach, 2008), universality (Burgin & Eberbach, 2009b), self-evolution (Eberbach & Burgin,
2007), and expressiveness of evolutionary finite automata (Burgin & Eberbach, 2009a), (Burgin
& Eberbach, 2012).
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In this paper, we continue developing a general approach to evolutionary processes in the
computational context constructing mathematical models of the systems, functioning of which
is based on evolutionary processes, and study properties of such systems with the emphasis on
their generative power. Two classes are introduced in Section 2: basic evolutionary automata and
general evolutionary automata. Relations between computing power of these classes are explored
in Section 3. Additionally, several other classes of evolutionary machines are investigated, such as
bounded, periodic and recursively generated evolutionary machines. Different properties of these
evolutionary machines are obtained. Section 4 contains conclusions and some open problems.

2. Modeling Evolution by Evolutionary Machines

Evolutionary algorithms describe artificial intelligence processes based on the theory of natu-
ral selection and evolution. Evolutionary computation is directed by evolutionary algorithms. In
technical terms, an evolutionary algorithm is a probabilistic beam hill climbing search algorithm
directed by the chosen fitness function. It means that the beam (population size) maintains mul-
tiple search points, hill climbing implies that only a current search point from the search tree is
remembered and used for optimization (going to the top of the hill), and the termination condition
very often is set to the optimum of the fitness function.

Let X be the representation space, also called the optimization space, for species (systems)
used in the process of optimization and a fitness function f : X — R™ is chosen, where R* is the
set of nonnegative real numbers.

Definition 2.1. A generic evolutionary algorithm EA can be represented as the collection EA =
(X, s,v, f,R, X[0], F) and described in the form of the functional equation (recurrence relation) R
working in a simple iterative loop in discrete time #, defining generations X|¢], ( = 0,1,2,3,...)
with X[r + 1] = s(v(X[t])), where

e X[t] < X is a population under a representation consisting of one or more individuals from
the set X (e.g., fixed binary strings for genetic algorithms (GAs), finite state machines for
evolutionary programming (EP), parse trees for genetic programming (GP), vectors of reals
for evolution strategies (ES)),

e s is a selection operator (e.g., truncation, proportional, tournament),
e Vv is a variation operator (e.g., variants and compositions of mutation and crossover),
e X|[0] is an initial population,

e I < X s the set of final populations satisfying the termination condition (goal of evolution).
The desirable termination condition is the optimum in X of the fitness function f(x), which
is extended to the fitness function f(X[t]) of the best individual in the population X|7] < F,
where f(x) typically takes values in the domain of nonnegative real numbers. In many
cases, it is impossible to achieve or verify this optimum. Thus, another stopping criterion
is used (e.g., the maximum number of generations, the lack of progress through several
generations.).
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The above definition is applicable to all typical EAs, including GA, EP, ES, GP. It is possible
to use it to describe other emerging subareas like ant colony optimization, or particle swarm opti-
mization. Of course, it is possible to think and implement more complex variants of evolutionary
algorithms.

Evolutionary algorithms evolve population of solutions x, but they may be the subject of self-
adaptation (like in ES) as well. For sure, evolution in nature is not static, the rate of evolution
fluctuates, their variation operators are subject to slow or fast changes, and its goal (if it exists at
all) can be a subject of modifications as well.

Formally, an evolutionary algorithm looking for the optimum of the fitness function violates
some classical requirements of recursive algorithms. If its termination condition is set to the op-
timum of the fitness function, it may not terminate after a finite number of steps. To fit it to the
conventional algorithmic approach, an artificial (or somebody can call it pragmatic) stop criterion
has had to be added (see e.g., (Michalewicz, 1996), (Michalewicz & Fogel, 2004), (Koza, 1992,
1994; Koza et al., 1999)). To remain recursive, i.e., to give some result after a finite number of
steps, the evolutionary algorithm has to reach the set F of final populations satisfying the termina-
tion condition after a finite number of generations or to halt when no visible progress is observable.
Usually this is a too restrictive condition, and naturally, in a general case, evolutionary algorithms
form a special class of super-recursive algorithms.

To formalize the concept of an evolutionary algorithm in mathematically rigorous terms, we
define a formal algorithmic model of evolutionary computation - an evolutionary automaton also
called an evolutionary machine.

Let K be a class of automata working with words in an alphabet E. It means that the represen-
tation or optimization space X is the set E* of all words in an alphabet E.

Definition 2.2. A basic evolutionary K-machine (BEM), also called basic evolutionary K-automaton,
is a (possibly infinite) sequence E = {A[f];t = 0, 1,2, 3, ...} of automata A[¢] from K each working
on the population X[¢] < X(r = 0, 1,2,3,...) where:

e the automaton A|¢] called a component, or more exactly, a level automaton, of E represents
(encodes) a one-level evolutionary algorithm that works with the generation X[z] of the
population by applying the variation operators v and selection operator s;

e the zero generation X[0] is given as input to E and is processed by the automaton A[0],
so that either X|[0] is the result of the whole computation by E when it satisfies the search
condition or A[0] generates/produces the first generation X|[1] as its output, which goes to
the automaton A[1];

e forall r = 1,2,3,..., the generation X[z + 1] is obtained by applying the variation operator
v and selection operator s to the generation X[z| and these operations are performed by the
automaton A[z], which receives X|[¢] as its input; the generation X[z + 1] either is the result of
the whole computation by E when it satisfies the search condition or it goes to the automaton
Alt + 1];

e the goal of the BEM E is to build a population Z satisfying the search condition.
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The desirable search condition is the optimum of the fitness performance measure f(x[z]) of
the best individual from the population X[¢]. There are different modes of the EM functioning
and different termination strategies. When the search condition is satisfied, then working in the
recursive mode, the EM E halts (¢ stops to be incremented), otherwise a new input population
X[t + 1] is generated by A[¢]. In the inductive mode, it is not necessary to halt to give the result
(cf. (Burgin, 2005)). When the search condition is satisfied and E is working in the inductive
mode, the EM F stabilizes (the population X[7] stops changing), otherwise a new input population
X[t + 1] is generated by A[t].

We denote the class of all basic evolutionary machines with level automata from K by BEAK.

Definition 2.3. A general evolutionary K-machine (GEM), also called general evolutionary K-
automaton, is a (possibly infinite) sequence E = {A[f];r = 0,1,2,3, ...} of automata A[¢] from K
each working on generations X[i] € X where:

e the automaton A[z] called a component, or more exactly, a level automaton, of E repre-
sents (encodes) a one-level evolutionary algorithm that works with generations X|i] of the
population by applying the variation operators v and selection operator s;

e the zero generation X[0] C X is given as input to E and is processed by the automaton A|[0],
which generates/produces the first generation X[ 1] as its output, which either is the result of
the whole computation by E when it satisfies the search condition or it goes to the automaton
A[l];

e forall7 = 1,2,3,..., the automaton A[¢], which receives X|[i] as its input either from A[7 + 1]
or from A[t — 1], then A[¢] applies the variation operator v and selection operator s to the
generation X|[¢], producing the generation X[z 4+ 1] as its output, which either is the result
of the whole computation by E when it satisfies the search condition or it goes either to
A[t + 1] or to A[t — 1]. To perform such a transmission, the automaton A[t] uses one of the
two techniques: transmission by the output and transmission by the state. In transmission
by the output, the automaton A[f] uses two more symbols u,,, and u4, in its output alphabet,
giving one of these symbols as a part of its output in addition to the regular output X[z + 1].
If this part of the output is u,,, then A[7] sends the output generation X[t + 1] to Az + 1].
If the additional part of the output is ug,, then A[f] sends the output generation X[7 + 1] to
A[t — 1]. In transmission by the state, the automaton A[f] uses two more symbols u,, and
Uy, as its final-transmission states. In these states the automaton A[¢] stops computing and
performs the necessary transmission of the output - to the automaton A[z + 1] when the state
is u,, and to the automaton A[¢ — 1] when the state is uy,.

e the goal of the GEM E is to build a population Z satisfying the search condition.

We denote the class of all general evolutionary K-machines GEAK. As any basic evolutionary
K-machine is also a general evolutionary K-machine, we have inclusion of classes BEAK <
GEAK.

Let us consider some examples of evolutionary K-machines. An important class of evolution-
ary machines are evolutionary finite automata (Burgin & Eberbach, 20094), (Burgin & Eberbach,
2012). Here K consists of finite automata.
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Definition 2.4. A basic (general) evolutionary finite automaton (EFA) is a basic (general) evo-
lutionary machine E in which all automata A[¢] are finite automata G[¢] each working on the
population X|[¢] in generations t = 0, 1,2, 3, ...

We denote the class of all general evolutionary finite automata by GEFA. It is possible to take
as K deterministic finite automata, which form the class DFA, or nondeterministic finite automata,
which form the class NFA. This gives us four classes of evolutionary finite automata: BEDFA
(GEDFA) of all deterministic basic (general) evolutionary finite automata and BENFA (GENFA)
of all nondeterministic basic (general) evolutionary finite automata.

Evolutionary Turing machines (Burgin & Eberbach, 2008), (Eberbach, 2005) are form another
important class of evolutionary machines.

Definition 2.5. A basic (general) evolutionary Turing machine (ETM) E = {T|t];t = 0,1,2,3,...}
is a basic (general) evolutionary machine E in which all automata A[¢] are Turing machines 7'[¢]
each working on population X[¢] in generations t = 0, 1,2, 3, ....

Turing machines T'[t] as components of E perform multiple computations (Burgin, 1983).
Variation and selection operators are recursive to allow performing level computation on Turing
machines.

Definition 2.6. A basic (general) evolutionary inductive Turing machine (EITM) EI = {M[t];t =
0,1,2,...} is a basic (general) evolutionary machine E in which all automata A[¢] are inductive
Turing machines M|¢] (Burgin, 2005) each working on the population X[z] in generations ¢t =
0,1,2,...

Simple inductive Turing machines are abstract automata (models of algorithms) closest to
Turing machines. The difference between them is that a Turing machine always gives the final
result after a finite number of steps and after this it stops or, at least, informs when the result
is obtained. Inductive Turing machines also give the final result after a finite number of steps,
but in contrast to Turing machines, inductive Turing machines do not always stop the process of
computation or inform when the final result is obtained. In some cases, they do this, while in other
cases they continue their computation and give the final result. Namely, when the content of the
output tape of a simple inductive Turing machine forever stops changing, it is the final result.

Definition 2.7. A basic (general) evolutionary inductive Turing machine (EITM) EI = {M|t];t =
0,1,2,...} has order n if all inductive Turing machines M|¢] have order less than or equal to n and
at least, one inductive Turing machine M|t| has order n.

We remind that inductive Turing machines with recursive memory are called inductive Turing
machines of the first order (Burgin, 2005). The memory E is called n-inductive if its structure
is constructed by an inductive Turing machine of the order n. Inductive Turing machines with n-
inductive memory are called inductive Turing machines of the order n + 1. We denote the class of
all evolutionary inductive Turing machines of the order n by EITM,,.

Definition 2.8. A basic (general) evolutionary limit Turing machine (ELTM) EI = {LTM|t];t =
0,1,2,...} is a basic (general) evolutionary machine E in which all automata A[z] are limit Turing

machines LT M(t] (cf. (Burgin, 2005)) each working on the population X[¢] in generations ¢ =
0,1,2,...



176 Burgin M. et al. /| Theory and Applications of Mathematics & Computer Science 6 (2) (2016) 170-186

When the search condition is satisfied, then the ELTM EI stabilizes (the population X[z] stops
changing), otherwise a new input population X |7+ 1] is generated by LT M[¢]. We denote the class
of all evolutionary limit Turing machines of the first order by ELTM.

Basic and general evolutionary K-machines from BEAK and GEAK are called unrestricted
because sequences of the level automata A[f] and the mode of the evolutionary machines func-
tioning are arbitrary. For instance, there are unrestricted evolutionary Turing machines when K
is equal to 7 and unrestricted evolutionary finite automata when K is equal to FA. However it
is possible to consider only basic (general) evolutionary K-machines from BEAK (GEAK) in
which sequences of the level automata have some definite type Q. Such machines are called Q-
formed basic (general) evolutionary K-machines and their class is denoted by BEAK? for basic
machines and GEAKQ for general machines. When the type Q contains all finite sequences, we
have bounded basic (general) evolutionary K-machines. Some classes of bounded basic evolution-
ary K-machines are studied in (Burgin & Eberbach, 2010) for such classes K as finite automata,
pushdown automata, Turing machines, or inductive Turing machines, i.e., such classes as bounded
basic evolutionary Turing machines or bounded basic evolutionary finite automata. When the type
Q contains all periodic sequences, we have periodic basic (general) evolutionary K-machines.
Some classes of periodic basic evolutionary K-machines are studied in (Burgin & Eberbach, 2010)
for such classes K as finite automata, push down automata, Turing machines, inductive Turing ma-
chines and limit Turing machines. Note that while in a general case, evolutionary automata cannot
be codified by finite words, periodic evolutionary automata can be codified by finite words.

Another condition on evolutionary machines determines their mode of functioning or compu-
tation. Here we consider the following modes of functioning/computation.

1. The finite-state mode: any computation is going by state transition where states belong to a
fixed finite set.

2. The bounded mode: the number of generations produced in all computations is bounded by
the same number.

3. The terminal or finite mode: the number of generations produced in any computation is
finite.

4. The recursive mode: in the process of computation, it is possible to reverse the direction of
computation, i.e., it is possible to go from higher levels to lower levels of the automaton,
and the result is defined after finite number of steps.

5. The inductive mode: the computation goes in one direction, i.e., without reversions, and if
for some 7, the generation X|[¢] stops changing, i.e., X[t] = X|q] for all ¢ > ¢, then X[¢] is
the result of computation.

6. The inductive mode with recursion: recursion (reversion) is permissible and if for some ¢,
the generation X|¢] stops changing, i.e., X[t] = X|[q] for all ¢ > ¢, then X[¢] is the result of
computation.

7. The limit mode: the computation goes in one direction and the result of computation is the
limit of the generations X|z].

8. The limit mode with recursion: recursion (reversion) is permissible and the result of com-
putation is the limit of the generations X|¢].
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These modes are complementary to the three traditional modes of computing automata: computa-
tion, acceptation and decision/selection (Burgin, 2010). Existence of different modes of computa-
tion shows that the same algorithmic structure of an evolutionary automaton/machine E provides
for different types of evolutionary computations. We see that only general evolutionary machines
allow recursion. In basic evolutionary machines, the process of evolution (computation) goes
strictly in one direction. Thus, general evolutionary machines have more possibilities than basic
evolutionary machines and it is interesting to relations between these types of evolutionary ma-
chines. This is done in the next section. Note that utilization of recursive steps in evolutionary
machines provides means for modeling reversible evolution, as well as evolution that includes
periods of decline and regression.

3. Computing and Accepting Power of Evolutionary Machines

As we know from the theory of automata and computation, it is proved that different automata
or different classes of automata are equivalent. However there are different kinds of equivalence.
Here we consider two of them: functional equivalence and linguistic equivalence.

Definition 3.1. (Burgin, 2010)

a. Two automata A and B are functionally equivalent if given the same input, they give the
same output.

b. Two classes of automata A and B are functionally equivalent if for any automaton from A,
there is a functionally equivalent automaton from B and vice versa.

For instance, it is proved that deterministic and nondeterministic Turing machines are function-
ally equivalent (cf., for example, (Hopcroft et al., 2001)). Similar results are true for evolutionary
automata.

Theorem 3.1. (Burgin & Eberbach, 2010) For any basic n-level evolutionary finite automaton E,
there is a finite automaton AE functionally equivalent to E.

Here we study relations between basic and general evolutionary machines, assuming that all
these machines work in the terminal mode.
Let P: X x U — N be a function such that

U= {ul,up’ UL dws U2ups U2 dws +++s Ukups Uk dws }a

P(x,upyp) = k+1

and
P(X, uk,dw) =k—1

for any x from optimization space X = E*.
Definition 3.2. (Burgin, 2010) The P-conjunctive parallel composition A p A; of the algorithms/automata

A; (i = 1,2,3,...,n) is an algorithm/automaton D such that the result of application of D to any
input u is equal to A;(u) when P(u) = i.
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This concept allows us to show in a general case of the terminal mode that basic and general
evolutionary machines are equivalent.

Theorem 3.2. If a class K is closed with respect to P-conjunctive parallel composition, then
for any general evolutionary K-machine, there is a functionally equivalent basic evolutionary K-
machine.

Proof. Let us consider an arbitrary general evolutionary K-machine E = {A[t];r = 0,1,2,3,...}.
We correspond the evolutionary system H = {C|[t];t = 0,1,2,3,...} to the K-machine E. Each
component C|[7] in H is a system that consists of the automata Cy|t], C,[t], C1[t], C5]t], ..., C,[t]
such that for all k = 0, 1,2, 3, ..., #, the automaton C;[7] is a copy of the automaton A k| and it uses
the elements uy ,,, and uy 4, instead of the elements u,, and u,, employed by Alk].

The system H has the same search condition as the evolutionary K-machine E and functions in
the following way. The zero generation X[0] < X is given as input to the automaton Cy[0], which is
a copy of the automaton A[0] and is processed by the automaton Cy[0], which generates/produces
the first generation X|[1] as its output. Then X[1] either is the result of the whole computation by H
when it satisfies the search condition or it goes to the automaton C,[1] as its input. In the general
case, forallt = 1,2,3,...and k = 1,2,3, ..., 1, the automaton Cy[t] receives X|¢] as its input either
from C;, [t — 1] when the automaton A[k]| receives its input from A[k + 1] or from C;_;[t — 1]
when the automaton A k| receives its input from A[k — 1]. Then C;[¢] applies the variation operator
v and selection operator s to the generation X[¢| and producing the generation X[z + 1]. Then either
this generation is the result of the whole computation by H when it satisfies the search condition
or Ci[t] sends this generation either to Cy.[f + 1] when the automaton A[k] sends its output to
Alk + 1] or to Cy_;[t + 1] when the automaton A[k] sends its output to A[k — 1].

In such a way, the system H simulates functioning of the general evolutionary K-machine
E = {A[t];t = 0,1,2,3,...}. Let us prove this by induction on the number of steps that the K-
machine E is making.

The base of induction:

Making the first step, the K-machine E receives is the zero generation X[0] < X as its in-
put, processes it by the first automaton A[0] producing the first generation X[1], which either is
the result of the whole computation by £ when it satisfies the search condition or it goes to the
automaton A[1].

Making the first step, the system H receives the zero generation X[0] < X as its input, processes
it by the first automaton Cy[0] producing the first generation Z[1], which either is the result of the
whole computation by H when it satisfies the search condition or it goes to the automaton C;[1].
Because the system H has the same search condition as the evolutionary K-machine E, C[0] is
a copy of the automaton A[0], while C;[1] is a copy of the automaton A[1], we have the equality
Z[1] = X[1] and the first step of the system H exactly simulates the first step of the K-machine E.

The general step of induction:

We suppose that making n—1 steps the system H exactly simulates n—1 steps of the K-machine
E. It means that making n — 1 steps, both systems E and H produce the same n-th generation X|n|
using automata A[r| (r < n—1) and C,[n — 1], correspondingly, and this output either is the result
of the whole computation by E and by H when it satisfies the search condition or it goes either to
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the automaton A[r + 1] or to the automaton A[r — 1] in E and either to the automaton C,[n] or
to the automaton C,_[n] in H.

Then the automaton A[r+ 1] (or A[r—1]) in E produces the next generation X[n + 1], applying
the variation operator v and selection operator s to the generation X[n] and producing the next
generation X[n + 1]. When the automaton A[r + 1] in E produces the next generation X[n + 1],
then either this generation is the result of the whole computation by E when it satisfies the search
condition or A[r + 1] sends this generation either to A[r + 2] or to A[r]. When the automaton
A[r — 1] in E produces the next generation X|[n + 1], then either this generation is the result of the
whole computation by E when it satisfies the search condition or A[r — 1] sends this generation
either to A[r — 2] or to A[r|.

At the same time, the automaton C,.[n] (or C,_[n]) applies the variation operator v and
selection operator s to the generation X[n] and producing the generation Z[n + 1]. When the
automaton C,[n] in H produces the next generation Z[n + 1], then either this generation is the
result of the whole computation by H when it satisfies the search condition or C,[n] sends this
generation either to C,,,[n + 1] or to C,[n + 1]. When the automaton C,_[n] in H produces the
next generation Z[n + 1], then either this generation is the result of the whole computation by H
when it satisfies the search condition or C,_;[n] sends this generation either to C,_,[n] or to C,[n].

Because system H has the same search condition as the evolutionary K-machine E, C,[n] is
a copy of the automaton A[r + 1], while C,_;[n] is a copy of the automaton A[r — 1], we have the
equality Z[n + 1] = X[n + 1] and the n-th step of the system H exactly simulates the n-th step of
the K-machine E.

Now it is possible to conclude that the system H exactly simulates functioning of the K-
machine E. However, the system H is not an evolutionary K-machine. So we need to build
a basic evolutionary K-machine B equivalent to H. We can do this using P -conjunctive paral-
lel composition. This composition allows us for all + = 0, 1,2, 3, ..., to substitute each system
{Colt], C1[t], Ca[t], C5]t], ..., C;[]} by an automaton B[z] from K, which by the definition of func-
tion P and P-conjunctive parallel composition, works exactly as this system. Then by construction
of the system H, B = {B[t];t = 0,1,2,3,...} is a basic evolutionary K-machine B equivalent to H.
Theorem is proved. O

Corollary 3.1. If a class K is closed with respect to P-conjunctive parallel composition, then
classes GEAK and BEAK are functionally equivalent.

The class T of all Turing machines is closed with respect to P-conjunctive parallel composition
(Burgin, 2010). Thus, Theorem 3.2 implies the following result.

Corollary 3.2. Classes GEAT of all general evolutionary Turing machines and BEAT of all basic
evolutionary Turing machines are functionally equivalent.

The class IT of all inductive Turing machines is closed with respect to P-conjunctive parallel
composition (Burgin, 2010). Thus, Theorem 3.2 implies the following result.

Corollary 3.3. Classes GEAIT of all general evolutionary inductive Turing machines and BEAIT
of all basic evolutionary inductive Turing machines are functionally equivalent.
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Corollary 3.4. Classes GEAIT, of all general evolutionary inductive Turing machines of order
n and BEAIT, of all basic evolutionary inductive Turing machines of order n are functionally
equivalent.

The same is true for evolutionary limit Turing machines.

Corollary 3.5. Classes GEALT of all general evolutionary limit Turing machines and BEALT of
all basic evolutionary limit Turing machines are functionally equivalent.

Definition 3.3. (Burgin, 2010)

a. Two automata A and B are linguistically equivalent if they accept (generate) the same lan-
guage.

b. Two classes of automata A and B are linguistically equivalent if they accept (generate) the
same class of languages.

For instance, it is proved that deterministic and nondeterministic finite automata are linguisti-
cally equivalent (cf,. for example (Hopcroft ez al., 2001)). It is proved that functional equivalence
is stronger than linguistic equivalence (Burgin, 2010).

Because P-conjunctive parallel composition of the level automata in an evolutionary automa-
ton allows the basic evolutionary K-machine to choose automata for data transmission, it is possi-
ble to prove the following results.

Theorem 3.3. If a class K is closed with respect to P-conjunctive parallel composition, then for
any general evolutionary K-machine, there is a linguistically equivalent basic evolutionary K-
machine.

Proof. Let us consider an arbitrary general evolutionary K-machine E = {A[t];r = 0,1,2,3,...}.
Then by Theorem 3.2, there is a basic evolutionary K-machine L that is functionally equivalent to
E. As it is proved in (Burgin, 2010), functional equivalence implies linguistic equivalence. So, the
K-machine L is linguistically equivalent to the K-machine E. Theorem is proved. [

Corollary 3.6. If a class K is closed with respect to P-conjunctive parallel composition, then
classes GEAK and BEAK are linguistically equivalent.

The class T of all Turing machines is closed with respect to P-conjunctive parallel composition
(Burgin, 2010). Thus, Theorem 3.3 implies the following result.

Corollary 3.7. Classes GEAT of all general evolutionary Turing machines and BEAT of all basic
evolutionary Turing machines are linguistically equivalent.

The class IT of all inductive Turing machines is closed with respect to P-conjunctive parallel
composition (Burgin, 2010). Thus, Theorem 3.3 implies the following results.

Corollary 3.8. Classes GEAIT of all general evolutionary inductive Turing machines and BEAIT
of all basic evolutionary inductive Turing machines are linguistically equivalent.
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Corollary 3.9. Classes GEAIT, of all general evolutionary inductive Turing machines of order
n and BEAIT, of all basic evolutionary inductive Turing machines of order n are linguistically
equivalent.

The same is true for evolutionary limit Turing machines.

Corollary 3.10. Classes GEALT of all general evolutionary limit Turing machines and BEALT of
all basic evolutionary limit Turing machines are linguistically equivalent.

Obtained results allow us to solve the following problem formulated in (Burgin & Eberbach,
2010).

Problem 3.1. Are periodic evolutionary finite automata more powerful than finite automata?
To solve it, we need additional properties of periodic evolutionary finite automata.

Theorem 3.4. Any general (basic) periodic evolutionary finite automaton F with the period k > 1
is functionally equivalent to a periodic evolutionary finite automaton E with the period 1.

Proof. Let us consider an arbitrary basic periodic evolutionary finite automaton E = {A[¢];t =
0,1,2,3,...}. By the definition of basic periodic evolutionary automata (cf. Section 2), the se-
quence {A[t];t = 0,1,2,3,...} of finite automata A[¢] is either finite or periodic, i.e., there is a
finite initial segment of this sequence such that the whole sequence is formed by infinite repetition
of this segment. Note that finite sequences are also treated as periodic (Burgin & Eberbach, 2010).
When the sequence {A[t];7 = 0, 1,2,3,...} of automata A[¢] from K is finite, then by Theorem 3.2,
the evolutionary machine E is functionally equivalent to a finite automaton AE. By the definition
of periodic evolutionary automata, AE is a periodic evolutionary finite automaton with the period
1. Thus, in this case, theorem is proved.

Now let us assume that the sequence {A[t];7 = 0, 1,2, 3, ...} of automata A[¢] is infinite. In this
case, there is a finite initial segment H = {A[t];¢ = 0, 1,2, 3, ..., n} of this sequence such that the
whole sequence is formed by infinite repetition of this segment H. By the definition of bounded
basic evolutionary automata (cf. Section 2), H is a basic n-level evolutionary finite automaton.
Then by Theorem 3.1 from (Burgin & Eberbach, 2010), there is a finite automaton AH functionally
equivalent to H. Thus, the evolutionary machine E is functionally equivalent to the basic periodic
evolutionary finite automaton B = {B|[t];t = 0, 1,2,3, ...} in which all automata B|¢] = AH for all
t =0,1,2,3,... Thus, B is a basic periodic evolutionary finite automaton with the period 1. This
concludes the proof for basic periodic evolutionary finite automata.

Now let us consider an arbitrary general periodic evolutionary finite automaton E = {A[¢];1 =
0,1,2,3,...}. By the definition of general periodic evolutionary automata (cf. Section 2), the se-
quence {A[t];t = 0,1,2,3,...} of finite automata A[¢] is either finite or periodic, i.e., there is a
finite initial segment of this sequence such that the whole sequence is formed by infinite repetition
of this segment.

At first, we show that when the sequence {A[f];t = 0,1,2,3,...} of automata A[¢] from K is
finite, i.e., E = {A[t];t = 0, 1,2,3,...,n}, then the evolutionary machine E is functionally equiv-
alent to a finite automaton AE . It is possible to assume that the automata A[f] use transmission
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by the output when the automaton A[7] uses two more symbols u,, and u, in its output alphabet,
giving one of these symbols in its output in addition to the regular output X[z + 1], i.e., the output
has the form (w, u,,) or (w, ug,). If the second part of the output is u,, , then Az + 1] sends the
output generation X[z + 1] to A[t + 1]. If the second part of the output is u,, then A[7 + 1] sends
the output generation X[7 + 1] to A[t — 1].

We change all automata A[¢] to the automata C[¢] in the following way. If {go, g1, g2, ..., g} is
the set of all states of the automaton A[¢], then we take {q; 0, g:.1> G2, ---» ri} as the set of all states
of the automaton C[t] (t = 0, 1,2,...,n) and in the transition rules of C[z], we change each ¢, to
q:,- In addition, we change the symbols u,, and uy, to the symbols u,,, and u, 4, in the alphabet
and in the transition rules of C|¢].

By construction, the new system AE = {C[t];¢ = 0, 1,2, 3, ..., n} is a finite automaton function-
ally equivalent to the general periodic evolutionary finite automaton E = {A[¢];¢ =0, 1,2, 3, ...,n}.
Then by the definition of periodic evolutionary automata (cf. Section 2), the automaton AE is a
general periodic evolutionary finite automaton with the period 1. Thus, in the finite case, theorem
is proved.

Now let us assume that the sequence {A[t];7 = 0, 1,2, 3, ...} of automata A[¢] is infinite. In this
case, there is a finite initial segment H = {A[t];¢ = 0, 1,2, 3, ..., n} of this sequence such that the
whole sequence is formed by infinite repetition of this segment H. By the definition of bounded
general evolutionary automata (cf. Section 2), H is a general n-level evolutionary finite automaton.
Then as we have already proved, there is a finite automaton AH functionally equivalent to H. Thus,
the evolutionary machine E is functionally equivalent to the general periodic evolutionary finite
automaton B = {B[t];t = 0,1,2,3, ...} in which all automata B[t] = AH forall = 0,1,2,3, ...
Thus, B is a general periodic evolutionary finite automaton with the period 1. This concludes the
proof for general periodic evolutionary finite automata. Theorem is proved. [

Functional equivalence implies linguistic equivalence (Burgin, 2010). Thus, Theorem 3.4 im-
plies the following result.

Corollary 3.11. Any general (basic) periodic evolutionary finite automaton F with the period
k > 1 is linguistically equivalent to a periodic evolutionary finite automaton E with the period 1.

As a periodic evolutionary finite automaton F' with the period 1 consists of multiple copies of
the same finite automaton, we have the following results.

Theorem 3.5. Any basic periodic evolutionary finite automaton F is linguistically equivalent to a
finite automaton.

Proof. By Theorem 3.4, any basic periodic evolutionary finite automaton F with the period k > 1
is functionally equivalent to a basic periodic evolutionary finite automaton £ with the period 1. It
means that all levels in the evolutionary finite automaton E are copies of the same finite automaton.
As a finite automaton accepts (computes) a regular language (Hopcroft et al., 2001), the language
of the evolutionary finite automaton E is also regular. As the evolutionary finite automaton F' is
linguistically equivalent to the automaton E, the language L of the evolutionary finite automaton
F is also regular. Then there is a finite automaton D that accepts (computes) L (Hopcroft et al.,
2001). Thus, the evolutionary finite automaton F is linguistically equivalent to the finite automaton
D. Theorem is proved. O]
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Corollary 3.12. Basic periodic evolutionary finite automata have the same accepting power as
finite automata.

Theorem 3.6. Any general periodic evolutionary finite automaton E is equivalent to a one-dimensional
cellular automaton.

Proof. By Theorem 3.4, any general periodic evolutionary finite automaton G with the period
k > 1 is functionally equivalent to a general periodic evolutionary finite automaton E with the
period 1. By definition, E is a sequence of copies of the same finite automaton, which each of
them is connected with two its neighbors, and this is exactly a one-dimensional cellular automaton
(Trahtenbrot, 1974).

At the same time, taking a finite automaton A with a feedback that connects the automaton out-
put with the automaton input, we see that A can simulate a periodic evolutionary finite automaton
E with the period 1 because in E all level automata are copies of the same finite automaton. [

In the theory of cellular automata, it is proved that for any Turing machine 7, there is a cel-
lular automaton functionally equivalent to 7' (Trahtenbrot, 1974). Thus, Theorem 3.6 implies the
following result.

Corollary 3.13. General periodic evolutionary finite automata have the same accepting power as
Turing machines.

Consequently, we have the following result.

Corollary 3.14. General periodic evolutionary finite automata have more accepting power than
basic periodic evolutionary finite automata and than finite automata.

Note that we cannot apply Theorem 3.2 to periodic evolutionary finite automata because the
general evolutionary machine constructed in the proof of this theorem is not periodic.
These results also allow us to solve Problem 4 from (Burgin & Eberbach, 2010).

Problem 3.2. What class of languages is generated/accepted by periodic evolutionary finite au-
tomata?

Namely, we have the following results.

Corollary 3.15. The class of languages generated/accepted by basic periodic evolutionary finite
automata coincides with regular languages.

Corollary 3.16. The class of languages generatedjaccepted by general periodic evolutionary finite
automata coincides with recursively enumerable languages.

Note that for unrestricted evolutionary finite automata results of Theorems 3.5, 3.6 and their
corollaries are not true. Namely, we have the following result.

Theorem 3.7. The class GEAFA of general unrestricted evolutionary finite automata and the class
BEAFA of basic unrestricted evolutionary finite automata have the same accepting power.
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Proof. Indeed, as it is demonstrated in (Eberbach & Burgin, 2007), basic unrestricted evolutionary
finite automata can accept any formal language. In particular, they accept any language that gen-
eral unrestricted evolutionary finite automata accept. As general unrestricted evolutionary finite
automata are more general than basic unrestricted evolutionary finite automata, the class of the lan-
guages accepted by the former automata is, at least, as big as the class of the languages accepted
by the latter automata. Thus, these classes coincide, which means that the class of all general
unrestricted evolutionary finite automata and the class of all basic unrestricted evolutionary finite
automata have the same accepting power. ]

The results from this paper show that in some cases, general evolutionary machines are more
powerful than basic evolutionary machines, e.g., for all periodic evolutionary finite automata,
while in other cases, it is not true, e.g., for all evolutionary finite automata, general and basic
evolutionary finite automata have the same computing power. There are similar results in the the-
ory of classical automata and algorithms. For instance, deterministic and nondeterministic finite
automata have the same accepting power. Deterministic and nondeterministic Turing machines
have the same accepting power. However, nondeterministic pushdown automata have more ac-
cepting power than deterministic pushdown automata.

4. Conclusion

We started our paper with a description of Turings unorganized machines (u-machines) that
were supposed to work under the control of some kind of genetic algorithms (note that Turing
never formally defined a genetic algorithm or evolutionary computation). This was our inspira-
tion. However, our evolutionary machines are closely related to conventional Turing machines,
as well as to the subsequent definitions of genetic algorithms from 1960-80s. This means that
level automata of evolutionary machines are finite automata, pushdown automata or Turing ma-
chines rather than more primitive NAND logic gates of u-machines. We have introduced several
classes of evolutionary machines, such as bounded, periodic and recursively generated evolution-
ary machines, and studied relations between these classes, giving an interpretation of how modern
u-machines could be formalized and how plentiful their computations and types are. Of course,
we will never know whether Turing would accept our definitions of evolutionary automata and
formalization of evolutionary computation.

In this paper, we introduced two fundamental classes of evolutionary machines/automata: gen-
eral evolutionary machines and basic evolutionary machines, exploring relations between these
classes. Problems of generation of evolutionary machines/automata by automata from a given
class are also studied. Examples of such evolutionary machines are evolutionary Turing machines
generated by Turing machines and evolutionary inductive Turing machines generated by inductive
Turing machines.

There are open problems important for the development of EC foundations.

Problem 4.1. Can an inductive Turing machine of the first order simulate an arbitrary periodic
evolutionary inductive Turing machine of the first order?

Problem 4.2. Are there necessary and sufficient conditions for general evolutionary machines to
be more powerful than basic evolutionary machines?
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In (Burgin, 2001), topological computations are introduced and studied. This brings us to the
following problem.

Problem 4.3. Study topological computations for evolutionary machines.

As we can see from results of this paper, in some cases general evolutionary machines are
more powerful than basic evolutionary machines, e.g., for all evolutionary finite automata, while
in other cases, it is not true, e.g., for all periodic evolutionary machines.

Note that the approach presented in this paper has an enormous space to grow. First of all,
similar to natural evolution, our evolutionary automata/machines are not static, i.e., we cover the
case of evolution of evolution (currently explored in a very limited way in evolution strategies
by changing the o parameter in mutation). Secondly, our evolutionary finite automata cover al-
ready both evolutionary algorithms (i.e., genetic algorithms, evolutionary programming, evolution
strategies and genetic programming)and swarm intelligence algorithms, being simple iterative al-
gorithms of the class or regular languages/finite automata. In the evolutionary automata approach,
there is a room to grow to invent new types of evolutionary and swarm intelligence algorithms
of the class of evolutionary pushdown automata, evolutionary Turing machines or evolutionary
inductive Turing machines.
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Abstract

In this article we study »(oBV! (M)), 2,BVEL(M), 2(BV'(M)) double sequence spaces with the help of BV,
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1. Introduction
Let N, R, C be the sets of all natural, real, and complex numbers respectively. We denote
2w = {x = (x;;) : x;j e Ror C},
showing the space of all real or complex sequences.

Definition 1.1. A double sequence of complex numbers is defined as a function X : N x N — C.
We denote a double sequence as (x;;) where the two subscripts run through the sequence of natural
numbers independent of each other. A number ac C is called double limit of a double sequence
(x;;) if for every € > 0 there exists some N = N(¢€) € N such that,

|(xi;) —a| <€, foralli, j = N, (1.1)

(see (Habil, 2006)). Let [, and ¢ denote the Banach space bounded and convergent sequences,
respectively, with norm |x|, = sup|x|. Let v be denote the space of sequences of bounded
k

variation. That is,

v={x=(x): Z | — X1 < 00, x_ = 0} (1.2)

k=0
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e 0]
where v is a Banach space normed by |x| = >, |x — x,—1| (see (Mursaleen, 1983)). Let o be an
k=0

injective mapping of the set of the positive integers into itself having no finite orbits. A continuous
linear functional ¢ on [, is said to be an invariant mean or o-mean if and only if:

1. ¢(x) = 0 where the sequence x = (x;) has x; = 0 for all k,

2. ¢(e) = 1 where e={1,1,1,1,......},

3. ¢(xo(n)) = ¢(x) forall x € I.

If x = (x¢), write Tx = (Tx;) = (Xo(r)). It can be shown that

Ve = {x = (x) : lim #,4(x) = L uniformly in k, L = o — lim x} (1.3)
m—00

where m> 0,k > 0.

k
(%) = ) and 1 =0, (1.4)

where o (k) denote the m™-iterate of (k) at k . In this case o is the translation mapping,that is,
o (k) = k+ 1,0-mean is called a Banach limit and V,,, the set of bounded sequences of all whose
invariant means are equal, is the set of almost convergent sequences. The special case of (1.4) in
which o-(k) = k + 1 was given by (Lorentz, 1948), and that the general result can be proved in a
similar way. It is familiar that a Banach limit extends the limit functional on c in the sense that

#(x) = limx, forall x € c. (1.5)

Theorem 1.1. A o-mean extends the limit functional on c in the sense that ¢(x) = limx for all
x € ¢ if and only if o has no finite orbits. That is, if and only if for all k = 0, j > 1,07 (k) # k,
(see (Khan, 2008))

Put
Gk (x) = tyr(x) = t—14(x), (1.6)

assuming that 7_; ;(x) = 0. A straight forward calculation shows that (Mursaleen, 1983),

Xe, ifm=0.

Gk (x) = { ey Lt J (k) = 2 (), ifm > 1

For any sequence x,y and scalar A, we have ¢, (x +y) = @ni(x) + dpi(y) and ¢ (Ax) =
/l¢m,k(x).

Definition 1.2. A sequence x € [, is of o-bounded variation if and only if:

(i)Y |#mi(x)| converges uniformly in k,

(ii) lim #,,4(x), which must exist, should take the same value for all k.
m—00

We denote by BV, the space of all sequences of o-bounded variation (see (Khan, 2008)):

BV, ={x€ely: Z |pmi(x)| < oo, uniformly in k}.
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Theorem 1.2. BV, is a Banach space normed by

Jx| = sup D Gma(x)], (1.7)
m=0

(see (Khan & Ebadullah, 2012)).
Subsequently invariant mean studied by (Mursaleen, 1983), (Ahmad & Mursaleen, 1988), (Raimi
& A., 1963), (Khan & Ebadullah, 2011), (Khan & Ebadullah, 2012), (Schaefer, 1972) and many
others.

Definition 1.3. A function M : [0, 0) — [0, 20) is said to be an Orlicz function if it satisfies the
following conditions;

()M is continuous ,convex and non-decreasing,

(ii))M(0) = 0, M(x) > 0 and M(x) — 0 as x — o0.

Remark. (see (Tripathy & Hazarika, 2011)). (i) If the convexity of an Orlicz function is replaced
by M(x +y) < M(x) + M(y), then this function is called Modulus function.
(ii)If M is an Orlicz function , then M (AX) < AM(x) for all A with 0 < 2 < 1.

An Orlicz function M is said to satisfy A,-condition for all values of u if there exists a constant
K > 0 such that M(Lu) < KLM(u) for all values of L> 1(see (Tripathy & Hazarika, 2011)).
(Lindenstrauss & Tzafriri, 1971) used the idea of an Orlicz function to construct the sequence

space lyy = {xew: X", M('%k') < oo for some p > 0}. The space /,, becomes a Banach space

with the norm .
I =inf{p>O:ZM<M> <1}, (1.8)
k=1 p

which is called an Orlicz sequence space. The space [y is closely related to the space [, which is
an Orlicz sequence space with M(t) = ” for 1 < p < co. Later on, some Orlicz sequence spaces
were investigated by (Hazarika & Esi, 2013), (Maddox, 1970), (Parshar & Choudhary, 1994),
(Bhardwaj & Singh, 2000), (Et, 2001), (Tripathy & Hazarika, 2011) and many others. Initially,
as a generalization of statistical convergence, the notation of I-convergence was introduced and
studied by P. Kostyrko and Wilczynski(Kostyrko er al., 2000). Later on, it was studied by Hazarika
and Esi (Hazarika & Esi, 2013) and many others.

Definition 1.4. A double sequence x = x;; € jw is said to be I-convergent to a number L if for
every € > 0, we have
{(i,/)) e NxN:|x; — Ll > e} el (1.9)

In this case, we write I — lim x;; = L.

Definition 1.5. Let X be a non empty set. Then, a family of sets I < 2 is said to be an Ideal in X
if

g eI,

(i1)I is additive; thatis,A, B [ = A u Be I,

(ii1)I is hereditary thatis,Ae ,BS A= Be l.
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An Ideal I < 2% is called non trivial if I # 2. A non trivial ideal I < 2¥ is called admissible if
{{x} :xeX}cL

A non trivial ideal I is maximal if there cannot exist any non trivial ideal J # [ containing I as a
subset.

Definition 1.6. A non empty family of sets < 2% is said to be filter on X if and only if
(ONGR
(i1) for, A, Be ¥ wehave A n Be F,
(iii) for each Ae F and A < B implies B € ¥ . For each ideal I, there is a filter F (I) corresponding
to I. That is,
F(I)={K<N:Kel}, whereK=N —K. (1.10)

Definition 1.7. A double sequence (x;;) € ,w is said to be I - null if L=0. In this case, we write
I —limx;; = 0. (1.11)

Definition 1.8. A double sequence (x;;) € ,w is said to be I-cauchy if for every € > 0 there exists
numbers m = m(e),n = n(€) such that

{(i, /) e NX N |x;j — x| > €} € L. (1.12)

Definition 1.9. A double sequence (x;;) € ,w is said to be I-bounded if there exists M > 0 such
that
{(i,j)) e Nx N: |x;;| > M}. (1.13)

Definition 1.10. A double sequence space E is said to be solid or normal if x;; € E implies that
(@ijx;j) € E for all sequence of scalars (a;;) with |@;;| < 1 forall (i, j)) € N x N.

Definition 1.11. A double sequence space E is said to be symmetric if (X()x(j)) € E whenever
(x;j) € E, where n(i) and 7(j) is a permutation on N.

Definition 1.12. A double sequence space E is said to be sequence algebra if (x;,;y;;) € E whenever
(xi), (vij) € E.

Definition 1.13. A double sequence space E is said to be convergence free if (y;;) € E whenever
(x;j) € E and x;; = 0 implies y;; = 0, for all (i, j) € N x N.

Definition 1.14. Let K={(n;,k;) : i,j e Nyn; <n, <n3 < ..and ky <k, <k < ...} S NxN
and E be a double sequence space.A K-step space of E is a sequence space

A = {(ayxiy) : (xij) € E}.

Definition 1.15. A cannonical preimage of a sequence (x,,,) € E is a sequence (b,;) € E defined
as follows

b ang, forn,k e K
k0, otherwise.
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Definition 1.16. A sequence space E is said to be monotone if it contains the cannonical preimages
of all its stepspaces.

Remark. If I = I, the class of all finite subsets of N. Then I is an admissible ideal in N and /¢
convergence coincides with the usual convergence.

Definition 1.17. If / = I; = {A < N : 6(A) = 0}. Then I is an admissible ideal in N and we call
the I; -convergence as the logarithmic statistical convergence.

Definition 1.18. If / = I, = {A < N : d(A) = 0}. Then,I is an admissible ideal in N and we call
the I,-convergence as asymptotic statistical covergence.

Lemma 1.1. ((Tripathy & Hazarika, 2011)). Every solid space is monotone.
Lemma 1.2. Let F(I)and M S N. If M ¢ I, then M n K ¢ I.
Lemma 1.3. If I = 2V and M = N.IfM ¢ I, then M " N ¢ 1.

2. Main Results

Recently (Khan & Khan, 2013) introduced and studied the following sequence space. For
m,n= 0

2BVE = {x = (x;)) € 20 :{(i,j) e Nx N: |§uij(x) — L| = €} € I, for some Le C}. (2.1)

In this article we introduce the following double sequence spaces. For m,n> 0

2BVE(M) = {x = (x;;) € 2w : 11— limM(M) =0, for some Le C,p >0} (2.2)
z(oBVé(M)) = {x = (X,'j) € W : I — lim M(M) = O,p > O}, (23)
L(M)) = {x = oy, [Bmis(5)]
2BV, (M)) = {x = (x;j) € 2w:{(i,j)) e Nx N Tk >0s.tM( )=k}el,p>0}
P 2.4)
2(0BVy(M)) = {x = (x;j) € 2w : sup M(W) < w,p > 0}. (2.5)

We also denote
2Mpy (M) =, BVL(M) " 5(BVe(M))

and
2(0Mpy, (M)) = 2(0BVL(M)) N 2(BVe(M)).

Theorem 2.1. For any Orlicz function M, the classes of double sequence ,(¢BV.(M)),,BVL(M),
2 (oM, (M), and ,My,, (M) are linear spaces.
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Proof. Let x = (x;;), (yij) € 2BVL(M) be any two arbitrary elements, and let @, 3 are scalars.
Now, since (x;;), (yij) € 2BVL(M). Then this implies that 3 some positive numbers L;, L, € C
and p;, p» > 0 such that,

mnij —L
I—limM<M> — 0, (2.6)
i,] p]
mni j —L
FhmM(M) —0. 2.7)
LJ P2
= for any given € > 0, the sets
.. |¢mnii(x)_L1| €
M ———— | = e, 2.
= {(i,j) e Nx N < p ) 2}6 (2.8)
- | Pmnij(¥) — La|\ _ €
, NxN:M|———— ) >-}el. 29
() € NN (22 = 5 e 2.9)
Now let 6(0) — L
ij(x) = Ly €
A =i, ] M —tel 2.1
= {0.7) e Nx N m( - )<3tel, (2.10)
- |6i;(v) — Lo\ €
Ay = {(i, NxN:M|———— —}tel 2.11
2= {(i ) eNx N M(ZE—2) < Sy 11

be such that A{, AS € I. Let p3 = max{2|a|p: , 2|B|p>}
Since M is non decreasing and convex function,we have

|¢mnij(ax +:8y) - (aLl +ﬁLZ)|) _ M( |(a¢mnij(x) +ﬁ¢mnij(y)) - (aLl +ﬁL2)|
P3 P3

)

M(
M( ‘a(‘ﬁmm’j(x)flll)+ﬂ(¢mnij( ')7L2)‘ )

pz

M(|"H¢mnu )+ M(‘ﬁH(bmn;E )_L2‘)
M(la‘wnu; )+M(‘B||¢mm;()) L2‘)
2

INCININ

c P2
——6

[\

= {(l, ]) = N % N . M(|¢mnij(ax+ﬂy)7(aLl+ﬁL2)|) > 6} c I

p3

implies that , 7 — lim p(mulext) (b +Bb)ly _ o

Thus a(x;) + B(y;j) € 2BVL(M). As (x;;) and (y;;) are two arbitrary element then ax;; +
Byij € 2BVL(M) for all x;;, y;; € »BVL(M), for all scalars @,8 . Hence ,BV.(M) is linear
space. The proof for other spaces will follow similarly. ]

Theorem 2.2. Let My, M, be two Orlicz functions and statisfying A, condition ,then
(a)X(M2) - X(Mle)
(b)X(M]) M X(Mz) - X(Ml + Mz)fOFX = zBVé, Z(OBVOI.), ZMQV(,’ Z(OMgV()'
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Proof. (a)Let x = (x;;) € 2(o0BV.(M,)) be an arbitrary element
= p > 0 such that

I- limMz(M) ~ 0. (2.12)

Let € > 0 and choose § with 0 < § < 1 such that M () < e for 0 <1 < 6.
Write y;; = Ma( —W’"’”Z(x)‘) and
consider,
lllI,n M (yij) = yjjglgfljeN M, (yij) + yij>lgil:ljeN M, (yij)- (2.13)
Now, since M, is an Orlicz function so we have M, (Ax) < AM;(x),0 <A < 1.
Therefore we have,
i ) < i i) .
am My (vij) < Mi(2) yl_jgl;’rg}jeN(y j) (2.14)
For y;j > ¢, we have y;; < %’ <1+ %’ . Now, since M, is non-decreasing and convex, it follows
that, 5
Vij 1 1 Vij
Ml(yij) <M1(1 +—J) < —M1(2) +—M1(—J) (215)
0 2 2 0
Since M, satisfies the A,- condition we have,
Yij 2yij

1 1

L yij I ij

—K—M,(2 —K—M,(2
< FKGM(2) + SKEM(2)
Vij
o

= K22y (2). (2.16)

This implies that,
Yij

M@w<K6

Mi(2). (2.17)

Hence,we have
lim M (y;) < max{1,K§ 'M;(2) lim (y;)}. (2.18)

yij>6, i, jeN yij>0,i,jEN
Therefore from (2.12),and (2.13) we have

I —1lim M, (y;;) = 0.
ij

ij

ol

This implies that x = (x;;) € 2(oBVL(MM,)).Hence X(M,) < X(M;M,) for X = ,(¢BV%). The
other cases can be proved in similar way.



194 Khan V.A. et al. /| Theory and Applications of Mathematics & Computer Science 6 (2) (2016) 187-197

(b) Let x = (x;;) € 2(0BVE(M,)) n 2(oBVL(M,)). Let € > 0 be given.Then 3p > 0 such
that,

1—an¢@@ﬁﬂJ=Q (2.19)
and ’
1—umeM#§ﬁ5:o. (2.20)
Therefore
| B (%) | Bounij () | Bounij (%)

[ —lim(M, + Mp)(————=) =1 —limM,(————=) + [ — lim M,(———),
i p i p Y P

from eqs (2.19) and (2.20)

=] — 11m(M1 + Mz)(—‘d)mn;;(x”) = (.
ij

we get
X = (x,-j) S 2<oBV£.(M1 + Mz))

Hence we get 2(0BVL(M;)) n 2(0BVL(M,)) < 2(o0BVEL(M, + M,)).
For X = ,BV., Z(OM{?VU.)’ ) MéVJ) the inclusion are similar. O

Corollary 2.1. X < X(M) fOl"X = Q(BV({_), zBVé , Z(OMI{?VU) and 2M11~3V(,-'

Proof. For this let M(x) = x, for all x = (x;;) € X. Let us suppose that x = (x;;) € 2(oBV.).
Then for any given € > 0 we have

{(i,)) e NX N |@pnij(x)| = €} € L.

Now let
A = {(i,j) e NxN: |¢mm-j(x)| <e€tel,

be such that A{ € I. Now consider , for p > 0,

M |¢mm’j(x)!) _ i ()]
p p
€
< — < E.
o

= [ — lim M(M) = 0, which implies that x = (x;;) € 2(oBV.(M)). Hence we have

2(0BV)) < 2(sBVL(M)).

— X < X(M)

and the other cases will be proved similarly. ]
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Theorem 2.3. For any Orlicz function M, the spaces »(oBV.(M)) and »(oMy, ) are solid and
monotone.

Proof. Here we consider »(oBV!) and for ,(,BV.(M)) the proof shall be similar.
Letx = x;; € 2(oBV.L(M)) be an arbitrary element ,= Jp > 0 such that
mni j\X
1 — tim (2
7] p
Let a;; be a sequence of scalars with |a;;| < 1 fori, je N.
Now, M is an Orlicz function. Therefore

M( \a,-,,-rl)n;u;,-(x)l ) M || \¢;mij(x)| )
| Gonni(X) ]

< |a’ij|M(T>

= Mty < g (el for all 7, j N,

P

@} jQmnij\ X
=] limM(M) = 0.
17} p
Thus we have (@;;x;;) € 2(o0BVL(M)). Hence »(oBV.(M)) is solid. Therefore »(oBV.(M)) is
monotone. Since every solid sequence space is monotone. ]

Theorem 2.4. For any Orlicz function M,the space ,BV.(M) and >(Mpgy1 (M)) are neither solid
nor monotone in general.

Proof. Here we give counter example for establishment of this result. Let X = ,BV/ and ,(Mpy1 ).
Let us consider / = I and M(x) = x, for all x = x;; € [0, ). Consider,the K-step space Xx (M)
of X(M) defined as follows:

Let x = (x;;) € X(M) and y = (y;;) € Xg(M) be such that (y;;) = (x;;), if i,j is even and (y;;) = O,
otherwise.

Consider the sequence (x;;) defined by (x;;) = 1 foralli, j€ N. Thenx = (x;;) € ,BV.(M) and
1My (M), but K-step space preimage does not belong to BV, (M) and , M}, (M). Thus ,BV; (M)
and ,M gVU(M ) are not monotone and hence they are not solid. Ol

Theorem 2.5. For an Orlicz function M, the spaces ,BV.(M) and ,BV. (M) are sequence algebra.

Proof. Let x = (x;;),y = (yi;) € 2(o(BVL(M))) be any two arbitrary elements. = p;, 0, > 0 such
that,

I hmM(w) —0,
1] pl
and
1= timyp (2Ol

P2
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Letp = p1p> > 0. Then

|¢mnij(x) ¢mnij(y)|) _ M(|¢mm'j(x) ¢mnij()’)|
Y P1P2
’(pmnij(x) (bmmj(y)‘

o
Therefore we have (x;;y;;) € 2(0BV.(M)). Hence »(oBV.(M)) is sequence algebra. O

M(

)

= [ — lim M( ) =0.
ij

Theorem 2.6. For any Orlicz function M, the spaces »(¢BV.(M)) and ,BV!.(M) are not conver-
gence free.

Proof. To show this let I = I; and M(x) = x, for all x = [0,20). Now consider the double
sequence (x;;), (v;;) which defined as follows:

1 e
Xjj = i+jand yij=1i+JjVi,jeN.
Then we have (x;;) belong to both ,((BVZ(M)) and ,BV. (M), but (y;;) does not belong to »(oBV.(M))
and ,BV.(M). Hence, the spaces ,(¢BV!(M)) and ,BV! (M) are not convergence free. O

Theorem 2.7. Let M be an Orlicz function. Then
2(0BV;(M)) € 2BV, (M) & 2(BV,(M)).

Proof. For this let us consider x = (x;;) € ,(oBVL(M)). It is obvious that it must belong to
»BV!(M). Now consider

(s ZEy Bty (),

Now taking the limit on both sides we get

|¢mnij(-x) - L|

I — limy;M(
! p

) =0.

Hence x = (x;;) € ,BVL(M).

Now it remains to show that ,(BVL(M)) € 1(,,BVL(M)). For this let us consider x = (x;;) € ,BVL(M) =
dp > 0O s.t

mni j —L
I — limM(M> = 0.

1] p

Now consider .
M< \¢mm-j(x)\) . M( | Bnij (x) — !) N M(ﬂ).
p p p

Now taking the supremum on both sides we get

sup M (M) < 0.

ij 1Y
Hence x = (x;;) € 2(BVL(M)). O O
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