
Theory and Applications of Mathematics & Computer Science 5(1) (2015) 1–19

Sparse and Robust Signal Reconstruction

Sandra V. B. Jardim∗

Tomar Polytechnic Institute, Department of Information Technology, Quinta do Contador, Estrada da Serra - Tomar,
Portugal.

Abstract
Many problems in signal processing and statistical inference are based on finding a sparse solution to an undeter-

mined linear system. The reference approach to this problemof finding sparse signal representations, on overcomplete
dictionaries, leads to convex unconstrained optimizationproblems, with a quadratic termℓ2, for the adjustment to the
observed signal, and a coefficient vectorℓ1-norm. This work focus the development and experimental analysis of
an algorithm for the solution ofℓq-ℓp optimization problems, wherep ∈]0, 1] ∧ q ∈ [1, 2], of which ℓ2-ℓ1 is an
instance. The developed algorithm belongs to the majorization-minimization class, where the solution of the problem
is given by the minimization of a progression of majorizers of the original function. Each iteration corresponds to the
solution of anℓ2-ℓ1 problem, solved by the projected gradient algorithm. When tested on synthetic data and image
reconstruction problems, the results shows a good performance of the implemented algorithm, both in compressed
sensing and signal restoration scenarios.

Keywords: Sparse signal representation, Convex relaxation,ℓ2-ℓ1 optimization, Compressed sensing,
Majorization-minimization algorithms, Quadratic programming, Gradient projection algorithms.
2010 MSC:93C42, 94A12.

1. Introduction

In general, sparse approximation problems have been of great interest given its wide applica-
bility both in signal and image processing field as in statistical inference contexts, where many of
the problems to be solved involve the undetermined linear systems sparse solutions determination.

The literature on sparsity optimization is rapidly increasing (see (Zarzer, 2009; Donoho, 2006;
Candes & Tao, 2005; Wright et al., 2009) and references therein). More recently sparsity tech-
niques are also receiving increased attention in the optimal control community (Stadler, 2009;
Casaset al., 2012; Herzoget al., 2012).

Given an input signaly, sparse approximation problems resolution aims an approximated sig-
nal determinationx through a linear combination of elementary signals, which are, for several

∗Corresponding author
Email address:sandra.jardim@ipt.pt (Sandra V. B. Jardim)

tamcslogo.eps

2 Sandra V. B. Jardim/ Theory and Applications of Mathematics& Computer Science 5 (1) (2014) 1–19

current applications, extracted from a set of signals not necessarily lineary independent. A pref-
erence for sparse linear combinations is imposed by penalizing nonzero coefficients. The most
common penalty is the number of elementary signals that participate in the approximation. Ac-
cording to the context in which they operate and the objective to be achieved, sparse approximation
problems can be formulated in different ways. In this sense, the problem domain must justify the
linear model, the elementary signals choice and the sparsity criterion to be adopted.

On account of the combinatorial nature of the sparse approximation problems, which is due
to the presence of thequasi-norm ℓ0 of the coefficients vector to be estimated, these problems
have a difficult computational resolution. In general, these optimization problems are NP-hard
problems (Daviset al., 1997; Natarajan, 1995). One of the most common approach to overcome
this difficulty is the convex relaxation, introduced by Claerbourt etal. (Claerbout & Muir, 1973),
of the original problem, where thequasi-norm ℓ0 is replaced by the normℓ1, which is a convex
function. A classic example of this kind of problems is the determination of sparse representa-
tions on overcomplete dictionaries, where the reference approach leads to unconstraint convex
optimization problems, which involves a quadratic termℓ2 of adjustment to the observed signaly,
and aℓ1 norm of the coefficient vector to be estimatedx. In this sense, it is notorious the interest
shown by the scientific community in the development of methods leading to the resolution of the
unconstraint convex optimization problem

min
x

1
2
‖y − φ x‖22 + λ‖x‖1, (1.1)

whereφ represents the overcomplete dictionary synthesis matrix;if x ∈ ℜn andy ∈ ℜk, φ is a
k× n matrix. The nonnegative parameterλ states a compromise between the approximation mean
squared error and his sparsity level.

The above optimization problem, and related ones, arises inseveral applications, such as the
Basis PursuitandBasis Pursuit Denoisingcriterions (Chenet al., 2001) andCompressed Sensing
(Donoho, 2006).

The optimization problem represented in (1.1) is an instance of the general class of the opti-
mization problemsℓq - ℓp, whereq andp can assume values in the range]0, 2]. It is important to
stress that the data term generalization to aℓq norm, instead of theℓ2 norm, gives to the approxima-
tion criterion statistical strength features (whenq < 2) (Huber & Ronchetti, 2009) , making it less
permeable to spurious observations (outliers). On the other hand, when it comes to generalization
of the coefficient term to be estimated to aℓp norm, instead aℓ1 norm, and consideringp < 1, we
walk toward the original combinatorial problem resolution.

In this paper is presented an algorithm that aims the resolution of the general class optimiza-
tion problemsℓq -ℓp, wherep ∈]0, 1] ∧ q ∈ [1, 2]. The developed algorithm belong to the
majorization-minimization class (Hunter & Lange, 2004), where the problem is solved in an iter-
ative way, through the minimization of a majorizers sequence of the original function. Each upper
bound function corresponds to aℓ2 - ℓ1 problem, where each one of these problems is formu-
lated as a quadratic programming problem and solved throughthe gradient projection algorithm
(Figueiredoet al., 2007b).

Sandra V. B. Jardim/ Theory and Applications of Mathematics& Computer Science 5 (1) (2014) 1–19 3

2. Generalized Optimization Problem

The unconstrained optimization problem represented in (1.1) is the convex relaxation of the
subset selection problem, checking to be a major problem in many application areas. Due to its
high applicability, there has been considerable effort made by the scientific community, regarding
techniques and algorithms development for its resolution.Among the different proposed algo-
rithms, are homotopy algorithms (Turlach, 2005; Efron et al., 2004; Malioutov et al., 2005), the
ones based on interior-point methods (Turlachet al., 2005; Chenet al., 2001), the majorization-
minimization class algorithms (Figueiredo & Nowak, 2003, 2005; Figueiredoet al., 2007a) and
the gradient projection algorithm (Figueiredoet al., 2007b).

In this problem, the objective function composed by two terms, one of which being a quadratic
termℓ2 of adjustment to the observed signaly, and the other theℓ1 norm of the coefficient vector to
estimatex. Recall that theℓ1 norm arises by replacing thequasi-normℓ0, at the convex relaxation
of the original convex optimization problem.

As stated above, the optimization problemℓ2 - ℓ1 is an instance of the optimization problems
ℓq - ℓp general class, wherep ∈]0, 1] ∧ q ∈ [1, 2].

Since the purpose of this work is to achieve the solution of the general class optimization
problemsℓq - ℓp, for p ∈]0, 1] ∧ q ∈ [1, 2], let’s consider the generalization of the unconstrained
convex optimization problem (1.1), and define the functionL(x)

L(x) =
1
2
‖y − φ x‖qq + λ‖x‖

p
p, (2.1)

wherex ∈ ℜn, y ∈ ℜk, φ is the synthesis matrix of a dictionaryD (of dimensionk× n), λ ≥ 0,
p ∈]0, 1] andq ∈ [1, 2].

3. Majorization-Minimization Method for the Resolution of the Generalized Optimization
Problem

3.1. Objective Function

There are several algorithms for the resolution of the optimization problem (1.1), such as
Matching Pursuit (MP), Orthogonal Matching Pursuit (OMP),Homotopy, Least Absolute Shrink-
age and Selection Operator (LASSO) and Gradient Projection(GPSR). In this work is developed a
majorization-minimization (MM) method, for the resolution of the optimization problem min

x
L(x),

where the optimization problem (1.1) is solved using the Barzilai-Borwein Gradient Projectional-
gorithm for sparse reconstrution (GPSR-BB) (Figueiredoet al., 2007b). This choice results from
an analysis of the results obtained for different algorithms, which can be found in (Jardim, 2008).
Since GPSR-BB algorithm aims to solve the optimization problem (1.1), it is necessary to estab-
lish a relation between this and the optimization problem that results from the minimization of the
functionL(x) (2.1).

We can observe that the functionL(x) is the sum of the functionsL1(x) andL2(x), where

L1(x) =
1
2
‖y − φ x‖qq and (3.1)

4 Sandra V. B. Jardim/ Theory and Applications of Mathematics& Computer Science 5 (1) (2014) 1–19

L2(x) = λ‖x‖pp. (3.2)

Knowing that‖w‖rr =
∑

i |wi |
r , we can define the function

f (z, p) = |z|p. (3.3)

Figures (1(a)) and (1(b)) are graphical representations of the functionf (z, p) for different
values ofp.

−150 −100 −50 0 50 100 150
0

1000

2000

3000

4000

5000

6000

7000

p = 1.25
p = 1.5
p = 1.75

(a) p = 1.75, p = 1.5 andp = 1.25.

−150 −100 −50 0 50 100 150
0

5

10

15

20

25

30

35

40

45

p = 0.25
p = 0.5
p = 0.75

(b) p = 0.75, p = 0.5 andp = 0.25.

Figure 1. Function f (z, p) = |z|p for values ofp greater and smaller than 1.

With this function it is possible to write (3.1) and (3.2) as

L1(x) =
1
2

k
∑

i=1

f
(

yi − (φx)i , q
)

. (3.4)

and

L2(x) = λ
n
∑

i=1

f (xi , p) . (3.5)

3.1.1. The Majorizer Function
By the analysis of the figures (1(a)) and (1(b)) we can verify that it is possible to determine

for the function f (z, p) (so to theL1(x) andL2(x) functions), and for some valuez′, majorizers
functions. This opens the door to the use of majorization-minimization algorithms to the resolution
of the optimization problem min

x
L(x), whereL(x) is the function given by (2.1). So, it is necessary

to define aQ function such that

L(x) ≤ Q(x|x̂(t)), ∀x,x̂(t) (3.6)

L(x̂(t)) = Q(x̂(t)|x̂(t)), (3.7)

figure1a.eps
figure1b.eps

Sandra V. B. Jardim/ Theory and Applications of Mathematics& Computer Science 5 (1) (2014) 1–19 5

i.e., Q(x|x̂(t)) is a function ofx that majorizes (i.e., upper bounds)L(x).

Recalling thatL(x) = L1(x)+ L2(x), whereL1(x) andL2(x) are given by (3.4) and (3.5) respec-
tively, let’s consider the majorizer functions

Q1(x|x̂(t)) ≥ L1(x) and Q1(x̂(t)|x̂(t)) = L1(x̂) (3.8)

and

Q2(x|x̂(t)) ≥ L2(x) and Q2(x̂(t)|x̂(t)) = L2(x̂(t)). (3.9)

Given the MM algorithm properties (Hunter & Lange, 2004), we can define a function

Q(x|x̂(t)) = Q1(x|x̂(t)) + Q2(x|x̂(t)) such that (3.10)

L(x) ≤ Q1(x|x̂(t)) + Q2(x|x̂(t)), (3.11)

verifying

L(x̂(t)) = Q1(x̂(t)|x̂(t)) + Q2(x̂(t)|x̂(t)). (3.12)

Due to (3.4), and assumingq a fixed value in the interval [1, 2], L1(x) is an even and growing
function with |y − φ x| (see figure (1(a))), having a slower growth, or equal caseq = 2, than
a quadratic function of|(y − φ x)i |. So, it makes sense to use as majorizer function ofL1(x) a
quadratic function, which is also an even function, so without a linear term. In other words, we
can use asL1(x) majorizer a function of the form1

2

∑

i

ai(y − φ x)2
i +bi. The upper bound function

can be used in a MM algorithm only if it verifies the key property, i. e., the upper bound function
must touch the function at the previous estimative. So it is necessary to determineai andbi in
order to

ai(y − φ x)2
i + bi ≥ | (y − φ x)i |

q,∀x (3.13)

ai
(

y − φ x′
)2
i + bi = |

(

y − φ x′
)

i |
q
. (3.14)

Let’s consider the functionf (z, q) given by (3.3), and a quadratic majorizer such that

g1(z, z
′) = a z2

+ b such that:

g1(z, z
′) ≥ f (z, q) ∀z and g1(z

′, z′) = f (z′, q). (3.15)

Given thatf (z, q) = |z|q we have, forq ∈ [1, 2] andz, 0,

d f(z, q)
dz

= q|z|(q−1)sign(z). (3.16)

6 Sandra V. B. Jardim/ Theory and Applications of Mathematics& Computer Science 5 (1) (2014) 1–19

In order tog1(z, z′) be tangent tof (z, q) at z= z′, we get

a =
q
2
|z′|(q−2)

. (3.17)

Since we also wantf (z′, q) = g1(z′, z′), we have

b =
2− q

2
|z′|q. (3.18)

Finally, we can write the majorizer function

g1(z, z′) =
q
2

(z′)(q−2)z2
+

2− q
2
|z′|q. (3.19)

Based on majorizer (3.19) we can write

1
2
‖y − φ x‖qq =

1
2

∑

i

|(y − φ x)i |
q

≤
q
4

∑

i

|(y − φ x′)i |
(q−2)(y − φ x)i

2

+
2− q

2
|(y − φ x′)i |

q
. (3.20)

Defining

α
(t)
i =

q
2

yi −
∑

j

(

φi j x̂(t)
j

)

q−2

, (3.21)

and

β
(t)
i =

2− q
2

∣

∣

∣

∣

∣

∣

∣

yi −
∑

j

(

φi j x̂(t)
j

)

∣

∣

∣

∣

∣

∣

∣

q

, (3.22)

we have the majorizerQ1(x|x̂(t)) given by

Q1(x|x̂(t)) =
1
2

∑

i

α
(t)
i

yi −
∑

j

φi j xj

2

+ β
(t)
i

. (3.23)

SinceL(x) is a function consisting of two separable terms, for which can be defined different
majorizer functions, the majorizer function for the termL2(x) = λ‖x‖pp does not necessarily have to
be a quadratic one. In fact, what is desirable is that the majorizer to be adopt for theL2(x) function,
when added to the majorizer defined forL1(x), leads to a functionQ(x, x̂(t)) with a minimizer easy
to find. So, aℓ1 majorizer is the natural choice for penaltiesℓp, with 0 < p ≤ 1, since it is more
tighter than a quadratic majorizer. Recalling that, for theupper bound function can be used in a
MM algorithm it must touch the function at the previous estimate, it is necessary to determine the
parametersc andd so that

Sandra V. B. Jardim/ Theory and Applications of Mathematics& Computer Science 5 (1) (2014) 1–19 7

|x|p ≤ c |x| + d, ∀x and |x′|p ≤ c |x′| + d.

Let’s consider the functionf (x, p) given by (3.3), and a majorizerℓ1:

g2(x, x′) = c |x| + d such that:

g2(x, x′) ≥ f (x, p), ∀x and g2(x
′, x′) = f (x′, p). (3.24)

Given that, forp ∈]0, 1], andx′ , 0

d f(x, p)
dx

|x=x′ = sign(x′)p|x′|(p−1)
, (3.25)

we have

c = p|x′|(p−1)
, (3.26)

and

d = (1− p)|x′|p. (3.27)

We can then write

g2(x, x′) = p|x′|(p−1)
|x| + (1− p)|x′|p. (3.28)

Defining

δ
(t)
i =

p |x̂(t)
i |

(p−1)
, if x̂(t)

i , 0

1/epsa , if x̂(t)
i = 0

(3.29)

and

ǫ
(t)
i = (1− p) |x̂(t)

i |
p
. (3.30)

we have that the functionQ2(x|x̂(t)) can be written as

Q2(x|x̂(t)) = λ
∑

i

[

δ
(t)
i |xi | + ǫ

(t)
i

]

. (3.31)

Given (3.10) we have that

Q(x|x̂(t)) =
1
2

k
∑

i=1

α
(t)
i

yi −
∑

j

φi j xj

2

+ β
(t)
i

+ λ

n
∑

i=1

[

δ
(t)
i |xi | + ǫ

(t)
i

]

. (3.32)

aepsis the distance from 1.0 to the next larger double precision number, that isepswith no arguments returns
2(−52).

8 Sandra V. B. Jardim/ Theory and Applications of Mathematics& Computer Science 5 (1) (2014) 1–19

Since at each step of the MM algorithm, we perform a minimization in x, the termsβ(t)
i andǫ(t)i

can be ignored, so we have

Q(x|x̂(t)) =
1
2

∑

i

α
(t)
i

yi −
∑

j

φi j xj

2

+ λ
∑

i

[

δ
(t)
i |xi |
]

, (3.33)

or, in vectorial notation

Q(x|x̂(t)) =
1
2

(y − φ x)T
Γ

(t)(y − φ x) + λ 1T
Λ

(t)|x|, (3.34)

with

Γ
(t)
=

α
(t)
1 0 ... 0
0 α

(t)
2 ... 0

...

0 0 ... α
(t)
k

and

Λ
(t)
=

δ
(t)
1 0 ... 0
0 δ

(t)
2 ... 0

...

0 0 ... δ
(t)
n

. (3.35)

and where|x| = [|x1|, |x2|, ..., |xn|]
T.

The minimization of the functionL(x) is implemented, iteratively, as a succession of minimaliza-
tions of the functionQ(x|x̂(t)).

x̂(t+1)
= arg min

x
Q(x|x̂(t))

x̂(t+1)
= arg min

x

1
2

(y − φ x)T
Γ

(t)(y − φ x) + λ 1T
Λ

(t)|x|. (3.36)

Greater detail in the deduction of the presented mathematical expressions can be found in
(Jardim, 2008).

4. Majorization-Minimization Algorithm

The minimization of the functionQ(x|x̂(t)) (3.33) reflects an unconstrained convex optimization
problem. In order to solve this problem with the algorithm GPSR-BB (Figueiredoet al., 2007b),

Sandra V. B. Jardim/ Theory and Applications of Mathematics& Computer Science 5 (1) (2014) 1–19 9

it is necessary to reformulate the optimization problem (3.36) as a quadratic program (Nocedal &
Wright, 1999), which leads to

min
z

cTz +
1
2

zTBz

subject to: z ≥ 0,

(4.1)

wherez = [uT , vT]T is a vector of unknown variables, withu = max {0, x} andv = max {0, −x},

c = λ 12n + [−bT , bT] with b = ATy andA = φT
Γ, andB =

[

AT A −AT A
−AT A AT A

]

.

Considering the previously stated, the following algorithm was implemented in order to solve
the optimization problem (4.1).

Step 0 (initialization): Given an initial estimatez(0), sett = 0.

Step 1: ComputeΓ(t) andτ(t) according to (3.35) andτi = λΛ
(t)
ii , ∀i=1,...,n, respectively.

Step 2: Execute GPSR-BB algorithm with entries the current estimate x̂(t), theτ(t) vector,A =
∆

(t) φ, andym = ∆
(t) y.

x̂(t+1)
= GPSR-BB(ym, A, τ(t), x̂(t)).

Step 3: Perform convergence test and terminate with approximated solution x̂(t+1); otherwise set
t = t + 1 and return toStep 1.

4.1. Stopping Criterion

Initially we used the general stopping criterion

‖x̂(t+1) − x̂(t)‖2

‖x̂(t)‖2
≤ ε, (4.2)

and it was found that it leads to good results. After that we choose a stopping criterion more
directed to the problem to be solved, adopting the one it was used in the GPSR-BB algorithm,
where the algorithm stops when the relative change in the number of nonzero components of the
estimate falls below a given bound value.

10 Sandra V. B. Jardim/ Theory and Applications of Mathematics& Computer Science 5 (1) (2014) 1–19

4.2. Computational cost analysis

The number of iterations required to find an approximate solution, both in the outer cycle as in
the inner one (Step 2), is not possible to accurately predict, since it depends (among other factors)
on the quality of the initial estimatêx(0). However, is possible to analyze the computational cost
of each iteration of the proposed algorithm. For outer cycle, each iteration computational cost is
essentially the inherent in the calculation of the matrixΓ(t), vectorsτ(t) andym. The computation
of the matrixΓ(t) matrix, as well as the vectorym, implies a matrix-vector product. To compute
Γ

(t) it is necessary to multiply the (k × n) matrixφ, by the vector of estimateŝx(t), of dimensionn.
This operation has a cost ofO (kn). To compute the vectorym is necessary to multiply the matrix
Γ

(t), of dimension (k×k), by the vectory, of dimensionk, which has a computational cost ofO (k).
Calculate the vectorτ(t) implies vector-scalar product, which requiresn floating-point operations.

The main computational cost per each cycle iteration of the GPSR-BB algorithm is a small
number of inner products, scalar-vector multiplications,and vectors additions, each one of them
requiringn or 2n floating-point operations, , plus a modest number of multiplications byA and
AT. The algorithm proposed in this paper for the resolution of the optimization problem that
results from the minimization of the functionL(x) (2.1), executes GPSR-BB algorithm, where the
matrix A results from the product of the matricesφ andΓ(t). Given thatφ is a k × n matrix, the
computational cost of direct implementation of matrix-vector products byφ or φT is O (kn). For
Γ

(t), k × k matrix, the computational cost of direct implementation ofmatrix-vector products is
O (k). If φ = RW is a matrix of dimensionk × n andR a k × d matrix, thenW must be ad × n
matrix. If W contains an orthogonal wavelet basis (d = n), matrix-vector products involvingW
or WT can be implemented using fast wavelet tranform algorithms with O (n) cost (Mallat, 1999),
instead of theO

(

n2
)

cost of a direct matrix-vector product. Consequently, the cost of a product by
φ or φT is O(n) plus that of multiplying byR or RT which, with a direct implementation, isO (kn).

4.3. Convergence analysis

In order to analyze the convergence of the algorithm proposed in this paper, first will be an-
alyzed the convergence of the GPSR-BB algorithm used in eachiteration of the majorization-
minimization algorithm, whose entries differ from those of the original algorithm of Figueiredo,
being given by the equations defined above. Secondly will be analyzed the convergence of the
iterative algorithm defined by the update (3.36).

As stated by Figueiredo in (Figueiredoet al., 2007b) the convergence of the algorithm GPSR-
BB used in this work can be derived from the analysis of Bertsekas (Bertsekas, 1999), but follows
most directly from the results of Serafini, Zanghirati, and Zanni (Serafiniet al., 2005). In the
algorithm proposed in this work we use the GPSR-BB algorithmwith entries different from the
ones defined by Figueiredo (Figueiredoet al., 2007b). To summarize convergence properties of
the GPSR-BB algorithm with the entries previously defined, we assume that termination occurs
only whenx(t+1)

= x(t), which indicates thatx(t) is optimal.
Theorem 1:When p = 1 ∧ q ∈ [1, 2] the sequence of iterates generated by the GPSR-BB

algorithm with the entriesym, A, τ(t) and the current estimatêx(t) either terminates at a solution of
(4.1) or else converges to a solution of (4.1) at an R-linear rate.

Sandra V. B. Jardim/ Theory and Applications of Mathematics& Computer Science 5 (1) (2014) 1–19 11

Proof. Theorem 2.1 of (Serafiniet al., 2005) can be used to demonstrate that all accumulation
points of {x(t)} are stationary points. Although, in (Serafiniet al., 2005), this result applies to
an algorithm in which the steplength parametersα(t) used in the gradient projection method are
chosen by a different scheme, the only relevant requirement on these parameters in the proof of
[(Serafiniet al., 2005), Theorem 2.1] is that they lie in the range [αmin, αmax], as in the case of the
GPSR-BB algorithm used in this work. Whenp = 1∧ q ∈ [1, 2], the objective in (4.1) is convex
and bounded below, we can apply [(Serafiniet al., 2005), Theorem 2.2] to deduce convergence to
a solution of (4.1) at an R-linear rate. Whenp < 1, the objective function in (4.1) is nonconvex;
thus it can not be guaranteed that the algorithm converges toa global optimum. Nevertheless, in
practice, we have never observed any convergence problems:the results show that the proposed
algorithm finds actually a minimum, which although may not bea global minimum corresponds
to a good reconstruction of the signal.

Theorem 2:For Q(x, x′) a continuous function in (x, x′) andL a strictly convex function, the
MM iteration sequencêx(t) converges to the global minimum ofL.

Proof. Knowing thatx̂(t+1)
= arg min

x
Q(x|x̂(t)), and recalling that the majorizer functionQ verifies

the conditions given by (3.6) and (3.7), we have

L(x̂(t+1)) ≤ Q(x̂(t+1)|x̂(t)) ≤ Q(x̂(t)|x̂(t)) = L(x̂(t)), (4.3)

where the left hand inequality follows from the definition ofQ and the right hand inequality
from the definition ofx̂(t+1). The sequenceL(x̂(t)), for t = 1, 2, ..., is, therefore, nonincreasing.
Under mild conditions, namely thatQ(x, x′) is continuous in (x, x′), all limit points of the MM
sequenceL(x̂(t)) are stationary points ofL, andL(x̂(t)) converges monotonically toL∗ = L(x∗), for
some stationary pointx. If, additionally, L is strictly convex,̂x(t) converges to the global minimum
of L. Proofs of these properties are similar to those of similar properties of the EM algorithm
(Huber & Ronchetti, 2009).

5. Experiments

In this section are presented, analyzed and discussed the results obtained by the proposed
algorithm in compressed sensing applications and in the reconstruction of sparse images or with
sparse representations, where for each signal the algorithm is tested for different values ofp and
q. Parameterλ is hand-tuned for the best SNR improvement. For compressed sensing scenarios it
is adjusted according to the expressionλ = 0.1‖φTy‖∞ (as suggested by Fuchs in (Fuchs, 2004)).

All the experiments reported in this section were obtained with MATLAB (MATLAB 7.0 R14)
implementations of the algorithm described above. The computing platform is a standard personal
computer with Intel(R) Core(TM) i7 CPU, 8 GB of RAM, and running Windows 7 operating
system.

5.1. Compressed Sensing

We first consider a typical compressed sensing (CS) scenario, where the goal is to reconstruct
a length-n sparse signal (in the canonical basis, thusW = I andd = n) from k observations, where

12 Sandra V. B. Jardim/ Theory and Applications of Mathematics& Computer Science 5 (1) (2014) 1–19

k ≤ n. The rows of thek × n observation matrixR are unit-norm random vectors (of Gaussian
components) inℜn. Notice that, sincek ≤ n, the systemRx = y is undetermined. In the first
example, we taken = 211

= 2048,k = 28
= 256, and generatey by adding Laplacian noise

(probability density functionf (x) = a e−
|x|
a) with parametera = 0.01) toRx (figure (2(b))). The

original sparse signalx is generated by a mixture of a uniform distribution on [1, 1] and a point
mass at zero, with probabilities 0.01 and 0.99, respectively. As we can see in2(a), the original
signal is indeed sparse.

0 500 1000 1500 2000

−0.5

0

0.5

1

(a) Original signal.

0 50 100 150 200 250

−0.5

0

0.5

1

(b) Observed signal.

Figure 2. Original and observed signal.

For the described data set we have as initial estimate forℓq - ℓp algorithm the signal̂x(0)
= φTy.

The estimates obtained by solving (2.1) using the proposed algorithm forq = 1 ∧ p ∈]0, 1] are
shown in figure (3), and it can be verified that they are very close to the original signal.

0 500 1000 1500 2000

−0.5

0

0.5

1
MSE = 0.00061642

(a) q = 1∧ p = 1.

0 500 1000 1500 2000

−0.5

0

0.5

1
MSE = 6.8346e−05

(b) q = 1∧ p = 0.75.

0 500 1000 1500 2000

−0.5

0

0.5

1
MSE = 2.1776e−05

(c) q = 1∧ p = 0.5.

0 500 1000 1500 2000

−0.5

0

0.5

1
MSE = 1.9378e−05

(d) q = 1∧ p = 0.25.

Figure 3. Estimated signal by (2.1) minimization forq = 1∧ p ∈]0, 1]

From the results obtained, and presented in figure (3) it is possible to observe that the approx-
imation mean squared errorb (MSE) forq = 1∧ p = 1 is about 10 times greater than that obtained
for p ≤ 1, meeting the expected results.

bMSE = (1/n) ‖x̂ − x‖22, wherex̂ is an estimate ofx.

figure2a.eps
figure2b.eps
figure3a.eps
figure3b.eps
figure3c.eps
figure3d.eps

Sandra V. B. Jardim/ Theory and Applications of Mathematics& Computer Science 5 (1) (2014) 1–19 13

As referred above, the generalization of the data term from aℓ2 norm to aℓq norm, gives to
the approximation criterion statistical strength features whenq < 2. This can be verified in the
second experiment, where we taken = 211

= 2048,k = 28
= 256, and generatey by adding to

Rx impulsive noise. Considering the original signal represented in figure (4(a)) with 16 nonzero
components, we can see in figure (5) that the MSE of the approximation decreases with the value
of q, taken as constant the value ofp = 1.

0 500 1000 1500 2000
−1

−0.5

0

0.5

(a) Original signal.

0 50 100 150 200 250

−0.5

0

0.5

1

(b) Observed signal.

Figure 4. Original and observed signal.

0 500 1000 1500 2000
−1

−0.5

0

0.5
MSE = 0.00034811

(a) q = 2∧ p = 1.

0 500 1000 1500 2000
−1

−0.5

0

0.5
MSE = 0.00034677

(b) q = 1.75∧ p = 1.

0 500 1000 1500 2000
−1

−0.5

0

0.5
MSE = 0.00031575

(c) q = 1.5∧ p = 1.

0 500 1000 1500 2000
−1

−0.5

0

0.5
MSE = 0.00031103

(d) q = 1.25∧ p = 1.

Figure 5. Estimated signal by (2.1) minimization forq ∈]1, 2] ∧ p = 1

Note, for example, that the best result achieved byℓq - ℓp algorithm forq = 2 (MSE= 3.4811×
10−4, 59 nonzero components) is not so good as the obtained forq = 1.25 (MSE= 3.1103× 10−4,
35 nonzero components). Although a significant improvementin quantitative terms (the values of
the approximations MSE for different values ofq are not too different) doesn’t occur, in this case,
we can verify that, as the value ofq decreases, the approach presents qualitative improvements
(lower number of spurious observations in the final estimate). Figures (6(a)) and (6(b)) show the
evolution of the MSE and objective function, for outer and inner loop respectively, against iteration
number of the proposed algorithm, whenq = 1.5∧ p = 1.

Analyzing the graphics of figure (6) we can observe that the values of the approximation MSE
and the objective function decreases in each iteration of the ℓq − ℓp algorithm. In fact, starting

figure4a.eps
figure4b.eps
figure5a.eps
figure5b.eps
figure5c.eps
figure5d.eps

14 Sandra V. B. Jardim/ Theory and Applications of Mathematics& Computer Science 5 (1) (2014) 1–19

1 2 3 4 5 6 7 8
0

1

2

3
x 10

−3

M
S

E

It

1 2 3 4 5 6 7 8
0

1

2

3

4

O
bj

It

(a) Algorithm outer loop

0 10 20 30 40 50 60 70
1.5

2

2.5

3
x 10

−3

M
S

E

It

0 10 20 30 40 50 60 70
1

2

3

4

O
bj

It

(b) Algorithm inner loop

Figure 6. MSE and Objective functionvs. Iteration number

from a initial upper bound function, built on the initial estimate, it is observed that the proposed
algorithm builds at each iteration a new one, on the basis of the obtained solution for the previous
upper bound function, which solution is closest to the original signal.

Next experiment shows the performance of the implemented algorithm in a typical compressed
sensing problem, where the goal is to reconstruct a signal fromk projections (withk = 210

= 1024).
The observation matrixR, of dimensionk× n, is a matrix of random projection vectors. The two-
dimensional original signal, which is represented in figure(7) has a sparse wavelet transform, and
in this example the columns of the representation matrixW form an orthogonal wavelet basis
(daubechies-2 (Haar)). The original signal is an image of piecewise smooth filtered white noise
of dimensionn′ × n′, with n′ = 26, i. e. n= 212 (figure (7)). The observed signal is obtained by
adding white Gaussian noise with standard deviation 0.001 toRx. Figures (8(a)) - (8(c)) shows
the results ofℓq - ℓp algorithm, taken as initial estimatex̂(0)

= 0. By the results we can see that the
proposed algorithm produces, fromk projections corrupted by random white Gaussian noise best
approximations (lower MSE) forp < 1.

Figure 7. Original signal.

5.2. Image Restoration
The following two experiments show the performance of the proposed algorithm in real im-

ages restoration, where the columns of representation matrix W form an orthogonal wavelet basis

figure6a.eps
figure6b.eps
figure7.eps

Sandra V. B. Jardim/ Theory and Applications of Mathematics& Computer Science 5 (1) (2014) 1–19 15

(a) q = 2∧ p = 1. (b) q = 2∧ p = 0.4. (c) q = 2∧ p = 0.2.

Figure 8. Estimated signal by (2.1) minimization, forq = 2∧ p ∈]0, 1].

(daubechies-2 (Haar)). The observation matrixR, of dimensionk × k, is a Toeplitz blocks ma-
trix representing 2D convolutions. In the first of these experiments we have as original signal
the well-known Camera-man image (figure (9(a))). The observed image is obtained convolving
the original image with a uniform blur filter of size 9× 9, and then adding to the blurred image
(Rx) white Gaussian noise with standard deviation 0.005 (figure (9(b))). Taken as initial estimate
x̂(0)
= φTy, figures (10(a)) - (10(d)) shows the algorithm performance forq = 2 andp ∈]0, 1].

For q = 2∧ p = 0.5 the initial value of the objective function is 2.0834× 106 and the final one is
3.146× 104.

A typical statistical model for image wavelet coefficients is the Generalized Gaussian Density

(Moulin & Liu , 1999), given byp(θ) = exp
{

− |θ|
p

α

}

, whereθ represents the wavelet coefficients

vector. The graph shown in figure (11) represents the evolution of MSE withp, where we can see
that the best approximation occurs forp = 0.5. This is consistent with Moulin’s statment (Moulin
& Liu , 1999) that good image models based on wavelets are obtained doingp ≃ 0.7.

(a) Original image. (b) Observed image.

Figure 9. Original and observed real image.

In the last reported experiment the original image is the also well-known Lenna image (figure
(12(a))). The observed image is obtained convolving the original image with a uniform blur filter
of size 9× 9, and then adding to the blurred image (Rx) impulsive noise (figure (12(b))).

Figures (13(a)) - (13(d)) shows the performance of the implemented algorithm forq ∈]1, 2]
andp = 1. Again we can observe that best results are achieved for values ofp below 1. For this
experiment, and forq = 1.25∧ p = 1, we have that the initial value of the objective function is
3.7745× 106 and the final one is 1.689× 105.

figure8a.eps
figure8b.eps
figure8c.eps
figure9a.eps
figure9b.eps

16 Sandra V. B. Jardim/ Theory and Applications of Mathematics& Computer Science 5 (1) (2014) 1–19

(a) q = 2∧ p = 1. (b) q = 2∧ p = 0.8.

(c) q = 2∧ p = 0.6. (d) q = 2∧ p = 0.5.

Figure 10. Estimated signal by (2.1) minimization, forq = 2∧ p ∈]0, 1].

0 0.2 0.4 0.8 1
80

85

90

95

M
S

E

p
p’

Figure 11. Approximation MSE evolution withp.

(a) Original image. (b) Observed image.

Figure 12. Original and observed real image.

6. Conclusions

In this paper was proposed a majorization-minimization class algorithm to addressℓq-ℓp opti-
mization problems, wherep ∈]0, 1] ∧ q ∈ [1, 2], of which ℓ2-ℓ1 is an instance. The proposed
algorithm was tested on scenarios of compressed sensing andimage reconstruction, and, in both

figure10a.eps
figure10b.eps
figure10c.eps
figure10d.eps
figure11.eps
figure12a.eps
figure12b.eps

Sandra V. B. Jardim/ Theory and Applications of Mathematics& Computer Science 5 (1) (2014) 1–19 17

(a) q = 2∧ p = 1. (b) q = 1.75∧ p = 1.

(c) q = 1.5∧ p = 1. (d) q = 1.25∧ p = 1.

Figure 13. Estimated signal by (2.1) minimization, forq ∈]1, 2] andp = 1.

cases, experiments were performed for data corrupted by uniform and impulsive noise. As men-
tioned, the generalization of the coefficients term to be estimated, from aℓ1 to a ℓp norm, with
p < 1, aims to move towards the solution of the original combinatorial optimization problem,
whose complexity prevents the calculation of a global solution in polynomial time. Although no
one can guarantee the convergence of the algorithm to a global minimum, whereas forp < 1 the
problem is no longer convex,the analysis of the results shows that the proposed algorithm provides
as solution of the optimization problem a minimum corresponding to a signal reconstruction better
than the one obtained by makingp = 1 (lowest approximation MSE).

While in the experiments with nonnatural sparse signals we verify that approximation MSE,
relatively to the original signal, decreases with the valueof p, the same is not true for natural
images, where we verify that there is an optimal value ofp < 1, for which we obtain the best
possible approximation,i.e., that which corresponds the smallest MSE. This is justified against the
model used for wavelet coefficients (GGD - Generalized Gaussian Density), which is function of
the parameterp.

In the presence of outliers the proposed algorithm was tested takingp constant and equal to 1,
and rangingq in]1, 2]. Both in compressed sensing applications of unidimensional signals, as in
natural images restoration applications we can verify thatthe approximation MSE decreases with
the value of parameterq. From the analysis of the results we can still observe that, as the value
of q decreases the amount of outliers of the optimization problem solution also decreases. Hence
it can be concluded that the use ofℓq norms, withq < 2, in data term, gives to the approximation
criterion statistical robustness characteristics.

figure13a.eps
figure13b.eps
figure13c.eps
figure13d.eps

18 Sandra V. B. Jardim/ Theory and Applications of Mathematics& Computer Science 5 (1) (2014) 1–19

References

Bertsekas, D. P. (1999).Nonlinear Programming. 2nd edition ed.. Athena Scientific.

Candes, E. and T. Tao (2005). Decoding by linear programming. IEEE Transactions on Information Theory
51(12), 4203–4215.

Casas, E., C. Clason and K. Kunisch (2012). Approximation ofelliptic control problems in measure spaces with sparse
solutions.SIAM Journal on Control and Optimization50(4), 1735–1752.

Chen, S., D. L. Donoho and M. A. Saunders (2001). Atomic decomposition by basis pursuit.SIAM Journal on Scien-
tific and Statistical Computing, Review43, 129–159.

Claerbout, J. and F. Muir (1973). Robust modelling of erratic data.Geophysics38, 826–844.

Davis, G., S. Mallat and M. Avellaneda (1997). Adaptive greedy approximation.Journal Constructive Approximations
13(1), 57–98.

Donoho, D. L. (2006). Compressed sensing.IEEE Transactions on Information Theory52, 1289–1306.

Efron, B., T. Hastie, I. Johnstone and R. Tibshirani (2004).Least angle regression.The Annals of Statistics32(2), 407–
499.

Figueiredo, M. A. T. and R. Nowak (2003). An em algorithm for wavelet-based image restoration.IEEE Transactions
on Image Processing12, 906–916.

Figueiredo, M. and R. Nowak (2005). A bound optimization approach to wavelet-based image deconvolution. In:
IEEE International Conference on Image Processing - ICIP’2005.

Figueiredo, M., J. Bioucas-Dias and R. Nowak (2007a). Majorization-minimization algorithms for wavelet-based
image restoration.IEEE Transactions on Image Processing: Special Issue on Convex Optimization Methods for
Signal Processing16(12), 2992–3004.

Figueiredo, M., R. Nowak and S. Wright (2007b). Gradient projection for sparse reconstruction: Application to
compressed sensing and other inverse problems.IEEE Journal of Selected Topics in Signal Processing: Special
Issue on Convex Optimization Methods for Signal Processing1(4), 586–598.

Fuchs, J.-J. (2004). On sparse representations in arbitrary bases.IEEE Transactions on Information Theory50, 1341–
1344.

Herzog, R., G. Stadler and G. Wachsmuth (2012). Directionalsparsity in optimal control of partial differential equa-
tions.SIAM Journal on Control and Optimization50(2), 943–963.

Huber, P. J. and E. M. Ronchetti (2009).Robust Statistics. 2nd edition ed.. Wiley.

Hunter, D. and K. Lange (2004). A tutorial on mm algorithms.The American Statistician58, 30–37.

Jardim, S. (2008). Algoritmos para Representacao Esparsa eRobusta de Sinais. PhD thesis. Instituto Superior Tecnico,
Universidade Tecnica de Lisboa. In Portuguese.

Malioutov, D., M. Cetin and A. Willsky (2005). Homotopy continuation for sparse signal representation. In:Pro-
ceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing. Vol. 5. Philadelphia.
pp. 733–736.

Mallat, S. (1999).A Wavelet Tour of Signal Processing. 2nd edition ed.. Academic Press.

Moulin, P. and J. Liu (1999). Analysis of multiresolution image denoising schemes using generalized-gaussian and
complexity priors.IEEE Transaction on Information Theory45, 909–919.

Natarajan, B. (1995). Sparse approximate solutions to linear systems.SIAM Journal on Computing24(2), 227–234.

Nocedal, J. and S. Wright (1999).Numerical Optimization. Springer-Verlag. New York.

Serafini, T., G. Zanghirati and L. Zanni (2005). Gradient projection methods for quadratic programs and applications
in training support vector machines.Optimization Methods and Software.

Stadler, G. (2009). Elliptic optimal control problems withl1-control cost and applications for the placement of control
devices.Computational Optimization and Applications44(2), 159–181.

Sandra V. B. Jardim/ Theory and Applications of Mathematics& Computer Science 5 (1) (2014) 1–19 19

Turlach, B. (2005). On algorithms for solving least squaresproblems under l1 penalty or an l1 constraint. In:Pro-
ceedings of the American Statistical Association; Statistical Computing Section. Alexandria. pp. 2572–2577.

Turlach, B., W. N. Venables and S. J. Wright (2005). Simultaneous variable selection.Technometrics27, 349–363.

Wright, S. J., R. D. Nowak and M. A. T. Figueiredo (2009). Sparse reconstruction by separable approximation.IEEE
Transactions on Signal Processing57, 2479–2493.

Zarzer, C. A. (2009). On tikhonov regularization with non-convex sparsity constraints.Inverse Problems
25:025006, 13 pp.

Theory and Applications of Mathematics & Computer Science 5 (1) (2015) 20–28

Logical Tree of Mathematical Modeling

László Pokorádi∗

Óbuda University Donát Bánki Faculty of Mechanical and Safety Engineering, 1081 Népszinház u. 8., Budapest,
Hungary.

Abstract
During setting up a mathematical model, it can be very important and difficult task to choose input parameters

that should be known for solution of this problem. A similar problem might come up when someone wants to carry
out an engineering calculation task. A very essential aim technical education is developing of good logical engineer-
ing thinking. One main part of this thinking is to determine the potential sets of required input parameters of an
engineering calculation. This paper proposes a logical tree based method to determine the required parameters of a
mathematical model. The method gives a lively description about needed data base, and computational sequence for
us to get to determine the set of required output parameter. The shown method is named LogTreeMM - Logical Tree
of Mathematical Modeling.

Keywords: mathematical modeling, logical tree, engineering thinking, STEM education.
2010 MSC: 93A30, 00A71, 97D30.

1. Introduction

On the one hand, during engineering work, dozens and dozens of times we should determine
any parameters of a technical system or process. To carry out the task mentioned above we have to
know some input parameters of the investigated system or process. We can meet similar task dur-
ing setting up a mathematical model for system or process simulation. The correct identification
of optimal set of required input parameters is an important and hard engineering task.

On the other hand, during technical education it is a very difficult and essential task to develop
good logical engineering thinking of students or pupils. One main part of this thinking is to
determine the optimal set of required input parameters of the calculation task mentioned above.

The main aim of this paper is to show a logical tree method to determine required parameters
of a mathematical model or an engineering calculation. This method gives a lively description
about needed data base, and computational sequence for us to get to determine the required output

∗Corresponding author
Email address: pokoradi.laszlo@bgk.uni-obuda.hu (László Pokorádi)

László Pokorádi / Theory and Applications of Mathematics & Computer Science 5 (1) (2014) 20–28 21

parameter. As the flow chart emphasizes the main steps of a calculation task, the proposed logical
tree demonstrates the interdependencies and interrelations of variables. To choose a set of required
parameters, firstly we should have an applicable equation to calculate the output parameter of the
system that is a dependent variable of its model. Knowing this adaptable equation we can face the
next question: How can we determine the independent variable(s) of the foregoing equation? And
we should ask it repeatedly. ... It is possible that we can furnish two or more answers to one of
these questions. In this case we get different required model parameter(s).

It is easily statable that we use logical inferences during determination of needed parameters
to set up and to apply a mathematical model. In the one hand we use AND logical operations if all
parameters should be known. On the other hand we use OR logical operations if we know two or
more equations to calculate a parameter.

These logical connections are used in Fault Tree Analysis to determine causes of a system
failure. The handbooks of NASA (Stamatelatos & Caraballo, 2002) and U.S. Nuclear Regulatory
Commission (Vesely et al., 1987) show theoretical background and practical questions of FTA.
There are several publications that propose reliability or safety methods based on FTA. For exam-
ple, Tchorzewska-Cieslak and Boryczko presented the methodology of the FTA and an example
of its application in order to analyze different failure scenarios in water distribution subsystem
(Tchorzewska-Cieslak & Boryczko, 2010). They concluded that the FTA is particularly useful
for the analysis of complex technical systems in which analysis of failure scenarios is a difficult
process because it requires to examine a high number of cause-effect relationship. The water dis-
tribution subsystem undoubtedly belongs to such systems. The FTA involves thinking back, which
allows the identification of failure events that cause the occurrence of the Top Event. In the case of
very large fault trees it is advisable to use computer methods (Tchorzewska-Cieslak & Boryczko,
2010) .

One of the FTA-based methods is the so-called bow-tie model that was used by Markowski and
Kotynia (Markowski & Kotynia, 2011). It consists of a Fault Tree (FT) which identifies the causes
of the undesired top event, and an Event Tree (ET) showing what is the consequence of such a
release. So, this method encompasses the complete accident scenario using a bow-tie created by a
Fault Tree and an Event Tree.

Pokorádi showed the adaptation of linear mathematical diagnostic modeling methodology for
setting-up of Linear Fault Tree Sensitivity Model (LFTSM) (Pokorádi, 2011). The LFTSM is a
modular approach tool that uses matrix-algebraic method based upon the mathematical diagnostic
methodology of aircraft systems and gas turbine engines.

The logical method being presented in this paper is an adaptation of logical construction part
of Fault Tree Analysis (FTA). This proposed method is named LogTreeMM - Logical Tree of
Mathematical Modeling.

Pokorádi and Molnár showed the methodology of the Monte-Carlo Simulation and its appli-
cability to investigate influences of fluid parameters to system losses by an easy pipeline system
model. The (basically theoretical) obtained consequents and experiences can be used for investi-
gation of parametrical uncertainties of the geothermal pipeline system, such as fluid characteris-
tics indeterminations (Pokorádi & Molnár, 2011). This simulation model is practically used for
demonstrating methodology of the proposed method.

The rest of this paper is organized as follows: Section 2 recalls the FTA methodology shortly

22 László Pokorádi / Theory and Applications of Mathematics & Computer Science 5 (1) (2014) 20–28

and the logical tree method theoretically. Section 3 presents a possibility of use of the proposed
method by a case study. Section 4 summarizes the paper, outlines the prospective scientific work
of the Author.

2. Theoretical delineation

The proposed method is an adaptation of logical construction of FTA. The FTA is a systematic,
deductive (top-down type) and probabilistic risk assessment tool, which shows the causal relations
leading to a given undesired event. Bell Telephone Laboratories developed its concept at the
beginning of the 1960s. It was adopted later and extensively applied by Boeing Company. FTA is
one of several symbolic ”analytical logic techniques” found in operations research and in system
reliability. The FTA is particularly useful for the analysis of complex technical systems where
analysis of failure scenarios is a difficult process because it requires the examination of a high
number of cause-effect relationships.

Fault Tree diagram displays on undesired state of the investigated system (Top Event) in terms
of the states of its components (Basic Events). The FTA is a graphical design technique main
result of which is a graph that has a dendritic structure.

The first step in a FTA is the selection of the Top Event that is a specific undesirable state or
failure of a system.

After having analyzed the system so that we know all the causing effects we can construct the
fault tree. Fault tree is based on AND and OR gates, which define the major characteristics of the
fault tree.

The AND logical gate (Table 1) should be used if output event occurs only if all input events
occur simultaneously. If the output event occurs if any of the input events occur, either alone or in
any combinations, the OR logical gate (Table 1) should be used.

The Figure 1 shows a demonstrative Fault Tree. In the figure event B or C fail is Intermediate
Event. The events A; B and C are Basic Events.

(After having the fault tree of the investigated undesired event, the probability of the Top Event
can be analyzed depending of the probability of Basic Events. But it is not interesting in this study.)

The proposed method is analog with the above reviewed FTA technique. To construct LogTreeMM
the following definitions are used:

A parameter can be known directly when
- its value is well-known (for example material characteristics);
or.
- it can be determined by direct measurement (for example internal diameter of a tube).

Let a variable be named Top Parameter if it should be determined but it is not used to calculate
other one(s) in the investigated situation (is not an intermediate parameter).

Let a variable be called Intermediate Parameter if it has be known to calculate other one(s) but
it cannot be known directly.

László Pokorádi / Theory and Applications of Mathematics & Computer Science 5 (1) (2014) 20–28 23

Figure 1. A Fault Tree (source: (Stamatelatos & Caraballo, 2002)).

Table 1
Symbols and Analogies between FTA and LogTreeMM
Symbol FTA LogTreeMM

Top Event Top Parameter

Intermediate Event Intermediate Parameter

Basic Event Basic Parameter

AND logical gate

OR logical gate

Let a variable be named Base Parameter if
- it is known directly;
or
- it cannot be determined by any equation (relation).

Let an AND logical gate (Table 1) be used if all of the independent variables should be known
to calculate a dependent variable of the given equation (relation).

Let an OR logical gate (Table 1) be used if there are more than one equation (relation) on even
terms to calculate the given dependent variable.

Table 1 demonstrates symbols used in FTA and LogTreeMM, as well as the analogies between
their events and gates.

3. Case Study

To demonstrate step by step the logical tree method introduced above, we show a case study
based on the simulation model presented in [3]. The study aimed the investigation of influences of

24 László Pokorádi / Theory and Applications of Mathematics & Computer Science 5 (1) (2014) 20–28

fluid parameters to system losses in case of an easy pipeline system model. (Further on let the i-th
logical gate be labeled by /i/.)

The illustrative system consisted of one lineal pipe and only one pipe fitting. The ∆p pressure
loss of this pipeline system as the Top Parameter can be determined by the equation

∆p = ∆pcs + ∆psz (3.1)

where:
∆pcs pressure loss of linear pipe;
∆psz pressure loss of pipe fitting.

Thus two parameters (∆pcs AND ∆psz) should be known, which is shown by the AND gate of
Figure 2. However, we do not know them directly. They are symbolized by rectangles, because
they are Intermediate Elements of our investigation.

Figure 2. Logical Gate /1/ for Equation (3.1).

On the second level, the certain two structural elements (lineal pipe and pipe fitting) should be
investigated. In the left branch, the pipe loss of linear pipe can be calculated by the equation

∆pcs =
ρ

2
c2 l

d
λ (3.2)

Figure 3. Logical Gate /2/ for Equation (3.2).

For that we should know fluid density ρ AND average fluid velocity c AND tube length l AND
internal diameter d AND pipe loss coefficient λ. This logical sequence is shown by AND gate in
Figure 3.

Except of the pipe lost coefficient (the rectangle shows that it is an Intermediate Parameter) all
parameters can be determined directly (they are Basic Parameters), therefore they are shown by
circles in Figure 3.

László Pokorádi / Theory and Applications of Mathematics & Computer Science 5 (1) (2014) 20–28 25

The pipe loss coefficient can be determined, depending only on Reynolds-number Re that
cannot be determined directly (see Figure 4), by empirical equations in case of different Reynolds-
number intervals:

Re < 2320 :
λ =

64
Re

(3.3)

2320 < Re < 8 104 :
λ =

0.316
4
√

Re
(3.4)

2 104 < Re < 2 106 :
λ = 0.0054 + 0.396 Re−0.3 (3.5)

105 < Re < 108 :
λ = 0.0032 + 0.211 Re−0.337 (3.6)

Figure 4. Connection of Equations (3.3) - (3.6).

For determination of the Reynolds-number Re the following equation should be used

Re =
c d
ν

(3.7)

For that we should know the average fluid velocity c AND the internal diameter d AND the
kinematic viscosity of the fluid ν (they can be determined directly in other words, they are Basic
Parameters).

Figure 5. Logical Gate /4/ for Equation (3.7).

In the right branch of the second level, the loss pressure of pipe fitting can be determined by
any of the following two equations

∆psz =
ρ

2
c2ξ (3.8)

26 László Pokorádi / Theory and Applications of Mathematics & Computer Science 5 (1) (2014) 20–28

∆psz =
ρ

2
c2 le

d
λ (3.9)

It is represented by the OR logical gate /3/ in Figure 6.

Figure 6. Logical Gate /3/.

In case of Equation (3.8), we need to know fluid density ρ AND average fluid velocity c AND
pipe fitting loss coefficient ξ (see Figure 7).

Figure 7. Logical Gate /3 − 5/ for Equation (3.8).

If the Equation (3.9) is used, the following parameters have to be known: fluid density ρ AND
average fluid velocity c AND equivalent pipe length of pipe fitting le AND internal diameter of
tube d AND pipe loss coefficient of tube λ (see Figure 8). The ”equivalent pipe length” is length
of given pipe, of which loss is equal to the loss of investigated pipe fitting in case of equal average
fluid velocity.

Figure 8. Logical Gate /3-6/ of Equation (3.9).

Assembling of the Figures 2 - 8, we get the logical tree of the illustrative model that is repre-
sented in Figure 9.

László Pokorádi / Theory and Applications of Mathematics & Computer Science 5 (1) (2014) 20–28 27

The sets of needed input parameters can be determined easily by investigating of the Logical
Tree. For this purpose the subsets of the known parameters of the logical gates should be deducted
first. In our case:

x1 = � (3.10)

x2 = {ρ; c; l; d} (3.11)

x3 = � (3.12)

x4 = {c; d; ν} (3.13)

x3−5 = {ρ; c; ξ} (3.14)

x3−6 = {ρ; c; le; d} (3.15)

Figure 9. Logical Tree of the Case Study.

Knowing the subsets and the structure of the logical tree the possible sets of the needed param-
eters can be determined. The tree includes one two-input OR gate, therefore two sets of needed
parameters can be identified:

xA = x2 ∪ x4 ∪ x3−5 = {ρ; c; l; d; ν; ξ} (3.16)

xA = x2 ∪ x4 ∪ x3−6 = {ρ; c; l; d; ν; le} (3.17)

28 László Pokorádi / Theory and Applications of Mathematics & Computer Science 5 (1) (2014) 20–28

It means that we should know either parameters from set xA or from set xB to set up and apply
the mathematical model of the illustrative engineering problem. Fundamentally, the set xA set was
applied in the publication (Pokorádi & Molnár, 2011).

4. Conclusion

A logical tree method has been developed for the determination of possible sets of needed pa-
rameters for setting up of a mathematical model or solving an engineering calculation task. The
method that named LogTreeMM is theoretically analogous with the Fault Tree Analysis used in
system reliability assessment and quality management. The determined logical trees or their parts
can be used as blocks to describe the required parameters in complex engineering calculation. In
the education the LogTreeMM method can be used for developing of logical engineering thinking
of students or pupils.

The Authors prospective scientific research related to this field of applied mathematics and
engineering education includes the study of methodologies regarding technical system modeling
and its decision making application in field of technical management.

References

Markowski, Adam S. and Agata Kotynia (2011). ”Bow-tie” model in layer of protection analysis. Process Safety and
Environmental Protection 89(4), 205 – 213.

Pokorádi, L. (2011). Sensitivity investigation of fault tree analysis with matrix-algebraic method. Theory and Appli-
cations of Mathematics and Computer Science 1(1), 34–44.

Pokorádi, L. and B. Molnár (2011). Monte-Carlo simulation of the pipeline system to investigate water temperature’s
effects. Polytechnical University of Bucharest. Scientific Bulletin. Series D: Mechanical Engineering 73(4), 223–
236.

Stamatelatos, M. and J. Caraballo (2002). Fault Tree Handbook with Aerospace Applications, Office of safety and
mission assurance NASA headquarters. NASA: Washington DC.

Tchorzewska-Cieslak, B. and K. Boryczko (2010). Relaxed LMI conditions for closed-loop fuzzy systems with tensor-
product structure. Engineering Applications of Artificial Intelligence pp. 309–320.

Vesely, W.E., Goldberg F.F., Norman R. and Haasl D. (1987). Fault tree handbook, Government Printing Office.
Government Printing Office: Washington DC.

Theory and Applications of Mathematics & Computer Science 5(1) (2015) 29–36

Luhn Prime Numbers

Octavian Ciraa,∗, Florentin Smarandacheb

aDepartment of Mathematics and Computer Science, ”Aurel Vlaicu” University of Arad, România.
bMathematics& Science Department, University of New Mexico, USA.

Abstract

The first prime number with the special property that its addition with reversal gives as result a prime number too
is 229. The prime numbers with this property will be calledLuhn prime numbers. In this article we intend to present
a performing algorithm for determining theLuhn prime numbers. Using the presented algorithm all the 50598Luhn
prime numbershave been, forp prime smaller than 2· 107.

Keywords: Prime numbers, Reversal number, Smarandache’s function, Luhn prime numbers.
2010 MSC:11B83.

1. Introduction

The number 229 is the smallest prime number that added with his reverse gives as result a
prime number, too. As 1151= 229+ 922 is prime.

The first that noted this special property the number 229 has,was Norman Luhn (after 9 Febru-
ary 1999), on thePrime Curioswebsite (Caldwell & Honacher Jr., 2014). The prime numbers with
this property will be later calledLuhn prime numbers.

In the Whats Special About This Number?list (Friedman, 2014), a list that contains all the
numbers between 1 and 9999; beside the number 229 is mentioned that his most important property
is that, adding with reversal the resulting number is prime too.

The On-Line Encyclopedia of Integer Sequences, (Sloane, 2014, A061783), presents a list
1000Luhn prime numbers. We owe this list to Harry J. Smith, since 28 July 2009. On the same
website it is mentioned that Harvey P. Dale published on 27 November 2010 a list that contains
3000Luhn prime numbersand Bruno Berselli published on 5 August 2013 a list that contains 2400
Luhn prime numbers.

∗Corresponding author
Email addresses:octavian.cira@uav.ro (Octavian Cira),fsmarandache@gmail.com (Florentin

Smarandache)

tamcslogo.eps

30 O. Cira and F. Smarandache/ Theory and Applications of Mathematics& Computer Science 5 (1) (2014) 29–36

2. Smarandache’s function

The functionµ : N∗ → N
∗, µ(n) = m, wherem is the smallest natural number with the property

that n dividesm! (or m! is a multiple ofn) is know in the specialty literature as Smarandache’s
function, (Smarandache, 1980, 1999; Sondow & Weisstein, 2014). The values resulting from
n = 1, 2, . . . , 18 are: 1, 2, 3, 4, 5, 3, 7, 4, 6, 5, 11, 4, 13, 7, 5, 6, 17, 6. These values were obtained
with an algorithm that results fromµ’s definition. The program using this algorithm cannot be used
for n ≥ 19 because the numbers 19!, 20!, . . . are numbers which exceedthe 17 decimal digits limit
and the classic computing model (without the arbitrary precisions arithmetic (Uznanski, 2014))
will generate errors due to the way numbers are represented in the computers memory.

3. Kempner’s algorithm

Kempner created an algorithm to calculateµ(n) using classical factorizationn = pp1

1 ·p
p2

2 · · · p
ps
s ,

prime number and the generalized numeration base (αi)[pi] , for i = 1, s, (Kempner, 1918). Partial
solutions to the algorithm forµ(n)’s calculation have been given earlier by Lucas and Neuberg,
(Sondow & Weisstein, 2014).

Remark.If n ∈ N
∗, n can be decomposed in a product of prime numbersn = pα1

1 · pα2
2 · · · p

αs
s ,

werepi are prime numbers so thatp1 < p2 < . . . < ps, ands ≥ 1, thus Kempner’s algorithm for
calculating theµ function is.

µ(n) = max
{

p1 ·
(

α1[p1]

)

(p1)
, p2 ·

(

α2[p2]

)

(p2)
, . . . , ps ·

(

αs[ps]

)

(ps)

}

,

where by
(

α[p]

)

(p)
we understand thatα is ”written” in the numeration basep (notedα[p]) and it is

” read” in the p numeration base (notedβ(p), wereβ = α[p]), (Smarandache, 1999, p. 39).

4. Programs

The list of prime numbers was generated by a program that usesthe Sieve of Eratosthenes
the linear version of Pritchard,Pritchard(1987), which is the fastest algorithm to generate prime
numbers until the limit ofL, if L ≤ 108. The list of prime numbers until to 2· 107 is generated in
about 5 seconds. For the limitL > 108 the fastest algorithm for generating the prime numbers is
the Sieve of Atkin,Atkin & Bernstein(2004).

Program 4.1. The Program for the Sieve of Eratosthenes, the linear version of Pritchard using
minimal memory space is:

CEPbm(L) := λ← f loor
(

L
2

)

f or k ∈ 1..λ
is primek ← 1

prime← (2 3 5 7)T

i ← last(prime) + 1
f or j ∈ 4, 7..λ

is primej ← 0

O. Cira and F. Smarandache/ Theory and Applications of Mathematics& Computer Science 5 (1) (2014) 29–36 31

k← 3
s← (primek−1)2

t ← (primek)2

while t≤ L
f or j ∈ t, t + 2 · primek..L

is primej−1
2
← 0

f or j ∈ s+ 2, s+ 4..t − 2
i f is primej−1

2
= 1

primei ← j
i ← i + 1

s← t
k← k+ 1
t ← (primek)2

f or j ∈ s+ 2, s+ 4..L
i f is primej−1

2
=1

primei ← j
i ← i + 1

return prime

Program 4.2. The factorization program of a natural number; this programuses the vector p
representing prime numbers, generated with the Sieve of Eratosthenes. The Sieve of Eratosthenes
is called upon trough the following sequence:

L := 2 · 107 t0 = time(0) p := CEPbm(L) t1 = time(1)

(t1 − t0)s= 5.064s last(p) = 1270607 plast(p) = 19999999

Fa(m) := return (”m= ” m ” > ca ultimul p2”) i f m > (plast(p))2

j ← 1
k← 0
f ← (1 1)
while m≥ p j

i f mod (m, p j)=0
k← k+ 1

m←
m
p j

otherwise
f ← stack[f , (p j, k)] i f k > 0
j ← j + 1
k← 0

f ← stack[f , (p j, k)] i f k > 0
return submatrix(f , 2, rows(f), 1, 2)

We presented the Kempner’s algorithm using Mathcad programs required for the algorithm.

32 O. Cira and F. Smarandache/ Theory and Applications of Mathematics& Computer Science 5 (1) (2014) 29–36

Program 4.3. The function counting all the digits in the p base of numeration in which is n.

ncb(n, p) := return ceil(log(n, p)) i f n > 1
return 1 otherwise

Where ceil(x) is a Mathcad function which gives the smallest integer≥ x and log(n, p) is
logarithm in base p from n.

Program 4.4. The program intended to generate the p generalized base of numeration
(

noted by
Smarandache[p]

)

for a number with m digits.

a(p,m) := f or i ∈ 1..m

ai ←
pi − 1
p− 1

return a

Program 4.5. The program intended to generate for the p base of numeration
(

noted by Smaran-
dache(p)

)

to write theα number.

b(α, p) := return (1) i f p = 1
f or i ∈ 1..ncb(α, p)

bi ← pi−1

return b

Program 4.6. Program that determines the digits of the generalized base of numeration[p] for
the number n.

Nbg(n, p) := m← ncb(n, p)
a← a(p,m)
return (1) i f m=0
f or i ∈ m..1

ci ← trunc

(

n
ai

)

n← mod (n, ai)
return c

Where trunc(x) returns the integer part of x by removing the fractional part, and mod(x, y) returns
the remainder on dividing x by y (x modulo y).

Program 4.7. Program for Smarandache’s function.

µ(n) := return ”Err. n nu este intreg” i f n , trunc(n)
return ”Err. n < 1” i f n < 1
return (1) i f n=1
f ← Fa(n)
p← f 〈1〉

α← f 〈2〉

f or k = 1..rows(p)
ηk ← pk · Nbg(αk, pk) · b(αk, pk)

return max(η)

O. Cira and F. Smarandache/ Theory and Applications of Mathematics& Computer Science 5 (1) (2014) 29–36 33

This program calls theFa(n) factorization with prime numbers. The program uses the Smaran-
dache’s Remark3 – about the Kempner algorithm. Theµ.prn file generation is done once. The
reading of this generated file in Mathcad’s documents results in a great time–save.

Program 4.8. Program with which the fileµ.prn is generated

VFµ(N) := µ1← 1
f or n ∈ 2..N
µn← µ(n)

returnµ

This program calls the program4.7 for calculating the value of theµ function. The sequence of
theµ.prn file generation is:

t0 := time(0) WRITEPRN(”µ.prn”) := VFµ(2 · 107) t1 := time(1)

(t1 − t0)sec= ”5 : 17 : 32.625”hhmmss

Smarandache’s function is important because it characterizes prime numbers – through the
following fundamental property:

Theorem 4.9. Let be p an integer> 4, than p is prime number if and only ifµ(p) = p.

Proof. See (Smarandache, 1999, p. 31).

Hence, the fixed points of this function are prime numbers (towhich is added 4). Due to this
property the function is used as primality test.

Program 4.10. Program for testingµ’s primality. This program returns the 0 value if the number
is not prime number and the 1 value if the number is a prime. Thefile µ.prn will be read and it
will be assigned to theµ vector.

ORIGIN := 1 µ := READPRN(” . . . \µ.prn”)

T pµ(n) := return ”Err. n < 1 sau n< Z” i f n < 1∨ n , trunc(n)
i f n > 4

return 0 i f µn , n
return 1 otherwise

otherwise
return 0 i f n=1∨ n=4
return 1 otherwise

Program 4.11. Program that provides the reveres of the given m number.

34 O. Cira and F. Smarandache/ Theory and Applications of Mathematics& Computer Science 5 (1) (2014) 29–36

R(m) := n← f loor(log(m))
x← m · 10−n

f or k ∈ 1..n
ck ← trunc(x)
x← (x− ck) · 10

cn+1← round(x)
Rm← 0
f or k ∈ n+ 1..2

Rm← (Rm+ ck) · 10
return Rm+ c1

Where f loor(x) returns the greatest integer≤ x and round(x) returns x rounded to the nearest
integer.

Program 4.12. Search program for theLuhn prime numbers.

PLuhn(L) := n← last(p)
S← (229)
k← 51
while pk ≤ L

N← R(pk) + pk

S← stack(S, pk) i f T pµ(N) = 1
k← k+ 1

return S

The function stack(A, B, . . .) is applied for merging matrixes top-down. The number of columns in
matrixes should also be the same. The discussed functions could be applied to vectors as well.

Execution of the programPLuhnwas made with sequence

S := PLuhn(2 · 107)

The initialization of theS stack is done with the vector that contains the number 229. The
variablek has the initial value of 51 because the index of the 229 prime number is 50, so that the
search for theLuhn prime numberswill begin with p51 = 233.

5. List of prime numbers Luhn

We present a partial list of the 50598Luhn prime numberssmaller than 2· 107 (the first 321
and the last 120):
229, 239, 241, 257, 269, 271, 277, 281, 439, 443, 463, 467, 479, 499, 613, 641, 653, 661, 673, 677,
683, 691, 811, 823, 839, 863, 881, 20011, 20029, 20047, 20051, 20101, 20161, 20201, 20249,
20269, 20347, 20389, 20399, 20441, 20477, 20479, 20507, 20521, 20611, 20627, 20717, 20759,
20809, 20879, 20887, 20897, 20981, 21001, 21019, 21089, 21157, 21169, 21211, 21377, 21379,
21419, 21467, 21491, 21521, 21529, 21559, 21569, 21577, 21601, 21611, 21617, 21647, 21661,

O. Cira and F. Smarandache/ Theory and Applications of Mathematics& Computer Science 5 (1) (2014) 29–36 35

21701, 21727, 21751, 21767, 21817, 21841, 21851, 21859, 21881, 21961, 21991, 22027, 22031,
22039, 22079, 22091, 22147, 22159, 22171, 22229, 22247, 22291, 22367, 22369, 22397, 22409,
22469, 22481, 22501, 22511, 22549, 22567, 22571, 22637, 22651, 22669, 22699, 22717, 22739,
22741, 22807, 22859, 22871, 22877, 22961, 23017, 23021, 23029, 23081, 23087, 23099, 23131,
23189, 23197, 23279, 23357, 23369, 23417, 23447, 23459, 23497, 23509, 23539, 23549, 23557,
23561, 23627, 23689, 23747, 23761, 23831, 23857, 23879, 23899, 23971, 24007, 24019, 24071,
24077, 24091, 24121, 24151, 24179, 24181, 24229, 24359, 24379, 24407, 24419, 24439, 24481,
24499, 24517, 24547, 24551, 24631, 24799, 24821, 24847, 24851, 24889, 24979, 24989, 25031,
25057, 25097, 25111, 25117, 25121, 25169, 25171, 25189, 25219, 25261, 25339, 25349, 25367,
25409, 25439, 25469, 25471, 25537, 25541, 25621, 25639, 25741, 25799, 25801, 25819, 25841,
25847, 25931, 25939, 25951, 25969, 26021, 26107, 26111, 26119, 26161, 26189, 26209, 26249,
26251, 26339, 26357, 26417, 26459, 26479, 26489, 26591, 26627, 26681, 26701, 26717, 26731,
26801, 26849, 26921, 26959, 26981, 27011, 27059, 27061, 27077, 27109, 27179, 27239, 27241,
27271, 27277, 27281, 27329, 27407, 27409, 27431, 27449, 27457, 27479, 27481, 27509, 27581,
27617, 27691, 27779, 27791, 27809, 27817, 27827, 27901, 27919, 28001, 28019, 28027, 28031,
28051, 28111, 28229, 28307, 28309, 28319, 28409, 28439, 28447, 28571, 28597, 28607, 28661,
28697, 28711, 28751, 28759, 28807, 28817, 28879, 28901, 28909, 28921, 28949, 28961, 28979,
29009, 29017, 29021, 29027, 29101, 29129, 29131, 29137, 29167, 29191, 29221, 29251, 29327,
29389, 29411, 29429, 29437, 29501, 29587, 29629, 29671, 29741, 29759, 29819, 29867, 29989,
. . .
8990143, 8990209, 8990353, 8990441, 8990563, 8990791, 8990843, 8990881, 8990929, 8990981,
8991163, 8991223, 8991371, 8991379, 8991431, 8991529, 8991553, 8991613, 8991743, 8991989,
8992069, 8992091, 8992121, 8992153, 8992189, 8992199, 8992229, 8992259, 8992283, 8992483,
8992493, 8992549, 8992561, 8992631, 8992861, 8992993, 8993071, 8993249, 8993363, 8993401,
8993419, 8993443, 8993489, 8993563, 8993723, 8993749, 8993773, 8993861, 8993921, 8993951,
8994091, 8994109, 8994121, 8994169, 8994299, 8994463, 8994473, 8994563, 8994613, 8994721,
8994731, 8994859, 8994871, 8994943, 8995003, 8995069, 8995111, 8995451, 8995513, 8995751,
8995841, 8995939, 8996041, 8996131, 8996401, 8996521, 8996543, 8996651, 8996681, 8996759,
8996831, 8996833, 8996843, 8996863, 8996903, 8997059, 8997083, 8997101, 8997463, 8997529,
8997553, 8997671, 8997701, 8997871, 8997889, 8997931, 8997943, 8997979, 8998159, 8998261,
8998333, 8998373, 8998411, 8998643, 8998709, 8998813, 8998919, 8999099, 8999161, 8999183,
8999219, 8999311, 8999323, 8999339, 8999383, 8999651, 8999671, 8999761, 8999899, 8999981 .

6. Conclusions

The list of all Luhn prime numbers, that totalized 50598 numbers, was determined within a
time span of 54 seconds, on an Intel processor of 2.20 GHz.

References

Atkin, A. O. L. and D. J. Bernstein (2004). Prime Sieves UsingBinary Quadratic Forms.Math. Comp.73, 1023–1030.

Caldwell, Ch. K. and G. L. Honacher Jr. (2014). Prime Curios!The Dictionary of Prime Number Trivia.

Friedman, E. (2014). What’s Special About This Number? From: Erich’s Place.

36 O. Cira and F. Smarandache/ Theory and Applications of Mathematics& Computer Science 5 (1) (2014) 29–36

Kempner, A. J. (1918). Miscellanea.Amer. Math. Monthly25, 201–210.

Pritchard, P. (1987). Linear prime number sieves: a family tree.Sci. Comp. Prog.9(1), 17–35.

Sloane, N. J. A (2014). Primes p such that p+ (p reversed) is also a prime. From: The On-Line Encyclopediaof
Integer Sequences.

Smarandache, F. (1980). O nouă funcţie ı̂n teoria analitică a numerelor.An. Univ. TimişoaraXVIII(fasc. 1), 79–88.

Smarandache, F. (1999).Asupra unor noi funcţii ı̂n teoria numerelor. Universitatea de Stat Moldova. Chişinău, Re-
publica Moldova.

Sondow, J. and E. W. Weisstein (2014). Smarandache Function.

Uznanski, D. (2014). Arbitrary precision.

Theory and Applications of Mathematics & Computer Science 5 (1) (2015) 37–52

The Applicability of $-Calculus to Solve Some Turing Machine
Undecidable Problems

Eugene Eberbacha,∗

aDepartment of Engineering and Science, Rensselaer Polytechnic Institute,
Hartford, 275 Windsor Street, CT 06120, United States.

Abstract
The $-calculus process algebra for problem solving applies the cost performance measures to converge in finite

time or in the limit to optimal solutions with minimal problem solving costs. The $-calculus belongs to superTuring
models of computation. Its main goal is to provide the support to solve hard computational problems. It allows also
to solve in the limit some undecidable problems. In the paper we demonstrate how to solve in the limit Turing Ma-
chine Halting Problem, to approximate the universal search algorithm, to decide diagonalization language, nontrivial
properties of recursively enumerable languages, and how to solve Post Correspondence Problem and Busy Beaver
Problem.

Keywords: problem solving, hypercomputation, expressiveness, superTuring models of computation, resource
bounded computation, process algebras, $-calculus.
2010 MSC: primary classification: 68Qxx, 68Txx.
2012 CCS: primary classification: Theory of computation, mathematics of computing. Secondary classifications:
models of computation, Turing machines, concurrency, process calculi, formal languages and automata theory,
formalisms, automata over infinite objects, mathematical optimization, discrete optimization.

1. Introduction

In this paper, the expressiveness of the $-calculus process algebra of bounded rational agents
(Eberbach, 1997, 2005a, 2006, 2007) is investigated. The $-calculus, presented in this paper,
belongs to superTuring models of computation and provides a support to handle intractability and
undecidability in problem solving. In the paper, we present the applicability of $-calculus to solve
(in hypercomputational sense) some undecidable problems.

The paper is organized as follows. In section 2, we briefly recall some basic notions related
to Turing machine problem solving and hypercomputation. In section 3, we outline the $-calculus

∗Corresponding author
Email address: eberbe@rpi.edu (Eugene Eberbach)

38 Eugene Eberbach / Theory and Applications of Mathematics & Computer Science 5 (1) (2015) 37–52

process algebra of bounded rational agents. In section 4, we present the solution of the halting
problem of Universal Turing Machine, and approximate solution of the universal search algo-
rithm. In section 5, other TM unsolvable problems are investigated, including the diagonalization
language, nontrivial properties of recursively enumerable languages, Post Correspondence Prob-
lem and Busy Beaver Problem. Section 6 contains conclusions.

2. Problem Solving in Turing Machines and Hypercomputation

Turing Machines (TMs) (Turing, 1937, 1939) and algorithms are two fundamental concepts of
computer science and problem solving. Turing Machines describe the limits of problem solving
using conventional recursive algorithms, and laid the foundation of current computer science in
the 1960s.

Note that there are several other models of algorithms, called super-recursive algorithms,
that can compute more than Turing Machines, using hypercomputational/superTuring models
of computation (Burgin, 2004; Syropoulos, 2007). The battle between reductionists (believing
in strong Church-Turing Thesis and “unsinkability” of Turing machine model) and remodelers
(hyper-computationalists trying to develop new super-Turing models of computation for solution
of Turing Machine undecidable problems) is not over, however shifting gradually in favor of hyper-
computationalists (Aho, 2011; Cooper, 2012; Wegner et al., 2012).

It turns out that (TM) undecidable problems cannot be solved by TMs and intractable problems
are solvable, but require too many resources (e.g., steps or memory). For undecidable problems
effective recipes do not exist - problems are called nonalgorithmic or nonrecursive. On the other
hand, for intractable problems algorithms exist, but running them on a deterministic Turing Ma-
chine, requires an exponential amount of time (the number of elementary moves of the TM) as a
function of the TM input.

We use the simplicity of the TM model to prove formally that there are specific problems
(languages) that the TM cannot solve (Hopcroft et al., 2001). Solving the problem is equivalent
to decide whether a string belongs to the language. A problem that cannot be solved by computer
(Turing machine) is called undecidable (TM-undecidable). The class of languages accepted by
Turing machines are called recursively enumerable (RE-) languages. For RE-languages, TM can
accept the strings in the language but cannot tell for certain that a string is not in the language.

There are two classes of Turing machine unsolvable languages (problems):

recursively enumerable RE but not recursive - TM can accept the strings in the language but
cannot tell for certain that a string is not in the language (e.g., the language of the universal
Turing machine, or Post’s Correspondence Problem language). A language is decidable but
its complement is undecidable, or vice versa: a language is undecidable but its complement
is decidable.

non-RE - no TM can even recognize the members of the language in the RE sense (e.g., the
diagonalization language). Neither a language nor its complement is decidable.

Decidable problems have a (recursive) algorithm, i.e., TM halts whether or not it accepts its input.
Decidable problems are described by recursive languages. Algorithms as we know are associated

Eugene Eberbach / Theory and Applications of Mathematics & Computer Science 5 (1) (2015) 37–52 39

with the class of recursive languages, a subset of recursively enumerable languages for which we
can construct its accepting TM. For recursive languages, both a language and its complement are
decidable.

Turing Machines are used as a formal model of classical (recursive) algorithms. An algorithm
should consist of a finite number of steps, each having well defined and implementable meaning.
We are convinced that computer computations are not restricted to such restrictive definition of
algorithms only.

Definition 2.1. By superTuring computation (also called hypercomputation) we mean any compu-
tation that cannot be carried out by a Turing Machine as well as any (algorithmic) computation
carried out by a Turing Machine.

In (Eberbach & Wegner, 2003; Eberbach et al., 2004), several superTuring models have been
discussed and overviewed. The incomplete list includes Turing’s o-machines, c-machines and u-
machines, cellular automata, discrete and analog neural networks, Interaction Machines, Persistent
Turing Machines, Site and Internet Machines, the π-calculus, the $-calculus, Inductive Turing
Machines, Infinite Time Turing Machines, Accelerating Turing Machines and Evolutionary Turing
Machines. In particular, the author proposed two superTuring models of computation: the $-
Calculus (Eberbach, 2005a, 2007) and Evolutionary Turing Machine (Eberbach, 2005b; Eberbach
& Burgin, 2009).

SuperTuring models derive their higher than the TM expressiveness using three principles:
interaction, evolution, or infinity. In the interaction principle the model becomes open and the
agent interacts with either a more expressive component or with an infinite many components.
In the evolution principle, the model can evolve to a more expressive one using non-recursive
variation operators. In the infinity principle, models can use unbounded resources: time, memory,
the number of computational elements, an unbounded initial configuration, an infinite alphabet,
etc. The details can be found in (Eberbach & Wegner, 2003; Eberbach et al., 2004).

3. The $-Calculus Algebra of Bounded Rational Agents

The $-calculus is a mathematical model of processes capturing both the final outcome of prob-
lem solving as well as the interactive incremental way how the problems are solved. The $-calculus
is a process algebra of Bounded Rational Agents for interactive problem solving targeting in-
tractable and undecidable problems. It has been introduced in the late of 1990s (Eberbach, 1997,
2005a, 2007). The $-calculus (pronounced cost calculus) is a formalization of resource-bounded
computation (also called anytime algorithms), proposed by Dean, Horvitz, Zilberstein and Russell
in the late 1980s and early 1990s (Horvitz & Zilberstein, 2001; Russell & Norvig, 2002). Anytime
algorithms are guaranteed to produce better results if more resources (e.g., time, memory) become
available. The standard representative of process algebras, the π-calculus (Milner et al., 1992;
Milner, 1999) is believed to be the most mature approach for concurrent systems.

The $-calculus rests upon the primitive notion of cost in a similar way as the π-calculus was
built around a central concept of interaction. Cost and interaction concepts are interrelated in the
sense that cost captures the quality of an agent interaction with its environment. The unique feature
of the $-calculus is that it provides a support for problem solving by incrementally searching for

40 Eugene Eberbach / Theory and Applications of Mathematics & Computer Science 5 (1) (2015) 37–52

solutions and using cost to direct its search. The basic $-calculus search method used for problem
solving is called kΩ-optimization. The kΩ-optimization represents this “impossible” to construct,
but “possible to approximate indefinitely” universal algorithm. It is a very general search method,
allowing the simulation of many other search algorithms, including A*, minimax, dynamic pro-
gramming, tabu search, or evolutionary algorithms. Each agent has its own Ω search space and its
own limited horizon of deliberation with depth k and width b. Agents can cooperate by selecting
actions with minimal costs, can compete if some of them minimize and some maximize costs, and
be impartial (irrational or probabilistic) if they do not attempt optimize (evolve, learn) from the
point of view of the observer. It can be understood as another step in the never ending dream of uni-
versal problem solving methods recurring throughout all computer science history. The $-calculus
is applicable to robotics, software agents, neural nets, and evolutionary computation. Potentially
it could be used for design of cost languages, cellular evolvable cost-driven hardware, DNA-based
computing and molecular biology, electronic commerce, and quantum computing. The $-calculus
leads to a new programming paradigm cost languages and a new class of computer architectures
cost-driven computers.

3.1. The $-Calculus Syntax
In $-calculus everything is a cost expression: agents, environment, communication, interac-

tion links, inference engines, modified structures, data, code, and meta-code. $-expressions can be
simple or composite. Simple $-expressions α are considered to be executed in one atomic indivis-
ible step. Composite $-expressions P consist of distinguished components (simple or composite
ones) and can be interrupted.

Definition 3.1. The $-calculus The set P of $-calculus process expressions consists of simple
$-expressions α and composite $-expressions P, and is defined by the following syntax:

α ::= ($i∈I Pi) cost
| (→i∈I c Pi) send Pi with evaluation through channel c
| (←i∈I c Xi) receive Xi from channel c
| (′i∈I Pi) suppress evaluation of Pi

| (ai∈I Pi) defined call of simple $-expression a with parameters Pi, and
and its optional associated definition (:= (ai∈I Xi) < R >)
with body R evaluated atomically

| (āi∈I Pi) negation of defined call of simple $-expression a

P ::= (◦ i∈I α Pi) sequential composition
| (‖ i∈I Pi) parallel composition
| (∪∪ i∈I Pi) cost choice
| (∪+ i∈I Pi) adversary choice
| (ti∈I Pi) general choice
| (fi∈I Pi) defined process call f with parameters Pi, and its associated

definition (:= (fi∈I Xi) R) with body R (normally
suppressed); (1 R) will force evaluation of R exactly once

Eugene Eberbach / Theory and Applications of Mathematics & Computer Science 5 (1) (2015) 37–52 41

The indexing set I is a possibly countably infinite. In the case when I is empty, we write empty
parallel composition, general, cost and adversary choices as ⊥ (blocking), and empty sequential
composition (I empty and α = ε) as ε (invisible transparent action, which is used to mask, make
invisible parts of $-expressions). Adaptation (evolution/upgrade) is an essential part of $-calculus,
and all $-calculus operators are infinite (an indexing set I is unbounded). The $-calculus agents
interact through send-receive pair as the essential primitives of the model.

Sequential composition is used when $-expressions are evaluated in a textual order. Parallel
composition is used when expressions run in parallel and it picks a subset of non-blocked elements
at random. Cost choice is used to select the cheapest alternative according to a cost metric. Ad-
versary choice is used to select the most expensive alternative according to a cost metric. General
choice picks one non-blocked element at random. General choice is different from cost and adver-
sary choices. It uses guards satisfiability. Cost and adversary choices are based on cost functions.
Call and definition encapsulate expressions in a more complex form (like procedure or function
definitions in programming languages). In particular, they specify recursive or iterative repetition
of $-expressions.

Simple cost expressions execute in one atomic step. Cost functions are used for optimization
and adaptation. The user is free to define his/her own cost metrics. Send and receive perform
handshaking message-passing communication, and inferencing. The suppression operator sup-
presses evaluation of the underlying $-expressions. Additionally, a user is free to define her/his
own simple $-expressions, which may or may not be negated.

3.2. The $-Calculus Semantics: The kΩ-Search
In this section we define the operational semantics of the $-calculus using the kΩ-search that

captures the dynamic nature and incomplete knowledge associated with the construction of the
problem solving tree.

The basic $-calculus problem solving method, the kΩ-optimization, is a very general search
method providing meta-control, and allowing to simulate many other search algorithms, including
A*, minimax, dynamic programming, tabu search, or evolutionary algorithms (Russell & Norvig,
2002). The problem solving works iteratively: through select, examine and execute phases. In the
select phase the tree of possible solutions is generated up to k steps ahead, and agent identifies its
alphabet of interest for optimization Ω. This means that the tree of solutions may be incomplete
in width and depth (to deal with complexity). However, incomplete (missing) parts of the tree
are modeled by silent $-expressions ε, and their cost estimated (i.e., not all information is lost).
The above means that kΩ-optimization may be if some conditions are satisfied to be complete and
optimal. In the examine phase the trees of possible solutions are pruned minimizing cost of solu-
tions, and in the execute phase up to n instructions are executed. Moreover, because the $ operator
may capture not only the cost of solutions, but the cost of resources used to find a solution, we
obtain a powerful tool to avoid methods that are too costly, i.e., the $-calculus directly minimizes
search cost. This basic feature, inherited from anytime algorithms, is needed to tackle directly
hard optimization problems, and allows to solve total optimization problems (the best quality so-
lutions with minimal search costs). The variable k refers to the limited horizon for optimization,
necessary due to the unpredictable dynamic nature of the environment. The variable Ω refers to
a reduced alphabet of information. No agent ever has reliable information about all factors that

42 Eugene Eberbach / Theory and Applications of Mathematics & Computer Science 5 (1) (2015) 37–52

influence all agents behavior. To compensate for this, we mask factors where information is not
available from consideration; reducing the alphabet of variables used by the $-function. By using
the kΩ-optimization to find the strategy with the lowest $-function, meta-system finds a satisficing
solution, and sometimes the optimal one. This avoids wasting time trying to optimize behavior
beyond the foreseeable future. It also limits consideration to those issues where relevant infor-
mation is available. Thus the kΩ optimization provides a flexible approach to local and/or global
optimization in time or space. Technically this is done by replacing parts of $-expressions with
invisible $-expressions ε, which remove part of the world from consideration (however, they are
not ignored entirely - the cost of invisible actions is estimated).

The kΩ-optimization meta-search procedure can be used both for single and multiple cooper-
ative or competitive agents working online (n , 0) or offline (n = 0). The $-calculus programs
consist of multiple $-expressions for several agents.

Let’s define several auxiliary notions used in the kΩ-optimization meta-search. Let:

• A - be an alphabet of $-expression names for an enumerable universe of agent population
(including an environment, i.e., one agent may represent an environment). Let A =

⋃
i Ai,

where Ai is the alphabet of $-expression names (simple or complex) used by the i-th agent,
i = 1, 2, ...,∞. We will assume that the names of $-expressions are unique, i.e., Ai ∩ A j =

∅, i , j (this always can be satisfied by indexing $-expression name by a unique agent index.
This is needed for an agent to execute only own actions). The agent population size will be
denoted by p = 1, 2, ...,∞.

• xi[0] ∈ P - be an initial $-expression for the i-th agent, and its initial search procedure
kΩi[0].

• min($i (kΩi[t] xi[t])) - be an implicit default goal and Qi ⊆ P be an optional (explicit) goal.
The default goal is to find a pair of $-expressions, i.e., any pair (kΩi[t], xi[t]) being

min{($i (kΩi[t], xi[t])) = $1i($2i(kΩi[t]), $3i(xi[t]))},

where $3i is a problem-specific cost function, $2i is a search algorithm cost function, and $1i

is an aggregating function combining $2i and $3i. This is the default goal for total optimiza-
tion looking for the best solutions xi[t] with minimal search costs kΩi[t]. It is also possible
to look for the optimal solution only, i.e., the best xi[t] with minimal value of $i3, or the best
search algorithm kΩi[t] with minimal costs of $i2. The default goal can be overwritten or
supplemented by any other termination condition (in the form of an arbitrary $-expression
Q) like the maximum number of iterations, the lack of progress, etc.

• $i - a cost function performance measure (selected from the library or user defined). It
consists of the problem specific cost function $3i, a search algorithm cost function $2i, and
an aggregating function $1i. Typically, a user provides cost of simple $-expressions or an
agent can learn such costs (e.g., by reinforcement learning). The user selects or defines also
how the costs of composite $-expressions will be computed. The cost of the solution tree is
the function of its components: costs of nodes (states) and edges (actions). This allows to
express both the quality of solutions and search cost.

Eugene Eberbach / Theory and Applications of Mathematics & Computer Science 5 (1) (2015) 37–52 43

• Ωi ⊆ A - a scope of deliberation/interests of the i-th agent, i.e., a subset of the universe’s of
$-expressions chosen for optimization. All elements of A − Ωi represent irrelevant or un-
reachable parts of an environment, of a given agent or other agents, and will become invisible
(replaced by ε), thus either ignored or unreachable for a given agent (makes optimization
local spatially). Expressions over Ai − Ωi will be treated as observationally congruent (cost
of ε will be neutral in optimization, e.g., typically set to 0). All expressions over Ωi−Ai will
be treated as strongly congruent - they will be replaced by ε and although invisible, their
cost will be estimated using the best available knowledge of an agent (may take arbitrary
values from the cost function domain).

• bi = 0, 1, 2, ...,∞ - a branching factor of the search tree (LTS), i.e., the maximum number of
generated children for a parent node. For example, hill climbing has bi = 1, for binary tree
bi = 2, and bi = ∞ is a shorthand to mean to generate all children (possibly infinite many).

• ki = 0, 1, 2, ...,∞ - represents the depth of deliberation, i.e., the number of steps in the
derivation tree selected for optimization in the examine phase (decreasing ki prevents com-
binatorial explosion, but can make optimization local in time). ki = ∞ is a shorthand to
mean to the end to reach a goal (may not require infinite number of steps). ki = 0 means
omitting optimization (i.e., the empty deliberation) leading to reactive behaviors. Similarly,
a branching factor bi = 0 will lead to an empty deliberation too. Steps consist of multi-
sets of simple $-expressions, i.e., a parallel execution of one or more simple $-expressions
constitutes one elementary step.

• ni = 0, 1, 2, ...,∞ - the number of steps selected for execution in the execute phase. For
ni > ki steps larger than ki will be executed without optimization in reactive manner. For
ni = 0 execution will be postponed until the goal will be reached.

For the depth of deliberation ki = 0, the kΩ-search will work in the style of imperative
programs (reactive agents), executing up to ni consecutive steps in each loop iteration. For
ni = 0 search will be offline, otherwise for ni , 0 - online.

• gp, rein f , strongcon, update - auxiliary flags used in the kΩ-optimization meta-search
procedure.

Each agent has its own kΩ-search procedure kΩi[t] used to build the solution xi[t] that takes
into account other agent actions (by selecting its alphabet of interests Ωi that takes actions of
other agents into account). Thus each agent will construct its own view of the whole universe that
only sometimes will be the same for all agents (this is an analogy to the subjective view of the
“objective” world by individuals having possibly different goals and different perception of the
universe).

Definition 3.2. The kΩ-Optimization Meta-Search Procedure The kΩ- optimization meta-search
procedure kΩi[t] for the i-th agent, i = 0, 1, 2, ..., from an enumerable universe of agent population
and working in time generations t = 0, 1, 2, ... is a complex $-expression (meta-procedure) consist-
ing of simple $-expressions initi[t], seli[t], exami[t], goali[t], $i[t], complex $-expression loopi[t]
and execi[t], and constructing solutions, its input xi[t], from predefined and user defined simple

44 Eugene Eberbach / Theory and Applications of Mathematics & Computer Science 5 (1) (2015) 37–52

and complex $-expressions. For simplicity, we will skip time and agent indices in most cases if it
does not cause confusion, and we will write init, loop, sel, exam, goali and $i. Each i-th agent
performs the following kΩ-search procedure kΩi[t] in the time generations t = 0, 1, 2, ...:

(:= (kΩi[t] xi[t]) (◦ (init (kΩi[0] xi[0])) // initialize kΩi[0] and xi[0]
(loop xi[t + 1])) // basic cycle: select, examine,

) // execute
where loop meta-$-expression takes the form of the select-examine-execute cycle performing the
kΩ-optimization until the goal is satisfied. At that point, the agent re-initializes and works on a
new goal in the style of the never ending reactive program:
(:= (loop xi[t]) // loop recursive definition

(t (◦ (goali[t] (kΩi[t] xi[t])) // goal not satisfied, default goal
// min($i (kΩi[t] xi[t]))

(sel xi[t]) // select: build problem solution tree k step
// deep, b wide

(exam xi[t]) // examine: prune problem solution tree in
// cost ∪∪ and in adversary ∪+ choices

(exec (kΩi[t] xi[t])) // execute: run optimal xi n steps and
// update kΩi parameters

(loop xi[t + 1])) // return back to loop
(◦ (goali[t] (kΩi[t] xi[t])) // goal satisfied - re-initialize search

(kΩi[t] xi[t])))
)

Simple $-expressions init, sel, exam, goal with their atomicly executed bodies are defined
below. On the other hand, exec can be interrupted after each action, thus it is not atomic.

1. Initialization (:= (init (kΩi[0] xi[0])) < init body >): where init body = (◦ (←i∈I

user channel Xi) (t cond init (◦ cond init (init body))), and cond init = (t (xi[0] =

⊥) (ki = ni = 0)), and successive Xi, i = 1, 2, ... will be the following: kΩi[0] an ini-
tial meta-search procedure (default: as provided in this definition), ki, bi, ni,Ωi, Ai (defaults:
ki = bi = ni = ∞, Ωi = Ai = A); simple and complex $-expressions definitions over Ai ∪ Ωi

(default: no definitions);
initialize costs of simple $-expressions randomly and set reinforcement learning flag rein f =

1 (default: get costs of simple $-expressions from the user, rein f = 0); $i1 an aggregating
cost function (default: addition), $i2 and $i3 search and solution specific cost functions (de-
fault: a standard cost function as defined in the next section);
Qi optional goal of computation (default: min($i (kΩi[t], xi[t])));
xi[0] an initial $-expression solution (an initial state of LTS for the i-th agent) over alphabet
Ai ∪ Ωi. This resets gpi flag to 0 (default: generate xi[0] randomly in the style of genetic
programming and gpi = 1);
/* receive from the user several values for initialization overwriting possibly the defaults. If
atomic initialization fails re-initialize init. */

2. Goal (:= (goali[t] (kΩi[t] xi[t])) < goal body >): where goal body checks for the max-
imum predefined quantum of time (to avoid undecidability or too long verification) whether

Eugene Eberbach / Theory and Applications of Mathematics & Computer Science 5 (1) (2015) 37–52 45

goal state defined in the init phase has been reached. If the quantum of time expires, it
returns false ⊥.

3. Select Phase
(:= (sel xi[t]) < (t cond sel exam (◦ cond sel exam sel body)) >): where cond sel exam =

(t (ki = 0) (bi = 0)) and sel body builds the search tree with the branching factor bi and
depth ki over alphabet Ai ∪ Ωi starting from the current state xi[t]. For each state s derive
actions a being mulitsets of simple $-expressions, and arriving in a new state s′. Actions
and new states are found in two ways:

(a) if gpi flag is set to 1 - by applying crossover/mutation (in the form of send and receive
operating on LTS trees) to obtain a new state s′. A corresponding action between s
and s′ will be labeled as observationally congruent ε with neutral cost 0.

(b) if gpi flag is set to 0 - by applying inference rules of LTS to a state.
Each simple $-expression in actions is labeled
• by its name if simple $-expression belongs to Ai∪Ωi and width and depth bi,ki are

not exceeded,
• is renamed by strongly congruent ε with estimated cost if flag strongcong = 1

(default: renamed by weakly congruent ε with a neutral (zero) cost, strongcong =

0) if width bi or depth ki are exceeded /* hiding actions outside of the agent’s width
or depth search horizon, however not ignoring, but estimating their costs */.

For each new state s′ check whether width/depth of the tree is exceeded, and whether it is
a goal state. If so, s′ becomes the leaf of the tree (for the current loop cycle), and no new
actions are generated, otherwise continue to build the tree. If s′ is a goal state, label it as a
goal state.

4. Examine Phase
(:= (exam xi[t]) < (t cond sel exam (◦ cond sel exam exam body)) >): where
exam body prunes the search tree by selecting paths with minimal cost in cost choices and
with maximal cost in adversary choices. Ties are broken randomly. In optimization, simple
$-expressions belonging to Ai − Ωi treat as observationally congruent ε with neutral cost
(typically, equal to 0 like e.g., for a standard cost function) /* hiding agent’s actions outside
of its interests by ignoring their cost */.

5. Execute Phase
(:= (exec (kΩi[t] xi[t])) exec body): where exec body =

(◦ (t (◦ (ni = 0)(goal reached)(current node = lea f node with min costs)) (◦ (ni =

0)(goal reached)(execute(xi[t]))(current node = lea f node))
(◦ (ni = 0)(execute ni steps(xi[t]))
(current node = node a f ter ni actions))) update loop)
/* If ni = 0 (offline search) and no goal state has been reached in the Select/Examine phase
there will be no execution in this cycle. Pick up the most promising leaf node of the tree
(with minimal cost) for expansion, i.e., make it a current node (root of the subtree expanded
in the next cycle of the loop appended to an existing tree from the select phase, i.e., pruning
will be invalidated to accommodate eventual corrections after cost updates). If ni = 0 (of-
fline search) and a goal state has been reached in the Select/Examine phase, execute optimal

46 Eugene Eberbach / Theory and Applications of Mathematics & Computer Science 5 (1) (2015) 37–52

xi[t] up to the leaf node using a tree constructed and pruned in the Select/Examine phase,
or use LTS inference rules otherwise (for gp = 1). Make the leaf node a current node for a
possible expansion (if it is not a goal state - it will be a root of a new tree) in the next cycle
of the loop. If ni , 0 (online search), execute optimal xi[t] up to at most ni steps. Make
the last state a current state - the root of the tree expanded in the next cycle of the loop. In
execution simple $-expressions belonging to Ωi − Ai will be executed by other agents.*/
The update loop by default does nothing (executes silently ε with no cost) if update flag
is reset. Otherwise if update = 1, then it gets from the user potentially all possible up-
dates, e.g., new values of bi, ki, ni and other parameters of kΩ[t], including costs of simple
$-expressions, Ωi, goali. If update = 1 and the user does not provide own modifications
(including possible overwriting the kΩ[t]), then self-modification will be performed in the
following way. If execution was interrupted (by receiving message from the user or envi-
ronment invalidating solution found in the Select/Examine phase), then ni = 10 if ni = ∞,
or ni = ni − 1 if ni , 0, or ki = 10 if ni = 0, ki = ∞, or ki = ki − 1 if ni = 0, ki , ∞. If
execution was not interrupted increase ni = ni + 1 pending 0 < ni ≤ ki. If ni = ki increase
ki = ki + 1,bi = bi + 1. If cost of search ($2i(kΩ[t])) larger than a predefined threshold de-
crease ki and/or bi, otherwise increase it. If reinforcement learning was set up rein f = 1 in
the init phase, then cost of simple $-expressions will be modified by reinforcement learning.

The building of the LTS tree in the select phase for gpi = 0 combines imperative and rule-
based/logic styles of programming (we treat clause/production as a user-defined $-expression def-
inition and call it by its name. This is similar to Robert Kowalski’s dynamic interpretation of the
left side of a clause as the name of procedure and the right side as the body of procedure.).

In the init and exec/update phase, in fact, a new search algorithm can be created (i.e., the old
kΩ can be overwritten), and being completely different from the original kΩ-search. The original
kΩ-search in self-modication changes the values of its control parameters mostly, i.e., k, n, b, but
it could modify also goal, sel, exam, exec and $.

Note that all parameters ki, ni, Ωi, $i, Ai, andA can evolve in successive loop iterations. They
are defined as the part of the init phase, and modified/updated at the end of the Execute phase exec.
Note that they are associated with a specific choice of the meta-system: a kΩ-optimization search.
For another meta-system, different control parameters are possible.

More details on the kΩ-search, including inference rules of the Labeled Transition System, ob-
servation and strong bisimulations and congruences, necessary and sufficient conditions to solve
optimization, search optimization and total optimization problems, illustrating examples (includ-
ing simulation by kΩ-optimization of A*, Minimax, Traveling Salesman Problem, and other typi-
cal search algorithms), the details of implementations and applications, can be found in (Eberbach,
2005a, 2007).

4. The $-Calculus Expressiveness and its Support to Solve TM Undecidable Problems

To deal with undecidability, the $-calculus uses all three principles from introductory section:
the infinity, interaction, and evolution principles:

Eugene Eberbach / Theory and Applications of Mathematics & Computer Science 5 (1) (2015) 37–52 47

• infinity - because of the infinity of the indexing set I in the $-calculus operators, it is clear
that the $-calculus derives its expressiveness mostly from the infinity principle.

• interaction - if to assume that simple $-expressions may represent oracles, then the $-
calculus can represent the interaction principle. Then we define an equivalent of the oracle
as a user defined simple $-expression, that somehow in the manner of the “black-box” solves
unsolvable problems (however, we do not know how).

• evolution - the kΩ-optimization may be evolved to a new (and hopefully) more powerful
problem solving method

It is easier and “cleaner” to think about implementation of unbounded (infinitary) concepts,
than about implementation of oracles. The implementation of scalable computers (e.g., scalable
massively parallel computers or unbounded growth of Internet) allows to think about a reason-
able approximation of the implementation of infinity (and, in particular, the π-calculus, or the
$-calculus). At this point, it is not clear how to implement oracles (as Turing stated an oracle can-
not be a machine, i.e., implementable by mechanical means), and as the result, the models based
on them. One of potential implementation of oracles could be an infinite lookup table with stored
all results of the decision for TM. The quite different story is how to initialize such infinite lookup
table and how to search it effectively using for instance hash indices or B+ trees.

The expressiveness of the $-calculus is not worse than the expressiveness of Turing Machines,
i.e., it is straightforward to show how to encode λ-calculus (Church, 1936, 1941) in $-calculus
(Eberbach, 2006, 2007). In (Eberbach, 2005a) it has been demonstrated, how some other models
of computation, more expressive than Turing Machines, can be simulated in the $-calculus. This
includes the π-calculus, Interaction Machines, cellular automata, neural networks, and random
automata networks.

It is interesting that the $-calculus can solve in the limit the halting problem of the Univer-
sal Turing Machine, and approximate the solution of the halting/optimization problem of the $-
calculus. This is a very interesting result, because, if correct, besides the $-calculus, it may suggest
that a self-modifying program using infinitary means may approximate the solution of its own de-
cision (halting or optimization) problem.

4.1. Solving the Turing Machine Halting Problem and Approximating the Universal Search
Algorithm

The results from Eberbach (2006, 2007) justify that the $-calculus is more expressive than the
TM, and may represent non-algorithmic computation. In Eberbach (2006, 2007) three ways how
the $-calculus solves the halting problem of the Universal Turing Machine using either an infinity,
evolution, or interaction principle.

Theorem 4.1 (On solution of the halting problem of UTM by $-calculus (Eberbach, 2006, 2007)).
The halting problem for the Universal Turing Machine is solvable by the $-calculus.

Proof. (Outline): In the infinity principle $-calculus taking an instance of TM code and its input
runs an infinite number of steps of TM (same idea like for example in Infinite Time TM). Of course,
in infinity the answer for halting will be yes or no. It is a matter of philosophical discussion whether

48 Eugene Eberbach / Theory and Applications of Mathematics & Computer Science 5 (1) (2015) 37–52

getting a definitive answer in infinity constitutes an answer at all. In the interaction principle, $-
calculus kΩ-search gets and answer from oracle, and in the evolution principle, the TM is evolved
to TM with oracle. Assuming that a TM with an oracle can be encoded as a nonrecursive function
($-expresion) using a binary alphabet and an ordinary TM can be (of course) encoded as a binary
string, thus a simple binary mutation changing one binary input to another can convert by chance
an ordinary Turing Machine to the Turing Machine with an oracle (Turing, 1939). The probability
of such event is very small, and because nobody has implemented the Turing Machine with an
oracle (although we know what its transition function may look like - see, e.g. (Kozen, 1997)).
We may have the big problem with the recognition of this encoding, thus even if theoretically
possible, so far nobody has been able to detect the potential existence of the Turing Machine with
an oracle.

We know from the theory of computation that the search for the universal algorithm is a futile
effort. If it was not so, such algorithm could be used immediately to solve the halting problem of
TM.

We will show how the $-calculus can help potentially for the solution of the best search algo-
rithm by approximating it. The best search algorithm will be in the sense of the optimum: finding
the best-quality solutions/search algorithms for the all possible problems. The trouble and unde-
cidability is caused by the requirement to cover exactly all possible problems. The number of
possible algorithms is enumerable, however, the number of possible problems is infinite, but not
enumerable (problems/languages are all possible subsets of all algorithms), see, e.g., (Hopcroft et
al., 2001).

Theorem 4.2 (On approximating the universal search algorithm (Eberbach, 2006, 2007)). The
kΩ-optimization taking itself as its input will converge with an arbitrarily small error in finite time
to the universal search algorithm if search is complete and elitist selection strategy is used.

Proof. (Outline): In the above approach completeness guarantees that no solution will be missed
and elitist selection allows to preserve the best solution found so far. In other words, the kΩ-
search taking as its input itself, produces in the finite time better versions of itself and in infinity
reaches the optimum (pending that it exists). This allows to approximate the best search algorithm
in the finite time. In particular, this can be used for approximated solution of the UTM halting
problem.

In such way progress in mathematics or computer science (both being undecidable) is done.
Proving all theorems (existing and not derived yet) in mathematics or computer science is impossi-
ble (the Entscheidungsproblem - Hilbert’s decision problem is undecidable (Whitehead & Russell,
1910, 1912, 1913; Turing, 1937; Hopcroft et al., 2001)). However, in spite of that, new gener-
ations of mathematicians and computer scientists work and generate new theorems and improve
indefinitely the current state of art of mathematics and computer science. The famous unsolvable
Entscheidungsproblem does not prevent scientists from discovering new theorems, improving our
knowledge of mathematics, but we will never be able to write all theorems (unless to wait for
eternity).

Eugene Eberbach / Theory and Applications of Mathematics & Computer Science 5 (1) (2015) 37–52 49

4.2. Deciding the Diagonalization Language, Nontrivial Properties, Solving Post Correspondence
Problem and Busy Beaver Problem

In (Eberbach, 2003) several open problems have been posed. We will present solutions to some
of them.

The diagonalization language Ld is an example of the language that is believed even tougher
than Lu, i.e., language of UTM accepting words w for arbitrary TM M. Ld is non-RE, i.e., it does
not exist any TM accepting it.

Definition 4.1. The diagonalization language Ld consists of all strings w such that TM M whose
code is w does not accept when given w as input.

The existence of diagonalization language that cannot be accepted by any TM is proven by
diagonalization table with “dummy”, i.e., not real/true values. Of course, there are many diag-
onalization language encodings possible that depend how transitions of TMs are encoded. This
means that there are infinitely many different Ld language instances (but nobody wrote a specific
example of Ld). Solving the halting problem of UTM, can be used for a “constructive” proof of
the diagonalization language decidability demonstrating all strings belonging to the language.

Theorem 4.3 (Deciding asymptotically the diagonalization language). The diagonalization lan-
guage Ld is $-calculus asymptotically decidable pending that language of halting UTM Lu is de-
cidable.

Proof. By Theorem 4.1 we fill a characteristic vector for each TM in diagonalization table, i.e.,
for each TM Mi and for each its input string w j, i, j = 0, 1, 2, ..., we write 1 if w j is accepted
by Mi and 0 otherwise. This is always possible pending that halting of UTM is solvable. For
each Mi we look at wi (the diagonal value) and flip its bit to opposite value. Now for each wi,
i = 0, 1, 2, ..., we construct a characteristic vector for Ld. For each accepted string wi we construct
a finite automaton FAi accepting exactly one word wi (always trivially possible in finite time).
We construct an infinite parallel composition - $-calculus $-expression (‖ i FAi) and put to it an
arbitrary input string w. If (‖ i FAi) accepts w (i.e., one of FA accepts) then Ld accepts. If no FA
accepts then Ld does not accept either.

In such a way we can decide in $-calculus a language Ld that is not possible to decide in the
TM model.

In an analogous way we can decide other TM unsolvable languages/problems.
The language Lne consisting of all binary encoded TMs whose language is not empty, i.e.,

Lne = {M | L(M) , ∅} is known to be recursively enumerable but not recursive, and its complement
language Le = {M | L(M) = ∅} consisting of all binary encoded TMs whose language is empty is
known to be non recursively enumerable.

Theorem 4.4 (Deciding asymptotically Lne and Le). The languages Lne and Le are $-calculus
asymptotically decidable pending that language of halting UTM Lu is decidable.

Proof. It is enough to look at the diagonalization table found after solving UTM Lu halting prob-
lem. The rows containing at least one 1 allow to decide Lne, and complementary rows consisting
of all 0s allow to decide Le.

50 Eugene Eberbach / Theory and Applications of Mathematics & Computer Science 5 (1) (2015) 37–52

We can solve nontrivial properties (nonempty proper subsets of all RE languages), i.e., to prove
solvability of Rice theorem (Rice, 1953) using hypercomputation.

Theorem 4.5 (Deciding asymptotically nontrivial properties). Every nontrivial property is $-
calculus asymptotically decidable pending that language of halting UTM Lu is decidable.

Proof. We identify the proper subset of the rows from the diagonalization table satisfying a spe-
cific nonempty property. It is necessary to translate specific property in terms of corresponding
1s and 0s in characteristic vectors for each TM Mi (e.g., to translate which rows correspond to
the empty language, a finite language, a regular language, context-free language, context-sensitive
language).

It is also possible to decide PCP and Busy Beaver Problem.

Definition 4.2. The TM undecidable Post Correspondence Problem (PCP) (Post, 1946) asks, given
two lists of the same number of strings over the same alphabet, whether we can pick a sequence
of corresponding strings from the two lists and form the same string by concatenation.

Theorem 4.6 (Deciding asymptotically PCP). The Post Correspondence Problem is asymptoti-
cally decidable pending that language of halting UTM Lu is decidable.

Proof. As the halting or terminal state of the TM solving PCP we put the condition whether both
lists produce the same string.

Definition 4.3. The TM undecidable Busy Beaver Problem (BBP) (Rado, 1962) considers a de-
terministic 1-tape Turing machine with unary alphabet {1} and tape alphabet {1, B}, where B rep-
resents the tape blank symbol. TM starts with an initial empty tape and accepts by halting. For the
arbitrary number of states n = 0, 1, 2, ... TM tries to compute two functions: the maximum number
of 1s written on tape before halting (known as the busy beaver function Σ(n) and the maximum
number of steps before halting (known as the maximum shift function S (n).

Theorem 4.7 (Deciding asymptotically BBP). The Busy Beaver Problem is asymptotically decid-
able pending that language of halting UTM Lu is decidable.

Proof. As the halting state of the TM solving BBP we put the condition whether Σ(n) and S (n)
have been computed.

5. Conclusions

In the paper some hypercomputation solutions of Turing Machine unsolvable problems have
been presented. We demonstrate that the solution of the halting problem is like to solve polyno-
mially one NP-complete problem to resolve famous dilemma P ? = NP, i.e., it breaks the whole
hierarchical puzzle of unsolvability. Namely, solving the halting problem of UTM is pivotal to
solve many other Turing Machine unsolvable problems, including to decide the diagonalization
language, nontrivial properties, PCP and BBP.

However, hypercomputational models are still not well researched and many scientists vigor-
ously oppose the idea that computations going beyond Turing Machine are possible at all. Very

Eugene Eberbach / Theory and Applications of Mathematics & Computer Science 5 (1) (2015) 37–52 51

little is known about the hierarchy (or at least relations) between hypercomputional models. We
do not know enough about the implementability of hypercomputation at least at the level similar
to quantum computing or biomolecular computing implementations. We do not know the limits
of computability in hypercomputational models. We do not know whether such limits exist at all.
In other words, hypercomputation is in the situation similar like Turing, Church and Gödel were
in 1930s before the whole digital computers explosive growth started. Whether these hopes and
fears about hypercomputation will be materialized is a quite different story.

References

Aho, Alfred V. (2011). Ubiquity symposium: Computation and computational thinking. Ubiquity.
Burgin, M. S. (2004). Super-Recursive Algorithms (Monographs in Computer Science). SpringerVerlag.
Church, A. (1936). An unsolvable problem of elementary number theory. American Journal of Mathematics

58(2), 345–363.
Church, A. (1941). The Calculi of Lambda Conversion. Princeton, N.J., Princeton University Press. New York, NY,

USA.
Cooper, B. (2012). Turing’s titanic machine?. Commun. ACM 55(3), 74–83.
Eberbach, E. (1997). A generic tool for distributed AI with matching as message passing. In: Tools with Artificial

Intelligence, 1997. Proceedings., Ninth IEEE International Conference on. pp. 11–18.
Eberbach, E. (2003). Is entscheidungsproblem solvable? beyond undecidability of Turing machines and its conse-

quence for computer science and mathematics. In: (ed. J. C. Misra) Computational Mathematics, Modelling and
Algorithms. pp. 1–32. Narosa Publishing House, New Delhi.

Eberbach, E. (2005a). $-Calculus of bounded rational agents: Flexible optimization as search under bounded resources
in interactive systems. Fundam. Inf. 68(1-2), 47–102.

Eberbach, E. (2005b). Toward a theory of evolutionary computation. Biosystems 82(1), 1 – 19.
Eberbach, E. (2006). Expressiveness of the π-Calculus and the $-Calculus. In: Proc. 2006 World Congress in Comp.

Sci., Comp. Eng., & Applied Computing, The 2006 Intern. Conf. on Foundations of Computer Science FCS’06, Las
Vegas, Nevada. pp. 24–30.

Eberbach, E. (2007). The $-calculus process algebra for problem solving: A paradigmatic shift in handling hard
computational problems. Theoretical Computer Science 383(23), 200 – 243. Complexity of Algorithms and Com-
putations.

Eberbach, E. and M. Burgin (2009). On foundations of evolutionary computation: An evolutionary automata approach.
In: (ed.Hongwei Mo): Handbook of Research on Artificial Immune Systems and Natural Computing: Applying
Complex Adaptive Technologies, Section II: Natural Computing, Section II.1: Evolutionary Computing, Chapter
XVI, Medical Information Science Reference/IGI Global, Hershey. pp. 342–360. New York.

Eberbach, E., D. Goldin and P. Wegner (2004). Turings ideas and models of computation. In: Alan Turing: Life and
Legacy of a Great Thinker (Christof Teuscher, Ed.). pp. 159–194. Springer Berlin Heidelberg.

Eberbach, Eugene and Peter Wegner (2003). Beyond Turing machines. Bulletin of the EATCS pp. 279–304.
Hopcroft, J. E., R. Motwani and J. D. Ullman (2001). Introduction to automata theory, languages, and computation,

2nd edition. SIGACT News 32(1), 60–65.
Horvitz, E. and S. Zilberstein (2001). Computational tradeoffs under bounded resources. Artificial Intelligence

126(12), 1 – 4. Tradeoffs under Bounded Resources.
Kozen, D. C. (1997). Automata and Computability. Springer-Verlag.
Milner, R. (1999). Communicating and Mobile Systems: The π-calculus. Cambridge University Press. New York, NY,

USA.

52 Eugene Eberbach / Theory and Applications of Mathematics & Computer Science 5 (1) (2015) 37–52

Milner, R., J. Parrow and D. Walker (1992). A calculus of mobile processes, i. Information and Computation 100(1), 1
– 40.

Post, E. (1946). A variant of a recursively unsolvable problem. Bull. Amer. Math. Soc. 52(4), 264–268.
Rado, T. (1962). On non-computable functions. Bell System Technical Journal 41(3), 877–884.
Rice, H. G. (1953). Classes of recursively enumerable sets and their decision problems. Trans. Amer. Math. Soc.

74, 358–366.
Russell, S. and P. Norvig (2002). Artificial Intelligence: A Modern Approach (2nd Edition). Prentice Hall.
Syropoulos, A. (2007). Hypercomputation: Computing Beyond the Church-Turing Barrier (Monographs in Computer

Science). Springer-Verlag New York, Inc.. Secaucus, NJ, USA.
Turing, A. M. (1937). On computable numbers, with an application to the entscheidungsproblem. Proceedings of the

London Mathematical Society s2-42(1), 230–265.
Turing, A. M. (1939). Systems of logic based on ordinals. Proceedings of the London Mathematical Society s2-

45(1), 161–228.
Wegner, P., E. Eberbach and M. Burgin (2012). Computational completeness of interaction machines and Turing

machines. In: Turing-100 (Andrei Voronkov, Ed.). Vol. 10 of EPiC Series. EasyChair. pp. 405–414.
Whitehead, A. N. and B. Russell (1910, 1912, 1913). Principia mathematica, vol.1, 1910, vol.2, 1912, vol.3, 1913.

Cambridge Univ. Press. Cambridge.

Theory and Applications of Mathematics & Computer Science 5 (1) (2015) 53–61

Coupled Systems of Fractional Integro-Differential Equations
Involving Several Functions

Zoubir Dahmania,∗, Mohamed Amin Abdellaouia, Mohamed Houasb

aLaboratory LPAM, Faculty SEI, UMAB University, Algeria
bLaboratory FIMA, Faculty ST, University of Khemis Miliana, Algeria

Abstract
This paper studies the existence of solutions for a coupled system of nonlinear fractional integro-differential

equations involving Riemann-Liouville integrals with several continuous functions. New existence and uniqueness
results are established using Banach fixed point theorem, and other existence results are obtained using Schaefer fixed
point theorem. Some illustrative examples are also presented.

Keywords: Caputo derivative, fixed point, integro-differential system, existence, uniqueness, Riemann-Liouville
integral.
2010 MSC: 34A34, 34B10.

1. Introduction

The differential equations of fractional order arise in many scientific disciplines, such as
physics, chemistry, control theory, signal processing and biophysics. For more details, we re-
fer the reader to (Kilbas & Marzan, 2005; Lakshmikantham & Vatsala, 2008; Su, 2009) and the
references therein. Recently, there has been a significant progress in the investigation of these
equations, (see (Anber et al., 2013; Bengrine & Dahmani, 2012; Cui et al., 2012; Wang et al.,
2010; Zhang, 2006)). On the other hand, the study of coupled systems of fractional differential
equations is also of a great importance. Such systems occur in various problems of applied sci-
ence. For some recent results on the fractional systems, we refer the reader to (Abdellaoui et al.,
2013; Bai & Fang, 2004; Gaber & Brikaa, 2012; Gafiychuk et al., 2008).

∗Corresponding author
Email addresses: zzdahmani@yahoo.fr (Zoubir Dahmani), abdellaouiamine13@yahoo.fr (Mohamed

Amin Abdellaoui), houasmed@yahoo.fr (Mohamed Houas)

54 Z. Dahmani et al. / Theory and Applications of Mathematics & Computer Science 5 (1) (2015) 53–61

In this paper, we discuss the existence and uniqueness of solutions for the following coupled
system of fractional integro-differential equations:

Dαu (t) = f1 (t, u (t) , v (t)) +
m∑

i=1

∫ t

0
(t−s)αi−1

Γ(αi)
ϕi (s) gi (s, u (s) , v (s)) ds,

Dβv (t) = f2 (t, u (t) , v (t)) +
m∑

i=1

∫ t

0
(t−s)βi

Γ(βi)
φi (s) hi (s, u (s) , v (s)) ds,

u (0) = a > 0, v (0) = b > 0, t ∈ [0, 1]

(1.1)

where Dα,Dβ denote the Caputo fractional derivatives, 0 < α < 1, 0 < β < 1, αi, βi are non
negative real numbers, ϕi and φi are continuous functions, m ∈ N∗, f1, f2 and gi and hi, i = 1, ...,m,
are functions that will be specified later.
The paper is organized as follows: In section 2, we present some preliminaries and lemmas. Sec-
tion 3 is devoted to existence of solutions of problem (1.1). In the last section, some examples are
presented to illustrate our results.

2. Preliminaries

The following notations, definitions and lemmas will be used throughout this paper.

Definition 2.1. The Riemann-Liouville fractional integral operator of order α > 0, for f ∈
L1([a, b],R) is defined by:

Iα f (t) =

∫ t

a

(t − τ)α−1

Γ (α)
f (τ) dτ, a ≤ t ≤ b, (2.1)

where Γ (α) :=
∫ ∞

0
e−uuα−1du.

Definition 2.2. The fractional derivative of f ∈ Cn([a, b],R), n ∈ N∗, in the sense of Caputo, of
order α, n − 1 < α < n is defined by:

Dα f (t) =

∫ t

a

(t − τ)n−α−1

Γ (n − α)
f (n) (τ) dτ, t ∈ [a, b]. (2.2)

For more details about fractional calculus, we refer the reader to (Mainardi, 1997). The following
lemmas give some properties of Riemann-Liouville integrals and Caputo fractional derivatives
(Kilbas & Marzan, 2005; Lakshmikantham & Vatsala, 2008):

Lemma 2.1. Given f ∈ L1([a, b],R), then for all t ∈ [a, b] we have IrI s f (t) = Ir+s f (t), for r, s > 0.
DsI s f (t) = f (t), for s > 0. DrI s f (t) = I s−r f (t), for s > r > 0.

To study the coupled system (1.1) , we need the following two lemmas (Kilbas & Marzan,
2005):

Z. Dahmani et al. / Theory and Applications of Mathematics & Computer Science 5 (1) (2015) 53–61 55

Lemma 2.2. For n − 1 < α < n, where n ∈ N∗, the general solution of the equation Dαx (t) = 0 is
given by

x (t) = c0 + c1t + c2t2 + ... + cn−1tn−1, (2.3)

where ci ∈ R, i = 0, 1, 2, .., n − 1.

Lemma 2.3. Let n − 1 < α < n, where n ∈ N∗. Then, for x ∈ Cn([0, 1],R), we have

IαDαx (t) = x (t) + c0 + c1t + c2t2 + ... + cn−1tn−1, (2.4)

for some ci ∈ R, i = 0, 1, 2, ..., n − 1, n = [α] + 1.

We prove the following auxiliary lemma:

Lemma 2.4. Let f ,Ri,Ki ∈ C ([0, 1] ,R) , i = 1, ...,m. The solution of the problem

Dαx (t) = f (t) +

m∑
i=1

∫ t

0

(t − s)αi−1

Γ (αi)
Ri (s) Ki (s) ds, 0 < α < 1, αi > 0 (2.5)

with the condition,x (0) = x∗0 ∈ R
∗
+, is given by

x(t) =

∫ t

0

(t − s)α−1

Γ (α)
f (s) ds +

m∑
i=1

∫ t

0

(t − s)α+αi−1

Γ (α + αi)
Ri (s) Ki (s) ds + x∗0. (2.6)

Proof. Setting

y(t) = x(t) − Iα f (t) −
m∑

i=1

Iα+αiRi (t) Ki(t). (2.7)

Thanks to the linearity of Dα, we get

Dαy(t) = Dαx(t) − DαIα f (t) −
m∑

i=1

DαIα+αiRi (t) Ki(t). (2.8)

By lemma 2.2, yields

Dαy(t) = Dαx(t) − f (t) −
m∑

i=1

IαiRi (t) Ki(t). (2.9)

Thus, (2.5) is equivalent to Dαy(t) = 0.
Finally, thanks to lemma 2.3, we obtain that y(t) is constant, i.e., y(t) = y(0) = x(0) = x∗0, and

the proof of lemma 2.4 is achieved.

56 Z. Dahmani et al. / Theory and Applications of Mathematics & Computer Science 5 (1) (2015) 53–61

3. Main Results

We introduce in this paragraph the following assumptions:
(H1) : There exist non negative real numbers µ j, ν j; j = 1, 2 and , li,mi, ni, ki, i = 1, ...,m, such

that for all t ∈ [0, 1] and (u1, v1) , (u2, v2) ∈ R2, we have∣∣∣ f j (t, u2, v2) − f j (t, u1, v1)
∣∣∣ ≤ µ j |u2 − u1| + ν j |v2 − v1| , j = 1, 2

|gi (t, u2, v2) − gi (t, u1, v1)| ≤ li |u2 − u1| + mi |v2 − v1| , i = 1, ...,m,

and,
|hi (t, u2, v2) − hi (t, u1, v1)| ≤ ni |u2 − u1| + ki |v2 − v1| , i = 1, ...,m

with
L = max(µ1, µ2, ν1, ν2, li,mi, ni, ki, i = 1, ...,m.)

(H2) : The functions f1, f2, gi and hi : [0, 1] × R2 → R are continuous for each i = 1, ...,m.
(H3) : There exist positive real numbers L1, L2, L′i , L

′′
i , i = 1, ...,m, such that

| f1 (t, u, v)| ≤ L1, |gi (t, u, v)| ≤ L′i , | f2 (t, u, v)| ≤ L2,

|hi (t, u, v)| ≤ L′′i , t ∈ [0, 1], (u, v) ∈ R2.

Our first result is given by:

Theorem 3.1. Assume that (H1) holds and setting

M1 : =
1

Γ (α + 1)
+

m∑
i=1

‖ϕi‖∞

Γ (α + αi + 1)
,

M2 : =
1

Γ (β + 1)
+

m∑
i=1

‖φi‖∞

Γ (β + βi + 1)
.

If
L (M1 + M2) < 1, (3.1)

then, the system (1.1) has exactly one solution on [0, 1].

Proof. Setting X := C([0, 1] ,R). This space, equipped with the norm ||.||X = ||.||∞ defined by
|| f ||∞ = sup{| f (x)|, x ∈ [0, 1]}, is a Banach space. Also, the product space (X × X, ‖(u, v)‖X×X) is a
Banach space, with ‖(u, v)‖X×X = ‖u‖X + ‖v‖X .

Consider now the operator Ψ : X × X → X × X defined by

Ψ (u, v) (t) =
(

Ψ1 (u, v) (t) ,Ψ2 (u, v) (t)
)
, (3.2)

where

Ψ1 (u, v) (t) =

∫ t

0

(t − s)α−1

Γ (α)
f1 (s, u (s) , v (s)) ds +

m∑
i=1

∫ t

0

(t − s)α+αi−1

Γ (α + αi)
ϕi (s) gi (s, u (s) , v (s)) ds + a.

(3.3)

Z. Dahmani et al. / Theory and Applications of Mathematics & Computer Science 5 (1) (2015) 53–61 57

and

Ψ2 (u, v) (t) =

∫ t

0

(t − s)β−1

Γ (β)
f2 (s, u (s) , v (s)) ds +

m∑
i=1

∫ t

0

(t − s)β+βi−1

Γ (β + βi)
ϕi (s) gi (s, u (s) , v (s)) ds + b.

(3.4)
We shall show that Ψ is contractive: Let (u1, v1) , (u2, v2) ∈ X × X. Then, for each t ∈ [0, 1] , we
have

|Ψ1 (u2, v2) (t) − Ψ1 (u1, v1) (t)| ≤

∫ t

0

(t − s)α−1

Γ (α)
ds × sup

0≤s≤1
| f1 (s, u2 (s) , v2 (s)) − f1 (s, u1 (s) , v1 (s))|

+

m∑
i=1

(sup
0≤s≤1

|ϕi (s)|
∫ t

0

(t − s)α+αi−1

Γ (α + αi)
ds

× sup
0≤s≤1

|gi (s, u2 (s) , v2 (s)) − gi (s, u1 (s) , v1 (s))|). (3.5)

Therefore,

|Ψ1 (u2, v2) (t) − Ψ1 (u1, v1) (t)| ≤

1
Γ (α + 1)

sup
0≤s≤1

| f1 (s, u2 (s) , v2 (s)) − f1 (s, u1 (s) , v1 (s))| (3.6)

+

m∑
i=1

‖ϕi‖∞

Γ (α + αi + 1)
sup

0≤s≤1
|gi (s, u2 (s) , v2 (s)) − gi (s, u1 (s) , v1 (s))| .

Using (H1) , we can write:

|Ψ1 (u2, v2) (t) − Ψ1 (u1, v1) (t)| ≤

L
Γ (α + 1)

(
sup
0≤t≤1
|u2 (t) − u1 (t)| + sup

0≤t≤1
|v2 (t) − v1 (t)|

)
(3.7)

+

m∑
i=1

‖ϕi‖∞ L
Γ (α + αi + 1)

(
sup
0≤t≤1
|u2 (t) − u1 (t)| + sup

0≤t≤1
|v2 (t) − v1 (t)|

)
.

This implies that

|Ψ1 (u2, v2) (t) − Ψ1 (u1, v1) (t)| ≤ M1L (‖u2 − u1‖X + ‖v2 − v1‖X) . (3.8)

And consequently,

‖Ψ1 (u2, v2) − Ψ1 (u1, v1)‖X ≤ M1L ‖(u2 − u1, v2 − v1)‖X×X . (3.9)

58 Z. Dahmani et al. / Theory and Applications of Mathematics & Computer Science 5 (1) (2015) 53–61

With the same arguments as before, we can write

‖Ψ2 (u2, v2) − Ψ2 (u1, v1)‖X ≤ M2L ‖(u2 − u1, v2 − v1)‖X×X . (3.10)

Finally, using (3.9) and (3.10), we deduce that

‖Ψ (u2, v2) − Ψ (u1, v1)‖X×X ≤ L (M1 + M2) ‖(u2 − u1, v2 − v1)‖X×X . (3.11)

Thanks to (3.1), we conclude that Ψ is a contraction mapping. Hence, by Banach fixed point
theorem, there exists a unique fixed point which is a solution of (1.1).

The second result is the following:

Theorem 3.2. Assume that (H2) and (H3) are satisfied and L′i ≤ L1, L′′i ≤ L2, i = 1, ...,m. Then
problem (1.1) has at least one solution on [0, 1].

Proof. First of all, we show that the operator T is completely continuous.
Step 1: Let us take γ > 0 and Bγ := {(u, v) ∈ X × X; ‖(u, v)‖X×X ≤ γ}. Now, assume that (H3)

holds, and L′i ≤ L1, L′′i ≤ L2. Then for (u, v) ∈ Bγ, we have

|Ψ1 (u, v) (t)| ≤ a + tα
Γ(α+1) sup0≤t≤1 | f1 (t, u (t) , v (t))|

+
m∑

i=1

‖ϕi‖∞tα+αi

Γ(α+αi+1) sup0≤t≤1 |gi (t, u (t) , v (t))| , t ∈ [0, 1].
(3.12)

Hence, we obtain

‖Ψ1 (u, v)‖X ≤ L1M1 + a < +∞. (3.13)

With the same arguments, we have

‖Ψ2 (u, v)‖X ≤ L2M2 + b < +∞. (3.14)

Then, by (23) and (24) , we can state that ‖T (u, v)‖X×X is bounded by C, where

C := L1M1 + L2M2 + a + b. (3.15)

Step 2: Let t1, t2 ∈ [0, 1] , t1 < t2 and (u, v) ∈ Bγ. We have

| Ψ1 (u, v) (t2) − Ψ1 (u, v) (t1) |≤|
∫ t2

0
(t2−s)α−1

Γ(α) f1 (s, u (s) , v (s)) ds −
∫ t1

0
(t1−s)α−1

Γ(α) f1 (s, u (s) , v (s)) ds |

+ |
m∑

i=1

∫ t2
0

(t2−s)α+αi−1

Γ(α+αi)
ϕi (s) gi (s, u (s) , v (s)) ds −

m∑
i=1

∫ t1
0

(t1−s)α+αi−1

Γ(α+αi)
ϕi (s) gi (s, u (s) , v (s)) ds | .

(3.16)
Thus, we get

| Ψ1 (u, v) (t2) −Ψ1 (u, v) (t1) |≤
L1

(
tα2 − tα1 + (t2 − t1)α

)
Γ(α + 1)

+

m∑
i=1

L1 ‖ϕi‖∞

(
tα+αi
2 − tα+αi

1 + (t2 − t1)α+αi
)

Γ(α + αi + 1)
.

(3.17)

Z. Dahmani et al. / Theory and Applications of Mathematics & Computer Science 5 (1) (2015) 53–61 59

Analogously, we can obtain

|Ψ2 (u, v) (t2) − Ψ2 (u, v) (t1)| ≤
L2

(
tβ2 − tβ1 + (t2 − t1)β

)
Γ(β + 1)

+

m∑
i=1

L2 ‖ϕi‖∞

(
tβ+βi
2 − tβ+βi

1 + (t2 − t1)β+βi
)

Γ(β + βi + 1)
.

(3.18)
Therefore,

|Ψ (u, v) (t2) − Ψ (u, v) (t1)| ≤
L1

(
tα2 − tα1 + (t2 − t1)α

)
Γ(α + 1)

+

m∑
i=1

L1 ‖ϕi‖∞

(
tα+αi
2 − tα+αi

1 + (t2 − t1)α+αi
)

Γ(α + αi + 1)

+
L2

(
tβ2 − tβ1 + (t2 − t1)β

)
Γ(β + 1)

+

m∑
i=1

L2 ‖ϕi‖∞

(
tβ+βi
2 − tβ+βi

1 + (t2 − t1)β+βi
)

Γ(β + βi + 1)
. (3.19)

As t2 → t1, the right-hand side of (3.19) tends to zero. Then, as a consequence of Steps 1, 2,
and by Arzela-Ascoli theorem, we conclude that Ψ is completely continuous.
Next, we consider the set:

Ω = {(u, v) ∈ X × X; (u, v) = λT (u, v) , 0 < λ < 1}. (3.20)

We shall show that Ω is bounded:
Let (u, v) ∈ Ω, then (u, v) = λΨ (u, v) , for some 0 < λ < 1. Hence, for t ∈ [0, 1] , we have:

u (t) = λΨ1 (u, v) (t) , v (t) = λΨ2 (u, v) (t) . (3.21)

Thus,
‖(u, v)‖X×X = λ ‖Ψ(u, v)‖X×X . (3.22)

Thanks to (H3),

‖(u, v)‖X×X ≤ λC, (3.23)

where C is defined by (3.15). Therefore, Ω is bounded.
As a conclusion of Schaefer fixed point theorem, we deduce that Ψ has at least one fixed point,

which is a solution of (1.1).

4. Examples

Example 4.1. Consider the following fractional system:
D

1
2 u (t) =

(
sin(u(t)+v(t))
18(ln(t+1)+1) + 6

)
+

∫ t

0
(t−s)

1
2

Γ(3
2)

(
exp(−s)
18(s+1)

sin(u(s)+v(s))
18(s+5)

)
ds, t ∈ [0, 1] ,

D
1
2 v (t) =

sin u(s)+sin v(s)
16(t exp(t2)+1) +

∫ t

0
(t−s)

3
2

Γ(5
2)

(
exp(−s2)
32
√

1+s2

sin u(s)+sin v(s)
16(s exp(s2)+1)

)
ds, t ∈ [0, 1] ,

u (0) =
√

3, v (0) =
√

2,

(4.1)

60 Z. Dahmani et al. / Theory and Applications of Mathematics & Computer Science 5 (1) (2015) 53–61

We have α = β = 1
2 , α1 = 3

2 , β1 = 5
2 , a =

√
3, b =

√
2, f1 (t, u, v) =

sin(u+v)
18(ln(t+1)+1) + 6, f2 (t, u, v) =

sin u+sin v
16(t exp(t2)+6) , ϕ1 (t) =

exp(−t)
18(t+1) and φ1 (t) =

exp(−t2)
32
√

1+t2
. Also, for (u1, v1) , (u2, v2) ∈ R2, t ∈ [0, 1] , we have

| f1 (t, u2, v2) − f1 (t, u1, v1)| ≤
1

18
(|u2 − u1| + |v2 − v1|) ,

| f2 (t, u2, v2) − f2 (t, u1, v1)| ≤
1

16
(|u2 − u1| + |v2 − v1|) ,

|g1 (t, u2, v2) − g1 (t, u1, v1)| ≤
1

18
(|u2 − u1| + |v2 − v1|) ,

|h1 (t, u2, v2) − h1 (t, u1, v1)| ≤
1

16
(|u2 − u1| + |v2 − v1|) .

Hence, M1 = 2.271,M2 = 2.261, µ1 = ν1 = 1
18 , µ2 = ν2 = 1

16 , l1 = m1 = 1
18 , n1 = k1 = 1

16 . Thus,
we obtain L = 1

16 , L (M1 + M2) = 0.283. The conditions of the Theorem 3.1 hold. Therefore, the
problem (4.1) has a unique solution on [0, 1].

Example 4.2. Consider the following problem:

D
3
4 u (t) = et cos (u (t) v (t)) + ln (t + 4)

+
∫ t

0
(t−s)

√
11−1

Γ(
√

11)
[

s
es cos (su (s) v (s))

]
ds, t ∈ [0, 1] ,

D
5
7 v (t) = sinh

(
−πt2 |u (t) v (t)|

)
+

∫ t

0
(t−s)

√
7−1

Γ(
√

7)
[√

s exp (− |u (s)| − |v (s)|)
]

ds, t ∈ [0, 1] ,

u (0) =
√

2, v (0) =
√

5.

(4.2)

For this example, we have α = 3
4 , β = 5

7 , a =
√

2, b =
√

5, and for all t ∈ [0, 1] , ϕ1 (t) = t
et , φ1 (t) =

√
t, and for each (u, v) ∈ R2,

f1(t, u, v) = et cos (uv) + ln (t + 4) ,
f2(t, u, v) = sinh

(
−πt2 |uv|

)
.

The conditions of Theorem 3.2 hold. Then (4.2) has at least one solution on [0, 1].

References

Abdellaoui, M. A., Z. Dahmani and M. Houas (2013). On some boundary value problems for coupled system of
arbitrary order. Indian Journal of industrial and applied mathematics 4(2), 180–188.

Anber, A., S. Belarbi and Z. Dahmani (2013). New existence and uniqueness results for fractional differential equa-
tions. An. St. Univ. Ovidius Constanta 21(3), 33–41.

Bai, C. Z. and J. X. Fang (2004). The existence of a positive solution for a singular coupled system of nonlinear
fractional differential equations. Applied Mathematics and Computation 150(3), 611–621.

Bengrine, M. E. and Z. Dahmani (2012). Boundary value problems for fractional differential equations. Int. J. Open
problems compt. Math 5(4), 7–15.

Z. Dahmani et al. / Theory and Applications of Mathematics & Computer Science 5 (1) (2015) 53–61 61

Cui, Z., P. Yu and Z. Mao (2012). Existence of solutions for nonlocal boundary value problems of nonlinear fractional
differential equations. Advances in Dynamical Systems and Applications 7(1), 31–40.

Gaber, M. and M. G. Brikaa (2012). Existence results for a couple system of nonlinear fractional differential equation
with three point boundary conditions. Journal of Fractional Calculus and Applications 3(21), 1–10.

Gafiychuk, V., B. Datsko and V. Meleshko (2008). Mathematical modeling of time fractional reaction-diffusion sys-
tems. Journal of Computational and Applied Mathematics 220(1-2), 215–225.

Kilbas, A. A. and S. A. Marzan (2005). Nonlinear differential equation with the Caputo fractional derivative in the
space of continuously differentiable functions. Differ. Equ 41(1), 84–89.

Lakshmikantham, V. and A. S. Vatsala (2008). Basic theory of fractional differential equations. Nonlinear Anal
69(8), 2677–2682.

Mainardi, F. (1997). Fractional calculus: Some basic problem in continuum and statistical mechanics. Fractals and
fractional calculus in continuum mechanics. Springer, Vienna.

Su, X. (2009). Boundary value problem for a coupled system of nonlinear fractional differential equations. Applied
Mathematics Letters 22(1), 64–69.

Wang, J., H. Xiang and Z. Liu (2010). Positive solution to nonzero boundary values problem for a coupled system of
nonlinear fractional differential equations. International Journal of Differential Equations 2010, 1–12.

Zhang, S. (2006). Positive solution for boundary value problem of nonlinear fractional differential equations. Electron.
J. Differential Equations 2006(36), 1–12.

Theory and Applications of Mathematics & Computer Science 5 (1) (2015) 62–70

On BVσ I-convergent Sequence Spaces Defined by an Orlicz
Function

Vakeel. A. Khana,∗, Mohd Shafiqa, Rami Kamel Ahmad Rababaha

aDepartment of Mathematics A.M.U, Aligarh-202002, India

Abstract
In this article we study 0BV I

σ(M), BV I
σ(M) and ∞BV I

σ(M) sequence spaces with the help of BVσ space see (Mur-
saleen, 1983b) and an Orlicz function M. we study some topological and algebraic properties of these spaces and
prove some inclusion relations.

Keywords: bounded variation, invariant mean, σ-Bounded variation, ideal, filter, Orlicz function, I-convergence,
I-null, solid space, sequence algebra, convergence free space.
2010 MSC: 41A10, 41A25, 41A36, 40A30.

1. Introduction and Preliminaries

Let N, R and C be the sets of all natural, real and complex numbers respectively. We denote

ω = {x = (xk) : xk ∈ R or C}

the space of all real or complex sequences. Let `∞, c and c0 denote the Banach spaces of
bounded, convergent and null sequences respectively with norm ‖x‖ = sup

k
| xk | .

Let v be denote the space of sequences of bounded variation. That is,

v =

{
x = (xk) :

∞∑
k=o

| xk − xk−1 |< ∞, x−1 = 0
}
, (1.1)

v is a Banach Space normed by ‖x‖ =
∞∑

k=0
| xk − xk−1 | (Mursaleen, 1983b). Let σ be an injective

mapping of the set of the positive integers into itself having no finite orbits. A continuous linear
functional φ on `∞ is said to be an invariant mean or σ-mean if and only if:

∗Corresponding author
Email addresses: vakhanmaths@gmail.com (Vakeel. A. Khan), shafiqmaths7@gmail.com (Mohd Shafiq),

rami215r@hotmail.com (Rami Kamel Ahmad Rababah)

Vakeel. A. Khan et al. / Theory and Applications of Mathematics & Computer Science 5 (1) (2015) 62–70 63

1. φ(x) ≥ 0 where the sequence x = (xk) has xk ≥ 0 for all k,
2. φ(e) = 1 where e = {1, 1, 1, ...},
3. φ(xσ(n)) = φ(x) for all x ∈ `∞.

If x = (xk), write T x = (T xk) = (xσ(k)). It can be shown that

Vσ =

{
x = (xk) : lim

m→∞
tm,k(x) = L uniformly in k, L = σ − lim x

}
(1.2)

where m ≥ 0, k > 0.
tm,k(x) =

xk + xσ(k)... + xσm(k)

m + 1
and t−1,k = 0, (1.3)

where σm(k) denote the mth-iterate of σ(k) at k. In case σ is the translation mapping, that is,
σ(k) = k+1, σ-mean is called a Banach limit (Banach, 1932) and Vσ, the set of bounded sequences
of all whose invariant means are equal, is the set of almost convergent sequences.The special case
of (1.2) in which σ(k) = k + 1 was given by (Lorentz, 1948), (Theorem 1), and that the general
result can be proved in a similar way. It is familiar that a Banach limit extends the limit functional
on c in the sense that

φ(x) = lim x, for all x ∈ c. (1.4)

Remark. In view of above discussion we have c ⊂ Vσ.

Theorem 1.1. A σ-mean extends the limit functional on c in the sense that φ(x) = lim x for all
x ∈ c if and only if σ has no finite orbits. That is, if and only if for all k ≥ 0, j ≥ 1, σ j(k) , k.

Put
φm,k(x) = tm,k(x) − tm−1,k(x), (1.5)

assuming that t−1,k(x) = 0.
A straight forward calculation shows that (Mursaleen, 1983a)

φm,k(x) =

1

m(m+1)

m∑
j=1

j(x j
σ(k) − x j−1

σ (k)), if(m ≥ 1),

xk if(m = 0)

 . (1.6)

For any sequence x, y and scalar λ, we have φm,k(x + y) = φm,k(x) + φm,k(y) and φm,k(λx) = λφm,k(x).

Definition 1.1. A sequence x ∈ `∞ is of σ-bounded variation if and only if

(i)
∞∑

m=0
| φm,k(x) | converges uniformly in k.

(ii) lim
m→∞

tm,k(x), which must exist, should take the same value for all k.

Subsequently invariant means have been studied by (Mursaleen, 1983b,a; Ahmad & Mur-
saleen, 1986; Raimi, 1963; Khan & Ebadullah, 2013, 2012; Schafer, 1972) and many others.
(Mursaleen, 1983b) defined the sequence space BVσ, the space of all sequences of σ -bounded
variation as BVσ = {x ∈ `∞ :

∑
m
| φm,k(x) |< ∞, uniformly in k}.

64 Vakeel. A. Khan et al. / Theory and Applications of Mathematics & Computer Science 5 (1) (2015) 62–70

Theorem 1.2. (Fast, 1951) BVσ is a Banach space normed by ‖ x ‖= sup
k

∑
| φm,k(x) | .

Definition 1.2. (see[23]) A function M : [0,∞) → [0,∞) is said to be an Orlicz function if it
satisfies the following conditions;
(i) M is continuous, convex and non-decreasing,
(ii) M(0) = 0,M(x) > 0 and M(x)→ ∞ as x→ ∞.

Remark. (see (Tripathy & Hazarika, 2011)) If the convexity of an Orlicz function is replaced by
M(x + y) ≤ M(x) + M(y), then this function is called modulus function.
Remark. If M is an Orlicz function,then M(λx) ≤ λM(x) for all λ with 0 < λ < 1.

An Orlicz function M is said to satisfy ∆2 − Condition for all values of u if there exists a
constant K > 0 such that M(Lu) ≤ KLM(u) for all values of L > 1(see (Tripathy & Hazarika,
2011)).

(Lindenstrauss & Tzafriri, 1971) used the idea of an Orlicz function to construct the sequence

space `M =
{
x ∈ ω :

∞∑
k=1

M(|xk |

ρ
) < ∞, for some ρ > 0

}
. The space `M becomes a Banach space with

the norm

‖ x ‖= inf{ρ > 0 :
∞∑

k=1

M(
| xk |

ρ
) ≤ 1}, (1.7)

which is called an Orlicz sequence space. The space `M is closely related to the space `p which is
an Orlicz sequence space with M(t) = tP for 1 ≤ p < ∞.

Later on, some Orlicz sequence spaces were investigated by (Hazarika & Esi, 2013; Maddox,
1970; Parshar & Choudhary, 1994; Bhardwaj & Singh, 2000; Et, 2001; Tripathy & Hazarika,
2011) and many others.

Initially, as a generalization of statistical convergence (Fridy, 1985), the notation of ideal con-
vergence (I-convergence) was introduced and studied by (P. Kostyrko & Wilczyński, 2000). Later
on, it was studied by (Khan & Ebadullah, 2013), (Hazarika & Esi, 2013; T. Šalát & Ziman, 2004,
2005) and many others.

Here we give some preliminaries about the notion of I-convergence.

Definition 1.3. A sequence x=(xk) ∈ ω is said to be statistically convergent to a limit L ∈ C if
for every ε > 0, we have lim

k

1
k |{n ∈ N : |xk − L| ≥ ε, n ≤ k}| = 0, where vertical lines denote the

cardinality of the enclosed set.

Definition 1.4. Let N be the set of natural numbers. Then a family of sets I ⊆ 2N (power set of N)
is said to be an ideal if:
1) I is additive i.e ∀A, B ∈ I ⇒ A ∪ B ∈ I,
2) I is hereditary i.e ∀A ∈ Iand B ⊆ A⇒ B ∈ I.

Definition 1.5. A non-empty family of sets £(I) ⊆ 2N is said to be filter on N if and only if
1) Φ < £(I),
2) ∀ A, B ∈ £(I) we have A ∩ B ∈ £(I),
3) ∀ A ∈ £(I) and A ⊆ B⇒ B ∈ £(I).

Vakeel. A. Khan et al. / Theory and Applications of Mathematics & Computer Science 5 (1) (2015) 62–70 65

Definition 1.6. An Ideal I ⊆ 2N is called non-trivial if I , 2N.

Definition 1.7. A non-trivial ideal I ⊆ 2N is called admissible if {{x} : x ∈ N} ⊆ I.

Definition 1.8. A non-trivial ideal I is maximal if there cannot exist any non-trivial ideal J , I
containing I as a subset.

Definition 1.9. For each ideal I, there is a filter £(I) corresponding to I.
i.e £(I) = {K ⊆ N : Kc ∈ I}, where Kc = N \ K.

Definition 1.10. A sequence x = (xk) ∈ ω is said to be I-convergent to a number L if for every
ε > 0, the set {k ∈ N : |xk − L| ≥ ε} ∈ I.
In this case, we write I − lim xk = L.

Definition 1.11. A sequence x = (xk) ∈ ω is said to be I-null if L = 0. In this case, we write
I − lim xk = 0.

Definition 1.12. A sequence x = (xk) ∈ ω is said to be I-cauchy if for every ε > 0 there exists a
number m = m(ε) such that {k ∈ N : |xk − xm| ≥ ε} ∈ I.

Definition 1.13. A sequence space E is said to be solid(normal) if (αkxk) ∈ E whenever (xk) ∈ E
and for any sequence(αk) of scalars with | αk |≤ 1, for all k ∈ N.

Definition 1.14. A sequence space E is said to be symmetric if (xπ(k)) ∈ E whenever xk ∈ E. where
π is a permutation on N.

Definition 1.15. A sequence space isE said to be sequence algebra if (xk) ∗ (yk) = (xk.yk) ∈ E
whenever (xk), (yk) ∈ E.

Definition 1.16. A sequence space E is said to be convergence free if (yk) ∈ E whenever (xk) ∈ E
and xk = 0 implies yk = 0, for all k.

Definition 1.17. Let K = {k1 < k2 < k3 < k4 < k5...} ⊂ N and E be a Sequence space. A K-step
space of E is a sequence space λE

K = {(xkn) ∈ ω : (xk) ∈ E}.

Definition 1.18. A canonical pre-image of a sequence (xkn) ∈ λ
E
K is a sequence (yk) ∈ ω defined

by

yk =

{
xk, if k ∈ K,
0, otherwise.

A canonical preimage of a step space λE
K is a set of preimages all elements in λE

K .i.e. y is in the
canonical preimage of λE

K iff y is the canonical preimage of some x ∈ λE
K .

Definition 1.19. A sequence space E is said to be monotone if it contains the canonical preimages
of its step space.

Remark. If I = I f , the class of all finite subsets of N. Then, I is an admissible ideal in N and I f

convergence coincides with the usual convergence.

66 Vakeel. A. Khan et al. / Theory and Applications of Mathematics & Computer Science 5 (1) (2015) 62–70

Definition 1.20. If I = Iδ = {A ⊆ N : δ(A) = 0}. Then, I is an admissible ideal in N and we call
the Iδ-convergence as the logarithmic statistical convergence.

Definition 1.21. If I = Id = {A ⊆ N : d(A) = 0}. Then, I is an admissible ideal in N and we call
the Id-convergence as the asymptotic statistical convergence.

Remark. If Iδ − lim xk = l, then Id − lim xk = l.

The following lemmas remained an important tool for the establishment of some results
of this article.

Lemma 1.1. (Tripathy & Hazarika, 2011). Every solid space is monotone.

Lemma 1.2. Let K ∈ £(I) and M ⊆ N. If M < I, then M ∩ K < I.

Lemma 1.3. If I ⊆ 2N and M ⊆ N. If M < I, then M ∩ N < I.

2. Main Results

Recently (Khan & Ebadullah, 2012) introduced and studied the following sequence space. For
m ≥ 0

BV I
σ =

{
x = (xk) ∈ ω : {k ∈ N :| φm.k(x) − L |≥ ε} ∈ I, for some L ∈ C

}
. (2.1)

In this article we introduce the following sequence spaces. For m ≥ 0

BV I
σ(M) =

{
x = (xk) ∈ ω : I − lim M(

| φm,k(x) − L |
ρ

) = 0, for some L ∈ C, ρ > 0
}
, (2.2)

0BV I
σ(M) =

{
x = (xk) ∈ ω : I − lim M(

| φm,k(x) |
ρ

) = 0, ρ > 0
}
, (2.3)

∞BV I
σ(M) =

{
x = (xk) ∈ ω :

{
k ∈ N : ∃K > 0s.t.M(

| φm,k(x) |
ρ

) ≥ K
}
∈ I, ρ > 0

}
, (2.4)

∞BVσ(M) =

{
x = (xk) ∈ ω : sup M(

| φm,k(x) |
ρ

) < ∞, ρ > 0
}
. (2.5)

We also denoteMI
BVσ(M) = BV I

σ(M) ∩ ∞BVσ(M) and 0M
I
BVσ(M) = 0BV I

σ(M) ∩ ∞BVσ(M).
Throughout the article, if required, we denote φm,k(x)=x

′

, φm,k(y)=y
′ and φm,k(z)=z

′ where
x, y, z are (xk), (yk) and (zk) respectively.

Theorem 2.1. For any Orlicz function M, the classes of sequence 0BV I
σ(M), BV I

σ(M), 0M
I
BVσ(M)

andMI
BVσ(M) are the linear spaces.

Vakeel. A. Khan et al. / Theory and Applications of Mathematics & Computer Science 5 (1) (2015) 62–70 67

Proof. We shall prove the result for the space BV I
σ(M), others will follow similarly.

For, let x = (xk), y = (yk) ∈ BV I
σ(M) be any two arbitrary elements and let α, β are scalars.

Now, since (xk), (yk) ∈ BV I
σ(M)⇒ ∃ some positive numbers L1, L2 ∈ C and ρ1, ρ2 > 0 such that

I − lim
k

M
(
| φm,k(x) − L1 |

ρ1

)
= 0, (2.6)

I − lim
k

M
(
| φm,k(y) − L2 |

ρ2

)
= 0 (2.7)

⇒ for any given ε > 0, the sets

A1 =

{
k ∈ N : M

(
| φm,k(x) − L1 |

ρ1

)
>
ε

2

}
∈ I, (2.8)

A2 =

{
k ∈ N : M

(
| φm,k(y) − L2 |

ρ2

)
>
ε

2

}
∈ I. (2.9)

Let
ρ3 = max{2 | α | ρ1, 2 | β | ρ2}. (2.10)

Since, M is non-decreasing and convex function, we have

M
(| (αx′k + βy′k) − (αL1 + βL2) |

ρ3

)
≤

M
(| α || x′k − L1 |

ρ3
) + M(

| β || y′k − L2 |

ρ3

)
≤ M

(| x′k − L1 |

ρ1
) + M(

| y′k − L2 |

ρ2

)
. (2.11)

Therefore, from (2.8), (2.9) and (2.11), we have
{

k ∈ N :M
(
|(αx′k+βy′k)−(αL1+βL2)|

ρ3

)
> ε

}
⊆ A1∪A2∈I

implies that
{

k ∈ N : M
(
|(αx′k+βy′k)−(αL1+βL2)|

ρ3

)
> ε

}
∈I. That is, I− lim M

(
|(αx′k+βy′k)−(αL1+βL2)|

ρ3

)
= 0. Thus,

αxk + βyk ∈ BV I
σ(M). But (xk), (yk) ∈ BV I

σ(M) are the arbitrary elements. Therefore, αxk + βyk ∈

BV I
σ(M), for all (xk), (yk) ∈ BV I

σ(M) and for all scalars α, β. Hence, BV I
σ(M) is linear.

Theorem 2.2. Let M1 and M2 be two Orlicz functions and satisfying ∆2 − Condition, then
(a) X(M2) ⊆ X(M1M2),
(b) X(M1) ∩ (M2) ⊆ X(M1 + M2) for X= 0BV I

σ, BV I
σ, 0M

I
BVσ andMI

BVσ .

Proof. (a) Let x = (xk) ∈ 0BV I
σ(M2) be any arbitrary element⇒ ∃ ρ > 0 such that

I − lim M2

(
| φm,k(x) |

ρ

)
= 0, (2.12)

i.e.

I − lim M2

(| x′k |
ρ

)
= 0. (2.13)

68 Vakeel. A. Khan et al. / Theory and Applications of Mathematics & Computer Science 5 (1) (2015) 62–70

Let ε > 0 and choose δ with 0 < δ < 1 such that M1(t) < ε, 0 ≤ t ≤ δ. Let us write yk = M2
(|x′k |
ρ

)
and consider

lim
k

M1
(
yk

)
= lim

yk≤δ,k∈N
M1

(
yk

)
+ lim

yk>δ,k∈N
M1

(
yk

)
. (2.14)

Now, since M1 is an Orlicz function ,we have M1
(
λx

)
≤ λM1

(
x
)

for all λwith 0 < λ < 1. Therefore,

lim
yk≤δ,k∈N

M1
(
yk

)
≤ M1

(
2
)

lim
yk≤δ,k∈N

(yk). (2.15)

For yk > δ, we have yk <
yk
δ
< 1 +

yk
δ
. Now, since M1 is non-decreasing and convex, it follows that

M1(yk) < M1(1 +
yk

δ
) <

1
2

M1(2) +
1
2

M1(
2yk

δ
). (2.16)

Again, since M1 satisfies ∆2 − Condition, we have M1
(
yk

)
< 1

2 K (yk)
δ

M1
(
2
)

+ 1
2 K (yk)

δ
M1(2). Thus,

M1
(
yk

)
< K (yk)

δ
M1

(
2
)
. Hence,

lim
yk>δ,k∈N

M1
(
yk

)
≤ max{1,Kδ−1M1

(
2
)

lim
yk>δ,k∈N

(yk). (2.17)

Therefore, from (2.12), (2.13) and (2.14), we have I−lim
k

M1
(
yk

)
= 0, i.e. I−lim

k
M1M2

(|φm,k(x)|
ρ

)
= 0,

implies that (xk) ∈ 0BV I
σ(M1M2). Thus, 0BV I

σ(M2) ⊆ 0BV I
σ(M1M2). Hence, X(M2) ⊆ X(M1M2)

for X= 0BV I
σ. For X = BV I

σ,X= 0M
I
BVσ and X =MBV I

σ
the inclusions can be established similarly.

(b). Let x = (xk) ∈ 0BV I
σ(M1) ∩ 0BV I

σ(M2). Let ε > 0 be given. Then there exists ρ > 0

such that the sets I − lim M1

(
|φm,k(x)|

ρ

)
= 0 and I − lim M2

(
|φm,k(x)|

ρ

)
= 0. Therefore, I − lim M1 +

M2

(
|φm,k(x)|

ρ

)
= I − lim M1

(
|φm,k(x)|

ρ

)
+ I − lim M2

(
|φm,k(x)|

ρ

)
implies that I − lim M1 + M2

(
|φm,k(x)|

ρ

)
= 0.

Thus, x = (xk) ∈ 0BV I
σ(M1 + M2) Hence, 0BV I

σ(M1)∩ 0BV I
σ(M2) ⊆ 0BV I

σ(M1 + M2). For X = BV I
σ,

X= 0M
I
BVσ and X =MI

BVσ the inclusions are similar.

For M2(x) = (x) and M1(x) = M(x), ∀ x ∈ [0,∞), we have the following corollary.

Corollary 2.1. X ⊆ X(M) for X= 0BV I
σ, BV I

σ, 0M
I
BVσ andMI

BVσ .

Theorem 2.3. For any orlicz function M, the spaces 0BV I
σ(M) and 0M

I
BVσ are solid and monotone.

Proof. Here we consider 0BV I
σ(M) and for 0M

I
BVσ the proof shall be similar. For, let (xk) ∈0

BV I
σ(M) be any arbitrary element. ⇒ ∃ρ > 0 such that I − lim

k
M

(|φm,k(x)|
ρ

)
= 0. Let (αk) be a

sequence of scalars such that | αk |≤ 1, for all k ∈ N.
Now, since M is an Orlicz function. Therefore,

M
(
| αkφm,k(x) |

ρ

)
≤| αk | M

(
| φm,k(x) |

ρ

)
≤ M

(
| φm,k(x) |

ρ

)
⇒ M

(
| αkφm,k(x) |

ρ

)
≤ M

(
| φm.k(x) |

ρ

)
, for all k ∈ N,

Vakeel. A. Khan et al. / Theory and Applications of Mathematics & Computer Science 5 (1) (2015) 62–70 69

implies that I − lim
k

M
(|αkφm,k(x)|

ρ

)
= 0.

Thus, (αkxk) ∈0 BV I
σ(M). Hence 0BV I

σ(M) is solid. Therefore, by lemma 1.1, 0BV I
σ(M) is

monotone. Hence the result.

Theorem 2.4. For any orlicz function M, the spaces BV I
σ(M) and MI

BVσ are neither solid nor
monotone in general.

Proof. Here we give counter example for the establishment of this result. For, let us consider
I = I f and M(x) = x, for all x ∈ [0,∞). Consider, the K-step space BK(M) of B(M) as follows.
Let(xk) ∈ B(M) and (yk) ∈ BK(M) be such that

yk =

{
xk, if k is even,
0, otherwise.

Consider the sequence (xk) defined as xk = 1, for all k ∈ N, then xk ∈ BV I
σ(M) andMI

BVσ but its
K-step space pre-image does not belong to BV I

σ(M) andMI
BVσ . Thus, BV I

σ(M) andMI
BVσ are not

monotone and hence by lemma(I) they are not solid.

Theorem 2.5. For an Orlicz function M, the spaces 0BV I
σ(M) and BV I

σ(M) are not convergence
free.

Proof. Let I = I f and M(x) = x for all x ∈ [0,∞). Consider the sequences (xk) and (yk) defined as
follows.

xk =
1
k

and yk = k, for all k ∈ N.

Then, (xk) belongs to both ∈ 0BV I
σ(M) and BV I

σ(M) but (yk) does not belongs to both 0BV I
σ(M) and

BV I
σ(M).

Hence, the spaces 0BV I
σ(M) and BV I

σ(M) are not convergence free.

Theorem 2.6. For an Orlicz function M, the spaces 0BV I
σ(M) and BV I

σ(M) are sequence algebra.

Proof. Here we consider 0BV I
σ(M). For the other one, result is similar.

Let x = (xk), y = (yk) ∈ 0BV I
σ(M) be any two arbitrary elements.

⇒ ∃ ρ1, ρ2 > 0 such that

I − lim
k

M
(| φm,k(x) |

ρ1

)
= 0

and
I − lim

k
M

(| φm,k(y) |
ρ2

)
= 0.

Let ρ = ρ1ρ2 > 0. Then, it is obvious that I − lim
k

M
(|φm,k(x)φm,k(y)|

ρ

)
= 0 implies that (xk.yk) = (xkyk) ∈

0BV I
σ(M). Hence, 0BV I

σ(M) is a Sequence algebra.

Theorem 2.7. Let M be an Orlicz function. Then, 0BV I
σ(M) ⊆ BV I

σ(M) ⊆ ∞BV I
σ(M).

70 Vakeel. A. Khan et al. / Theory and Applications of Mathematics & Computer Science 5 (1) (2015) 62–70

Proof. Let M be an Orlicz function. Then, we have to show that 0BV I
σ(M) ⊆ BV I

σ(M) ⊆ ∞BV I
σ(M).

Firstly, 0BV I
σ(M) ⊆ BV I

σ(M) is obvious.
Now, let x = (xk) ∈ BV I

σ(M) be any arbitrary element⇒ ∃ρ > 0 such that I−lim
k

M
(|φm,k(x)−L|

ρ

)
=0

for some L ∈ N.
Now, M

(|φm,k(x)|
2ρ

)
≤ 1

2 M
(|φm,k(x)−L|

ρ

)
+ 1

2 M
(|L|
ρ

)
. Taking supremum over k to both sides, we have

x = (xk) ∈ ∞BV I
σ(M). Hence, 0BV I

σ(M) ⊆ BV I
σ(M) ⊆ ∞BV I

σ(M).

Acknowledgments: The authors would like to record their gratitude to the reviewers for their
careful reading and making some useful corrections which improved the presentation of the paper.

References

Ahmad, Z. U and M. Mursaleen (1986). An application of Banach limits. Proc. Amer. Math. Soc.
Banach, S. (1932). Théorie des opérations linéaires. Warszawa.
Bhardwaj, V. K. and N. Singh (2000). Some sequence spaces defined by Orlicz functions. Demonstratio Math.

33(3), 571–582.
Et, M. (2001). On some new Orlicz spaces. J. Analysis 9, 21–28.
Fast, H. (1951). Sur la convergence statistique. 2, 241–244.
Fridy, J. A. (1985). On statistical convergence. Analysis 5, 301–313.
Hazarika, B. and A. Esi (2013). Some I-convergent generalized difference lacunary double sequence spaces defined

by Orlicz function. Acta Scientiarum. Technology 35(3), 527–537.
Khan, V. A. and K. Ebadullah (2012). On a new I-convergent sequence space. Analysis 32, 199–208.
Khan, V. A. and K. Ebadullah (2013). On some new I-convergent sequence space. Mathematics, Aeterna 3(2), 151–

159.
Lindenstrauss, J. and L. Tzafriri (1971). On Orlicz sequence spaces. Israel J. Math. 101, 379–390.
Lorentz, G. G. (1948). A contribution to the theory of divergent series. Acta Math. 80(6), 167–190.
Maddox, I. J. (1970). Elements of functional analysis. Cambridge University Press.
Mursaleen, M. (1983a). Matrix transformation between some new sequence spaces. Houston J. Math.
Mursaleen, M. (1983b). On some new invariant matrix methods of summability. Quart. J. Math. Oxford 9, 77–86.
P. Kostyrko, T. Šalát and W. Wilczyński (2000). I-convergence. Raal Analysis Analysis Exchange 26(2), 669–686.
Parshar, S. D. and B. Choudhary (1994). Sequence spaces defined by Orlicz function. Indian J, Pure Appl. Math.

25, 419–428.
Raimi, R. A. (1963). Invariant means and invariant matrix method summability. Duke J. Math 30, 81–94.
Schafer, P. (1972). Infinite matrices and invariant means. Proc. Amer. soc. 36, 104–110.
T. Šalát, B.C. Tripathy and M. Ziman (2004). On some properties of I-convergence. Tatra Mt. Math. Publ. 28, 279–

286.
T. Šalát, B.C. Tripathy and M. Ziman (2005). On I-convergence field. Ital. J. Pure Appl. Math. 17, 45–54.
Tripathy, B.C. and B. Hazarika (2011). Some I-convergent sequence spaces defined by Orlicz function. Acta Mathe-

maticae Applicatae Sinica 27(1), 149–154.

Theory and Applications of Mathematics & Computer Science 5 (1) (2015) 71–93

Properties of Stabilizing Computations

Mark Burgina

aUniversity of California, Los Angeles 405 Hilgard Ave. Los Angeles, CA 90095

Abstract
Models play an important role in the development of computer science and information technology applications.

Turing machine is one of the most popular model of computing devices and computations. This model, or more ex-
actly, a family of models, provides means for exploration of capabilities of information technology. However, a Turing
machine stops after giving a result. In contrast to this, computers, networks and their software, such as an operating
system, very often work without stopping but give various results. There are different modes of such functioning and
Turing machines do not provide adequate models for these processes. One of the closest to halting computation is
stabilizing computation when the output has to stabilize in order to become the result of a computational process.
Such stabilizing computations are modeled by inductive Turing machines. In comparison with Turing machines, in-
ductive Turing machines represent the next step in the development of computer science providing better models for
contemporary computers and computer networks. At the same time, inductive Turing machines reflect pivotal traits
of stabilizing computational processes. In this paper, we study relations between different modes of inductive Turing
machines functioning. In particular, it is demonstrated that acceptation by output stabilizing and acceptation by state
stabilizing are linguistically equivalent.

Keywords: computation, stability, Turing machine, inductive Turing machine, acceptation, mode of computation,
equivalence.
2010 MSC: 68Q05.
2012 CCS: theory of computation, models of computation.

1. Introduction

Computer science studies computations by means of theoretical models. One of the most
popular theoretical models of computation is Turing machine. It is central in computer science
and in many applications, especially, when it is necessary to prove impossibility of an algorithmic
solution to a problem (Rogers, 1987). The pivotal feature of a Turing machine is the necessity to
stop after giving a result because all subsequent machine operations become superfluous.

However, computers, networks and their software, such as an operating system, very often
work without stopping but give various results. There are different modes of such functioning and
Turing machines do not provide adequate models for these processes (Burgin, 2005a). Stabilizing
computation is one of the closest to halting computation computational modes when the output has
to stabilize in order to become the result of a computational process. Such stabilizing computations

72 Mark Burgin / Theory and Applications of Mathematics & Computer Science 5 (1) (2015) 71–93

are efficiently modeled by inductive Turing machines (Burgin & Debnath, 2004, 2005; Burgin,
2005a, 2006; Burgin & Gupta, 2012).

In comparison with Turing machines, inductive Turing machines represent the next step in the
development of computer science providing better modeling tools for contemporary computers
and computer networks (Burgin, 2005a). In particular, even simple inductive Turing machines
and other inductive Turing machines of the first order can solve the Halting Problem for Turing
machines, while inductive Turing machines of higher orders can generate and decide the whole
arithmetical hierarchy as it is proved in (Burgin, 2003). Even more, unrestricted inductive Turing
machines with a structured memory have the same computing power as Turing machines with
oracles (Burgin, 2005a). In addition, inductive Turing machines allow decreasing time of compu-
tations (Burgin, 1999). Being more powerful, inductive Turing machines allow essential reduction
of Kolmogorov (algorithmic) complexity of finite objects (Burgin, 2004), as well as algorithmic
complexity of mathematical and computational problems (Burgin, 2010a). It is also important that
in contrast to Turing machines, which can work only with words (Turing machines with one one-
dimensional tape), with finite systems of words (Turing machines with several one-dimensional
tapes) and with arrays (Turing machines with multidimensional tapes), inductive Turing machines
can work not only with finite and infinite words, systems of words and multidimensional arrays
but also with more sophisticated data structures, such as graphs, functions, hierarchical structures
and chains of named sets or named data.

Inductive Turing machines have found applications in algorithmic information theory and com-
plexity studies (Burgin, 2004, 2007, 2010a), software testing (Burgin & Debnath, 2009; Burgin
et al., 2009), high performance computing (Burgin, 1999), machine learning (Burgin & Klinger,
2004), software engineering (Burgin & Debnath, 2004, 2005), computer networks (Burgin, 2006;
Burgin & Gupta, 2012) and evolutionary computations (Burgin & Eberbach, 2008, 2009b,a, 2010,
2012). For instance, inductive Turing machines can perform all types of machine learning - TxtEx-
learning, TxtFin-learning, TxtBC-learning, and TxtEx*-learning, (Beros, 2013). While the tradi-
tional approach to machine learning models learning processes using functions, e.g., limit partial
recursive functions (Gold, 1967), inductive Turing machines are automata, which can compute
values of the modeling functions.

An important area of tentative application of inductive Turing machines and other super-
recursive algorithms is software development and maintenance. As Călinescu, et al, (Calinescu
et al., 2013) write, modern software systems are often complex, inevitably distributed, and oper-
ate in heterogeneous and highly dynamic environments. Examples of such systems include those
from the service-oriented, cloud computing, and pervasive computing domains. In these domains,
continuous change is the norm and therefore the software must also change accordingly. In many
cases, the software is required to self-react by adapting its behavior dynamically, in order to ensure
required levels of service quality in changing environments. As a result, conventional recursive
algorithms, such as Turing machines, cannot provide efficient means for modeling software func-
tioning and behavior. This can be achieved only by utilization of inductive Turing machines and
other super-recursive algorithms. Thus, better knowledge of inductive Turing machines properties
and regularities of their behavior allows their better utilization and application of these models of
computation and computer systems.

The goal of this paper is to study inductive Turing machines as models of real computing

Mark Burgin / Theory and Applications of Mathematics & Computer Science 5 (1) (2015) 71–93 73

devices, functioning of which often results in stabilizing computations. Note that stability is an
important property of a computing device, as well as of computational processes. By definition,
inductive Turing machines give results if and only if their computational process stabilizes (Burgin,
2005a).

Each real computing device, e.g., a computer, has three components: an input device (devices),
an output device (devices) and a processor or a multiprocessor, which consists of several proces-
sors. Consequently, there are three modes of component functioning: the input mode, output mode
and processing mode. Together they form the functioning mode of the computing device. For in-
stance, the processing mode of an automaton can be acceptation (of the input), decision (about
the input) or computation (of the final result). The output mode of a pushdown automaton can
be acceptance by final state or acceptance by empty stack (Hopcroft et al., 2001). The output
mode of a Turing machine can be acceptance by final state or acceptance by halting (Hopcroft et
al., 2001). An inductive Turing machine can process information in a recursive mode or in the
inductive mode (Burgin, 2005a). Computer scientists are usually interested in equivalence of dif-
ferent computational modes as it allows them to use the most appropriate mode for solving a given
problem without loss of generality.

There are different types of equivalence: linguistic equivalence, functional equivalence, pro-
cess equivalence, etc. (cf. (Burgin, 2010b). Here we study the classical case of equivalence called
linguistic equivalence.

We remind that two automata (computing devices) are linguistically equivalent if they have
the same language (Burgin, 2010b). Note that it may be linguistic equivalence with respect to
computation when the language of the automaton A is the language computed by A or it may be
linguistic equivalence with respect to acceptation when the language of the automaton A is the
language accepted by A.

We remind that two classes of automata are linguistically equivalent if they have the same
classes of languages and two modes of functioning are linguistically equivalent if the classes of
automata working in these modes are linguistically equivalent (Burgin, 2010b). As separate au-
tomata, classes of automata may be linguistically equivalent with respect to computation or with
respect to acceptation. One of the basic results of the theory of pushdown automata is the statement
that acceptance by final state is linguistically equivalent to acceptance by empty stack ((Hopcroft
et al., 2001) Section 6.2).

One of the basic results of the theory of Turing machines and recursive computations is the
statement that acceptance by final state is linguistically equivalent to acceptance by halting ((Bur-
gin, 2005a), Chapter 2).

The goal of this paper is to analyze different modes of inductive Turing machine functioning,
finding whether similar results are true for these modes. Note that inductive Turing machines
have much more modes of functioning than Turing machines. In Section 2, we remind some
basic concepts and constructions from the theory of inductive Turing machines and stabilizing
computations. In Section 3, we demonstrate that some key modes of inductive Turing machine
functioning are linguistically equivalent.

74 Mark Burgin / Theory and Applications of Mathematics & Computer Science 5 (1) (2015) 71–93

2. Inductive Turing machines as models of stabilizing computations

To understand how inductive Turing machines model stabilizing computations, we need to
know the hardware structure and characteristics of inductive Turing machine functioning in general
and of the simple inductive Turing machine functioning, in particular, making the emphasis on
work with finite words in some alphabet (Burgin, 2005a).

An inductive Turing machine M hardware consists of three abstract devices: a control device
A, which is a finite automaton and controls performance of M; a processor or operating device
H, which corresponds to one or several heads of a conventional Turing machine; and the memory
E, which corresponds to the tape or tapes of a conventional Turing machine. The memory E
of the simplest inductive Turing machine consists of three linear tapes, and the operating device
consists of three heads, each of which is the same as the head of a Turing machine and works with
the corresponding tapes. Such machines are called simple inductive Turing machines (Burgin,
2005a).

The control device A is a finite automaton. It controls and regulates processes and parameters
of the machine M: the state of the whole machine M, the processing of information by H, and the
storage of information in the memory E.

The memory E of a general inductive Turing machines is divided into different but, as a rule,
uniform cells. It is structured by a system of relations that organize memory as well-structured
system and provide connections or ties between cells. In particular, input registers, the working
memory, and output registers of M are discerned. Connections between cells form an additional
structure K of E. Each cell can contain a symbol from an alphabet of the languages of the machine
M or it can be empty.

In a general case, cells may be of different types. Different types of cells may be used for stor-
ing different kinds of data. For example, binary cells, which have type B, store bits of information
represented by symbols 1 and 0. Byte cells (type BT) store information represented by strings
of eight binary digits. Symbol cells (type SB) store symbols of the alphabet(s) of the machine
M. Cells in conventional Turing machines have SB type. Natural number cells, which have type
NN, are used in random access machines. Cells in the memory of quantum computers (type QB)
store q-bits or quantum bits. Cells of the tape(s) of real-number Turing machines (Burgin, 2005a)
have type RN and store real numbers. When different kinds of devices are combined into one, this
new complex device may have several types of memory cells. In addition, different types of cells
facilitate modeling the brain neuron structure by inductive Turing machines.

The processor H performs information processing in M. However, in comparison to computers,
H performs very simple operations. When H consists of one unit, it can change a symbol in the
cell that is observed by H, and go from this cell to another using a connection from K. It is possible
that the processor H consists of several processing units similar to heads of a multihead Turing
machine. This allows one to model various real and abstract computing systems: multiprocessor
computers; Turing machines with several tapes; networks, grids and clusters of computers; cellular
automata; neural networks; and systolic arrays.

The software R of the inductive Turing machine M is also a program that consists of simple
rules:

qhai → a jqkc (2.1)

Mark Burgin / Theory and Applications of Mathematics & Computer Science 5 (1) (2015) 71–93 75

Here qh and qk are states of A, ai and a j are symbols of the alphabet of M, and c is a type of
connection in the memory E. The rule (2.1) means that if the state of the control device A of M is
qh and the processor H observes in the cell the symbol a j, then the state of A becomes qk, while
the processor H writes the symbol a j in the cell where it is situated and moves to the next cell
by a connection of the type c. Each rule directs one step of computation of the inductive Turing
machine M. Rules of the inductive Turing machine M define the transition function of M and
describe changes of A, H, and E. Consequently, these rules also determine the transition functions
of A, H, and E.

These rules cover only synchronous parallelism of computation. However, it is possible to
consider inductive Turing machines of any order in which their processor can perform computa-
tions in the concurrent mode. Besides, it is also possible to consider inductive Turing machines
with several processors. These models of computation are studied elsewhere.

A general step of the machine M has the following form. At the beginning, the processor H
observes some cell with a symbol ai (it may be Λ as the symbol of an empty cell) and the control
device A is in some state qh. Then the control device A (and/or the processor H) chooses from the
system R of rules a rule r with the left part equal to qhai and performs the operation prescribed by
this rule. If there is no rule in R with such a left part, the machine M stops functioning. If there are
several rules with the same left part, M works as a nondeterministic Turing machine, performing
all possible operations. When A comes to one of the final states from F, the machine M also stops
functioning. In all other cases, it continues operation without stopping.

In the output stabilizing mode, M gives the result when M halts and its control device A is in
a final state from F, or when M never stops but at some step of the computation the content of the
output register becomes fixed and does not change (cf. Definition 3.4). The computed result of M
is the word that is written in the output register of M. In all other cases, M does not give the result
(cf. Definition 3.6).

Now let us build a constructive hierarchy of inductive Turing machines.
The memory E is called recursive if all relations that define its structure are recursive. Here re-

cursive means that there are Turing machines that decide or build the structured memory (Burgin,
2005a). There are different techniques to organize this process. The simplest approach assumes
that given some data, e.g., a description of the structure of E, a Turing machine T builds all con-
nections in the memory E before the machine M starts its computation. According to another
methodology, memory construction by the machine T and computations of the machine M go con-
currently, while the machine M computes, the machine T constructs connections in the memory E.
It is also possible to consider a situation when some connections in the memory E are assembled
before the machine M starts its computation, while other connections are formed parallel to the
computing process of the machine M.

Besides, it is possible to consider a schema when the machine T is separate from the machine
M, while another construction adopts the machine T as a part of the machine M.

Inductive Turing machines with recursive memory are called inductive Turing machines of the
first order.

While in inductive Turing machines of the first order, the memory is constructed by Turing
machines or other recursive algorithms, it is possible to use inductive Turing machines for memory
construction for other inductive Turing machines. This brings us to the concept of inductive Turing

76 Mark Burgin / Theory and Applications of Mathematics & Computer Science 5 (1) (2015) 71–93

machines of higher orders. For instance, in inductive Turing machines of the second order, the
memory is constructed by Turing machines of the first order.

In general, we have the following definitions.
The memory E is called n-inductive if its structure is constructed by an inductive Turing ma-

chine of the order n. Inductive Turing machines with n-inductive memory are called inductive
Turing machines of the order n + 1. Namely, in inductive Turing machines of order n, the memory
is constructed by Turing machines of order n - 1.

We denote the class of all inductive Turing machines of the order n by ITn and take IT =
∞⋃

n=1
ITn.

In such a way, we build a constructive hierarchy of inductive Turing machines. Algorithmic
problems solved by these machines form a superrecursive hierarchy of algorithmic problems (Bur-
gin, 2005b).

A simple inductive Turing machine has the same structure and the same rules (instructions) as
a conventional Turing machine with three heads and three linear tapes: the input tape, output tape
and working tape. The input tape is a read-only tape and the output tape is a write-only tape.

Computation or acceptation of a simple inductive Turing machine M consists of two stages.
At first, M rewrites the input word from the input tape to the working tape. Then M starts working
with this word in the working tape, writing something to the output tape from time to time.

Thus, the rules of a simple inductive Turing machine have the form

qh(ai1, ai2, ai3)→ (a j1, a j2, a j3)qk(T1,T2,T3) (2.2)

The meaning of symbols in formula (2.2) is similar to notations used for Turing machines. Namely,
we have:

- qh and qk are states of the control device A;

- ai1, ai2, ai3, a j1, a j2 and a j3 are symbols from the alphabet of M;

- each of the symbols T1,T2 and T3 is equal either to L, which denotes the transition of the
head to the left adjacent cell or to R, which denotes the transition of the head to the right
adjacent cell, or to N, which denotes absence of a head transition.

The rule (2.2) means that if the state of the control device A of M is qh and the head ht observes
in the cell of the tape t the symbol ait , then the state of A becomes qk , while the head ht writes
the symbol a j in the cell where it is situated and moves to the direction indicated by Tt(t = 1, 2, 3).
Each rule directs one step of computation of the inductive Turing machine M.

It means that moves of a simple inductive Turing machine are the same as moves of a Turing
machine with three tapes. The difference is in output. A Turing machine produces a result only
when it halts. The result is a word on the output tape. A simple inductive Turing machine is
also doing this but in addition, it produces its results without stopping. It is possible that in the
sequence of computations after some step, the word on the output tape is not changing, while
the simple inductive Turing machine continues working. This word, which is not changing, is
the result of the machine that works in the output stabilizing computing mode. Thus, the simple

Mark Burgin / Theory and Applications of Mathematics & Computer Science 5 (1) (2015) 71–93 77

inductive Turing machine does not halt, producing a result after a finite number of computing
operations.

Because here we consider inductive Turing machines that work only with finite words and
processing of the input word starts only after it is rewritten into the working tape, it is possible to
assume that there is no input tape, the initial word is written in the working tape and the rules have
the form

qh(ai2, ai3)→ (a j2, a j3)qk(T2,T3) (2.3)

Here ai2 and a j2 are symbols in the working tape, ai3 and a j3 are symbols in the output tape, the
symbol T2 directs the move of the head h2, while the symbol T3 directs the move of the head h3.

Besides, it is also possible to assume that the output written in the output tape does not influ-
ence operations of the inductive Turing machine because the output tape is the write-only tape.

3. Comparing results of stabilizing computations

In this section, we study functioning of inductive Turing machines of the first order with one
linearly ordered output register and one linearly ordered input register (Burgin, 2005a). We also
assume that these inductive Turing machines work with finite words in some alphabet. The main
emphasis here is on simple inductive Turing machines. Note that in general, inductive Turing
machines can work not only with finite and infinite words but also with multidimensional arrays,
graphs and even more sophisticated data structures.

In the previous section, we considered only the output stabilizing computing mode of induc-
tive Turing machines. However, it is possible to use other modes of inductive Turing machine
functioning, for example, the state stabilizing mode. This is similar to the functioning modes of
finite automata that work with infinite words, (Burks & Wright, 1953; Büchi, 1960; Thomas, 1990;
Chadha et al., 2009).

The simplest modes of inductive Turing machine functioning are acceptation by halting and
computation by halting. Namely, we have:

Definition 3.1. a) An inductive Turing machine M accepts the input word by halting if after
some number of steps, the machine M stops.

b) The set Lht(M) of all words accepted by halting of an inductive Turing machine M is called
the halting accepted language of the machine M.

This is the standard mode for Turing machines (Hopcroft et al., 2001; Burgin, 2005a).
Computation by halting is defined in a similar way.

Definition 3.2. a) An inductive Turing machine M computes a word w by halting if after some
number of steps, the machine M stops and when this happens, w is the word in output tape.

b) The set Lht(M) of all words computed by halting of an inductive Turing machine M is called
the halting computed language of the machine M.

78 Mark Burgin / Theory and Applications of Mathematics & Computer Science 5 (1) (2015) 71–93

In the theory of inductive Turing machines, it is proved that when an inductive Turing machine
M gives the result by halting, i.e., accepts a word by halting or computes a word by halting, M is
linguistically equivalent to a Turing machine, i.e., the language produced (accepted or computed)
by M can be produced by some Turing machine (Burgin, 2005a). In the theory of Turing machines,
it is proved that acceptation by halting is linguistically equivalent to computation by halting. This
gives us the following result.

Proposition 3.1. Computation by halting is linguistically equivalent to acceptation by halting in
the class of all inductive Turing machines of the first order.

Thus, inductive Turing machine M of the first order can compute and accept all recursively
enumerable languages and only these languages.

Now we will study more productive modes of inductive Turing machine functioning when
machines are able to compute or accept languages that are not recursively enumerable.

Let us consider an inductive Turing machine M. In the set Q of states of the machine M, several
subsets F1, . . . , Fk are selected and called the final groups of states of the inductive Turing machine
M.

Definition 3.3. An inductive Turing machine M gives a result by state stabilizing if after some
number of steps, the state of the machine M always remains in the same final group of states.

Note that traditionally states of the control device of a Turing machine or of an inductive Turing
machine are treated as states of the whole machine (Burgin, 2005a; Hopcroft et al., 2001; Sipser,
1996). We follow this tradition.

It is possible that one or several final groups consist of a single state. Then stabilization in such
a group means that the state of the machine M always stops changing after some number of steps.

When the processing mode is acceptation, the result is acceptation of the input word. We
formalize this situation by the following definition.

Definition 3.4. a) An inductive Turing machine M accepts the input word by state stabilizing
if after some number of steps, the state of the machine M always remains in the same final
group of states.

b) The set Lht(M) of all words accepted by state stabilizing of an inductive Turing machine M
is called the state stabilizing accepted language of the machine M.

It is natural to consider the state stabilizing language Lot(M) of the machine M as the result of
M working in the acceptation mode.

We denote by Lst(ITM1) the set of all state stabilizing accepted languages of inductive Turing
machines of the first order and by Lst(SITM) the set of all state stabilizing accepted languages of
simple inductive Turing machines.

In the computing mode, the result is defined in a different way, which is formalized by the
following definition.

Mark Burgin / Theory and Applications of Mathematics & Computer Science 5 (1) (2015) 71–93 79

Definition 3.5. a) An inductive Turing machine M computes the input word w by state stabi-
lizing if after some number of steps, the state of the machine M always remains in the same
final group of states and w is the first word in the output tape when the state stabilization
process starts. This output w is the final result of the machine M.

b) The set Lst(M) of all words computed by state stabilizing of an inductive Turing machine M
is called the state stabilizing computed language of the machine M.

It is natural to consider the state stabilizing language Lot(M) of the machine M as the result of
M working in the acceptation mode.

We denote by Lst(ITM1) the set of all state stabilizing computed languages of inductive Turing
machines of the first order and by Lst(SITM) the set of all state stabilizing computed languages of
simple inductive Turing machines.

Definition 3.6. An inductive Turing machine M gives a result by output stabilizing if after some
number of steps the output of the machine M stops changing. This output is the final result of the
machine M.

When the processing mode is acceptation, the result is acceptation of the input word. Namely,
we have the following concept.

Definition 3.7. a) An inductive Turing machine M accepts the input word by output stabilizing
if after some number of steps, the output of the machine M stops changing. This output is
the final result of the machine M.

b) The set Lot(M) of all words accepted by output stabilizing of an inductive Turing machine
M is called the output stabilizing accepted language of the machine M.

It is natural to consider the output stabilizing language Lot(M) of the machine M as the result
of M working in the acceptation mode.

We denote by Lot(ITM1) the set of all output stabilizing accepted languages of inductive Turing
machines of the first order and by Lot(SITM)the set of all state stabilizing accepted languages of
simple inductive Turing machines.

Definition 3.8. a) An inductive Turing machine M computes the input word by output stabiliz-
ing if after some number of steps, the output of the machine M stops changing. This output
is the final result of the machine M.

b) The set Lot(M) of all words computed by output stabilizing of an inductive Turing machine
M is called the output stabilizing computed language of the machine M.

It is natural to consider the state stabilizing language Lot(M) of the machine M as the result of
M working in the computation mode.

We denote by Lot(ITM1) the set of all state stabilizing computed languages of inductive Turing
machines of the first order and by Lot(SITM) the set of all state stabilizing computed languages of
simple inductive Turing machines.

Let us consider more restrictive modes of inductive Turing machine functioning.

80 Mark Burgin / Theory and Applications of Mathematics & Computer Science 5 (1) (2015) 71–93

Definition 3.9. An inductive Turing machine M gives a result by bistabilizing if after some number
of steps the output of the machine M stops changing, while the state of M remains in the same final
group of states.

This output is the final result of the machine M.
When the processing mode is acceptation, the result is acceptation of the input word. Namely,

we have the following concept.

Definition 3.10. a) An inductive Turing machine M accepts the input word by bistabilizing if
after some number of steps, the output of the machine M stops changing, while the state of
M remains in the same final group of states.

b) The set Lbt(M) of all words accepted by bistabilizing of an inductive Turing machine M is
called the bistabilizing accepted language of the machine M.

It is natural to consider the output stabilizing language Lbt(M) of the machine M as the result
of M working in the acceptation mode.

We denote by Lbt(ITM1) the set of all bistabilizing accepted languages of inductive Turing
machines of the first order and by Lbt(SITM) the set of all bistabilizing accepted languages of
simple inductive Turing machines.

Definition 3.11. a) An inductive Turing machine M computes the input word by bistabilizing
if after some number of steps, the output of the machine M stops changing, while the state
of M remains in the same final group of states.
The output that stopped changing is the final result of the machine M.

b) The set Lbt(M) of all words computed by bistabilizing of an inductive Turing machine M is
called the bistabilizing computed language of the machine M.

It is natural to consider the bistabilizing language Lbt(M) of the machine M as the result of M
working in the computation mode.

We denote by Lbt(ITM1) the set of all bistabilizing computed computed languages of inductive
Turing machines of the first order and by Lbt(SITM) the set of all bistabilizing computed languages
of simple inductive Turing machines.

Definitions imply the following results.

Proposition 3.2. For any inductive Turing machine M, we have:

a) Lbt(M) ⊆ Lot(M).

b) Lbt(M) ⊆ Lst(M).

c) Lbt(M) ⊆ Lot(M).

d) Lbt(M) ⊆ Lst(M).

Corollary 3.1. The following inclusions are true:

Mark Burgin / Theory and Applications of Mathematics & Computer Science 5 (1) (2015) 71–93 81

a) Lbt(ITM1) ⊆ Lot(ITM1).

b) Lbt(ITM1) ⊆ Lot(ITM1).

c) Lbt(ITM1) ⊆ Lst(ITM1).

d) Lbt(ITM1) ⊆ Lst(ITM1).

e) Lbt(SITM) ⊆ Lot(SITM).

f) Lbt(SITM) ⊆ Lot(SITM).

g) Lbt(SITM) ⊆ Lst(SITM).

h) Lbt(SITM) ⊆ Lst(SITM).

Computation by output stabilizing is the basic mode of inductive Turing machines when they
perform computations (Burgin, 2005a). Properties of inductive Turing machines show that an
inductive Turing machine M of the first order that accepts (or computes) by halting is linguistically
equivalent to an accepting (or computing) Turing machine (Burgin, 2005a). At the same time, in
general inductive Turing machines of the first order are essentially more powerful than Turing
machines. For instance, there are simple inductive Turing machines that solve the halting problem
for all Turing machines. This gives us the following result.

Proposition 3.3. For any inductive Turing machine M, we have:

a) Computation by state stabilizing is not linguistically equivalent to computation by halting
in the class of all inductive Turing machines of the first order.

b) Acceptation by state stabilizing is not linguistically equivalent to acceptation by halting in
the class of all inductive Turing machines of the first order.

Note that halting is a very specific case of stabilizing in which the process simply stops. How-
ever, it is more natural to compare non-stopping processes of acceptation and computation for
inductive Turing machines.

Comparing the state stabilizing computed language Lst(M) of an inductive Turing machine M
and the output stabilizing computed language Lot(M) of the machine M, we see that in general
these languages do not coincide. The same can be true for the accepted languages of the inductive
Turing machine M. Such machines are considered in the following examples.

Example 3.1. Let us take a simple inductive Turing machine M such that works in the alphabet
{0, 1} and given a word w as its input, changes w to the word w1, i.e., M writes 1 at the end of
w, gives as the output and repeats this operation with the output without stopping. As the output
of M is changing on each step, the output stabilizing accepted language Lot(M) of the machine
M is empty. At the same time, if we take all states of M as a single final group, then the state
stabilizing accepted language Lst(M) of the machine M contains all words in the alphabet {0, 1}.
Thus, Lot(M) , Lst(M).

82 Mark Burgin / Theory and Applications of Mathematics & Computer Science 5 (1) (2015) 71–93

The same inequality is true for the computed language of the inductive Turing machine M.
Indeed, the output stabilizing computed language Lot(M) of the machine M is empty because its
output never stops changing. At the same time, the machine M computes by the state stabilizing
all words in the alphabet {0, 1} that has 1 at the end. Thus, Lot(M) , Lst(M).

In Example 3.1, as we can see, the state stabilizing accepted language Lst(M) of the machine
M is much larger than the output stabilizing accepted language Lot(M) of the same machine M.
The same inequality is true for the computed languages of inductive Turing machine M. However,
the opposite situation is also possible.

Example 3.2. Let us take a simple inductive Turing machine W such that works in the alphabet
{0, 1} and given a word w as its input, gives this word w as the output and repeats this operation
with the output and then never produces any new output. At the same time, it is possible to program
the machine W so that after it rewrites w into its output tape, the machine W goes into an infinite
cycle changing the state on each step. As the result, the output stabilizing accepted language
Lot(W) of the machine W contains all words in the alphabet {0, 1}. However, if we do not define
any final group in the states of the machine W, then the state stabilizing accepted language Lst(W)
of the machine W is empty. Thus, Lot(W) , Lst(W).

The same inequality is true for the computed languages of inductive Turing machine W. Indeed,
the state stabilizing computed language Lot(W) of the machine W is empty because its state never
stops changing and there are no final state groups. At the same time, the machine W computes by
the output stabilizing all words in the alphabet {0, 1} that has 1 at the end.Thus, Lot(W) , Lst(W).

Thus, the output stabilizing accepted language Lot(W) of the machine W is much larger than
the state stabilizing accepted language Lst(W) of the same machine W. The same inequality is true
for the computed languages of inductive Turing machine W.

However, for the classes of the output stabilizing accepted by inductive Turing machines of the
first order languages and the state stabilizing accepted by inductive Turing machines of the first
order languages this is not true.

Theorem 3.1. If a language L has an inductive Turing machine of the first order that computes L
by output stabilizing, then L has an inductive Turing machine of the first order that computes L by
bistabilizing.

Proof. Let us consider an inductive Turing machine M of the first order that computes a language
L by output stabilizing and construct an inductive Turing machine of the first order that computes
a language L by bistabilizing. In the theory of inductive Turing machines, it is proved that any an
inductive Turing machine of the first order is equivalent to a simple inductive Turing machine M
that never stops given some input (Burgin, 2005a). Thus, it is possible to assume that M is a simple
inductive Turing machine that never stops given some input and accepts by output stabilizing. Note
that in the mode of output stabilizing final groups of states do not play any role.

Thus, it is possible to use the same machine M for bistabilizing computation of L. Indeed,
making the set Q of all states of M as one final group, we see that according to Definition 11,
the machine M computes the same language L(M) as before by bistabilizing because the state is
always stabilized. Theorem is proved.

Mark Burgin / Theory and Applications of Mathematics & Computer Science 5 (1) (2015) 71–93 83

Results from (Burgin, 2005a) show that Lst(ITM1) = Lst(SITM) and Lot(ITM1)= Lot(SITM).
Thus, Theorem 3.1 implies the following result.

Corollary 3.2. Lot(ITM1) ⊆ Lbt(ITM1).

This result shows that computation by bistabilizing looks more powerful than computation by
output stabilizing in the class of all inductive Turing machines of the first order. However, the
inverse of Theorem 3.1 is also true.

Theorem 3.2. If a language L has an inductive Turing machine M of the first order that computes
L by bistabilizing, then L has an inductive Turing machine K of the first order that computes L by
output stabilizing.

Proof. Let us consider an inductive Turing machine M of the first order that computes a language
L by bistabilizing and construct an inductive Turing machine K of the first order that computes a
language L by output stabilizing. As before, it is possible to assume that M is a simple inductive
Turing machine.

To allow functioning in the bistabilizing mode, in the set Q of states of M, several subsets
F1, . . . , Fk are selected as final groups of states of the inductive Turing machine M.

By Proposition 3.2, L = Lbt(M) ⊆ Lot(M), i.e., the language Lot(M) computable by output
stabilizing may have words that do not belong to the language Lbt(M) computable by bistabilizing.
To prove the necessary result, we show how to get rid of these extra words by appropriately
changing the machine M.

Such an extra word w is computed by M when the output stabilizes but the state does not
remain in the same final group. To prevent this, we add new symbols b1, b2, b3, . . . , bm to the
alphabet A = {a1, a2, a3, . . . , am} of the machine M. Then we consider all instructions of the form

qh(ai2, ai3)→ (a j2, ai3)qk(T2,T3)

where qh belongs to some final group of states Ft , while qk does not belong to this group and
change this instruction to the two following instructions

qh(ai2, ai3)→ (a j2, bi3)qk(T2,T3)

qk(ai2, bi3)→ (a j2, ai3)qk(T2,T3)

We do not change other instructions of M and in such a way, we obtain a simple inductive Turing
machine K. As a result of these changes, the output of K always changes when the sate leaves
some final group. So, the output stabilizes if and only if the state stabilizes in some final group.
Consequently, the new inductive Turing machine K computes the given language L. Theorem is
proved.

Theorem 3.2 implies the following result.

Corollary 3.3. Lbt(ITM1) ⊆ Lot(ITM1).

84 Mark Burgin / Theory and Applications of Mathematics & Computer Science 5 (1) (2015) 71–93

This result shows that computation by output stabilizing looks more powerful than computation
by bistabilizing in the class of all inductive Turing machines of the first order. However, Theorems
3.1 and 3.2 together imply that these modes are linguistically equivalent.

Theorem 3.3. Computation by output stabilizing is linguistically equivalent to computation by
bistabilizing in the class of all inductive Turing machines of the first order.

Corollary 3.4. Lbt(ITM1) = Lot(ITM1).

Let us consider relations between computed and accepted languages.

Theorem 3.4. If a language L has an inductive Turing machine of the first order that computes L
by state stabilizing, then L has an inductive Turing machine of the first order that computes L by
bistabilizing.

Proof. Let us consider an inductive Turing machine M of the first order that computes a language
L by state stabilizing and construct an inductive Turing machine K of the first order that computes
a language L by bistabilizing. As before, it is possible to assume that M is a simple inductive
Turing machine.

To allow functioning in the state stabilizing mode, in the set Q of states of M, several subsets
F1, . . . , Fk are selected as final groups of states of the inductive Turing machine M.

We begin our construction of the machine K by adding one more working tape to the tapes the
machine M. A simple inductive Turing machine has only three tapes (see Section 2). However,
by the standard technique described, for example, in (Hopcroft et al., 2001) or in (Sipser, 1996),
it is possible to show that we can build a simple inductive Turing machine which simulates two
working tapes using only one working tape and accepting the same language. Thus, adding one
more working tape, we do not extend the class of accepted languages.

As a result of this action, the machine K has an input tape Tin , an output tape Tout and two
working tapes T1w and T2w . We use the tape T1w for exact modeling of the working tape Tw of
the machine M. To do this, we preserve all parts of the rules that are related to the tape Tw in the
machine M.

At the same time, we use the tape T2w for exact modeling of the output tape TMout of the
machine M. To do this, we redirect all parts of the rules that are related to the tape TMout in the
machine M, making them the rules for the tape T2w in K.

Besides, we add the rewriting state r to the set of states of the machine M and new rules for
the tape Tout in K. The rules in which change of the state goes in one and the same final group are
preserved in K. This allows the following operations. When the state of M leaves a final group,
the same happens with the machine K according to its rules. While the machine M continues its
functioning, comes to the rewriting state r, erases everything from the tape Tout in K and then
rewrites the word from the tape T2w into the output tape Tout . When the state of M is outside any
final group and changes, the machine K repeats the same steps.

Thus, the output of K always changes when the state leaves some final group or is outside any
final group and changes. As a result, the output of K stabilizes if and only if the state remains inside
some final group. Besides, it stabilizes on the first word that was on the output tape of M when
the stabilization of states started. So, the machine K computes the language L by bistabilizing.
Theorem is proved.

Mark Burgin / Theory and Applications of Mathematics & Computer Science 5 (1) (2015) 71–93 85

Theorem 3.4 implies the following result.

Corollary 3.5. Lst(ITM1) ⊆ Lbt(ITM1).

Note that the machine K constructed in the proof of Theorem 3.4 also computes the language
L by output stabilizing. This gives us the following result.

Theorem 3.5. If a language L has an inductive Turing machine of the first order that computes L
by state stabilizing, then L has an inductive Turing machine of the first order that computes L by
output stabilizing.

Theorem 3.5 implies the following result.

Corollary 3.6. Lst(ITM1) ⊆ Lot(ITM1).

Inversion of Theorem 3.4 is also true.

Theorem 3.6. If a language L has an inductive Turing machine of the first order that computes L
by bistabilizing, then L has an inductive Turing machine of the first order that computes L by state
stabilizing.

Proof. Let us consider an inductive Turing machine M of the first order that computes a language
L by bistabilizing and construct an inductive Turing machine K of the first order that computes a
language L by state stabilizing. As before, it is possible to assume that M is a simple inductive
Turing machine.

To allow functioning in the bistabilizing mode, in the set Q = {q1, q2, q3, . . . , qm} of states of
M, several subsets F1, . . . , Fk are selected as final groups of states of the inductive Turing machine
M.

By Proposition 3.2, L = Lbt(M) ⊆ Lst(M), i.e., the language Lst(M) computable by output
stabilizing may have words that do not belong to the language Lbt(M) computable by bistabilizing.
To prove the necessary result, we show how to get rid of these extra words by appropriately
changing the machine M.

Such an extra word w is computed by M when the state stabilizes in some final group but the
output does not remain the same all the time. To prevent this, we add a new states p1, p2, p3, . . . , pm

to the set Q of states of the machine M without changing the final groups. Then we consider all
instructions of the form.

qh(ai2, ai3)→ (a j2, a j3)qk(T2,T3)

where qh and qk belong to some final group of states Fn but ai3 , a j3 and change this instruction
to the two following instructions

qh(ai2, ai3)→ (a j2, a j3)pk(T2,T3)

pk(ai2, a j3)→ (a j2, ai3)qk(T2,T3)

We do not change other instructions of M and in such a way, we obtain a simple inductive Turing
machine K. As a result of these changes, if the sate belongs to a final group, it always leaves this
group when the output of K changes. So, the state stabilizes in some final group if and only if the
output stabilizes. Consequently, the new inductive Turing machine K computes the given language
L by state stabilizing. Theorem is proved.

86 Mark Burgin / Theory and Applications of Mathematics & Computer Science 5 (1) (2015) 71–93

Theorem 3.6 implies the following result.

Corollary 3.7. Lbt(ITM1) ⊆ Lst(ITM1).

This result shows that computation by output stabilizing looks more powerful than computation
by bistabilizing in the class of all inductive Turing machines of the first order. However, Theorems
3.4 and 3.6 together imply that these modes are linguistically equivalent.

Theorem 3.7. Computation by state stabilizing is linguistically equivalent to computation by
bistabilizing in the class of all inductive Turing machines of the first order.

Corollary 3.8. Lbt(ITM1) = Lst(ITM1).

Theorems 3.3 and 3.7 together imply that all considered computing modes are linguistically
equivalent.

Theorem 3.8. Computation by state stabilizing, computation by output stabilizing and computa-
tion by bistabilizing are linguistically equivalent in the class of all inductive Turing machines of
the first order.

Corollary 3.9. Lbt(ITM1) = Lst(ITM1) = Lot(ITM1).

Inductive Turing machines allow modeling Turing machines, namely, for any Turing machine
T, there is an inductive Turing machine M that has the same language as P (Burgin, 2005a). This
makes possible to obtain the classical result of computability theory that computing by final state
is linguistically equivalent to computing by halting (Burgin, 2005a; Hopcroft et al., 2001; Sipser,
1996) as a direct corollary of Theorem 3.8.

Comparing the state stabilizing computed language Lst(M) of an inductive Turing machine M,
the output stabilizing computed language Lot(M) of the machine M and the bistabilizing computed
language Lot(M) of the machine M, we see that in general these languages do not coincide. The
same can be true for the accepted languages of the inductive Turing machine M. Such machines
are considered in the following examples.

Indeed, the output stabilizing accepted language Lot(W) of the machine W from Example 3.2
is much larger than the bistabilizing accepted language Lbt(W) of the same machine W. The same
inequality is true for the computed languages of inductive Turing machine W. In addition, the
state stabilizing accepted language Lst(M) of the machine M is much larger than the bistabilizing
accepted language Lbt(M) of the same machine M. The same inequality is true for the computed
languages of inductive Turing machine M.

However, Proposition 3.2 shows that for any Turing machine M, the language Lbt(M) cannot
be larger than the language Lst(M) and the language Lbt(M) cannot be larger than the language
Lot(M).

In addition, for the classes of the output stabilizing accepted by inductive Turing machines of
the first order languages and the state stabilizing accepted by inductive Turing machines of the
first order languages this is not true.

Now let us explore for inductive Turing machines of the first order, relations between computed
and accepted languages and classes of languages.

Mark Burgin / Theory and Applications of Mathematics & Computer Science 5 (1) (2015) 71–93 87

Theorem 3.9. If a language L has an inductive Turing machine M of the first order that accepts L
by state stabilizing, then L has an inductive Turing machine V of the first order that computes L by
state stabilizing.

Proof. Let us consider an inductive Turing machine M of the first order that accepts a language L
by state stabilizing, i.e., L = Lst(M). As it is proved that any an inductive Turing machine of the
first order is equivalent to a simple inductive Turing machine M (Burgin, 2005a), it is possible to
assume that M is a simple inductive Turing machine.

Then we change the rules R of the inductive Turing machine M to the rules P of the inductive
Turing machine V by the following transformation. We exclude from all rules of the machine M
any possibility to write something into the output tape. Besides, we add such rules according to
which the process of functioning machine V begins so that the output head writes the input word
into the output tape.

By construction, V is also a simple inductive Turing machine.
As there no other transformations of the system of initial rules, the output of V is never chang-

ing. By Definition 3.3, this output is the result of computation for V if and only if after some
number of steps, the state of the machine M always remains in the same final group of states. It
means that a word w is accepted by state stabilizing in the inductive Turing machine M if and only
if the word w is computed by state stabilizing in the inductive Turing machine V. Consequently,
languages Lst(M) and Lst(V) coincide. Theorem is proved.

Corollary 3.10. Lst(ITM1) ⊆ Lst(ITM1).

This result shows that computation by state stabilizing looks more powerful than acceptation
by state stabilizing in the class of all inductive Turing machines of the first order.

Theorem 3.10. If a language L has an inductive Turing machine M of the first order that computes
L by output stabilizing, then there is an inductive Turing machine W of the first order that accepts
L by output stabilizing.

Proof. Let us consider an inductive Turing machine M of the first order that computes a language
L by output stabilizing, i.e., L = Lot(M). As it is proved that any an inductive Turing machine of
the first order is equivalent to a simple inductive Turing machine M (Burgin, 2005a), it is possible
to assume that M is a simple inductive Turing machine.

In addition, we consider a Turing machine G that given a word 1n, generates n different words
in the alphabet X of the machine M, generating all words in the alphabet X in such a way. We also
take a Turing machine C that compares its input with the word written in the tape of this machine
and called the sample word of C. When both words are equal, the machine C gives 1 as its output
and halts. Otherwise, the machine C gives 0 as its output and halts.

This allows us to build the machine W in the following way. It contains subroutines G0 ,
C0 and M0 , that simulate the machines G, C and M, respectively. The machine W has as many
working tapes as it is necessary for functioning of the subroutines G0 , C0 and M0. In particular,
two counting tapes are added - the counting tape for the machine W and the counting tape for the
subroutine M0. In these tapes, numbers of iterations are stored. Then we add rules for W such that
allow it to perform the following steps.

88 Mark Burgin / Theory and Applications of Mathematics & Computer Science 5 (1) (2015) 71–93

1. When a word w comes to W as its input, the machine W writes w into the working tape of
the machine C as its sample word and goes to the step 2.

2. The machine W writes the number 1 into the counter tape, which contains the number of
iterations, and goes to the step 3.

3. The machine W gives the number 1 as the input to the subroutine G0 and goes to the step 4.

4. The subroutine G0 generates the word u1 and gives it as the input to the subroutine M0, going
to the step 5.

5. The subroutine M0 computes with this input until the first word w1 appears in the output tape
of M0. Then the machine W goes to the step 6.

6. The machine W writes the word w1 in its output tape and gives w1 as the input to the subrou-
tine C0, which compares w1 and w. Then the machine W goes to the step 7 or 9 depending
on the output of C0.

7. If the output of C0 is 1, then the subroutine M0 continues its computations until the next
output word, in this case w2, appears in the output tape of M0. Then the machine W goes to
the step 8.

8. The machine W gives w2 as the input to the subroutine C0, which compares w2 and w. Then
the machine W goes to the step 7 or 9 depending on the output of C0. Note that if the output
of C0 is always 1 starting from some input, the machine W accepts w by output stabilizing.

9. If the output of C0 is 0, then the machine W writes the word w in its output tape, changes
this word to the word checked by C0 (it will be w1 if the previous step had number 6, while
it will be w2 if the previous step had number 8) and goes to the step 10.

10. The machine W adds 1 to the number in its counter tape, gives this new number n (in the
second iteration n = 2) as the input to the subroutine G0 and goes to the step 11.

11. The subroutine G0 generates n words u1, u2, . . . , un and gives all of them one by one as the
inputs to the subroutine M0.

12. The subroutine M0 writes 1 into its counting tape and computes with the input u1 until it
writes n words into the output tape. Then the machine W goes to the step 13.

13. The machine W gives the current output word wk of the subroutine M0 as the input to the
subroutine C0 , which compares wk and w. Then the machine W goes to the step 14 or 15
depending on the output of C0.

14. If the output of C0 is 1, then the subroutine M0 continues its computations until the next
output word, say wr, appears in the output tape of M0. Note that if the output of C0 is always
1 starting from some input, the machine W accepts w by output stabilizing.

Mark Burgin / Theory and Applications of Mathematics & Computer Science 5 (1) (2015) 71–93 89

15. If the output of C0 is 0 and the number t in its counting tape is less than k, then the machine
W writes the word w in its output tape and changes this word to the word checked by C0,
while the subroutine M0 adds 1 to the number t in its counting tape and computes with the
input ut+1 until it writes n words into the output tape. Then the machine W goes to the step
13.

16. If the number t in its counting tape of M0 becomes equal to k, the machine W goes to the
step 10.

If the word w is computed by output stabilizing of the inductive Turing machine M, then given
some input u, the machine M makes some number of steps, and then its output becomes equal to w
and stops changing. In this case, the output of C0 is always 1 starting after some number of steps,
and consequently, the machine W accepts w by output stabilizing.

If the word w is not computed by output stabilizing of the inductive Turing machine M for
any input, then either the output of M is not stabilizing or it is stabilizing with the word v that is
not equal to w. In the first case, the output of W is also not stabilizing and thus, the machine W
does not accept w by output stabilizing. In the second case, the output of W is also not stabilizing
because both words w and v appear infinitely many times in the output tape of W and thus, the
machine W does not accept w by output stabilizing.

By construction, W is a simple inductive Turing machine.
Thus, the simple inductive Turing machine W does not accept w by output stabilizing is and

only if the simple inductive Turing machine M does not accept w by output stabilizing.
Theorem is proved because w is an arbitrary word in the alphabet of the inductive Turing

machine M.

Corollary 3.11. Lot(ITM1) ⊆ Lot(ITM1).

This result shows that acceptation by output stabilizing looks more powerful than computation
by output stabilizing in the class of all inductive Turing machines of the first order.

Let us take an inductive Turing machine M functioning of which satisfies Condition ST and
its state stabilizing language Lst(M), i.e., the set of all words computed by state stabilizing of the
machine M (cf. Definition 3.3). Thus, a word w is computed by state stabilizing of the machine M
if and only if is computed by output stabilizing of the machine M. Consequently, Lst(M) = Lot(M).
This gives us the following results.

Theorem 3.11. For any inductive Turing machine M of the first order functioning of which satisfies
Condition ST, Lst(M) ⊆ Lot(M).

Corollary 3.12. Lst(ITM1) ⊆ Lot(ITM1).

This result shows that computation by output stabilizing looks more powerful than computation
by state stabilizing in the class of all inductive Turing machines of the first order.

Note that in general Theorem 11 does not imply equality of the classes Lst(ITM1) and Lot(ITM1)
because not all inductive Turing machines satisfy Condition ST.

At the same time, other results obtained in this paper allows us to find more exact relations
between these classes of languages. Namely, by Corollary 3.1, we have Lst(ITM1)⊆ Lot(ITM1).

90 Mark Burgin / Theory and Applications of Mathematics & Computer Science 5 (1) (2015) 71–93

By Corollary 3.2, we have Lot(ITM1)⊆ Lbt(ITM1).
Comparing acceptation by state with acceptation by output, we obtain the following inclusion

Lot(ITM1)⊆ Lst(ITM1).
By Corollary 3.4, we have Lbt(ITM1)⊆ Lot(ITM1).
By Corollary 3.10, we have Lst(ITM1)⊆ Lst(ITM1).
By Corollary 3.11, we have Lot(ITM1)⊆ Lot(ITM1).
By Corollary 3.12, we have Lst(ITM1)⊆ Lot(ITM1).
This gives us the following chain of inclusions:
Lst(ITM1)⊆ Lot(ITM1)⊆ Lot(ITM1)⊆ Lst(ITM1)⊆ Lst(ITM1).
By properties of sets and the inclusion relation, the chain (5) implies that all inclusions in it

are equalities. Thus, we have the following result.

Theorem 3.12. In the class of all inductive Turing machines of the first order, the following modes
of functioning are linguistically equivalent:

1. Acceptation by state stabilizing.

2. Acceptation by output stabilizing.

3. Computation by state stabilizing.

4. Computation by output stabilizing.

Inductive Turing machines allow modeling Turing machines, namely, for any Turing machine
T, there is an inductive Turing machine M that has the same language as P (Burgin, 2005a). This
makes possible to obtain the following classical result of computability theory as a direct corollary
of Theorem 3.12.

Proposition 3.4. . For Turing machines, the acceptation mode is linguistically equivalent to the
computation mode, i.e., the class of languages accepted by Turing machines coincides with the
class of languages computed by Turing machines.

This result justifies the situation when in the majority of textbooks on computer science, it is
assumed that Turing machines work in the acceptation mode and model computers and this allows
modeling computers although computers, as a rule, work in the computation mode.

4. Conclusion

Various models of computation are studied in computer science - deterministic and nonde-
terministic finite automata, deterministic and nondeterministic pushdown automata, deterministic
and nondeterministic Turing machines with one or many tapes, which can by one-dimensional and
many-dimensional, and so on.

The basic results in this area are theorems on linguistic equivalence of different models of
computation, i.e., equivalence with respect to the languages that are accepted/generated by these
models. Thus, for finite automata, it is proved that the class of languages accepted by deterministic
finite automata is the same as the class of languages accepted by nondeterministic finite automata

Mark Burgin / Theory and Applications of Mathematics & Computer Science 5 (1) (2015) 71–93 91

and as the class of languages accepted by nondeterministic finite automata with ε-transitions (cf.,
for example, (Hopcroft et al., 2001): Theorem 2.12, Theorem 2.22; (Sipser, 1996): Theorem
1.19)).

In the theory of pushdown automata, it is proved that the class of languages accepted by push-
down automata by final state is the same as the class of languages accepted by pushdown automata
by empty stack and as the class of languages generated by context free grammars (cf., for exam-
ple, (Hopcroft et al., 2001): Theorem 6.9, Theorem 6.11, Theorem 6.14; (Sipser, 1996): Theorem
2.12).

In the theory of Turing machines, it is proved that the class of languages accepted by deter-
ministic Turing machines with a single tape is the same as the class of languages accepted by
nondeterministic Turing machines with a single and as the class of languages accepted by Turing
machines with many tapes and as the class of languages accepted by Turing machines with mul-
tidimensional tapes and as the class of languages accepted by pushdown automata with two and
more stacks (cf., for example, (Hopcroft et al., 2001): Theorem 8.9, Theorem 8.11, Theorem 6.14,
Theorem 8.13; (Sipser, 1996): Theorem 3.8, Theorem 3.10).

In this paper, we obtained similar results for inductive Turing machines. Namely, it is proved
that: (1) the class of languages computed by output stabilizing of inductive Turing machines of
the first order is the same as the class of languages computed by bistabilizing of inductive Turing
machines of the first order (Theorem 3.3); (2) the class of languages computed by output stabiliz-
ing of inductive Turing machines of the first order is the same as the class of languages computed
by state stabilizing of inductive Turing machines of the first order (Theorem 3.8); (2) the class of
languages computed by output (state) stabilizing of inductive Turing machines of the first order
is the same as the class of languages accepted by output (state) stabilizing of inductive Turing
machines of the first order (Theorem 3.12).

It is necessary to remark that it is possible to include the results of this paper into a standard
course of the theory of automata, formal languages and computation.

The obtained results bring us to the following problems.
Problem 1. Study different modes of functioning for inductive Turing machines of the higher

orders.
Problem 2. Study inductive Turing machines in which the control device is a more powerful

automaton than a finite automaton.
Here we considered accepting and computing modes of inductive Turing machine brings us to

the following problem.
Problem 3. For inductive Turing machines, study relations between the decision mode, ac-

cepting mode and computing mode of functioning.
It would be important to study properties of stabilizing computations in distributed systems.

Grid automata provide the most advanced and general model of distributed systems (Burgin,
2005a).

Problem 4. Study properties of stabilizing computations for grid automata.
There are models of computation without explicit utilization of automata (cf., for example,

(Milner, 1989; Lee & Sangiovanni-Vincentelli, 1996; Burgin & Smith, 2010).
Problem 5. Study properties of stabilizing computations utilizing models of concurrent com-

putational processes.

92 Mark Burgin / Theory and Applications of Mathematics & Computer Science 5 (1) (2015) 71–93

References

Beros, A. A. (2013). Learning theory in the arithmetical hierarchy, preprint in mathematics. math.LO/1302.7069
(electronic edition: http://arXiv.org).

Büchi, J. Richard (1960). Weak second-order arithmetic and finite automata. Z. Math. Logik und Grundl. Math. 6, 66–
92.

Burgin, M. (1999). Super-recursive algorithms as a tool for high performance computing. Proceedings of the High
Performance Computing Symposium, San Diego 6, 224–228.

Burgin, M. (2003). Nonlinear phenomena in spaces of algorithms. International Journal of Computer Mathematics
80(12), 1449–1476.

Burgin, M. (2004). Algorithmic complexity of recursive and inductive algorithms. Theoretical Computer Science
317(13), 31 – 60.

Burgin, M. (2005a). Super-recursive Algorithms. Springer, New York.
Burgin, M. (2005b). Superrecursive hierarchies of algorithmic problems. In: Proceedings of the 2005 International

Conference on Foundations of Computer Science, CSREA Press, Las Vegas. pp. 31–37.
Burgin, M. (2006). Algorithmic control in concurrent computations. Proceedings of the 2006 International Conference

on Foundations of Computer Science, CSREA Press, Las Vegas 6, 17–23.
Burgin, M. (2007). Algorithmic complexity as a criterion of unsolvability. Theoretical Computer Science

383(2/3), 244 – 259.
Burgin, M. (2010a). Algorithmic complexity of computational problems. International Journal of Computing & In-

formation Technology. 2(1), 149–187.
Burgin, M. (2010b). Measuring power of algorithms, computer programs, and information automata. Nova Science

Publishers, New York.
Burgin, M. and A. Klinger (2004). Experience, generations, and limits in machine learning. Theoretical Computer

Science 317(1/3), 71 – 91.
Burgin, M. and B. Gupta (2012). Second-level algorithms, superrecursivity, and recovery problem in distributed sys-

tems. Theory of Computing Systems 50(4), 694 – 705.
Burgin, M. and E. Eberbach (2008). Cooperative combinatorial optimization: Evolutionary computation case study.

Biosystems 91(1), 34 – 50.
Burgin, M. and E. Eberbach (2009a). On foundations of evolutionary computation: An evolutionary automata ap-

proach. Handbook of Research on Artificial Immune Systems and Natural Computing: Applying Complex Adaptive
Technologies, Hongwei Mo, Ed., IGI Global, Hershey, Pennsylvania, pp. 342–360.

Burgin, M. and E. Eberbach (2009b). Universality for Turing machines, inductive Turing machines and evolutionary
algorithms. Fundamenta Informaticae 91, 53–77.

Burgin, M. and E. Eberbach (2010). Bounded and periodic evolutionary machines. Proc. 2010 Congress on Evolu-
tionary Computation (CEC’2010), Barcelona, Spain pp. 1379–1386.

Burgin, M. and E. Eberbach (2012). Evolutionary automata: Expressiveness and convergence of evolutionary compu-
tation. The Computer Journal 55(9), 1023–1029.

Burgin, M. and M. L. Smith (2010). A theoretical model for grid, cluster and internet computing. Selected Topics in
Communication Networks and Distributed Systems, World Scientific, New York/London/Singapore pp. 485 – 535.

Burgin, M. and N. Debnath (2004). Measuring software maintenance. Proceedings of the ISCA 19th International
Conference ”Computers and their Applications”, ISCA, Seattle, Washington pp. 118–121.

Burgin, M. and N. Debnath (2005). Complexity measures for software engineering. J. Comp. Methods in Sci. and
Eng. 5(1 Supplement), 127–143.

Burgin, M. and N. Debnath (2009). Super-recursive algorithms in testing distributed systems. Proceedings of the
ISCA 24-th International Conference ”Computers and their Applications”, ISCA, New Orleans, Louisiana, USA
pp. 209–214.

Mark Burgin / Theory and Applications of Mathematics & Computer Science 5 (1) (2015) 71–93 93

Burgin, M., N. Debnath and H. K. Lee (2009). Measuring testing as a distributed component of the software life cycle.
Journal of Computational Methods in Science and Engineering 9(Supplement 2/ 2009), 211–223.

Burks, A. W. and J. B. Wright (1953). Theory of logical nets. Proceedings of the IRE 41(10), 1357–1365.
Calinescu, R., R. France and C. Ghezzi (2013). Editorial. Computing 95(3), 165–166.
Chadha, R., A. P. Sistla and M. Viswanathan (2009). Power of randomization in automata on infinite strings. In:

CONCUR 2009 - Concurrency Theory (Mario Bravetti and Gianluigi Zavattaro, Eds.). Vol. 5710 of Lecture Notes
in Computer Science. pp. 229–243. Springer, Berlin/Heidelberg.

Gold, E. M. (1967). Language identification in the limit. Information and Control 10(5), 447 – 474.
Hopcroft, J. E., R. Motwani and J. D. Ullman (2001). Introduction to Automata Theory, Languages, and Computation.

Addison Wesley, Boston/San Francisco/New York.
Lee, E.A. and A. Sangiovanni-Vincentelli (1996). Comparing models of computation. In: Computer-Aided Design,

1996. ICCAD-96. Digest of Technical Papers., 1996 IEEE/ACM International Conference on. pp. 234–241.
Milner, R. (1989). Communication and Concurrency. Prentice-Hall, Inc.. Upper Saddle River, NJ, USA.
Rogers, Jr., Hartley (1987). Theory of Recursive Functions and Effective Computability. MIT Press. Cambridge, MA,

USA.
Sipser, M. (1996). Introduction to the Theory of Computation. 1st ed.. International Thomson Publishing.
Thomas, Wolfgang (1990). Handbook of theoretical computer science (vol. b). Chap. Automata on Infinite Objects,

pp. 133–191. MIT Press. Cambridge, MA, USA.

Theory and Applications of Mathematics & Computer Science 5 (1) (2015) 94–100

Second Hankel Determinant for Generalized Sakaguchi Type
Functions

S. P. Vijayalakshmia,∗, T. V. Sudharsanb

aDepartment of Mathematics, Ethiraj College, Chennai - 600 008, India
bDepartment of Mathematics, SIVET College, Chennai - 600 073, India

Abstract
In this paper, we have obtained sharp upper bounds for the functional |a2a4 − a2

3| belonging to a new subclass of
generalized Sakaguchi type functions introduced by (Frasin, 2010).

Keywords: Sakaguchi functions, subordination, Hankel determinant, starlike functions.
2010 MSC: 30C45, 30C50.

1. Introduction

Let A be the class of analytic functions of the form

f (z) = z +

∞∑
n=2

anzn; (z ∈ ∆ := {z ∈ |z| < 1}) (1.1)

and S be the subclass of A consisting of univalent functions. For two functions f , g ∈ A, we say
that the function f (z) is subordinate to g(z) in ∆ and write f ≺ g, or f (z) ≺ g(z); (z ∈ ∆) if there
exists an analytic function w(z) with w(0) = 0 and |w(z)| < 1 (z ∈ ∆), such that f (z) = g(w(z)),
(z ∈ ∆). In particular, if the function g is univalent in ∆, the above subordination is equivalent to
f (0) = g(0) and f (∆) ⊂ g(∆).

Denote by S ∗S the subclass of S consisting of functions given by (1.1) satisfying
Re

[
z f ′(z)

f (z)− f (−z)

]
> 0 for z ∈ ∆. These functions introduced by (Sakaguchi, 1959) are called func-

tions starlike with respect to symmetric points.

∗Corresponding author
Email addresses: vijishreekanth@gmail.com (S. P. Vijayalakshmi), tvsudharsan@rediffmail.com (T.

V. Sudharsan)

S. P. Vijayalakshmia et al. / Theory and Applications of Mathematics & Computer Science 5 (1) (2015) 94–100 95

Recently (Frasin, 2010) introduced and studied a generalized Sakaguchi type class S (α, s, t) if
it satisfies

Re
{

(s − t)z f ′(z)
f (sz) − f (tz)

}
> α (1.2)

for some 0 ≤ α < 1, s, t ∈ C wih s , t and for all z ∈ ∆. Also denote by T (α, s, t) the subclass of A
consisting of all funcitons f (z) such that z f ′(z) ∈ S (α, s, t). The class S (α, 1, t) was introduced and
studied by Owa et al. (Owa et al., 2005, 2007). If t = −1, the class S (α, 1,−1) ≡ S s(α) (Sakaguchi,
1959) is called Sakaguchi function of order α (see (Cho et al., 1993; Owa et al., 2005)), where as
S s(0) = S ∗s (Sakaguchi, 1959).

Note that S (α, 1, 0) ≡ S ∗(α) and T (α, 1, 0) ≡ C(α) which are, respectively, the familiar classes
of starlike functions of order α (0 ≤ α < 1) and convex functions of order α (0 ≤ α < 1).

Mathur & Mathur (Trilok Mathur & Ruchi Mathur, 2012) investigated the classes S ∗S (φ, s, t)
and T (φ, s, t) defined as follows.

Definition 1.1. Let φ(z) = 1 + B1z + B2z2 + · · · be univalent starlike function with respect to 1
which maps the unit disk ∆ onto a region in the right half plane which is symmetric with respect
to the real axis, and let B1 > 0. The function f ∈ A is in the class S ∗S (φ, s, t) if{

(s − t)z f ′(z)
f (sz) − f (tz)

}
≺ φ(z), s , t.

Remark. T (φ, s, t) denotes the subclass of A consisting functions f (z) such that z f ′(z) ∈ S ∗S (φ, s, t).
Observe that S ∗S (φ, 1, 0) ≡ S ∗S (φ) and T (φ, 1, 0) ≡ C(φ), which are the classes introduced and
studied by Ma and Minda (Ma & Minda, 1994). Also note that S ∗S (φ, 1,−1) ≡ S ∗S (φ), Shanmugam
et al. (Shanmugham et al., 2006).

The qth Hankel determinant for q ≥ 1 and n ≥ 0 is stated by Noonan and Thomas (Noonan &
Thomas, 1976) as

Hq(n) =

∣∣∣∣∣∣∣∣∣∣∣∣
an an+1 · · · an+q+1

an+1 · · · · · ·
...

...
an+q−1 · · · an+2q−2

∣∣∣∣∣∣∣∣∣∣∣∣
This determinant has also been considered by several authors. For example, Noor (Noor,

1983) determined the rate of growth of Hq(n) as n → ∞ for functions f given by (1.1) with
bounded boundary. In particular, sharp upper bounds on H2(2) were obtained by the authors of
articles (Hayami & Owa, 2010; Janteng et al., 2008; Kharudin et al., 2011; Noor, 1983; Selvaraj
& Vasanthi, 2010) for different classes of functions.

Easily, one can observe that the Fekete-Szego functional is H2(1). Fekete-Szego then further
generalised the estimate |a3 − µa2

2| where µ is real and f ∈ S . For our discussion in this paper, we
consider the Hankel determinant in the case q = 2 and n = 2,

H2(2) =

∣∣∣∣∣∣a2 a3

a3 a4

∣∣∣∣∣∣ .
In the present investigation, we see the upper bound for the functional |a2a4 − a2

3| belonging to
a new subclass S ∗S (φ, s, t) of generalized Sakaguchi type functions introduced by (Frasin, 2010).

96 S. P. Vijayalakshmia et al. / Theory and Applications of Mathematics & Computer Science 5 (1) (2015) 94–100

2. Preliminary Results

Let P denote the class of functions

p(z) = 1 + c1z + c2z2 + · · · (2.1)

which are regular in ∆ and satisfy Re p(z) > 0, z ∈ ∆. Throughout this paper we assume that p(z) is
given by (2.1) and f (z) is given by (1.1). To prove the main results we shall require the following
lemmas.

Lemma 2.1. (Duren, 1983) Let p ∈ P, then |ck| ≤ 2, k = 1, 2, . . . and the inequality is sharp.

Lemma 2.2. (Libera & Zlotkiewiez, 1982, 1983) Let p ∈ P, then

2c2 = c2
1 + x(4 − c2

1) (2.2)

and
4c3 = c3

1 + 2xc1(4 − c2
1) − x2c1(4 − c2

1) + 2y(1 − |x|2)(4 − c2
1) (2.3)

for some x, y such that |x| ≤ 1 and |y| ≤ 1.

3. Main Results

Theorem 3.1. If f ∈ S ∗S (φ, s, t), then

|a2a4 − a2
3| ≤

B1

(3 − s2 − st − t2)2 , provided s + t , 2. (3.1)

The result obtained is sharp.

Proof. Let f ∈ S ∗S (φ, s, t). Then there exists a Schwarz function w(z) ∈ A such that{
(s − t)z f ′(z)
f (sz) − f (tz)

}
= φ(w(z)), (z ∈ ∆, s , t) (3.2)

If P1(z) is analytic and has positive real part in ∆ and P1(0) = 1, then

P1(z) =
1 + w(z)
1 − w(z)

= 1 + c1z + c2z2 + · · · (3.3)

From (3.3) we obtain

w(z) =
c1

2
z +

1
2

(
c2 −

c2
1

2

)
z2 + · · · (3.4)

Let
p(z) =

(s − t)z f ′(z)
f (sz) − f (tz)

= 1 + b1z + b2z2 + · · · ; (z ∈ ∆) (3.5)

S. P. Vijayalakshmia et al. / Theory and Applications of Mathematics & Computer Science 5 (1) (2015) 94–100 97

which gives

b1 = (2 − s − t)a2,

b2 = (3 − s2 − st − t2)a3 + (s + t)(s + t − 2)a2
2,

b3 = (4 − s3 − st2 − s2t − t3)a4 + 2(s2 + st + t2)(s + t − 1)a2a3

+ 2a3
2(s + t)2 − 3a2a3(s + t).

Since φ(z) is univalent and P ≺ φ, therefore using (3.4) we obtain

P(z) = φ(w(z)) = 1 +
B1c1

2
z +

{
1
2

(
c2 −

c2
1

2

)
B1 +

1
4

c2
1B2

}
z2

+

[
B1

2

{
2c3 + c1

(
c2

1

2
− c2

)
− c1c2

}
+

B1c1

2

(
c2 −

c2
1

2

)
+

B3c3
1

8

]
z3 + · · · (3.6)

Now from (3.5) and (3.6) we have

(s − t)z f ′(z)
f (sz) − f (tz)

= 1 +
B1c1

2
z +

{
1
2

(
c2 −

c2
1

2

)
B1 +

1
4

c2
1B2

}
z2 + · · · (3.7)

On equating the coefficient of z, z2 and z3 in (3.7) we obtain

a2 =
B1c1

2(2 − s − t)
,

a3 =
1

(3 − s2 − st − t2

{
1
2

(
c2 −

c2
1

2

)
B1 +

1
4

c2
1B2 +

(s + t)B2
1c2

1

4(2 − s − t)

}
,

a4 =
1

(4 − s3 − st2 − s2t − t3)

[
B1c3 + c3

1

[
B1

4
−

B2

4
+

B3

8
−

B3
1(s + t)2

4(2 − s − t)3

+
(s + t + 2(s2 + st + t2))

16(2 − s − t)(3 − s2 − st − t2)

{
B1B2 − B2

1 +
B3

1

(2 − s − t)

}]
+ c1c2

[
−

3B1

2
+

B2

2

+
B2

1

8(2 − s − t)(3 − s2 − st − t2)
[3(s + t) − 2(s2 + st + t2)(s + t − 1)]

]]
.

98 S. P. Vijayalakshmia et al. / Theory and Applications of Mathematics & Computer Science 5 (1) (2015) 94–100

Thus we have,

|a2a4 − a2
3| =

∣∣∣∣∣∣∣B1c1

2P1

B1c3 + c3
1

2(B1 − B2) + B3

8
−

B3
1(s + t)2

4(2 − s − t)3

+
3(s + t) − 2(s2 + st + t2)(s + t − 1)

16(2 − s − t)(3 − s2 − st − t2)

B1B2 − B2
1 +

B3
1

(2 − s − t)

+ c1c2

−3B1

2
+

B2

2
+

B2
1

8(2 − s − t)(3 − s2 − st − t2)

[3(s + t) − 2(s2 + st + t2)(s + t − 1)]
]

−
1
P3

c4
1 f1(s, t) + c2

1g1(s, t) +
c2

1B2
1

16
+

c2
2B2

1

4

∣∣∣∣∣∣∣ .

Suppose now that c1 = c. Since |c| = |c1| ≤ 2, using the Lemma 2.1, we may assume without re-
striction c ∈ [0, 2]. Substituting for c2 and c3, from Lemma 2.2 and applying the triangle inequality
with ρ = |x|, we obtain

|a2a4 − a2
3| ≤ c4

[
f (s, t)

P1
+

B1g(s, t)
4P1

−
f1(s, t)

P3
−

g1(s, t)
2P3

−
B1

16P3

]
+ c2(4 − c2)ρ

[
B1

4P1
+

B2
1

4P1
−

B2
1ρ

8P1
−

g1(s, t)
2P3

−
B1

8P3

]
+

c2B2
1

16P3
+

B2
1c(4 − c2)(1 − ρ2)

4P1
+

B1ρ
2(4 − c2)2

16P3

= F(ρ) (3.8)

where,

P1 = (2 − s − t)(4 − s3 − st2 − s2t − t3),

P2 = 8(2 − s − t)(3 − s2 − st − t2),

P3 = (3 − s2 − st − t2)2,

f1(s, t) =
B2

2

16
+

(s + t)2B4
1

16(2 − s − t)2 −
B1B2

8
+

B2
1B2(s + t)

8(2 − s − t)
+

(s + t)B3
1

8(2 − s − t)
,

g1(s, t) =
(s + t)B3

1

4(2 − s − t)
+

B1B2

4
−

B2
1

4
,

f (s, t) =
B2

1

4
−

B1B2

8
+

B1B3

8
−

B4
1(s + t)2

8(2 − s − t)3

+
[[(B1B2 − B2

1)(2 − s − t)] + B3
1](3(s + t) − 2(s2 + st + t2)(s + t − 1))

32(2 − s − t)2(3 − s2 − st − t2)
,

g(s, t) = −B1 +
B2

2
−

B2
1(3(s + t) − 2(s2 + st + t2)(s + t − 1))

2
,

S. P. Vijayalakshmia et al. / Theory and Applications of Mathematics & Computer Science 5 (1) (2015) 94–100 99

with ρ = |x| ≤ 1. Furthermore

F′(ρ) = c2(4 − c2)
[

B1

4P1
+

B2
1

4P1
−

B2
1ρ

8P1
−

g1(s, t)
2P3

−
B1

8P3

]
+

B2
1cρ(4 − c2)(4 − c)

8P1
+

B2
1(4 − c2)2ρ

8P3
.

For a c ∈ [0, 2], F(ρ) ≤ F(1), that is

|a2a4 − a2
3| ≤ c4

[
f (s, t)

P1
+

B1g(s, t)
4P1

−
f1(s, t)

P3
−

g1(s, t)
2P3

−
B1

16P3

]
+ c2(4 − c2)

[
B1

4P1
+

B2
1

4P1
−

B2
1

8P1
−

g1(s, t)
2P3

−
B1

8P3

]
+

c2B2
1

16P3
+

B1(4 − c2)2

16P3

= G(c).

By elementary calculus we have G′′(c) ≤ 0 for 0 ≤ c ≤ 2 and G(c) has real critical point at c = 0.
Thus the upper bound of F(ρ) corresponds to ρ = 1 and c = 0. Thus the maximum of G(c) occurs
at c = 0. Hence,

|a2a4 − a2
3| ≤

B1

(3 − s2 − st − t2)2

If p(z) ∈ P with c1 = c = 0, c2 = 2, c3 = 1, then we obtain
p(z) = (1 − z) + z

(1−z)2 = 1 + 2z2 + z3 + · · · ∈ P. The result is sharp for the functions defined by{
(s − t)z f ′(z)
f (sz) − f (tz)

}
= φ(z), s , t

and {
(s − t)z f ′(z)
f (sz) − f (tz)

}
= φ(z2), s , t.

Remark. If f ∈ S ∗S (φ, 1,−1), then

|a2a4 − a2
3| ≤

B1

2
.

Since f (z) ∈ T (φ, s, t) if and only if z f ′(z) ∈ S ∗S (φ, s, t), proceeding on similar lines as in
Theorem 3.1 we obtain the upper bound for the functional |a2a4−a2

3| belonging to the class T (φ, s, t)
which is stated below without proof.

Theorem 3.2. If f ∈ T (φ, s, t), then

|a2a4 − a2
3| ≤

B2
1

9(3 − s2 − st − t2)2 , provided s + t , 2. (3.9)

The result obtained is sharp.

100 S. P. Vijayalakshmia et al. / Theory and Applications of Mathematics & Computer Science 5 (1) (2015) 94–100

Remark. If f ∈ T (φ, 1,−1), then

|a2a4 − a2
3| ≤

B2
1

36
.

Acknowledgement

The authors thank the referee for the valuable comments and suggestions to improve the pre-
sentation of the paper.

References

Cho, N. E., O. S. Kwon and S. Owa (1993). Certain subclasses of Sakaguchi functions. SEA Bull. Math. 17, 121–126.
Duren, P. L. (1983). Univalent functions. Springer Verlag, New York Inc.
Frasin, B. A. (2010). Coefficient inequalities for certain classes of Sakaguchi type functions. Int. J. Nonlinear Sci.

10(2), 206–211.
Hayami, T. and S. Owa (2010). Generalized Hankel determinant for certain classes. Int. Journal of Math. Analysis

4(52), 2473–2585.
Janteng, A., S. A. Halim and M. Darus (2008). Estimate on the second Hankel functional for functions whose deriva-

tive has a positive real part. Journal of Quality Measurement and Analysis 4(1), 189–195.
Kharudin, N., A. Akbarally, D. Mohamad and S. C. Soh (2011). The second Hankel determinant for the class of close

to convex functions. European Journal of Scientific Research 66(3), 421–427.
Libera, R. J. and E. J. Zlotkiewiez (1982). Early coefficients of the inverse of a regular convex function. Proc. Amer.

Math. Soc. 85(2), 225–230.
Libera, R. J. and E. J. Zlotkiewiez (1983). Coefficient bounds for the inverse of a function with derivative in p. Proc.

Amer. Math. Soc. 87(2), 251–257.
Ma, W. and D. Minda (1994). A unified treatment of some special classes of univalent functions. In: Proceedings of

Conference of Complex Analysis (Z. Li, F. Ren, L. Yang and S. Zhang, Eds.). Intenational Press. pp. 157–169.
Noonan, J. W. and D. K. Thomas (1976). On the second Hankel determinant of areally mean p-valent functions.

Transactions of the Americal Mathematical Society 223(2), 337–346.
Noor, K. I. (1983). Hankel determinant problem for the class of functions with bounded boundary rotation. Rev. Roum.

Math. Pures Et Appl. 28(c), 731–739.
Owa, S., T. Sekine and R. Yamakawa (2005). Notes on Sakaguchi type functions. RIMS Kokyuroku 1414, 76–82.
Owa, S., T. Sekine and R. Yamakawa (2007). On Sakaguchi type functions. Appl Math. Comput. 187, 356–361.
Sakaguchi, K. (1959). On a certain univalent mapping. J. Math. Soc. Japan 11, 72–75.
Selvaraj, C. and N. Vasanthi (2010). Coefficient bounds for certain subclasses of close-to-convex functions. Int. Jour-

nal of Math. Analysis 4(37), 1807–1814.
Shanmugham, T. N., C. Ramachandran and V. Ravichandran (2006). Fekete-Szegö problem for a subclasses of starlike

functions with respect to symmetric points. Bull. Korean Math. Soc. 43(3), 589–598.
Trilok Mathur and Ruchi Mathur (2012). Fekete-Szegö inequalities for generalized Sakaguchi type functions. In:

Proceedings of the World Congress on Engineering, WCE 2012. Vol. 1. London, U.K.

Theory and Applications of Mathematics & Computer Science 5 (1) (2015) 101–109

Lp - Approximation of Analytic Functions on Compact Sets
Bounded by Jordan Curves

Devendra Kumara,∗, Vandna Jainb

aDepartment of Mathematics, M.M.H. College, Ghaziabad-201 001, U.P. India
bDepartment of Mathematics, Punjab Technical University, Jalandhar (Pb.), India

Abstract
This paper is concerned with functions analytic on compact sets bounded by Jordan curves having rapidly increas-

ing maximum modulus such that order of function is infinite. To study the precise rates of growth of such functions
the concept of index has been used. The q−order and lower q−order of analytic functions have been obtained in terms
of Lp−approximation error. Our results improve and refine the results of Andre Giroux (Giroux, 1980) and Kapoor
and Nautiyal (Kapoor & Nautiyal, 1982) for non entire case.

Keywords: Lp−approximation error, index−q, transfinite diameter, Faber series.
2010 MSC: Primary 30D10; Secondary 41A10.

1. Introduction

Let D be a compact set containing at least two points such that its complement D′ with respect
to the extended complex plane is a simply connected domain containing the point at infinity. In
view of Riemann mapping theorem, there exists a one-one analytic function z = ϕ(w) which maps
{w : |w| > 1} conformly onto D′ such that ϕ(∞) = ∞ and ϕ′(∞) > 0. Thus, in a neighborhood of
infinity, the function has the expansion

z = ϕ(w) = d
[
w + d0 +

d−1

w
+ . . .

]
where the number d > 0 is called the transfinite diameter of D. If we define η(w) = ϕ(w/d), then
η maps {w : |w| > d} onto D′ in a one-one conformal manner. If w = Ω(z) is the inverse function
of η then Ω(∞) = ∞ and limz→∞Ω(z)/z = 1.

∗Corresponding author
Email addresses: d_kumar001@rediffmail.com (Devendra Kumar), vandnajain.mittal@gmail.com

(Vandna Jain)

102 Devendra Kumar et al. / Theory and Applications of Mathematics & Computer Science 5 (1) (2015) 101–109

For 1 ≤ p < ∞, let Lp(D) denote the space of analytic functions f in D such that

‖ f ‖D,p =
(

1
A

∫ ∫
D
| f (z)|pdxdy

)1/p
< ∞, where A is the area of D.

Let Lr is an analytic Jordan curve for each r > d. If Dr denotes the domain bounded by Lr then
D ⊂ Dr for each r > d. Let H(D; R) denotes the class of all functions that are regular in DR with
a singularity on LR(d < R < ∞). Since D ⊂ DR for R > d it follows that every f ∈ H(D; R) is
analytic in D and so

∫ ∫
D
| f (z)|pdxdy < ∞ and f ∈ Lp(D).

We now prove the following:

Theorem 1.1. Every f ∈ H(D; R) can be represented by the Faber series

f (z) =

∞∑
n=0

anPn(z), z ∈ DR (1.1)

with
an =

1
2πi

∫
|ξ|=1

f (η(ξ))ξ−n−1dξ, d < r < R (1.2)

if and only if

lim
n→∞

sup |an|
1/n =

1
R
. (1.3)

The series in (1.1) converges absolutely and uniformly on every compact subset of DR and
diverge outside LR.

Proof. Let f ∈ H(D; R). If z ∈ DR, then z ∈ DR for some r satisfying d < r < R. Using Cauchy’s
integral formula,

f (z) =
1

2πi

∫
Lr

f (t)dt
t − z

=
1

2πi

∫
|ξ|=r

f (η(ξ)η′(ξ))
n(ξ) − z

dξ =
1

2πi

∫
|ξ|=r

 ∞∑
n=0

f (η(ξ))
ξn+1 Pn(z)

 dξ.

Since the series under the integral sign converges uniformly on |ξ| = r, it can be integrated
term by term. Thus we have

f (z) =

∞∑
n=0

anPn(z), z ∈ DR.

If

M(r, f) = max
|ξ|=r
| f (η(ξ))|,

then (1.2) gives

|an| ≤
M(r, f)

rn , n = 0, 1, 2, . . . , (1.4)

which are analogous of Cauchy’s inequality for Taylor series. From (1.4), we have

lim
n→∞

sup |an|
1/n ≤

1
r
.

Devendra Kumar et al. / Theory and Applications of Mathematics & Computer Science 5 (1) (2015) 101–109 103

Since this holds for every r satisfying d < r < R, we have

lim
n→∞

sup |an|
1/n ≤

1
R
.

We now show that inequality does not holds in the above relation. If

lim
n→∞

sup |an|
1/n =

1
R0

<
1
R
,

let r satisfy d < r < R0; then for every ε such that 0 < ε < R0 − r, we have

|an| <
1

(R0 − ε/2)n <
1

(r + ε/2)n for n ≥ n0.

On the other hand, for every z ∈ Lr, we have |Pn(z)| < (r + ε/4)n for n ≥ n1.

Thus, for all z ∈ Lr, |anPn(z)| <
(

r+ε/4
r+ε/2

)n
< 1 for n ≥ max(n0, n1).

The above inequality shows that the series
∑∞

n=0 anPn(z) converges uniformly on Lr and hence
on Dr. Since this is true for every r satisfying d < r < R0, it follows that the series

∑∞
n=0 anPn(z)

converges uniformly on every compact subset of DR0 to a function, F(z), say. The function F(z)
must be regular in DR0 since each term of the series is a regular function. However, on DR ⊂ DR0 ,
the series converges to f (z) so that F(z) is the analytic continuation of f (z) to DR0 . Since this
contradicts the hypothesis that f has a singular point on LR(R < R0), we must have (1.3).

To show that the series (1.3) diverges outside LR, let z0 lie outside LR. Then we have |Ω(z0)| > R.
In view of limn→∞ |Pn(z)|1/n = |Ω(z)| and (1.3) we obtain limn→∞ sup |anPn(z0)|1/n > 1, showing that
the series

∑∞
n=0 anPn(z0) diverges.

Conversely, if (1.3) holds, then as above, we can show that the series
∑∞

n=0 anPn(z) converges
uniformly on compact subsets of DR to a regular function, f (z), say. If f (z) had no singular point
on LR then it would be possible to extend f (z) analytically to a bigger domain DR0 , say. But then
the first part of the theorem would give that

limn→∞ sup |an|
1/n ≤ 1/R0 < 1/R, a contradiction. Hence the proof is completed.

In view of above theorem, there exists a sequence of polynomials converging uniformly on
compact subsets of DR to f (z), it follows that this sequence converges in the norm of Lp(D) also
to f . If pn−1 denotes the collection of all polynomials of degree not exceeding n − 1 and we set

Ep
n (f) = inf

g∈pn−1
‖ f − g‖D,p, n = 1, 2, . . . ,

then it is clear that Ep
n (f) is a non increasing sequence tending to zero as n→ ∞. Our next theorem

holds for 1 ≤ p < ∞.

Theorem 1.2. If f ∈ H(D; R), then

lim
n→∞

sup
[
Ep

n (f)
]1/n

=
d
R
. (1.5)

104 Devendra Kumar et al. / Theory and Applications of Mathematics & Computer Science 5 (1) (2015) 101–109

Proof. If f ∈ H(D; R) we have, by (1.5)

Ep
n (f) = inf

g∈pn−1

(∫ ∫
D
| f (z) − g(z)|pdxdy

)1/p

≤

(∫ ∫
D
| f (z) − Qn−1(z)|pdxdy

)1/p

≤ A1/p max
z∈D
| f (z) − Qn−1(z)|,

where Qn−1(z) is the polynomial of degree not exceeding n − 1 and A is the area of domain D.
Using a result of (Markushevich, 1967), p. 114 for d < r′ < r < R and n > n0 we get

Ep
n (f) ≤ A1/pM(r, f)

(
r′

r − r′

)
(r′/r)n (1.6)

where M(r, f) = maxz∈Lr | f (z)|. This leads to limn→∞ sup
[
Ep

n (f)
]1/n
≤ r′/r.

Since the above relation holds for all r′, r satisfying d < r′ < r < R, we must have

lim
n→∞

sup
[
Ep

n (f)
]1/n
≤

d
R
. (1.7)

To obtain the reverse inequality in (1.7), we note that, since every f ∈ H(D; R) is in H2(D),
there exists a closed orthonormal system {χn(z)}∞n=0 of polynomials in H2(D) such that f can be
represented by its Fourier series with respect to the system {χn(z)}∞n=0 that converges uniformly on
compact subsets of DR to f . Thus

f (z) =

∞∑
n=0

anχn(z) z ∈ DR, (1.8)

where an =
∫ ∫

D
f (z)χn(z)dxdy.

If g ∈ pn−1, then

|an| =

∣∣∣∣∣∫ ∫
D

(f (z) − g(z))χn(z)dxdy
∣∣∣∣∣ ≤ (∫ ∫

D
| f (z) − g(z)|pdxdy

)1/p (∫ ∫
D
|χn(z)|p/p−1dxdy

)1−1/p

.

Using (1.3) and the fact that the above inequality holds for every g ∈ pn−1, we get, for r∗ > d,
|an| ≤ Ep

n (f).M(r, f)
(

r∗
d

)n
A1−1/p, by (1.7) we get limn→∞ sup

[
Ep

n (f)
]1/n
≥ d

r∗ limn→∞ sup |an|
1/n =

d2

r∗R .
Since the above inequality is valid for every r∗ > d, we must have

lim
n→∞

sup
[
Ep

n (f)
]1/n
≥

d
R
. (1.9)

Combining (1.7) and (1.9) we get (1.5).

Devendra Kumar et al. / Theory and Applications of Mathematics & Computer Science 5 (1) (2015) 101–109 105

2. Fast Growth and Approximation Errors

We now obtain relations that indicate how the growth of an f ∈ H(D; R) depends on Ep
n (f) and

vice versa.
For function f ∈ H(D; R), set

ρR(q) = lim
r→R

sup
log[q] M(r, f)

log(Rr/(R − r))
(2.1)

where log[0] M(r, f) = M(r, f) and log[q] M(r, f) = log
(
log[q−1] M(r, f)

)
, q = 1, 2, To avoid

the trivial cases we shall assume throughout that M(r, f)→ ∞ as r → R.

Definition 2.1. A function f ∈ H(D; R), is said to have the index q if ρR(q) < ∞ and ρR(q − 1) =

∞, q = 1, 2, If q is the index of f (z), then ρR(q) is called the q−order of f .

Definition 2.2. A function f ∈ H(D; R) and having the index−q is called to have lower q−order
λR(q) if

λR(q) = lim
r→R

inf
log[q] M(r, f)

log(Rr/(R − r))
, q = 1, 2, (2.2)

Definition 2.3. A function f ∈ H(D; R) and having the index q is said to be of regular q−growth if
ρR(q) = λR(q), q = 1, 2, . . . , f (z) is said to be of irregular q−growth if ρR(q) > λR(q), q = 1, 2,

In 1980 Andre Giroux (Giroux, 1980) obtained necessary and sufficient conditions, in terms
of the rate of decrease of the approximation error Ep

n (f), such that f ∈ Lp(D), 2 ≤ p ≤ ∞, has an
analytic continuation as an entire function having finite growth parameters. In 1982 Kapoor and
Nautiyal (Kapoor & Nautiyal, 1982) considered the approximation error Ep

n (f) on a Caratheodory
domain and had extended the results of Giroux for the case 1 ≤ p < 2. All these results do not
give any specific information about the growth when function is not entire and for the functions
having rapidly increasing maximum modulus such that order of function is infinite. Although,
Kumar (Kumar, 2004, 2007b,a, 2010, 2011, 2013) and Kumar and Mathur (Kumar & Amit, 2006)
obtained some results in this direction but our results are different from all those of above papers.

In this paper an attempt has been made to study the growth of f ∈ H(D; R) involving Ep
n (f) for

1 ≤ p < ∞ when f is not entire and having M(r, f)→ ∞ as r → R. To obtain the results in general
setting we shall assume that f ∈ H(D; R) is represented by the gap power series f (z) =

∑∞
n=0 anzλn

where {λn}
∞
n=0 is strictly increasing sequence of integers and an , 0 for all n.

Theorem 2.1. If f ∈ H(D; R) having the index−q and q−order ρR(q), then

ρR(q) + A(q) = lim
n→∞

sup
log[q−1] λn

log λn − log+ log+((Ep
λn

(f))(R/d)λn)
, q = 2, 3, . . . , (2.3)

where, A(q) = 1 if q = 2 and A(q) = 0 if q = 3, 4,

106 Devendra Kumar et al. / Theory and Applications of Mathematics & Computer Science 5 (1) (2015) 101–109

Proof. If f ∈ H(D; R) is of q−order ρR(q), given ε > 0, there exists r0(ε) such that, for r0 < r < R,
we have

log[q−1] M(r, f) <
(Rr
R − r

)ρR(q)+ε

.

Using inequality (1.6) for n > n0 and d < r′ < r < R, r0 < r′, we obtain

log E(p)
λn

(f)(R/d)λn <
1
p

log A + exp[q−2]
(Rr
R − r

)ρR(q)+ε

+ log
r′

r − r′
+ λn log

r′

d
+ λn log

R
r

<
1
p

log A + exp[q−2]
(Rr
R − r

)ρR(q)+ε

+ log
r′

r − r′
+ λn

(
r′ − d

d

)
+ λn

(R − r
r

)
.

(2.4)

Let us consider r such that

Rr
R − r

=
(
log[q−2](λnR/ρR(q) + ε)

)1/ρR(q)+A(q)+ε
, and

r′ = λd + (1 − λ)(Rd/r), 0 < λ < 1.
(2.5)

For q = 2 the inequality (2.4) with (2.5) gives for n > n1,

log+ Ep
λn

(f)(R/d)λn < M(λnR)(ρR(2)+ε)/(ρR(2)+1+ε)

where M is a constant. It gives

lim
n→∞

sup
log+ log+ Ep

λn
(f)(R/d)λn

log λn
≤

ρR(2)
ρR(2) + 1

. (2.6)

For q = 3, 4, . . . , the inequality (2.4) gives for n > n1, with (2.5) that

log+ Ep
λn

(f)(R/d)λn < exp[q−2]
(
log[q−2](λnR/ρR(q) + ε)

)
[1 + 0(1)],

from which a simple calculation would yield

ρR(q) ≥ lim sup
n→∞

log[q−1] λn

log λn − log+ log+ Ep
λn

(f)(R/d)λn
. (2.7)

To prove that reverse inequality, use (1.8) and (1) to get, for z ∈ Dr, d < r∗ < r < R,

| f (z)| ≤
∞∑

n=0

|an||χλn(z)|

≤ MA1−1/p
∞∑

n=0

Ep
n (f)

(
r∗

d

)n

|χλn(z)|.

It is known that for any r∗ > d there exists a constant M | such that

|χn(z)| ≤ M′(r∗/d)nn = 0, 1, 2, . . . , z ∈ D.

Devendra Kumar et al. / Theory and Applications of Mathematics & Computer Science 5 (1) (2015) 101–109 107

Now for d < r∗ < r < R, we get

M(r, f) ≤ M∗M |A1−1/p
∞∑

n=0

Ep
n (f)(R/d)λn

 r∗
2
r

d2R

λn

.

Taking r∗ = d
√
λ + (1 − λ)(R/r), 0 < λ < 1, the above inequality gives

M(r, f) ≤ BM
(
λr + (1 − λ)R

R
,G

)
, (2.8)

where B is constant, G(s) =
∑∞

n=0 Ep
n (f)(R/d)λn sλn and M(t,G) = max|s|=t |G(s)|. It can be easily

seen that G(s) is analytic in |s| < 1. If the q−order of G(s) in unit disc is ρ0(g) then

ρR(q) = lim sup
r→R

log[q] M(r, f)
log(Rr/(R − r))

≤ lim sup
r→R

log[q] M(((λr + (1 − λ)R)/R),G)
log(Rr/(R − r))

= ρ0(q).

Applying Theorem 1 of (Kapoor & Gopal, 1979) for ρ0(q), we obtain

ρR(q) + A(q) ≤ lim sup
n→∞

log[q−1] λn

log λn − log+ log+ Ep
λn

(f)(R/d)λn
q = 2, 3, . . . , (2.9)

combining (2.6), (2.7) and (2.9) we get (2.3) i.e., the proof of theorem is completed.

Theorem 2.2. Let f ∈ H(D; R) having the index−q, q−order ρR(q) and lower q−order βR(q)(0 ≤
βR(q) ≤ ∞), then for any increasing sequence {nk} of natural numbers,

βR(q) + A(q) ≥ lim
k→∞

inf
log[q−1] λnk−1

log λnk − log+ log+ Ep
λnk

(f)(R/d)λnk
. (2.10)

Proof. Let the right hand side of (2.10) be δ. Without loss of generality we can assume δ > 0. For
any ε such that 0 < ε < δ, and for all k > k0 = k0(ε), we get

log+ Ep
λnk

(f)(R/d)λnk > λnk(log[q−2] λnk−1)
−1/(δ−ε).

Choosing a sequence rk such that rk ≤ r ≤ rk+1, where R−rk
rk

= 1
e (log[q−2] λnk−1)

1/(δ−ε).
Using inequality (1.6) we obtain

log M(r, f) ≥ log Ep
λnk

(f)(R/d)λnk −
1
p

log A − log
r′

r − r′
− λnk log

r′

d
− λnk log R/r

≥ log Ep
λnk

(f)(R/d)λnk −
1
p

log A − log
r′

rk − r′
− λnk log

r′

d
− λnk log R/rk

> λnk(log[q−2] λnk−1)
−1/(δ−ε) − λnk

(
R − rk

rk

)
= (1 − 1/e)λnk(log[q−2] λnk−1)

−1/(δ−ε)

> (e − 1)
(R − r

r

)
exp[q−2]

(
e
(R − r

r

))−(δ−ε)

.

Now after a simple calculation the above estimate yields

βR(q) + A(q) ≥ δ. (2.11)

Hence the proof is completed.

108 Devendra Kumar et al. / Theory and Applications of Mathematics & Computer Science 5 (1) (2015) 101–109

To prove our next theorem we need the following lemma.

Lemma 2.1. Let f (z) =
∑∞

n=0 anzλn be analytic in unit disc having index q, q−order ρ(q) > 0 and
lower q−order β(q). Further, let ϕ(n) ≡ |an/an+1|

1/(λn+1−λn) forms a non-decreasing function of n for
n > n0 and

β(q) + A(q) = lim inf
r→1

log[q−1] ν(r)
− log(1 − r)

. (2.12)

Then

β(q) + A(q) = lim inf
n→∞

log[q−1] λn

log λn − log+ log+
|an|

where for |z| = r, µ(r) = maxn>0{|an|rλn}, ν(r) = max{λn : µ(r) = |an|rλn}, 0 < r < 1.

Proof. The proof of this lemma follows on the lines of a result in (Kapoor, 1972), so we omit the
details.

A function f , analytic in unit disc is said to be admissible if its lower q−order satisfies (2.12).

Theorem 2.3. Let f ∈ H(D; R) having the index−q, q−order ρR(q) and lower q−order βR(q).
Further let ϕ(n) = |Eλn/Eλn+1 |

1/(λn+1−λn) forms a nondecreasing function of n for n > n0. Then

βR(q) + A(q) ≤ lim inf
n→∞

log[q−1] λn

log λn − log+ log+ Ep
λn

(f)(R/d)λn
. (2.13)

Proof. Using (2.8), we get

βR(q) = lim inf
r→R

log[q] M(r, f)
log(Rr/(R − r))

≤ lim inf
r→R

log[q] M(((λr + (1 − λ)R)/R))
log(Rr/(R − r))

= β0(q).

It can be easily seen that G(s) satisfies the hypothesis of Lemma 4. Applying Lemma 2.1 for
β0(q), it gives

βR(q) + A(q) ≤ lim inf
n→∞

log[q−1] λn

log λn − log+ log+ Ep
λn

(f)(R/d)λn
q = 2, 3, . . . ,

combining Theorem 2.2 and 2.3 we get the following theorem:

Theorem 2.4. Let f ∈ H(D; R) having the index−q, q−order ρR(q) and lower q−order βR(q).
Further, let ϕ(n) = |an/an+1|

1/(λn+1−λn) forms a nondecreasing function of n for n > n0. Then

βR(q) + A(q) = lim inf
n→∞

log[q−1] λn−1

log λn − log+ log+ Ep
λn

(f)(R/d)λn
. (2.14)

Devendra Kumar et al. / Theory and Applications of Mathematics & Computer Science 5 (1) (2015) 101–109 109

Theorem 2.5. Let f ∈ H(D; R) having the index−q, q−order ρR(q) and lower q−order βR(q). Then

βR(q) + A(q) = max
{nk}

lim inf
k→∞

log[q−1] λnk−1

log λnk − log+ log+ Ep
λnk

(f)(R/d)λnk

 , (2.15)

where maximum in (2.15) is taken overall increasing sequences {nk} of natural numbers.

Proof. Let S (s) =
∑∞

k=0 Ep
λnk

(f)(R/d)λnk sλnk , |s| < 1, where {λnk}
∞
k=0 is the sequence of elements

in the range set of ν(r). It can be easily seen that G(s) and S (s) have the same maximum term.
Hence, the q−order and lower q−order of S (s) are the same as those of G(s). Thus, S (s) is of lower
q−order βR(q). Further, let ξ(nk) = max{r : ν(r) = λnk}. Then, ξ(nk) = ϕ(nk), and consequently,
ϕ(nk) is an increasing function of k. Therefore, S (s) satisfies the hypothesis of Theorem 2.4 and
so by (2.15) we get

βR(q) + A(q) = lim inf
k→∞

log[q−1] λnk−1

log λnk − log+ log+ Ep
λnk

(f)(R/d)λnk
. (2.16)

But from Theorem 2.3, we get

βR(q) + A(q) ≥ max
{nk}

lim inf
k→∞

log[q−1] λnk−1

log λnk − log+ log+ Ep
λnk

(f)(R/d)λnk

 . (2.17)

Combining (2.16) and (2.17) we get (2.15). Hence the proof is complete.

References
Giroux, A. (1980). Approximation of entire functions over bounded domains. Journal of Approximation Theory

28(1), 45 – 53.
Kapoor, G. P. (1972). On the lower order of functions analytic in the unit disc. Math. Japon. 17(1), 45–54.
Kapoor, G.P. and A. Nautiyal (1982). Approximation of entire functions over carathodory domains. Bulletin of the

Australian Mathematical Society 25, 221–229.
Kapoor, G.P. and K. Gopal (1979). On the coefficients of functions analytic in the unit disc having fast rates of growth.

Annali di Matematica Pura ed Applicata 121(1), 337–349.
Kumar, D. (2004). Coeffcients characterization for functions analytic in the polydisc with fast growth. Math. Sci. Res.

J. 8(4), 128–136.
Kumar, D. (2007a). Necessary conditions for Lp - convergence of Lagrange interpolation in finite disc. International

Journal of Pure and Applied Mathematics 40(2), 153–164.
Kumar, D. (2007b). On approximation and interpolation errors of an analytic functions. Fasc. Math. 38, 17–36.
Kumar, D. (2010). On the fast growth of analytic functions by means of Lagrange polynomial approximation and

interpolation in CN . Fasc. Math. 13, 85–99.
Kumar, D. (2011). Growth and weighted polynomial approximation of analytic functions. Transylvanian Journal of

Mathematics and Mechanics 3(1), 23–30.
Kumar, D. (2013). Slow growth and optimal approximation of pseudoanalytic functions on the disc. International

Journal of Analysis and Applications 2(1), 26–37.
Kumar, D. and M. Amit (2006). On the growth of coeffcients of analytic functions. Math. Sci. Res. J. 10(11), 286–295.
Markushevich, A. I. (1967). Theory of Functions of a Complex Variable, Vol.III. Revised English Edition. (Translated

and Edited by Richard A. Silverman. Prentice-Hall, Englewood Cliffs, New Jersey.

Theory and Applications of Mathematics & Computer Science 5 (2) (2015) 110– 115

A Mixed Integer Linear Programming Formulation for Restrained
Roman Domination Problem

Marija Ivanovića

aFaculty of Mathematics, University of Belgrade, Studentski trg 16/IV, 11 000 Belgrade, Serbia

Abstract
This paper deals with a subgroup of Roman domination problems (RDP) named Restrained Roman domination

problem (RRDP). It introduces a new mixed integer linear programming (MILP) formulation for the RRDP. The pre-
sented model uses relatively small number of the variables and constraints and could be of use both in theoretical and
practical purposes. Proof of its correctness is given, i.e. it was shown that optimal solution to the RRDP formulation
is equal to the optimal solution of the original problem.

Keywords: Restrained Roman domination in graphs, combinatorial optimization, integer linear programming.
2010 MSC: 90C11, 05C69.

1. Introduction

With contiguous territories throughout Europe, North Africa, and the Middle East, the Roman
Empire was one of the largest in history (Kelly, 2006). The idea of building ”empire without end”
(Nicolet, 1991) expressed the ideology that neither time nor space limited the Empire. During the
fourth century A.D., Emperor of Rome, Constantine the Great, intended to accomplish that idea.
In order to expand the Roman Empire, he dealt with the next problem: How to organize legions
such that entire Empire of Rome stayed defended? Since legions were highly trained, it was as-
sumed that they could move fast from one city to another. City was considered to be defended
if at least one legion was stationed in it or it was adjacent to a city with two legions within. The
second condition was made because legion could move from a stationed city only if such an act
won’t leave it undefended.

Inspired by this historical problem, a new subgroup of the domination problems, named Ro-
man domination problem (RDP), was proposed by Stewart (1999). RDP can be described as a
problem of finding the minimal number of legions such that entire Empire of Rome is defended.

Email address: marijai@math.rs (Marija Ivanović)

Marija Ivanović / Theory and Applications of Mathematics & Computer Science 5 (2) (2015) 110– 115 111

More details about the RDP can be found in (ReVelle & Rosing, 2000), (Currò, 2014), (Liedloff

et al., 2005) and (Xing et al., 2006).

Restrained Roman domination problem (RRDP), previously introduced by Pushpam & Sam-
path (2015), is defined also as a problem of finding the minimal number of legions such that entire
Empire of Rome is defended but the conditions are slightly changed. Again, a city is considered
to be defended if at least one legion is stationed within. But, a city without legion within is con-
sider to be defended if it is adjacent to at least one city with two legions within and to at least one
undefended city.

The Roman domination problem and the Restrained Roman domination problem can be illus-
trated by a graph such that each city of the Empire of Rome is represented by a vertex and, for two
connected cities, the corresponding vertices are set to be adjacent.

Assuming that five cities, marked by numbers 1 - 5, are constructed such that a city marked by
1 is only adjacent to a city marked by 2 and that all other cities are adjacent to each other, a small
illustration of the RDP and RRDP solutions are given in the figure below.

1

2

3

4 5

1

2

3

4 5

Figure 1. Illustrations of the the RDP (left) and RRDP (right) solutions

Vertex colored in red indicates that corresponding city is defended by two legions, vertex col-
ored in gray indicates that corresponding city is defended by one legion, while vertices colored in
white stands for the cities without legions within. For the Roman domination problem (shown on
the figure on the left) by using only two legions, all five cities could be defended, i.e. assigning
two legions to a city marked by 2, corresponding city and all adjacent cities are consider to be
defended. Note that minimal number of legions for the RRDP (shown on the figure on the right)
is three, i.e. assigning two legions to a city marked by 2, corresponding city and cities marked
by 3, 4 and 5 are set to be defended because they are adjacent to a city with two legions within
and adjacent to two cities with no assigned legions; city marked by 1 is set to be defended by one
legion, since it can’t be adjacent to at least one city without legions within and to at least one city
with two legions within, at the same time. Given solution for RRDP is not unique since the same
result could be obtained by assigning two legions to a city marked by 3 instead of the city marked
by 2.

112 Marija Ivanović / Theory and Applications of Mathematics & Computer Science 5 (2) (2015) 110– 115

In the next sections, MILP formulation for the RRDP together with the proof of its validity,
are proposed.

2. Problem definition

Let G = (V, E) be an undirected graph with a vertex set V such that each vertex u ∈ V represents
a city of Roman Empire and each edge, e ∈ E, represents an existing road between two adjacent
cities. A neighborhood set Nu (Nu ⊂ V), of a vertex u ∈ V , is defined as a set of vertices v adjacent
to a vertex u. For a function f

f : V → {0, 1, 2} (2.1)

let a number of legions assigned to a city represented by a vertex u to be equal to a value f (u).
Additionally, let a function f satisfy the condition that for every vertex u ∈ Vsuch that f (u) = 0
there exists vertices v,w ∈ V such that f (v) = 2 and f (w) = 0. In other words, if there is an
undefended city u, then there exist at least one city v, v ∈ Nu with two legions within and at least
one undefended city w,w ∈ Nu. Function f is called a restrained Roman domination function.

Mathematically, a proposed problem can be formulated as:

min
f

F1(f) (2.2)

subject to:
F1(f) =

∑
u∈V

f (u) (2.3)

(∀u ∈ V) f (u) = 0⇒ (∃v,w ∈ Nu)(f (v) = 2 ∧ f (w) = 0). (2.4)

Now, using a proposed notations, a solution to the illustrated RRDP can be written as: F1(f) =

3 for f (2) = 2, f (1) = 1 and f (3) = f (4) = f (5) = 0 and it is not unique (F1(f) = 3 for f (3) = 2,
f (1) = 1 and f (2) = f (4) = f (5) = 0).

3. A mixed integer linear programming formulation for the RRDP

For a function f , defined by (2.1), let a continuous decision variable xi, xi ∈ [0,∞), indicate a
number of legions assigned to a corresponding city i ∈ V . Although, f ∈ {0, 1, 2} and xi ∈ [0,∞),
xi and f (i) are with equal values in the optimal solution, and not necessary with equal values for
every feasible solution. Let binary decision variables yi and zi indicate if there are two or none
legions assigned to a corresponding city i ∈ V ,

yi =

1, f (i) = 2
0, otherwise

and zi =

1, f (i) = 0
0, otherwise

.

A mixed integer linear programming (MILP) formulation for the RRDP can now be formulated
as follows:

min
∑
i∈V

xi (3.1)

Marija Ivanović / Theory and Applications of Mathematics & Computer Science 5 (2) (2015) 110– 115 113

subject to

xi +
∑
j∈Ni

y j ≥ 1, i ∈ V (3.2)

xi +
∑
j∈Ni

z j ≥ 1, i ∈ V (3.3)

xi ≥ 2yi, i ∈ V (3.4)

xi + 2zi ≤ 2, i ∈ V (3.5)

xi ∈ [0,+∞); yi, zi ∈ {0, 1}, i ∈ V. (3.6)

Further, for vector values x = [xi], y = [yi] and z = [zi], which satisfies constraints (3.2) -
(3.6), notation F2(x, y, z) =

∑
i∈V xi will be used. Now, condition (3.1) which minimizes the num-

ber of legions, can be written as min
(x,y,z)

F2(x, y, z). By the constraints (3.2) it is ensured that each

undefended vertex i is adjacent to at least one vertex with two legions within. Similarly, by the
constraints (3.3) it is ensured that each undefended vertex i is adjacent to at least one vertex which
is also undefended. From the inequalities (3.4) and (3.5) it follows that for each city i ∈ V with
at most 1 legion within, corresponding value yi is set to be equal to zero and that for each city
i ∈ V with at least one legions within, corresponding value zi is set to be equal to zero. Finally, de-
cision variables x are set to be continuous, while y and z are set to be binary by the constraints (3.6).

A given MILP formulation consists of 2|V | variables which are binary and |V | continuous vari-
ables. Number of constraints is equal to 4|V |.

A proof of the validity of the MILP formulation for the RRDP is given in the next proposition.

Proposition 1. The optimal objective function value F1(f) of the Restrained Roman domination
problem (2.1) - (2.4) is equal to the optimal objective function value F2(x, y, z) of the MILP for-
mulation (3.1) - (3.6).

Proof. (⇒) In this part will be proven that the optimal objective function value of the Restrained
Roman domination problem (2.1) - (2.4) is greater or equal to the optimal objective function value
of the MILP formulation (3.1) - (3.6), i.e. F1(f) ≥ F2(x, y, z).

For a fixed city i ∈ V and a function f given by (2.1), let decision variables xi, yi and zi be
defined as

xi = f (i), yi =

1, f (i) = 2
0, otherwise

and zi =

1, f (i) = 0
0, otherwise

.

Since xi ∈ [0,+∞), yi, zi ∈ {0, 1}, conditions (3.4) - (3.6) are satisfied by the definition. For ex-
ample, a condition (3.5) is satisfied because zi = 1 for xi = f (i) = 0 (xi + 2zi = 2) and zi = 0 for

114 Marija Ivanović / Theory and Applications of Mathematics & Computer Science 5 (2) (2015) 110– 115

xi = f (i) = 1 (xi + 2zi = 1 < 2). Similarly zi = 0 for xi = f (i) = 2, which again implies that
xi + 2zi = 2.

Assuming that conditions (3.2) and (3.3) holds for a fixed vertex i ∈ V , there are two cases:
Case 1. Let values f (i) are set to be greater or equal to one. Since xi = f (i), relation xi ≥ 1
implies. From the last relation and by the binary notations of the variables yi and zi it implies that
xi +
∑

j∈Ni
y j ≥ 1 and xi +

∑
j∈Ni

z j ≥ 1.
Case 2. Let values f (i) are set to be equal to zero. Satisfying relation (2.4) (∃v,w ∈ Nu)(f (v) =

2 ∧ f (w) = 0), it follows that yv = 1 and zw = 1. Therefore, xi +
∑

j∈Ni
y j =

∑
j∈Ni

y j ≥ 1 and
xi +
∑

j∈Ni
z j =
∑

j∈Ni
z j ≥ 1.

Finally, since decision variables satisfies the conditions (3.1) - (3.6) for a fixed vertex i, it fol-
lows that F2(x, y, z) =

∑
i∈V xi =

∑
i∈V f (i) = F1(f).

(⇐) In this part it will be proven that optimal objective function value of the Restrained Ro-
man domination problem (2.1) - (2.4) is less or equal to the optimal objective function value of the
MILP formulation (3.1) - (3.6), i.e. F1(f) ≤ F2(x, y, z).

For a given set of decision variables xi, yi and zi which satisfy conditions (3.1) - (3.6), let a
function f be defined as

f (i) =

0, xi ∈ [0, 1)
1, xi ∈ [1, 2)
2, xi ∈ [2,+∞)

. (3.7)

By the definition of the function f , condition (2.1) holds. Since the condition (2.1) holds, for
a fixed vertex u ∈ V there are two cases:
Case 1. Let xu ∈ [1,+∞). By the definition of the function f , it follows that f (u) = 1 or f (u) = 2.
Now, condition (2.4) holds, since ⊥⇒ p is tautology for any logical statement p.
Case 2. Let xu ∈ [0, 1). By the definition of the function f , f (u) = 0. Because of the condition
(3.2), xu +

∑
j∈Nu

y j ≥ 1, it follows that
∑

j∈Nu
y j ≥ 1 − xu > 0. Since the decision variables y j

are binary,
∑

j∈Nu
y j has to be integer, which implies that

∑
j∈Nu

y j ≥ 1. Therefore, there exists a
vertex v ∈ Nu, yv = 1. From the constraints (3.4), and because of the xv ≥ 2yv = 2, it follows that
f (v) = 2. Similarly, from the constraints (3.3) it follows that

∑
j∈Nu

z j ≥ 1 − xu > 0. Because of
the binary type of the decision variables z j,

∑
j∈Nu

z j has an integer value. Now, since
∑

j∈Nu
z j ≥ 1,

there exists a vertex w ∈ Nu such that zw = 1. Finally, by the constraints (3.5), xw ≤ 2 − 2zw = 0, it
follows that xw = 0 and that f (w) = 0 which means that condition (2.4) holds also.

By the definition of the function f , it is clear that f (i) ≤ xi, for i ∈ V . Therefore, F1(f) =∑
i∈V f (i) ≤

∑
i∈V xi = F2(x, y, z).

So, for each feasible solution to the problem (2.1) - (2.4) there exists a feasible solution to the
problem (3.1) - (3.6), satisfying the relation F2(x, y, z) ≤ F1(f), and for each feasible solution to
the (3.1) - (3.6) there exists a feasible solution to the (2.1) - (2.4) satisfying the relation F1(f) ≤

Marija Ivanović / Theory and Applications of Mathematics & Computer Science 5 (2) (2015) 110– 115 115

F2(x, y, z). Therefore, it follows that min
f

F1(f) = min
(x,y,z)

F2(x, y, z).

Applying the given MILP formulation to the illustrated RRDP, solution min
(x,y,z)

F2(x, y, z) to the

proposed problem is equal to 3, and it can be obtained for x = [1, 0, 2, 0, 0], y = [0, 1, 0, 0, 0] and
z = [0, 0, 1, 1, 1].

4. Conclusions

This paper is devoted to the Restrained Roman domination problem. A mixed integer linear
programming formulation is introduced and the correctness of the corresponding formulation is
proved. The presented model uses relatively small number of the variables and constraints, which
indicates that presented model can be used both in theoretical and practical considerations. As a
future study, it is planned to construct an exact method for solving the corresponding mathematical
model. Construction of the metaheuristics for solving the proposed problem can also be a part of
a possible future study.

Acknowledgments This research has been supported by the Research Grants 174010 and
TR36015 of the Serbia Ministry of Education, Science and Technological Developments.

References

Currò, Vincenzo (2014). The Roman Domination Problem on Grid Graphs. PhD thesis. Università di Catania.
Kelly, Christopher (2006). The Roman Empire: A Very Short Introduction. Oxford University Press.
Liedloff, Mathieu, Ton Kloks, Jiping Liu and Sheng-Lung Peng (2005). Roman domination over some graph classes.

In: Graph-Theoretic Concepts in Computer Science. Springer. pp. 103–114.
Nicolet, Claude (1991). Space, Geography, and Politics in the Early Roman Empire. University of Michigan Press.
Pushpam, Roushini Leely and Padmapriea Sampath (2015). Restrained roman domination in graphs. Transactions on

Combinatorics 4(1), 1–17.
ReVelle, Charles S and Kenneth E Rosing (2000). Defendens imperium romanum: a classical problem in military

strategy. American Mathematical Monthly pp. 585–594.
Stewart, Ian (1999). Defend the roman empire!. Scientific American 281, 136–138.
Xing, Hua-Ming, Xin Chen and Xue-Gang Chen (2006). A note on roman domination in graphs. Discrete mathematics

306(24), 3338–3340.

Theory and Applications of Mathematics & Computer Science 5 (2) (2015) 116– 125

New Čebyšev Type Inequalities for Functions whose Second
Derivatives are (s1,m1)-(s2,m2)-convex on the Co-ordinates

B. Meftaha, K. Boukerriouaa,∗

aUniversity of Guelma. Guelma, Algeria.

Abstract
In this paper, we establish some new Čebyšev type inequalities for functions whose second derivatives are

(s1,m1)-(s2,m2)-convex on the co-ordinates.

Keywords: Čebyšev type inequalities, co-ordinates (s1,m1)-(s2,m2)-convex, integral inequality.
2010 MSC: 26D15, 26D20, 39A12.

1. Introduction

In 1882, Čebyšev (Chebyshev, 1882) gave the following inequality

|T (f , g)| ≤
1

12
(b − a)2

‖ f ′‖∞ ‖g
′‖∞ , (1.1)

where f , g : [a, b] → R are absolutely continuous functions, whose first derivatives f ′ and
g′are bounded, where

T (f , g) =
1

b − a

b∫
a

f (x) g (x) dx −

 1
b − a

b∫
a

f (x) dx

 1
b − a

b∫
a

g (x) dx

 , (1.2)

and ‖.‖∞ denotes the norm in L∞ [a, b] defined as ‖ f ‖∞ = ess sup
t∈[a,b]

| f (t)| .

During the past few years, many researchers established various generalizations, extensions
and variants of Čebyšev type inequalities, we can mention the works (Ahmad et al., 2009; Bouk-
errioua & Guezane-Lakoud, 2007; Guazene-Lakoud & Aissaoui, 2011; Latif & Alomari, 2009;

∗Corresponding author
Email address: khaledv2004@yahoo.fr (K. Boukerrioua)

B. Meftah et al. / Theory and Applications of Mathematics & Computer Science 5 (2) (2015) 116– 125 117

Pachpatte & Talkies, 2006; Pachpatte, 2006; Sarikaya et al., 2014). Recently the authors of
(Guazene-Lakoud & Aissaoui, 2011), established a new Čebyšev type inequality for functions
of two independent variables whose second derivatives are bounded. Also in (Sarikaya et al.,
2014), the authors obtained some new Čebyšev type inequalities involving functions whose mixed
partial derivatives are s-convex on the co-ordinates. The main purpose of this work is to obtain
new Čebyšev type inequalities for functions whose mixed partial derivatives are (s1,m1)-(s2,m2)-
convex on the co-ordinates.

This paper is organized as follows: In section 2, we present some preliminaries. In the
third section, we prove a new identity for functions of two independent variables then we used
it to establish new Čebyšev type inequalities for functions whose mixed partial derivatives are
(s1,m1)-(s2,m2)-convex on the co-ordinates.

2. Preliminaries

Throughout this paper we denote by ∆ the bidimensional interval in [0,∞)2, ∆ =: [a, b]× [c, d]
with a < b and c < d, ∆0 =: [0, b∗] × [0, d∗] with b∗ > b, d∗ > d, k =: (b − a) (d − c) and ∂2 f

∂λ∂α
by

fλα.

Definition 2.1. (Dragomir, 2001) A function f : ∆ → R is said to be convex on the co-ordinates
on ∆, if the following inequality:

f (λx + (1 − λ) t, αy + (1 − α) v) ≤ λα f (x, y) + λ (1 − α) f (x, v)
+ (1 − λ)α f (t, y) + (1 − λ) (1 − α) f (t, v), (2.1)

holds for all λ, α ∈ [0, 1] and (x, y), (x, v), (t, y), (t, v) ∈ ∆.

Clearly, every convex mapping f : ∆→ R is convex on the co-ordinates. Furthermore, it exists
a co-ordinated convex function which is not convex.

Definition 2.2. (Alomari & Darus, 2008) A function f : ∆ → R is said to be s-convex in the
second sense on the co-ordinates on ∆, if the following inequality:

f (λx + (1 − λ) t, αy + (1 − α) v) ≤ λsαs f (x, y) + λs (1 − α)s f (x, v)
+ (1 − λ)s αs f (t, y) + (1 − λ)s (1 − α)s f (t, v), (2.2)

holds for all λ, α ∈ [0, 1] and (x, y), (x, v), (t, y), (t, v) ∈ ∆, for some fixed s ∈ (0, 1] .

s-convexity on the co-ordinates does not imply the s-convexity, it exist a functions which are
s-convex on the co-ordinates but are not s-convex.

Definition 2.3. (Bai & Qi, 2013; Chun, 2014) A function f : ∆0 → R is said (s,m)-convex on ∆,
if the following inequality

f (λx + m (1 − λ) t, λy + m (1 − λ) v) ≤ λs f (x, y) + m(1 − λs) f (t, v), (2.3)

holds for all (x, y), (t, v) ∈ ∆ and λ ∈ [0, 1] and for some fixed s,m ∈ (0, 1] .

118 B. Meftah et al. / Theory and Applications of Mathematics & Computer Science 5 (2) (2015) 116– 125

Definition 2.4. (Bai & Qi, 2013; Chun, 2014) A function f : ∆0 → R is said to be (s1,m1)-(s2,m2)-
convex on the co-ordinates on ∆0, if the following inequality

f (λx + m1 (1 − λ) t, αy + m2 (1 − α) v) ≤ λs1αs2 f (x, y) + m2λ
s1(1 − αs2) f (x, v)

+m1(1 − λs1)αs2 f (t, y)
+m1m2(1 − λs1)(1 − αs2) f (t, v), (2.4)

holds for all (x, y), (x, v), (t, y), (t, v) ∈ ∆ with λ, α ∈ [0, 1] and s1,m1, s2,m2 ∈ (0, 1] .

3. Main result

Lemma 3.1. Let f : ∆ → R be partially differentiable function on ∆ in R2. If fλα ∈ L1(∆), then
for any (x, y) ∈ ∆ ⊂ ∆0 , we have the following identity

f (x, y) =
1

(b − a)

b∫
a

f (m1t, y)dt +
1

(d − c)

d∫
c

f (x,m2z)dz

−
1
k

b∫
a

d∫
c

f (m1t,m2z)dzdt +
1
k

b∫
a

d∫
c

(x − m1t) (y − m2z)

×

1∫
0

1∫
0

f
λα

(λx + m1(1 − λ)t, αy − m2(1 − α)z) dαdλ

 dzdt, (3.1)

where k = (b − a) (d − c) .

Proof. For any x, t ∈ [m1a,m1b] and y, z ∈ [m2c,m2d] such that t , x, y , z, we have
x∫

m1t

y∫
m2z

fστ (σ, τ) dτdσ =

x∫
m1t

(fσ (σ, y) − fσ (σ,m2z)) dσ

= f (x, y) − f (x,m2z) − f (m1t, y) + f (m1t,m2z) , (3.2)

which implies

f (x, y) = f (x,m2z) + f (m1t, y) − f (m1t,m2z) +

x∫
m1t

y∫
m2z

fστ (σ, τ) dτdσ. (3.3)

For σ = λx + m1(1 − λ)t and τ = αy − m2(1 − α)z, (3.3) becomes

f (x, y) = f (x,m2z) + f (m1t, y) − f (m1t,m2z)

+ (x − m1t) (y − m2z)

1∫
0

1∫
0

fλα (λx + m1(1 − λ)t, αy − m2(1 − α)z) dτdσ. (3.4)

Integrating (3.4) over [a, b]× [c, d] ⊂ ∆0, with respect to t, z, multiplying the resultant equality

by
1
k
, we obtain the desired equality.

B. Meftah et al. / Theory and Applications of Mathematics & Computer Science 5 (2) (2015) 116– 125 119

Theorem 3.1. Let f , g : ∆0 → R be partially differentiable functions such that their second
derivatives fλα and gλα are integrable on ∆0, if | fλα| and |gλα| are (s1,m1)-(s2,m2)-convex on the
co-ordinates, then we have

|T (f , g)| ≤
(1 + m1s1) (1 + m2s2)

8 (m1m2k)2 (1 + s1) (1 + s2)

m1b∫
m1a

m2d∫
m2c

[
M |g(x, y)| + N | f (x, y)|

]
×

[
(x − m1a)2 + (m1b − x)2

] [
(y − m2c)2 + (m2d − y)2

]]
dydx, (3.5)

where

T (f , g) =
1

m1m2k

m1b∫
m1a

m2d∫
m2c

f (x, y)g(x, y)dydx −
(d − c)
m2

1m2k2

m1b∫
m1a

m2d∫
m2c

g(x, y)

m1b∫
m1a

f (t, y)dt

 dydx

−
(b − a)
m1m2

2k2

m1b∫
m1a

m2d∫
m2c

g(x, y)

m2d∫
m2c

f (x, z)dz

 dydx

+
1

m2
1m2

2k2

m1b∫
m1a

m2d∫
m2c

f (x, y)dydx

m1b∫
m1a

m2d∫
m2c

g(t, z)dzdt

 , (3.6)

M = ess sup
x,t∈[a,b],y,z∈[c,d]

[
| fλα (x, y)| + | fλα (x, z)| + | fλα (t, y)| + | fλα (t, z)|

]
,

N = ess sup
x,t∈[a,b],y,z∈[c,d]

[
|gλα (x, y)| + |gλα (x, z)| + |gλα (t, y)| + |gλα (t, z)|

]
,

(s1,m1), (s2,m2) ∈ (0, 1]2 and k = (b − a) (d − c) .

Proof. By Lemma 3.1, we have

f (x, y) −
1

(b − a)

b∫
a

f (m1t, y)dt −
1

(d − c)

d∫
c

f (x,m2z)dz +
1
k

b∫
a

d∫
c

f (m1t,m2z)dzdt

=
1
k

b∫
a

d∫
c

(x − m1t) (y − m2z)

1∫
0

1∫
0

f
λα

(λx + m1(1 − λ)t, αy − m2(1 − α)z) dαdλ

 dzdt, (3.7)

and

g(x, y) −
1

(b − a)

b∫
a

g(m1t, y)dt −
1

(d − c)

d∫
c

g(x,m2z)dz +
1
k

b∫
a

d∫
c

g(m1t,m2z)dzdt

=
1
k

b∫
a

d∫
c

(x − m1t) (y − m2z)

1∫
0

1∫
0

g
λα

(λx + m1(1 − λ)t, αy − m2(1 − α)z) dαdλ

 dzdt. (3.8)

120 B. Meftah et al. / Theory and Applications of Mathematics & Computer Science 5 (2) (2015) 116– 125

Multiplying (3.7) by 1
2m1m2k g(x, y) and (3.8) by 1

2m1m2k f (x, y), summing the resultant equalities,
then integrating on [m1a,m1b] × [m2c,m2d] with respect to x, y, we get

1
m1m2k

m1b∫
m1a

m2d∫
m2c

g(x, y) f (x, y)dydx −
(d − c)

2m1m2k2

m1b∫
m1a

m2d∫
m2c

g(x, y)

×

b∫
a

f (m1t, y)dt

 dydx −
(b − a)

2m1m2k2

m1b∫
m1a

m2d∫
m2c

g(x, y)

d∫
c

f (x,m2z)dz

 dydx

−
(d − c)

2m1m2k2

m1b∫
m1a

m2d∫
m2c

f (x, y)

b∫
a

g(m1t, y)dt

 dydx

−
(b − a)

2m1m2k2

m1b∫
m1a

m2d∫
m2c

f (x, y)

d∫
c

g(x,m2z)dz

 dydx

+
1

2m1m2k2

m1b∫
m1a

m2d∫
m2c

g(x, y)

b∫
a

d∫
c

f (m1t,m2z)dzdt

 dydx

+
1

2m1m2k2

m1b∫
m1a

m2d∫
m2c

f (x, y)

b∫
a

d∫
c

g(m1t,m2z)dzdt

 dydx

=
1

2m1m2k2

m1b∫
m1a

m2d∫
m2c

g(x, y)

b∫
a

d∫
c

(x − m1t) (y − m2z)

×

1∫
0

1∫
0

f
λα

(λx + m1(1 − λ)t, αy − m2(1 − α)z) dαdλ

 dzdt

 dydx

+
1

2m1m2k2

m1b∫
m1a

m2d∫
m2c

f (x, y)

b∫
a

d∫
c

(x − m1t) (y − m2z)

×

1∫
0

1∫
0

g
λα

(λx + m1(1 − λ)t, αy − m2(1 − α)z) dαdλ

 dzdt

 dydx. (3.9)

B. Meftah et al. / Theory and Applications of Mathematics & Computer Science 5 (2) (2015) 116– 125 121

By Fubini’s Theorem, we obtain

T (f , g) =
1

2m1m2k2

m1b∫
m1a

m2d∫
m2c

g(x, y)

b∫
a

d∫
c

(x − m1t) (y − m2z)

×

1∫
0

1∫
0

f
λα

(λx + m1(1 − λ)t, αy − m2(1 − α)z) dαdλ

 dzdt

 dydx

+
1

2m1m2k2

m1b∫
m1a

m2d∫
m2c

f (x, y)

b∫
a

d∫
c

(x − m1t) (y − m2z)

×

1∫
0

1∫
0

g
λα

(λx + m1(1 − λ)t, αy − m2(1 − α)z) dαdλ

 dzdt

 dydx. (3.10)

Using the (s1,m1)-(s2,m2)-convexity and modulus, (3.10) gives

|T (f , g)| ≤
1

2m1m2k2

m1b∫
m1a

m2d∫
m2c

|g(x, y)|

b∫
a

d∫
c

|x − m1t| |y − m2z|

×

1∫
0

1∫
0

(
λs1αs2

∣∣∣ f
λα

(x, y)
∣∣∣ + m2λ

s1(1 − αs2)
∣∣∣ f

λα
(x, z)

∣∣∣ + m1(1 − λs1)αs2
∣∣∣ f

λα
(t, y)

∣∣∣
+m1m2(1 − λs1)(1 − αs2)

∣∣∣ f
λα

(t, z)
∣∣∣) dαdλ

]
dzdt

]
dydx

+
1

2m1m2k2

m1b∫
m1a

m2d∫
m2c

| f (x, y)|

b∫
a

d∫
c

|x − m1t| |y − m2z|

×

1∫
0

1∫
0

(
λs1αs2

∣∣∣g
λα

(x, y)
∣∣∣ + m2λ

s1(1 − αs2)
∣∣∣g

λα
(x, z)

∣∣∣ + m1(1 − λs1)αs2
∣∣∣g

λα
(t, y)

∣∣∣
+m1m2(1 − λs1)(1 − αs2)

∣∣∣g
λα

(t, z)
∣∣∣) dαdλ

]
dzdt

]
dydx. (3.11)

By a simple calculation, we have

|T (f , g)| ≤
(1 + m1s1) (1 + m2s2) M
2m1m2k2 (1 + s1) (1 + s2)

m1b∫
m1a

m2d∫
m2c

|g(x, y)| ×

b∫
a

d∫
c

|x − m1t| |y − m2z| dzdt

 dydx

+
(1 + m1s1) (1 + m2s2) N

2m1m2k2 (1 + s1) (1 + s2)

m1b∫
m1a

m2d∫
m2c

| f (x, y)| ×

b∫
a

d∫
c

|x − m1t| |y − m2z| dzdt

 dydx. (3.12)

122 B. Meftah et al. / Theory and Applications of Mathematics & Computer Science 5 (2) (2015) 116– 125

Noting that
b∫
a

|x − m1t| dt =
1

2m1

[
(x − m1a)2 + (m1b − x)2

]
, (3.13)

d∫
c

|y − m2z| dz =
1

2m2

[
(y − m2c)2 + (m2d − y)2

]
. (3.14)

Combining (3.12), (3.13) and (3.14), we obtain the required inequality.

Corollary 3.1. Let f , g : ∆0 → R be partially differentiable functions such that their second
derivatives fλα and gλα, are integrable on ∆0. If | fλα| and |gλα| are (s1, s2)-convex on the co-
ordinates, then we have

|T (f , g)|≤
1

8k2

b∫
a

d∫
c

[
M |g(x, y)| + N | f (x, y)|

] [
(x−a)2+(b−x)2

]
×
[
(y−c)2+(d−y)2

]
dydx, (3.15)

where

T (f , g) =
1
k

b∫
a

d∫
c

f (x, y)g(x, y)dydx −
(d − c)

k2

b∫
a

d∫
c

g(x, y)

b∫
a

f (t, y)dt

 dydx

−
(b − a)

k2

b∫
a

d∫
c

g(x, y)

d∫
c

f (x, z)dz

 dydx

+
1
k2

b∫
a

d∫
c

f (x, y)dydx

b∫
a

d∫
c

g(t, z)dzdt

 , (3.16)

M, N, k are defined as in Theorem 3.1 and (s1, s2) ∈ (0, 1]2 .

Proof. Applying Theorem 3.1, for m1 = m2 = 1, we obtain the desired inequality.

Corollary 3.2. Under the same hypothesis of Theorem 3.1, if | fλα| and |gλα| are m1-m2-convex on
the co-ordinates, then we have the following inequality

|T (f , g)| ≤
(1 + m1) (1 + m2)

32 (m1m2k)2

m1b∫
m1a

m2d∫
m2c

[
M |g(x, y)| + N | f (x, y)|

]
×

[
(x − m1a)2 + (m1b − x)2

] [
(y − m2c)2 + (m2d − y)2

]
dydx, (3.17)

where T (f , g), M, N, k are defined as in Theorem 3.1 and (m1,m2) ∈ (0, 1]2 .

Proof. Using Theorem 3.1, for s1 = s2 = 1, we obtain the desired inequality.

B. Meftah et al. / Theory and Applications of Mathematics & Computer Science 5 (2) (2015) 116– 125 123

Theorem 3.2. Under the same hypothesis of Theorem 3.1, we have the following inequality

|T (f , g)| ≤
49

3600

[
(1 + m1s1) (1 + m2s2)

(1 + s1) (1 + s2)

]2

MNk2m2
1m2

2 , (3.18)

where T (f , g), M, N, (s1,m1), (s2,m2) and k are defined as in Theorem 3.1.

Proof. Let F,G, F̃ and G̃ be defined as follows

F = f (x, y) −
1

(b − a)

b∫
a

f (m1t, y)dt −
1

(d − c)

d∫
c

f (x,m2z)dz +
1
k

b∫
a

d∫
c

f (m1t,m2z)dzdt,

G = g(x, y) −
1

(b − a)

b∫
a

g(m1t, y)dt −
1

(d − c)

d∫
c

g(x,m2z)dz +
1
k

b∫
a

d∫
c

g(m1t,m2z)dzdt,

F̃ =
1
k

b∫
a

d∫
c

(x − m1t) (y − m2z) ×

1∫
0

1∫
0

f
λα

(λx + m1(1 − λ)t, αy − m2(1 − α)z) dαdλ

 dzdt,

G̃ =
1
k

b∫
a

d∫
c

(x − m1t) (y − m2z) ×

1∫
0

1∫
0

g
λα

(λx + m1(1 − λ)t, αy − m2(1 − α)z) dαdλ

 dzdt.

By Lemma 3.1, we have
F = F̃ and G = G̃, (3.19)

which implies
F ×G = F̃ × G̃. (3.20)

Integrating both sides of (3.20) over [m1a,m1b] × [m2c,m2d] with respect to x, y, multiplying
the resultant equality by 1

m1m2k , using Fubini’s Theorem and modulus, we get

|T (f , g)| ≤
1

m1m2k3

m1b∫
m1a

m2d∫
m2c

b∫
a

d∫
c

|x − m1t| |y − m2z|

×

1∫
0

1∫
0

∣∣∣ f
λα

(λx + m1(1 − λ)t, αy − m2(1 − α)z)
∣∣∣ dαdλ

 dzdt ×

b∫
a

d∫
c

|x − m1t| |y − m2z|

×

1∫
0

1∫
0

∣∣∣g
λα

(λx + m1(1 − λ)t, αy − m2(1 − α)z)
∣∣∣ dαdλ

 dzdt

 dydx. (3.21)

124 B. Meftah et al. / Theory and Applications of Mathematics & Computer Science 5 (2) (2015) 116– 125

Using the (s1,m1)-(s2,m2)-convexity, we obtain

|T (f , g)| ≤
1

m1m2k3

m1b∫
m1a

m2d∫
m2c

b∫
a

d∫
c

|x − m1t| |y − m2z|

1∫
0

1∫
0

[
λs1αs2

∣∣∣ f
λα

(x, y)
∣∣∣

+m2λ
s1(1 − αs2)

∣∣∣ f
λα

(x, z)
∣∣∣ + m1(1 − λs1)αs2

∣∣∣ f
λα

(t, y)
∣∣∣

+m1m2(1 − λs1)(1 − αs2)
∣∣∣ f

λα
(t, z)

∣∣∣] dαdλ
]

dzdt
]

×

b∫
a

d∫
c

|x − m1t| |y − m2z|

1∫
0

1∫
0

[
λs1αs2

∣∣∣g
λα

(x, y)
∣∣∣

+m2λ
s1(1 − αs2)

∣∣∣g
λα

(x, z)
∣∣∣ + m1(1 − λs1)αs2

∣∣∣g
λα

(t, y)
∣∣∣

+m1m2(1 − λs1)(1 − αs2)
∣∣∣g

λα
(t, z)

∣∣∣] dαdλ
]

dzdt
]

dydx

≤

[
(1 + m1s1) (1 + m2s2)

(1 + s1) (1 + s2)

]2 M × N
m1m2k3

×

m1b∫
m1a

b∫
a

|x − m1t| dt

2

dx

m2d∫
m2c

d∫
c

|y − m2z| dz

2

dy

 . (3.22)

Taking into account that
m1b∫
m1a

b∫
a

|x − m1t| dt

2

dx

 =
7

60
m3

1 (b − a)5 (3.23)

and
m2d∫
m2c

d∫
c

|y − m2z| dz

2

dy

 =
7

60
m3

2 (d − c)5 . (3.24)

The desired inequality, will be obtained by combining (3.22), (3.23) and (3.24).

Corollary 3.3. Let f , g : ∆0 → R be partially differentiable functions such that their second
derivatives fλα and gλα, are integrable on ∆0. If | fλα| and |gλα| are (s1, s2)-convex on the co-
ordinates, then we have

|T (f , g)| ≤
49

3600
M × N × k2, (3.25)

where T (f , g), M, N and k are defined as in Theorem 3.1.

Proof. Applying Theorem 3.2, for m1 = m2 = 1, we obtain the desired inequality.

Corollary 3.4. Under the same hypothesis of Theorem 3.1, if | fλα| and |gλα| are m1-m2-convex on
the co-ordinates, we have the following inequality

|T (f , g)| ≤
49

57600
[(1 + m1) (1 + m2)]2 M × N × k2m2

1 × m2
2 , (3.26)

B. Meftah et al. / Theory and Applications of Mathematics & Computer Science 5 (2) (2015) 116– 125 125

where T (f , g), M, N and k are defined as in Theorem 3.1 and m1,m2 ∈ (0, 1] .

Proof. Applying Theorem 3.2, for s1 = s2 = 1, we obtain the desired inequality.

4. Acknowledgements

The author would like to thank the anonymous referee for his/her valuable suggestions. This
work has been supported by CNEPRU–MESRS–B01120120103 project grants.

References

Ahmad, F., N. S. Barnett and S. S. Dragomir (2009). New weighted Ostrowski and Čebyšev type inequalities. Non-
linear Analysis: Theory, Methods & Applications 71(12), e1408–e1412.

Alomari, M. and M. Darus (2008). The Hadamard’s inequality for s-convex function of 2-variables on the co-ordinates.
International Journal of Math. Analysis 2(13), 629–638.

Bai, S. P. and F. Qi (2013). Some inequalities for (s1,m1)-(s2,m2)-convex functions on the co-ordinates. Global
Journal of Mathematical Analysis 1(1), 22–28.

Boukerrioua, K. and A Guezane-Lakoud (2007). On generalization of Čebyšev type inequalities. J. Inequal. Pure
Appl. Math 8(2), Paper No. 55, 4 p.

Chebyshev, P. L. (1882). Sur les expressions approximatives des integrales definies par les autres prises entre les
mêmes limites. InProc.Math.Soc.Charkov(Vol. 2, 93–98.

Chun, L. (2014). Some new inequalities of Hermite-Hadamard type for (α1,m1)-(α2,m2)-convex functions on coordi-
nates. Journal of Function Spaces 5950, Article ID 975950, 7.

Dragomir, S. S. (2001). On Hadamard’s inequality for convex functions on the co-ordinates in a rectangle from the
plane. Taiwanese J Math. 4, 775–788.

Guazene-Lakoud, A. and F. Aissaoui (2011). New Čebyšev type inequalities for double integrals. J. Math. Inequal.
5(4), 453–462.

Latif, M. A. and M. Alomari (2009). On Hadamard-type inequalities for h-convex functions on the co-ordinates.
International Journal of Math. Analysis 3(33), 1645–1656.

Pachpatte, B. G. (2006). On Čebyšev-Grüss type inequalities via Pečarić’s extension of the Montgomery identity.
JIPAM. Journal of Inequalities in Pure & Applied Mathematics [electronic only] 7(1), 1–4.

Pachpatte, B. G. and N. A. Talkies (2006). On Čebyšev type inequalities involving functions whose derivatives belong
to Lp spaces. J. Inequal. Pure and Appl. Math 7(2), 1–6.

Sarikaya, M. Z., H. Budak and H. Yaldiz (2014). Čebysev type inequalities for co-ordinated convex functions. Pure
and Applied Mathematics Letters 2, 244–48.

Theory and Applications of Mathematics & Computer Science 5 (2) (2015) 126– 131

Hadamard Product of Certain Harmonic Univalent Meromorphic
Functions

R. M. El-Ashwaha, B. A. Frasinb,∗

aDepartment of Mathematics, Faculty of Science, Damietta University, New Damietta 34517, Egypt.
bDepartment of Mathematics, Al al-Bayt University, Mafraq, Jordan Department of Mathematics, Al al-Bayt

University, Mafraq, Jordan.

Abstract
In this paper the authors extended certain results concerning the Hadamard product for two classes related to star-

like and convex harmonic univalent meromorphic functions, results for each class are obtained. Relevant connections
of the results obtained here with various known results for meromorphic univalent functions are indicated.

Keywords: Harmonic functions, meromorphic functions, univalent functions, sense-preserving.
2010 MSC: 30C45, 30C50.

1. Introduction and definitions

A continuous function f = u+ iv is a complex valued harmonic function in a simply connected
complex domain D ⊂ C if both u and v are real harmonic in D. It was shown by Clunie and Sheil-
Small (Clunie & Sheil-Small, 1984) that such harmonic function can be represented by f = h + g,
where h and g are analytic in D. We call h the analytic part and g the co-analytic of f . Also, a
necessary and sufficient condition for f to be locally univalent and sense-preserving in D is that∣∣∣h′(z)

∣∣∣ > ∣∣∣g′(z)
∣∣∣. There are numerous papers on univalent harmonic functions defined in a domain

U = {z ∈ C : |z| < 1} (see (Jahangiri, 1998, 1999), and (Silverman & Silvia, 1999; Silverman,
1998)). Hengartner and Schober (Henartner & Schober, 1987) investigated functions harmonic in
the exterior of the unit disc, that is U∗ = {z ∈ C : |z| > 1}. They showed that a complex valued,
harmonic, sense-preserving univalent function f , defined on U∗ and satisfying f (∞) = ∞ must
admit the representation

f (z) = h(z) + g(z) + A log |z| (A ∈ C), (1.1)

∗Corresponding author
Email addresses: r_elashwah@yahoo.com (R. M. El-Ashwah), bafrasin@yahoo.com (B. A. Frasin)

R. M. El-Ashwah et al. / Theory and Applications of Mathematics & Computer Science 5 (2) (2015) 126– 131 127

where

h(z) = αz +

∞∑
n=1

anz−n , g(z) = βz +

∞∑
n=1

bnz−n (0 ≤ |β| < |α|), (1.2)

and a = f z/ fz is analytic and satisfy |a(z)| < 1 for z ∈ U∗.
After this work, Jahangiri and Silverman (Jahangiri & Silverman, 1999) defined the class H∗0 of

harmonic sense-preserving functions f (z) that are starlike with respect to the origin in U∗ given by
(1.1) and (1.2) and proved that

∞∑
n=1

n(|an| + |bn|) < |α| − |β| − |A| .

Denote by ΣH the class of meromophic functions f that are harmonic univalent and sense-preserving
in the exterior of open unit disc U in the form

f (z) = h(z) + g(z) (1.3)

where

h(z) = z +

∞∑
n=1

anz−n , g(z) =

∞∑
n=1

bnz−n. (1.4)

Also, Jahangiri (Jahangiri, 2002) proved that if f (z) given by (1.3) and (1.4) belongs to Σ∗H(γ), then

∞∑
n=1

(
n + γ

1 − γ
|an| +

n − γ
1 − γ

|bn|

)
< 1.

Several authors have studies the classes of harmonic univalent meromorphic functions (see (Ahuja
& Jahangiri, 2002; El-Ashwah et al., 2014) and (Janteng & Halim, 2007)).

Now, we introduce the subclasses Σ∗H(cn, dn, δ), Σc
H(cn, dn, δ) and Σk

H(cn, dn, δ)
consisting of functions of the form (1.3) and (1.4) which satisfies the inequalities, respectively

∞∑
n=1

(cn |an| + dn |bn|) < δ (cn ≥ dn ≥ c2 > 0; δ > 0), (1.5)

∞∑
n=1

n (cn |an| + dn |bn|) < δ (cn ≥ dn ≥ c2 > 0; δ > 0), (1.6)

and

∞∑
n=1

nk (cn |an| + dn |bn|) < δ (cn ≥ dn ≥ c2 > 0; δ > 0). (1.7)

It is easy to see that various subclasses of ΣH consisting of functions f (z) of the form (1.3) and
(1.4) can be represented as Σk

H(cn, dn, δ) for suitable choices of cn, dn, δ and k studies earlier by
various authors.

128 R. M. El-Ashwah et al. / Theory and Applications of Mathematics & Computer Science 5 (2) (2015) 126– 131

(i) Σ0
H(n, n, 1) = H∗0 (see Jahangiri and Silverman. ((Jahangiri & Silverman, 1999), with α =

1 and β = A = 0));
(ii) Σ0

H(n + γ, n − γ, 1 − γ) = Σ∗H(γ)(0 ≤ γ < 1, n ≥ 1) (see Jahangiri (Jahangiri, 2002));
(iii)Σ0

H(n(n+2)m, n(n−2)m, 1) = MH∗(m)(m ∈ N0 = N∪{0},N = {1, 2, ...}, n ≥ 1) (see Bostanci
and Ozturk (Bostanci & Ozturk, 2010));

(vi) Σ0
H((n + γ)(n + 2)m, (n − γ)(n − 2)m, 1 − γ) = MH∗(m, γ)(0 ≤ γ < 1,m ∈ N0, n ≥ 1) (see

Bostanci and Ozturk (Bostanci & Ozturk, 2011)).
Evidently, Σ0

H(cn, dn, δ) = Σ∗H(cn, dn, δ), and Σ1
H(cn, dn, δ) = Σc

H(cn, dn, δ). Further Σ
k1
H (cn, dn, δ) ⊂

Σ
k2
H (cn, dn, δ) if k1 > k2 ≥ 0, the containment being proper. Moreover, for any positive integer k, we

have the following inclusion relation
Σk

H(cn, dn, δ) ⊂ Σk−1
H (cn, dn, δ) ⊂ ... ⊂ Σ2

H(cn, dn, δ) ⊂ Σc
H(cn, dn, δ) ⊂ Σ∗H(cn, dn, δ).

We also note that for any nonnegative real number k, the class Σk
H(cn, dn, δ) is nonempty as the

function

f (z) = z +

∞∑
n=1

n−k δ

cn
λnz−n +

∞∑
n=1

n−k δ

dn
λnz−n

where λn ≥ 0 and
∞∑

n=1
λn ≤ 1, satisfy the inequality (1.7).

For harmonic meromorphic functions of the form

f (z) = z +

∞∑
n=1

|an| z−n +

∞∑
n=1

|bn| z−n

and

G(z) = z +

∞∑
n=1

Anz−n +

∞∑
n=1

Bnz−n (An, Bn ≥ 0),

we define the convolution of two harmonic functions f and G as

(f ∗G)(z) = f (z) ∗G(z)

= z +

∞∑
n=1

|an| Anz−n +

∞∑
n=1

|bn| Bnz−n,

and similarly, we can define the convolution of more than two meromorphic functions.
Several authors such as Mogra (Mogra, 1994, 1991), Aouf and Darwish (Aouf & Darwish,

2006), El-Ashwah and Aouf (El-Ashwah & Aouf, 2009, 2011) studied the convolution properties
of meromorphic functions only.

The object of this paper is to establish a results concerning the Hadamard product of functions
in the classes Σk

H(cn, dn, δ),Σc
H(cn, dn, δ) and Σ∗H(cn, dn, δ).

Throughout this paper, we assume f (z), g(z), fi(z), and g j(z) having following form

f (z) = z +

∞∑
n=1

anz−n +

∞∑
n=1

bnz−n, (1.8)

R. M. El-Ashwah et al. / Theory and Applications of Mathematics & Computer Science 5 (2) (2015) 126– 131 129

g(z) = z +

∞∑
n=1

unz−n +

∞∑
n=1

vnz−n, (1.9)

fi(z) = z +

∞∑
n=1

an,iz−n +

∞∑
n=1

bn,iz−n (i = 1, 2, ..., s), (1.10)

g j(z) = z +

∞∑
n=1

un, jz−n +

∞∑
n=1

vn, jz−n (j = 1, 2, ..., q). (1.11)

Since to a certain extent the work in the harmonic univalent meromorphic functions case has
paralleled that of the harmonic analytic univalent case, one is tempted to search analogous results
to those of Porwal and Dixt (Porwal & Dixit, 2015) for meromorphic harmonic univalent functions
in U∗.

2. Main Results

Theorem 1. Let the functions fi(z) defined by (1.10) belong to the class Σc
H(cn, dn, δ) for every

i = 1, 2, ..., s; and let the functions g j(z) defined by (1.11) belong to the class Σ∗H(cn, dn, δ) for every
j = 1, 2, ..., q. If cn, dn ≥ nδ, (n ≥ 1), then the Hadamard product f1 ∗ f2 ∗ ∗ fm ∗ g1 ∗ g2 ∗ ∗
gq(z) belongs to the class Σ

2s+q−1
H (cn, dn, δ).

Proof. It is sufficient to show that

∞∑
n=1

n2s+q−1

cn

 s∏
i=1

∣∣∣an,i

∣∣∣ q∏
j=1

∣∣∣un, j

∣∣∣ + dn

 s∏
i=1

∣∣∣bn,i

∣∣∣ q∏
j=1

∣∣∣vn, j

∣∣∣
 ≤ δ

Since fi(z) ∈ Σc
H(cn, dn, δ), we have

∞∑
n=1

n
(
cn

∣∣∣an,i

∣∣∣ + dn

∣∣∣bn,i

∣∣∣) ≤ δ, (2.1)

for every i = 1, 2, ..., s, and therefore,

ncn

∣∣∣an,i

∣∣∣ ≤ δ or
∣∣∣an,i

∣∣∣ ≤ (
δ

ncn

)
and hence ∣∣∣an,i

∣∣∣ ≤ n−2, (2.2)

for every i = 1, 2, ..., s. Also,

ndn

∣∣∣bn,i

∣∣∣ ≤ δ or
∣∣∣bn,i

∣∣∣ ≤ (
δ

ncn

)
and hence ∣∣∣bn,i

∣∣∣ ≤ n−2, (2.3)

130 R. M. El-Ashwah et al. / Theory and Applications of Mathematics & Computer Science 5 (2) (2015) 126– 131

for every i = 1, 2, ..., s. Further, since g j(z) ∈ Σ∗H(cn, dn, δ), we have

∞∑
n=1

(
cn

∣∣∣un, j

∣∣∣ + dn

∣∣∣vn, j

∣∣∣) ≤ δ, (2.4)

for every j = 1, 2,, q. Hence we obtain∣∣∣un, j

∣∣∣ ≤ n−1 and
∣∣∣vn, j

∣∣∣ ≤ n−1 (2.5)

for every j = 1, 2,, q.
Using (2.2) and (2.3) for i = 1, 2,, s ; (2.5) for j = 1, 2,, q−1 and (2.4) for j = q, we have

∞∑
n=1

n2s+q−1

cn

 s∏
i=1

∣∣∣an,i

∣∣∣ q−1∏
j=1

∣∣∣un, j

∣∣∣ ∣∣∣un,q

∣∣∣ + dn

 s∏
i=1

∣∣∣bn,i

∣∣∣ q−1∏
j=1

∣∣∣vn, j

∣∣∣ ∣∣∣vn,q

∣∣∣
≤

∞∑
n=1

n2s+q−1
[
cnn−2sn−(q−1)

∣∣∣un,q

∣∣∣ + dnn−2sn−(q−1)
∣∣∣vn,q

∣∣∣]
=

∞∑
n=1

cn

∣∣∣un,q

∣∣∣ + dn

∣∣∣vn,q

∣∣∣ ≤ δ.
Hence f1 ∗ f2 ∗ ∗ fm ∗ g1 ∗ g2 ∗ ∗ gq ∈ Σ

2s+q−1
H (cn, dn, δ).

We note that the required estimate can also be obtained by using (2.2) and (2.3) for i =

1, 2,, s − 1 ; (2.5) for j = 1, 2,, q; and (2.1) for i = s.

Taking into account the convolution of the functions fi(z) defined by (1.10) for every i =

1, 2, ..., s; only in the proof of the above theorem and using (2.2) and (2.3) for i = 1, 2,, s − 1,
and the relation (2.1) for i = s, we have the following corollary:
Corollary 1. Let the functions fi(z) defined by (1.10) belong to the class Σc

H(cn, dn, δ) for every
i = 1, 2, ..., s. If cn, dn ≥ nδ (n ≥ 1), then the Hadamard product f1 ∗ f2 ∗ ... ∗ fs(z) belongs to the
class Σ2s−1

H (cn, dn, δ).
Taking into account the convolution of the functions g j(z) defined by (1.11) for every j =

1, 2, ..., q; only in the proof of the above theorem and using (2.5) for j = 1, 2,, q − 1 ; and the
relation (2.4) for j = q, we have the following corollary:
Corollary 2. Let the functions g j(z) defined by (1.11) belong to the class Σ∗H(cn, dn, δ) for every
j = 1, 2, ..., q. If cn, dn ≥ δ, (n ≥ 1), then the Hadamard product g1 ∗g2 ∗ ∗gq belongs to the class
Σ

q−1
H (cn, dn, δ).

Remarks (i) If the co-analytic parts of fi(z) and g j(z) are zero for every i = 1, 2,, s and j =

1, 2,, q, then we obtain the results obtained by El-Ashwah and Aouf (El-Ashwah & Aouf, 2011),
with a0,i = 1, i = 1, 2, ..., s and b0, j = 1, j = 1, 2, ..., q);

(ii) Taking cn = n + 1 + β(n + 2α − 1) and δ = 2β(1 − α) (0 ≤ α < 1, 0 < β ≤ 1) with the
co-analytic parts zero in the above results, we obtain the results obtained by Mogra (Mogra, 1994);

(iii) Taking cn = n + α and δ = 1 − α(0 ≤ α < 1) with co-analytic parts are zero in the above
results, we obtain the result obtained by Mogra (Mogra, 1991);

R. M. El-Ashwah et al. / Theory and Applications of Mathematics & Computer Science 5 (2) (2015) 126– 131 131

(iv) Taking cn = nm[(n + 1) + β(n + 2α − 1)] and δ = 2β(1 − α)(0 ≤ α < 1, 0 < β ≤ 1,m ∈ N0)
with co-analytic parts are zero in the above results, we obtain the results obtained by El-Ashwah
and Aouf (El-Ashwah & Aouf, 2009), with a0,i = 1, i = 1, 2, ..., s and b0, j = 1, j = 1, 2, ..., q);

(vi) By specializing the coefficients cn, dn and the parameter δ we obtain corresponding results
for various subclasses such as H∗0, Σ∗H(γ), MH∗(m), MH∗(m, γ).

Acknowledgments
The authors thank the referees for their valuable suggestions which led to improvement of this

study.

References

Ahuja, O. P. and J. M. Jahangiri (2002). Certain meromorphic harmonic functions. Bull. Malaysian Math. Sci. Soc
25, 1–10.

Aouf, M. K. and H. E. Darwish (2006). Hadamard product of certain meromorphic univalent functions with positive
coefficients. South. Asian Bull. Math. 30, 23–28.

Bostanci, H. and M. Ozturk (2010). A new subclass of the meromorphic harmonic starlike functions. Appl. Math.
Letters 23, 1027–1032.

Bostanci, H. and M. Ozturk (2011). A new subclass of the meromorphic harmonic -starlike functions. Appl. Math.
Comput. 218, 683–688.

Clunie, J. and T. Sheil-Small (1984). Harmonic univalent functions. Ann. Acad. Sci. Fenn. Ser. A. I. Math. 9, 3–25.
El-Ashwah, R.M. and M.K. Aouf (2009). Hadamard product of certain meromorphic starlike and convex functions.

Comput. Math. Appl. 57(7), 1102–1106.
El-Ashwah, R.M. and M.K. Aouf (2011). The Hadamard product of meromorphic univalent functions deffined by

convolution. Appl. Math. Letters 24, 1153–1157.
El-Ashwah, R.M., J. Dziok M.K. Aouf and J. Stankiewicz (2014). Partial sums of certain harmonic univalent mero-

morphic functions. J. Math. Anal. 37, 5–11.
Henartner, W. and G. Schober (1987). Univalent harmonic function. Trans. Amer. Math. Soc. 299(2), 1–31.
Jahangiri, J. M. (1998). Coefficient bounds and univalent criteria for harmonic functions with negative coefficients.

Ann. Univ. Marie-Curie Sklodowska Sect. A 52, 57–66.
Jahangiri, J. M. (1999). Harmonic functions starlike in the unit disc. J. Math. Anal. Appl. 235(2), 470–477.
Jahangiri, J. M. (2002). Harmonic meromorphic starlike functions. Bull. Korean Math. Soc. 37(2), 291–301.
Jahangiri, J. M. and H. Silverman (1999). Meromorphic univalent harmonic function with negative coefficients. Bull.

Korean Math. Soc. 36(4), 763–770.
Janteng, A. and S. A. Halim (2007). A subclass of harmonic meromorphic functions. Int. J. Contemp. Math. Sci.

2(24), 1167–1174.
Mogra, M. L. (1991). Hadamard product of certain meromorphic univalent functions. J. Math. Anal. Appl. 157(2), 10–

16.
Mogra, M. L. (1994). Hadamard product of certain meromorphic starlike and convex functions. Tamkang J. Math.

25(2), 157–162.
Porwal, S. and Dixit (2015). Convolution on a generalized class of harmonic meromorphic functions. Kungpook Math.

J. 55, 83–89.
Silverman, H. (1998). Harmonic univalent function with negative coefficients. J. Math. Anal. Appl. 220, 283–289.
Silverman, H. and E. M. Silvia (1999). Subclasses of harmonic univalent functions. New Zealand J. Math. 28, 275–

284.

Theory and Applications of Mathematics & Computer Science 5 (2) (2015) 148– 157

Katsaras’s Type Fuzzy Norm under Triangular Norms

Sorin Nădăbana,∗, Tudor Bı̂nzarb, Flavius Paterb, Carmen Ţereia, Sorin Hoarăa

aAurel Vlaicu University of Arad, Department of Mathematics and Computer Science, Elena Drăgoi 2, RO-310330
Arad, Romania.

b”Politehnica” University of Timişoara, Department of Mathematics, Piaţa Victoriei 2, RO-300006 Timişoara,
Romania.

Abstract
The aim of this paper is to redefine Katsaras’s fuzzy norm using the notion of t-norm.

Keywords: Fuzzy norm, fuzzy norm linear spaces, fuzzy subspaces, *-convexity.
2010 MSC: 46S40.

1. Introduction and preliminaries

The concept of fuzzy set was introduced by L.A. Zadeh in his famous paper (Zadeh, 1965). A
fuzzy set in X is a function µ : X → [0, 1]. We will denote by F (X) the family of all fuzzy sets in
X. The classical union and intersection of ordinary subsets of X can be extended by the following
formulas, proposed by L. Zadeh:∨

i∈I

µi

 (x) = sup{µi(x) : i ∈ I} ,

∧
i∈I

µi

 (x) = inf{µi(x) : i ∈ I} .

If µ1, µ2 ∈ F (X), then the inclusion µ1 ⊆ µ2 is defined by µ1(x) ≤ µ2(x).

Definition 1.1. (Chang, 1968) Let X,Y be arbitrary sets and f : X → Y . If µ is a fuzzy set in Y ,
then f −1(µ) is a fuzzy set in X defined by

f −1(µ)(x) = µ(f (x)), (∀)x ∈ X .

∗Corresponding author
Email addresses: sorin.nadaban@uav.ro (Sorin Nădăban), tudor.binzar@upt.ro (Tudor Bı̂nzar),

flavius.pater@upt.ro (Flavius Pater), carmen.terei@uav.ro (Carmen Ţerei), sorin.hoara@uav.ro (Sorin
Hoară)

Sorin Nădăban et al. / Theory and Applications of Mathematics & Computer Science 5 (2) (2015) 148– 157 149

If µ is a fuzzy set in X then f (µ) is a fuzzy set in Y defined by

f (µ)(y) =

 sup
x∈ f −1(y)

µ(x) if f −1(y) , ∅

0 if f −1(y) = ∅
.

Remark. Previous definition is a special case of Zadeh’s extension principle.

Since then many authors have tried to investigate fuzzy sets and their applications from differ-
ent points of view. An important problem was finding an adequate definition of a fuzzy normed
linear space. In the studying of the fuzzy topological vector spaces, Katsaras (1984) introduced
for the first time the notion of fuzzy norm on a linear space.

Definition 1.2. (Katsaras & Liu, 1977) A fuzzy set ρ in X is said to be:

1. convex if tρ + (1 − t)ρ ⊆ ρ, (∀)t ∈ [0, 1];
2. balanced if λρ ⊆ ρ, (∀)λ ∈ K, |λ| ≤ 1;
3. absorbing if

∨
t>0

tρ = 1;

4. absolutely convex if it is both convex and balanced.

Proposition 1. (Katsaras & Liu, 1977) Let ρ be a fuzzy set in X. Then:

1. ρ is convex if and only if

ρ(tx + (1 − t)y) ≥ ρ(x) ∧ ρ(y), (∀)x, y ∈ X, (∀)t ∈ [0, 1];

2. ρ is balanced if and only if ρ(λx) ≥ ρ(x), (∀)x ∈ X, (∀)λ ∈ K, |λ| ≤ 1.

Definition 1.3. (Katsaras, 1984) A Katsaras fuzzy semi-norm on X is a fuzzy set ρ in X which is
absolutely convex and absorbing.

Definition 1.4. (Nădăban & Dzitac, 2014) A fuzzy semi-norm ρ on X will be called Katsaras fuzzy
norm if

ρ
(x

t

)
= 1, (∀)t > 0 ⇒ x = 0 .

Remark. a) It is easy to see that[
ρ
(x

t

)
= 1, (∀)t > 0⇒ x = 0

]
⇔

[
inf
t>0
ρ
(x

t

)
< 1, for x , 0

]
.

b) The condition
[
ρ
(

x
t

)
= 1, (∀)t > 0⇒ x = 0

]
is much weaker than that imposed by Katsaras

(1984), [
inf
t>0
ρ
(x

t

)
= 0, for x , 0

]
.

150 Sorin Nădăban et al. / Theory and Applications of Mathematics & Computer Science 5 (2) (2015) 148– 157

In 1992, Felbin (1992) introduced an idea of fuzzy norm on a linear space by assigning a
fuzzy real number to each element of linear space. Following Cheng & Mordeson (1994), Bag &
Samanta (2003) introduced another concept of fuzzy norm. In paper (Bag & Samanta, 2008) it
is shown that the fuzzy norm defined by Bag and Samanta is similar to that of Katsaras. As the
notion of fuzzy norm as defined by Cheng & Mordeson (1994) and Bag & Samanta (2003) can be
generalized for arbitrary t-norms (see (Goleţ, 2010), (Alegre & Romaguera, 2010), (Nădăban &
Dzitac, 2014)) motivates us to investigate the extension of Katsaras’s fuzzy norm under triangular
norm.

Definition 1.5. (Schweizer & Sklar, 1960) A binary operation

∗ : [0, 1] × [0, 1]→ [0, 1]

is called triangular norm (t-norm) if it satisfies the following condition:

1. a ∗ b = b ∗ a, (∀)a, b ∈ [0, 1];
2. a ∗ 1 = a, (∀)a ∈ [0, 1];
3. (a ∗ b) ∗ c = a ∗ (b ∗ c), (∀)a, b, c ∈ [0, 1];
4. If a ≤ c and b ≤ d, with a, b, c, d ∈ [0, 1], then a ∗ b ≤ c ∗ d.

Example 1.1. Three basic examples of continuous t-norms are ∧, ·, ∗L, which are defined by a∧b =

min{a, b}, a ·b = ab (usual multiplication in [0, 1]) and a ∗L b = max{a + b−1, 0} (the Lukasiewicz
t-norm).

Remark. a ∗ 0 = 0, (∀)a ∈ [0, 1].

Definition 1.6. (Nădăban & Dzitac, 2014) Let X be a vector space over a field K and ∗ be a
continuous t-norm. A fuzzy set N in X × [0,∞) is called a Bag-Samanta’s type fuzzy norm on X if
it satisfies:

(N1) N(x, 0) = 0, (∀)x ∈ X;

(N2) [N(x, t) = 1, (∀)t > 0] if and only if x = 0;

(N3) N(λx, t) = N
(
x, t
|λ|

)
, (∀)x ∈ X, (∀)t ≥ 0, (∀)λ ∈ K∗;

(N4) N(x + y, t + s) ≥ N(x, t) ∗ N(y, s), (∀)x, y ∈ X, (∀)t, s ≥ 0;

(N5) (∀)x ∈ X, N(x, ·) is left continuous and lim
t→∞

N(x, t) = 1.

The triple (X,N, ∗) will be called fuzzy normed linear space (briefly FNL-space).

Remark. Bag & Samanta (2003) gave this definition for ∗ = ∧ and Goleţ (2010), Alegre & Roma-
guera (2010) gave also this definition in the context of real vector spaces.

Sorin Nădăban et al. / Theory and Applications of Mathematics & Computer Science 5 (2) (2015) 148– 157 151

2. Fuzzy vector spaces under triangular norms

In paper (Das, 1988) the sum of fuzzy sets, fuzzy subspaces and convex fuzzy sets were re-
defined using the notion of a t-norm. In this way, several results are obtained, some of which are
generalisation of the results of Katsaras & Liu (1977).

Let X be a vector space over a field K (where K is R or C) and ∗ be a continuous t-norm.

Definition 2.1. Let µ1, µ2 be fuzzy sets in X. The sum of fuzzy sets µ1, µ2 is denoted by µ1 + µ2

and it is defined by
(µ1 + µ2)(x) = sup

x1+x2=x
[µ1(x1) ∗ µ2(x2)] .

If µ is a fuzzy set in X and λ ∈ K, then the fuzzy set λµ is defined by

(λµ)(x) =

µ
(

x
λ

)
if λ , 0

0 if λ = 0, x , 0
∨{µ(y) : y ∈ X} if λ = 0, x = 0

.

Remark. In the particular case in which ∗ = ∧ we obtain the definition introduced by Katsaras &
Liu (1977).

Proposition 2. If α, β ∈ K and µ, µ1, µ2 ∈ F (X), then

1. α(βµ) = β(αµ) = (αβ)µ;
2. µ1 ≤ µ2 ⇒ αµ1 ≤ αµ2.

Proof. 1) Case 1. α , 0, β , 0.

(α(βµ))(x) = (βµ)
(x
α

)
= µ

(
x
αβ

)
= ((αβ)µ)(x) .

Similarly,

(β(αµ))(x) = (αµ)
(

x
β

)
= µ

(
x
αβ

)
= ((αβ)µ)(x) .

Case 2. α = 0, β , 0.
Let x , 0. Then

(α(βµ))(x) = 0; ((αβ)µ)(x) = 0; (β(αµ))(x) = (αµ)
(

x
β

)
= 0 .

For x = 0 we have

(α(βµ))(x) = sup
y∈X

(βµ)(y) = sup
y∈X

µ

(
y
β

)
= sup

y∈X
µ(y) ;

((αβ)µ)(x) = sup
y∈X

µ(y) ; (β(αµ))(x) = (αµ)
(

x
β

)
= sup

y∈X
µ(y) .

152 Sorin Nădăban et al. / Theory and Applications of Mathematics & Computer Science 5 (2) (2015) 148– 157

Case 3. α , 0, β = 0 is similar.
Case 4. α = 0, β = 0.
For x , 0 we have

(α(βµ))(x) = 0; ((αβ)µ)(x) = 0; (β(αµ))(x) = 0 .

If x = 0, then
(α(βµ))(x) = sup

y∈X
(βµ)(y) = sup

y∈X
µ(y) .

((αβ)µ)(x) = sup
y∈X

µ(y) ; (β(αµ))(x) = sup
y∈X

(αµ)(y) = sup
y∈X

µ(y) .

2) Let x ∈ X.
Case 1. λ , 0.

(λµ1)(x) = µ1

(x
λ

)
≤ µ2

(x
λ

)
= (λµ2)(x) .

Case 2. λ = 0. If x , 0, then (λµ1)(x) = 0 = (λµ2)(x). For x = 0, we have

(λµ1)(x) = sup
y∈X

µ1(y) ≤ sup
y∈X

µ2(y) = (λµ2)(x)

Proposition 3. Let X,Y be vector spaces over K, f : X → Y be a linear mapping, λ ∈ K and
µ, µ1, µ2 ∈ F (X). Then

1. f (µ1 + µ2) = f (µ1) + f (µ2);
2. f (λµ) = λ f (µ).

Proof. The proof is exactly the same as in (Katsaras & Liu, 1977).

Proposition 4. Let µ, µ1, µ2 ∈ F (X) and α, β ∈ K. The following sentences are equivalent:

1. αµ1 + βµ2 ≤ µ;
2. For all x, y ∈ X we have µ(αx + βy) ≥ µ1(x) ∗ µ2(y).

Proof. The proof is exactly the same as in (Katsaras & Liu, 1977).

Definition 2.2. A fuzzy set µ in X is called *-fuzzy linear subspace of X if

1. µ + µ ⊆ µ;
2. λµ ⊆ µ, (∀)λ ∈ K.

Proposition 5. Let µ ∈ F (X). Then µ is a *-fuzzy linear subspace of X if and only in

µ(αx + βy) ≥ µ(x) ∗ µ(y), (∀)x, y ∈ X, (∀)α, β ∈ K .

Proof. The proof is exactly the same as in (Katsaras & Liu, 1977).

Definition 2.3. A fuzzy set µ in X is called *-convex if

µ(tx + (1 − t)y) ≥ µ(x) ∗ µ(y), (∀)x, y ∈ X, (∀)t ∈ [0, 1] .

Sorin Nădăban et al. / Theory and Applications of Mathematics & Computer Science 5 (2) (2015) 148– 157 153

Remark. If µ ∈ F (X) is *-convex and crisp, then µ = φA (φA is the characteristic function of the
subset A of X) and

µ(tx + (1 − t)y) ≥ µ(x) ∗ µ(y), (∀)x, y ∈ X, (∀)t ∈ [0, 1] .

Thus
µ(tx + (1 − t)y) = 1, (∀)x, y ∈ A, (∀)t ∈ [0, 1] .

Hence
tx + (1 − t)y ∈ A, (∀)x, y ∈ A, (∀)t ∈ [0, 1] .

So A is convex in the classical sence.

Proposition 6. A fuzzy set µ in X is *-convex if and only if

tµ + (1 − t)µ ⊆ µ, (∀)t ∈ [0, 1] .

Proof. ”⇒ ” Case 1. t = 0.

(0µ + 1µ)(x) = sup
x1+x2=x

[(0µ)(x1) ∗ (1µ)(x2)] = sup
y∈X

µ(y) ∗ µ(x) ≤ 1 ∗ µ(x) = µ(x) .

Case 2. t = 1 is similar.
Case 3. t ∈ (0, 1).

(tµ + (1 − t)µ)(x) = sup
x1+x2=x

[(tµ)(x1) ∗ ((1 − t)µ)(x2)] =

= sup
x1+x2=x

[
µ
(x1

t

)
∗ µ

(x2

1 − t

)]
≤

≤ sup
x1+x2=x

µ
[
t ·

x1

t
+ (1 − t) ·

x2

1 − t

]
= sup

x1+x2=x
µ(x1 + x2) = µ(x) .

”⇐ ” Case 1. t ∈ (0, 1).

µ(tx + (1 − t)y) ≥ (tµ + (1 − t)µ)(tx + (1 − t)y) ≥ (tµ)(tx) ∗ ((1 − t)µ)((1 − t)y) = µ(x) ∗ µ(y) .

Case 2. t = 0.
µ(0x + 1y) = µ(y) = 1 ∗ µ(y) ≥ µ(x) ∗ µ(y) .

Case 3. t = 1 is similar.

Remark. Some *-convexity properties of fuzzy sets, where * is a triangular norm on [0, 1], were
investigated in papers (Yandong, 1984; Yuan & Lee, 2004; Nourouzi & Aghajani, 2008) etc.

154 Sorin Nădăban et al. / Theory and Applications of Mathematics & Computer Science 5 (2) (2015) 148– 157

3. Katsaras’s type fuzzy norm

Let X be a vector space over a field K (where K is R or C) and ∗ be a continuous t-norm.

Definition 3.1. A fuzzy set ρ in X which is *-convex, balanced and absorbing will be called
Katsaras’s type fuzzy semi-norm. If in addition

ρ
(x

t

)
= 1, (∀)t > 0 ⇒ x = 0 ,

then ρ will be called Katsaras’s type fuzzy norm.

Lemma 1. If ρ is balanced and absorbing, then ρ(0) = 1.

Proof. As ρ is balanced, we have that ρ(0) = ρ(0 · x) ≥ ρ(x). Thus ρ(0) =
∨
x∈X

ρ(x). As ρ is

absorbing, we have that
∨
t>0
ρ
(

x
t

)
= 1. Hence

∨
x∈X

ρ(x) = 1. Thus ρ(0) = 1.

Lemma 2. If ρ is balanced, then ρ(αx) = ρ(|α|x), (∀)x ∈ X, (∀)α ∈ K.

Proof. If ρ is balanced, then ρ(λx) ≥ ρ(x), (∀)x ∈ X, (∀)λ ∈ K, |λ| ≤ 1. Particularly, for λ ∈ K :
|λ| = 1, we have

ρ

(
1
λ

x
)
≥ ρ(x), (∀)x ∈ X .

Replacing x with λx, we obtain ρ(x) ≥ ρ(λx), (∀)x ∈ X. Thus

ρ(λx) = ρ(x), (∀)x ∈ X, (∀)λ ∈ K, |λ| = 1 .

Take α ∈ K, α , 0 (if α = 0 it is obvious that ρ(αx) = ρ(|α|x), (∀)x ∈ X). We put in previous
equality λ = α

|α|
. It results

ρ

(
α

|α|
x
)

= ρ(x), (∀)x ∈ X ⇔ ρ(αx) = ρ(|α|x), (∀)x ∈ X .

Remark. The following theorems extend some results obtained in (Bag & Samanta, 2008).

Theorem 1. If ρ is a Katsaras’s type fuzzy norm, then

N(x, t) :=
{
ρ
(

x
t

)
if t > 0

0 if t = 0

is a Bag-Samanta’s type fuzzy norm.

Sorin Nădăban et al. / Theory and Applications of Mathematics & Computer Science 5 (2) (2015) 148– 157 155

Proof. (N1) N(x, 0) = 0, (∀)x ∈ X is obvious.
(N2) [N(x, t) = 1, (∀)t > 0] ⇒ ρ

(
x
t

)
= 1, (∀)t > 0 ⇒ x = 0. Conversely, if x = 0, then

N(0, t) = ρ(0) = 1, (∀)t > 0.
(N3) We suppose that t > 0 (if t = 0 (N3) is obvious). Using previous lemma we have:

N(λx, t) = ρ
(
λx
t

)
= ρ

(
|λ|x

t

)
= ρ

(
x

t/|λ|

)
= N

(
x,

t
|λ|

)
.

(N4) If t = 0, then N(x, t) = 0 and N(x, t)∗N(y, s) = 0∗N(y, s) = 0 and the inequality N(x+y, t+s) ≥
N(x, t) ∗ N(y, s) is obvious. A similar situation occurs when s = 0. If t > 0, s > 0, then

N(x + y, t + s) = ρ
(x + y

t + s

)
= ρ

(t
t + s

·
x
t

+
s

t + s
·

y
s

)
≥ ρ

(x
t

)
∗ ρ

(y
s

)
= N(x, t) ∗ N(y, s) .

(N5) First, we note that N(x, ·) is non-decreasing. Indeed, for s > t, we have

N(x, s) = N(x + 0, t + s − t) ≥ N(x, t) ∗ N(0, s − t) = N(x, t) ∗ 1 = N(x, t) .

We prove now that N(x, ·) is left continuous in t > 0.
Case 1. N(x, t) = 0. Thus, for all s ≤ t, as N(x, s) ≤ N(x, t), we have that N(x, s) = 0. Therefore
lim

s→t,s<t
N(x, s) = 0 = N(x, t).

Case 2. N(x, t) > 0. Let α be arbitrary such that 0 < α < N(x, t). Let (tn) be a sequence such
that tn → t, tn < t. We prove that there exists n0 ∈ N such that N(x, tn) ≥ α, (∀)n ≥ n0. As
α ∈ (0,N(x, t)) is arbitrary, we will obtain that lim

n→∞
N(x, tn) = N(x, t).

As N(x, t) = tρ(x) > 0, we have that ρ(x) > 0. Let s = α
ρ(x) . We note that s < t. Indeed,

s < t ⇔
α

ρ(x)
< t ⇔ α < tρ(x) = N(x, t) .

As tn → t, tn < t and s < t, there exists n0 ∈ N such that tn > s, (∀)n ≥ n0. Then

N(x, tn) = ρ

(
x
tn

)
≥ ρ

(x
s

)
= sρ(x) = α .

Since
∨
t>0

tρ(x) = 1, we obtain that
∨
t>0

N(x, t) = 1. Thus lim
t→∞

N(x, t) = 1.

Theorem 2. If N is a Bag-Samanta’s type fuzzy norm, then ρ : X → [0, 1] defined by

ρ(x) = N(x, 1), (∀)x ∈ X

is a Katsaras’s type fuzzy norm.

Proof. First, we note that, by (N2), we have ρ(0) = N(0, 1) = 1.
(1) ρ is *-convex.
Let t ∈ (0, 1). Then

ρ(tx + (1 − t)y) = N(tx + (1 − t)y, 1) = N(tx + (1 − t)y, t + 1 − t) ≥

156 Sorin Nădăban et al. / Theory and Applications of Mathematics & Computer Science 5 (2) (2015) 148– 157

≥ N(tx, t) ∗ N((1 − t)y, 1 − t) = N(x, 1) ∗ N(y, 1) = ρ(x) ∗ ρ(y) .

If t = 0, then ρ(tx + (1 − t)y) = ρ(y) = 1 ∗ ρ(y) ≥ ρ(x) ∗ ρ(y). The case t = 1 is similar.
(2) ρ is balanced.
Let x ∈ X, λ ∈ K∗, |λ| ≤ 1. As N(x, ·) is non-decreasing, we have that

ρ(λx) = N(λx, 1) = N
(
x,

1
|λ|

)
≥ N(x, 1) = ρ(x) .

If x ∈ X, λ = 0, then ρ(λx) = ρ(0) = 1 ≥ ρ(x).
(3) ρ is absorbing.
Using (N5), we have that∨

t>0

(tρ)(x) =
∨
t>0

ρ
(x

t

)
=

∨
t>0

N
(x

t
, 1

)
=

∨
t>0

N(x, t) = 1 .

Finally,

ρ
(x

t

)
= 1, (∀)t > 0⇒ N

(x
t
, 1

)
= 1, (∀)t > 0⇒ N(x, t) = 1, (∀)t > 0⇒ x = 0 .

Acknowledgments

This work was co-funded by European Union through European Regional Development Funds
Structural Operational Program Increasing of Economic Competitiveness Priority axis 2, operation
2.1.2. Contract Number 621/2014.

References

Alegre, C. and S. Romaguera (2010). Characterizations of fuzzy metrizable topological vector spaces and their asym-
metric generalization in terms of fuzzy (quasi-)norms. Fuzzy Sets and Systems 161, 2182–2192.

Bag, T. and S.K. Samanta (2003). Finite dimensional fuzzy normed linear spaces. Journal of Fuzzy Mathematics
11(3), 687–705.

Bag, T. and S.K. Samanta (2008). A comparative study of fuzzy norms on a linear space. Fuzzy Sets and Systems
159, 670–684.

Chang, C.L. (1968). Fuzzy topological spaces. J. Math. Anal. Appl. 24, 182–190.
Cheng, S.C. and J.N. Mordeson (1994). Fuzzy linear operator and fuzzy normed linear spaces. Bull. Calcutta Math.

Soc. 86, 429–436.
Das, P. (1988). Fuzzy vector spaces under triangular norms. Fuzzy Sets and Systems 25(1), 73–85.
Felbin, C. (1992). Finite dimensional fuzzy normed liniar spaces. Fuzzy Sets and Systems 48, 239–248.
Goleţ, I. (2010). On generalized fuzzy normed spaces and coincidence point theorems. Fuzzy Sets and Systems

161, 1138–1144.
Katsaras, A.K. (1984). Fuzzy topological vector spaces II. Fuzzy Sets and Systems 12, 143–154.
Katsaras, A.K. and D.B. Liu (1977). Fuzzy vector spaces and fuzzy topological vector spaces. Journal of Mathematical

Analysis and Applications 58, 135–146.

Sorin Nădăban et al. / Theory and Applications of Mathematics & Computer Science 5 (2) (2015) 148– 157 157

Nourouzi, K. and A. Aghajani (2008). Convexity in triangular norm of fuzzy sets. Chaos, Solitons and Fractals
36, 883–889.

Nădăban, S. and I. Dzitac (2014). Atomic decompositions of fuzzy normed linear spaces for wavelet applications.
Informatica 25(4), 643–662.

Schweizer, B. and A. Sklar (1960). Statistical metric spaces. Pacific J. Math. 10, 314–334.
Yandong, Yu (1984). On the convex fuzzy sets (I). Fuzzy Mathematics 3, 29–39.
Yuan, X.H. and E.S. Lee (2004). The definition of convex fuzzy subset. Computers and Mathematics with Applications

47, 101–113.
Zadeh, L.A. (1965). Fuzzy sets. Informations and Control 8, 338–353.

Theory and Applications of Mathematics & Computer Science 5 (2) (2015) 158– 185

Measure of Tessellation Quality of Voronoï Meshes

E. A-iyeha, J.F. Petersa,b,∗

aComputational Intelligence Laboratory, Department of Electrical & Computer Engineering,
University of Manitoba, Winnipeg, MB, R3T 5V6, Canada.

bDepartment of Mathematics, Faculty of Arts and Sciences, Adıyaman University, Adıyaman, Turkey.

Abstract
This article introduces a measure of the quality of Voronoï tessellations resulting from various mesh generators.

Mathematical models of a number of mesh generators are given. A main result in this work is the identification of
those mesh generators that produce the highest quality Voronoï tessellations. Examples illustrating the application of
the quality measure are given in comparing Voronoï tessellations of digital images.

Keywords: Sites, Mesh Generation, Quality, Tessellations, Voronoï mesh.
2010 MSC: Primary 54E05, Secondary 20L05, 35B36.

1. Introduction

This article introduces a measure of the quality of Voronoï tessellations resulting from various
mesh generators. A Voronoï tessellation is a collection of non-overlapping convex polygons called
Voronoï regions. It is well-known that creating meshes is a fundamental and necessary step in
several areas, including engineering, computing, geometric and scientific applications (Leibon
& Letscher, 2000; Owen, 1998; Liu & Liu, 2004). Meshes assume simplex structures or volumes
based on the geometry of the surfaces, dimension of the space and placement of sites of the meshes
(see, e.g., (Ebeida & Mitchell, 2012; Mitchell, 1993; Persson, 2004)). This work is a natural
outgrowth of recent work on Voronoï tessellation (Persson, 2004; Persson & Strang, 2004; Bern
& Plassmann, 1999; Du et al., 1999; Brauwerman et al., 1999; Peters, 2015b).

Seeds, generating points or sites of meshes for non-image domains may be chosen randomly,
deterministically on grids (Persson, 2004), using distribution sampling e.g. (Ebeida & Mitchell,
2012), using the centroids of tessellation regions. In the search for a measure of mesh quality, it is

∗Corresponding author: 75A Chancellor’s Circle, EITC-E2-390, University of Manitoba, WPG, MB R3T 5V6,
Canada; e-mail: james.peters3@ad.umanitoba.ca, research supported by Natural Sciences & Engineering Re-
search Council of Canada (NSERC) discovery grant 185986.

Email addresses: umaiyeh@myumanitoba.ca (E. A-iyeh), James.Peters3@umanitoba.ca (J.F. Peters)

E. A-iyeh et al. / Theory and Applications of Mathematics & Computer Science 5 (2) (2015) 158– 185 159

useful to identify the best or most suitable mesh generators (also called sites) for mesh generation.
A principal benefit of this work is the identification of those generators that produce the highest
quality Voronoï tessellations.

A natural application of the proposed mesh quality measure is given in comparing and classi-
fying digital images Voronoï tessellation covers. Each Voronoï region is a closed set of points in a
convex polygon. A Voronoï tessellation cover of a digital image equals the union of the Voronoï
regions.

2. Related Work

Numerous mesh generation algorithms have been developed for several purposes including im-
age processing and segmentation (Arbeláez & Cohen, 2006), clustering (Ramella et al., 1998), data
compression, quantization and territorial behavior of animals (Persson, 2004; Persson & Strang,
2004; Du et al., 1999). These methods tackle a wide variety of geometrical representations for
meshing the surfaces. In addition, a number of mesh generation algorithms are iterative in nature,
so that the algorithm adjusts the meshes iteratively to approach fulfilling predefined conditions,
thereby terminating on meeting the criterion up to some limits (Persson, 2004; Persson & Strang,
2004). In some adaptive mesh algorithms (Persson, 2004; Persson & Strang, 2004; George, 2006),
the mesh sites are variable. For example they may be displaced to attain force equilibrium. In
one such scenario the algorithm starts by partitioning the space based on the initial distribution
of sites but iterates through them according to preset conditions on an element size function until
the equilibrium and stopping conditions are satisfied (Persson, 2004). This essentially is refining
and solving for optimality of the meshes (Rajan, 1994; Peraire et al., 1987; Rivara, 1984; Ruppert,
1995) according to the preset conditions.

Voronoï diagrams introduced by the Ukrainian mathematician G. Voronoï (Voronoï, 1903,
1907, 1908) (elaborated in the context of proximity spaces in (Peters, 2015b), (Peters, 2015c), (Pe-
ters, 2015a)) provide a means of covering a space with a polygonal mesh. In telecommunica-
tions, Voronoï diagrams have furnished a tool of analysis for binary linear block codes (Agrell,
1996) governing regions of block code, performance of Gaussian channel among others. In music,
Voronoï diagrams have once again demonstrated their utility (McLean, 2007). For example, they
been successfully applied in automatic grouping of polyphony (Hamanaka & Hirata, 2002). Other
works bordering on applications of Voronoï meshes in reservoir modeling (Møller & Skare, 2001),
attempts at cancer diagnosis (Demir & Yener, 2005) are also available.

Ever since utility of Voronoï diagrams was demonstrated in several applications including the
post office problem where given a set of post office sites in furnished the answer in determining
the nearest one to visit and other few works of application of 56 meshed surfaces an area, Voronoï
tessellation has been useful in the study of the territorial behavior of animals, image compression,
segmentation etc no works or very few have focused on their application in proximity and classifi-
cation analysis of digital images. This work proposes to explore the utility of meshes in the study
of proximal regions as a means of image classification.

Mesh applications in image analysis are not widely studied in the open literature. In that regard,
we seek to contribute to the application of meshes in image classification by (a) identifying the
best forms of generating points for meshes, (b) arriving at a measure of the quality of meshes, and

160 E. A-iyeh et al. / Theory and Applications of Mathematics & Computer Science 5 (2) (2015) 158– 185

(c) characterizing meshes best suited for image classification. In addition, it is anticipated that this
research will yield useful theorems that are a natural outcome of measuring mesh quality. Such
theorems provide a formal foundation for the study of image mesh quality.

3. Preliminaries

Since the discovery that Voronoï tessellations are the secret working formula of bees, humans
have sought to bring similar benefits and applications of Voronoï tessellations in their applications
to image processing, image compression, clustering, territorial behaviour of animals etc (Persson,
2004; Persson & Strang, 2004; Bern & Plassmann, 1999; Du et al., 1999; Brauwerman et al.,
1999). Several forms of polygonal meshes exist due to Voronoï and Delaunay tessellations and
since Delaunay triangulation is a dual of Voronoï, our focus will be on the former.

Assume a finite set S of locations called sites si in a space Rn. Computing the Voronoï diagram
of S means partitioning the space into Voronoï regions V(si) in such a way that V(si) contains all
points of S that are closer to si than to any other object s j, i ≠ j in S .

Given the generator set
S = {s1, , sk ∶ i ∈ N},

where each member of S is called a mesh generating point, let si ∈ S . The Voronoï region V(si) is
defined by

V(si) = {x ∈ Rn ∶ ∥x − si∥ ≤ ∥x − sk∥, sk ∈ S , i ≠ k},

where ∥., .∥ is the Euclidean norm (distance between vectors). The set

V(S) = ⋃
si∈S

V(si)

is called the n-dimensional Voronoï diagram generated by the points in S . In R2, this effectively
covers the plane with convex and non overlapping polygons, one for each generating point in S .
A centroidal Voronoï tessellation is a special case of V(si), where the sites are the mass centroids
of regions computed by

ci =
∫Vi

xρ(x)dx

∫Vi
ρ(x)dx

where ρ(x) is the density function of V(si). The mathematical utility of centroidal tessellations
lie in their relationship to the energy function (Brauwerman et al., 1999) defined as:

E(z,V) =
n

∑
i=1
∫

Vi

ρ(x)∣x − zi∣2dx.

The energy function E(z,V) for a Voronoï region depends on the density function ρ(x) of the
regions and the squared distances between the generating site zi and nearby points x in the region.
The total energy for a Voronoï diagram is the sum of integrals of the individual energies of the
regions comprising the Voronoï diagram.

Voronoï regions are cells of growth from a certain view point. This view point is equivalent to
considering the vertex of each region as a nucleus of a growing or expanding cell. Cells propagate

E. A-iyeh et al. / Theory and Applications of Mathematics & Computer Science 5 (2) (2015) 158– 185 161

simultaneously outward from their nuclei at uniform rates until they intersect with others. They
then freeze giving the boundaries of the regions defined by the tessellation.

Ultimately, cells whose nuclei are on the convex hull of a vertex grow until they intersect the
outgrowth of others. It is interesting to note that since all cells are growing at the same rate, their
first points of contact will coincide with the midpoint of the two nuclei. This is exactly the locus of
all equidistant points from the nuclei.In other words it the perpendicular bisector of the the nuclei
from which all points are equidistant. The set of all points on these loci form the edges of the
regions.

Voronoï cells that share an edge are said to be Voronoï neighbors. The aggregate of triangles
formed by connecting the nuclei of all Voronoï neighbors tessellate the area within the convex
hull of the set. Notice that the regions obtained are neighborhoods defined by the norm ∥ ⋅ ∥.
This makes it possible to have a continuous image-like treatment of a dot pattern, thus permitting
the application of general image processing techniques (Ahuja & Schachter, 1982). One such
interpretation of the Voronoï tessellation is to view it as a cluster partition of a space (Ramella et
al., 1998). In this view, the space is segmented by the various Voronoï regions, with the size of
the clusters given by the areas of the regions. Also, the Voronoï tessellation is useful for boundary
extraction, with the tessellated space viewed as a mosaic.

Definition 3.1. Given a point set S ⊆ Rn and a distance function dn, the set {Vi}k
i=1 is called a

Voronoï tessellation of S if Vi ∩ V j ≠ ∅ for i ≠ j.

Definition 3.2. The Voronoï region of a site is a polygon about that site. The set of all regions
partition the plane of the sites S based on a distance function ∥ ⋅ ∥. This results in the plane being
covered with polygons about those sites.

Definition 3.3. Given a set S = {s1, ..., sk} of points, any plane (vi, v j) is a Voronoï edge of the
Voronoï region V if and only if there exists a point x such that the circle centered at x and circum-
scribing vi and v j does not contain in its interior any other point of V .

Definition 3.4. A Voronoï tessellation is a set of polygons with their edges and vertices that parti-
tion a given space of sites.

Definition 3.5. A Voronoï edge is a half plane equidistant from two sites and which bounds some
part of a Voronoï region. Every edge is incident upon exactly two vertices and every vertex upon
at least three edges.

Definition 3.6. A Voronoï vertex is the center of a circle through three sites.

Definition 3.7. A set of points form a convex set if there is a line connecting each pair of points.

Definition 3.8. The convex hull of Voronoï regions about a set of sites is the smallest set which
contains the Voronoï regions as well as the union of the regions.

162 E. A-iyeh et al. / Theory and Applications of Mathematics & Computer Science 5 (2) (2015) 158– 185

Figure 1. Voronoï diagram of a set of sites.

Definition 3.9. A dot or point pattern is a set of points of a signal representing spatial locations of
signal features. For example sets of corners, keypoints etc are referred to as point or dot patterns.

Definition 3.10. The quality of a signal is defined as a characteristic of the signal which gives
information about perceived signal degradation compared to an ideal.

Lemma 3.1. The energy of a point located in a particular Voronoï region V(si) is minimal with
respect to all other regions V(s j) for i ≠ j.

Proof. Consider a point y ∈ V(S i). Its energy is evaluated as:

E(z,V) = ∫
Vi

ρ(y)∣y − ẑi∣2dy

E(z,V) = ∫
Vi

ρ(y)(0)dy = 0.

Since the distance between z and y is 0 by definition, E = 0. However E(z,V) of y /∈ V(S j) is

E(z,V) = ∫
V j

ρ(y)∣y − ẑi∣2dy ≠ 0.

Since ρ(y) nor ∣y − ẑi∣2 is non-zero.

Theorem 3.1. The energy function E(z,V) is minimized at the centroid sites of the tessellations.

Proof.

E(z,V) =
n

∑
i=1
∫

Vi

ρ(x)∣x − ẑi∣2dx.

E. A-iyeh et al. / Theory and Applications of Mathematics & Computer Science 5 (2) (2015) 158– 185 163

The energy of a Voronoï region Vi is the integral of the product of the density function of that
region ρ(x) and the squared distances between the generating site ẑi and points comprising the
region. The total energy E(z,V) is the sum of the energies of all Voronoï regions.

To obtain the minimum of E(z,V), it requires that the derivative of the function with respect
to the sites be equal to zero. The solution of the derivative are the sites ẑi.

dE
dẑi
= 2

n

∑
i=1
∫

Vi

ρ(x)(x − ẑi)dx = 0

ẑi =
∫Vi

xρ(x)dx

∫Vi
ρ(x)dx

.

The solution ẑi are the centroids.

Theorem 3.2. For a given set of sites Z = {zi}, the energy is minimized when V is a centroidal
Voronoï tessellation.

Proof. Immediate from Lemma 3.1 and Theorem 3.1.

4. Tessellation Generators

In the literature few works or none considers the choice of sites for meshing images using
location of image features. We mostly go ahead and tessellate using chosen locations irrespective
of locations of image features. Previously, sites have been chosen to correspond to center of masses
of regions (Du et al., 1999; Burns, 2009), random locations (Ebeida et al., 2011; Aurenhammer,
1991), deterministic or regular locations (Persson, 2004; Persson & Strang, 2004; Aurenhammer,
1991). In short, majority of these locations do not take information of the sites into account. The
method of centroids has evident advantages (Brauwerman et al., 1999), but these are questionable
if the regions from which we obtain the center of masses do not reflect image feature locations. In
this work, various sites based on image features are first discovered and subsequently the sites give
a tessellation of the space. With several sites found and tessellations performed, quality measures
of the meshes are obtained with the view of helping ascertain the best sites for tessellations using
an overall quality measure. This then forms a road map to meshed image analysis given a method
of sites that yield high quality meshes. Important image features are known to reside at corner,
edge, keypoints, centroids, extrema and modal image feature sites. These then would be used to
discover mesh sites. They are treated next.

4.1. Image Corner Points
A very notable feature of digital images are image corner points. These define points where

structures in the image intersect, as such they form a solid background for feature recognition and
extraction.
One of the earliest criteria for corner point identification is a point that has low self-similarity
(Moravec, 1980). Each pixel centered in a patch is compared to nearby pixels in an overlapping
patch for corner point candidate examination. Since then, improvements in corner point iden-
tification by computing differential corner scores with respect to direction instead of patches in

164 E. A-iyeh et al. / Theory and Applications of Mathematics & Computer Science 5 (2) (2015) 158– 185

(Moravec, 1980) resulted in combined corner and edge detection (Harris & Stephens, 1988). For
more accuracy in subpixels in corner identification see (Förstner & Gülch, 1987). Recently, corner
detection based on other methods: Multiple scales due originally to (Harris & Stephens, 1988),
level curvature approach (Kitchen & Rosenfeld, 1980; Koenderink & Richards, 1988), difference
of Laplacians, Gaussians, and Hessians (Lowe, 2004; Lindeberg, 1998, 2008), affine-adapted in-
terest point operators (Lindeberg, 1993, 2008; Mikolajczyk & Schmid, 2004), curvature place-
ment along edges (Wang & Brady, 1995), smallest univalue segment assimilating nucleus (Smith
& Brady, 1997), direct testing of pixel self-similarity and feature accelerated segment (Rosten
& Drummond, 2006), non-parametric and adaptive region processing methods (Guru & Dinesh,
2004), transform approaches (Kang et al., 2005; Park et al., 2004), adaptive approaches (Pan et
al., 2014), structure-based analysis (Kim et al., 2012) have resulted . Corner points are identified
here as points in which there is a significant change in intensity features in two or more directions:

C(u, v) =∑w(x, y)[I(x + u, y + v) − I(x, y)]2.

The window function w(x, y) tends to be rectangular but could assume other suitable forms.
So, a corner point is returned by the corner point function C(x, y) if the squared intensity difference
between the intensity at location (x, y) and location (x + u, y + v) is large for any two directions.

4.2. Edge Sites
Edge maps are widely used in image processing for feature detection and object recognition.

Besides, edge information is known to be crucial in feature detection and image analysis. These
have been used due to the fact that the edges tend to localize an object of interest for target pro-
cessing and feature detection. Edge points are points whose feature values differ sharply from
those of neighboring points (Canny, 1986).

4.3. Image Keypoint Sites
Image keypoints are popular for extracting distinct image points (Lowe, 1999; Mitchell, 2010;

Feng et al., 2013; Woźniak & Marszałek, 2014). Scale-space extrema detection has been shown
to yield image keypoints (Lowe, 1999). This process however usually yields numerous keypoint
candidates therefore we have to resort to means of reducing their number to important ones. For
example by eliminating low contrast points, the most important ones are retained. Detection of
locations of keypoints invariant to scale change may be accomplished by obtaining stable features
across scales of an image (Lowe, 1999). In that regard, the scale space L(x, y, σ) is obtained by
convolution of Gaussian functions G(x, y, σ) with the image function I(x, y) at several scales k.

L(x, y, σ) = G(x, y, σ) ∗ I(x, y)

G(x⃗, σ) = 1
2π
√
σ

Exp{−1
2
(x⃗ − µ)Tσ−1(x⃗ − µ)}.

We proceed below to obtain the difference of the convolved result in the previous step.

D(x, y, σ) = (G(x, y, kσ) −G(x, y, σ)) ∗ I(x, y)

E. A-iyeh et al. / Theory and Applications of Mathematics & Computer Science 5 (2) (2015) 158– 185 165

D(x, y, σ) = L(x, y, kσ) − L(x, y, σ).
In the final step, the extrema (minima and maxima) points are obtained by comparing points in

the difference functions and selecting those that achieve the minimum or maximum values in their
neighborhoods (Lowe, 1999). Keypoint locations originally found at D(x, y) at scales of σ may
be used as estimates in Taylor series expansion about the position vector x⃗ = (x, y) to obtain more
accurate locations of the points (Brown & Lowe, 2002). Locations are extrapolated as follows.

Da(x̄) = D + ∂D
T

∂x⃗
+ 1

2
x⃗x⃗T ∂

2D
∂x⃗2 x⃗
,

where Da(x̄) is the improved location of a keypoint.

4.4. Centroid Sites
Given a tessellated plane of points centroid points of regions are computed as follows.

ci =
∫Vi

xρ(x)dx

∫Vi
ρ(x)dx

.

The center of masses cis are computed from Voronoï regions and then used to re-tessellate the
regions. Given corner, edge and keypoint sites in images, their tessellations produce Voronoï
regions corresponding to those generators. The centers of masses of these regions based on those
image feature locations form a set of sites in the plane for centroidal tessellations.

4.5. Modal Pixel and Extrema Sites
The histogram distributions of images are readily available. They furnish information on the

distribution of the pixels in the image. Pivotal points in an image can be sought by considering the
modal pixel positions in the image. In this way, we get to find out the feature value that occurs most
frequently in a digital image and use the locations of those as sites for tessellations. A variant to
this approach is to find the modal feature value, displace it by a constant and then use the positions
of the resulting value as sites for image tessellations. The most influential feature M is obtained
from the histogram distribution h(k) from the steps below.

h(k) =∑
x
∑

y
nk

M =Maxk(∑
x
∑

y
nk) =Maxk(hk).

For a given image function I(x, y), the feature values are in the range [0, k]. From this set,
there exists minimum and maximum feature values. Sites corresponding to the extrema can be
used for tessellations. However, it should be noted that where any of the extrema is unique, only
one site is returned for the tessellation. Extrema sites M1,M2,Md are useful because they can
give us geometrical information about objects that tend to have a particular distribution or feature
value;

M1 =Min(f (x, y)∀x, y)

166 E. A-iyeh et al. / Theory and Applications of Mathematics & Computer Science 5 (2) (2015) 158– 185

M2 =Max(f (x, y)∀x, y)
Md =Max(∑∑ni j) − a.

Extrema sites are discovered using M1 and M2, whilst displaced modal sites are discovered using
Md, given the constant a. Due to the numbers of modal and extrema sites and the nature of
meshes they produce, they are not treated further in this work. Instead, displaced feature sites are
discovered and used.

So far, we have identified sites of important features in digital images. A necessary step in
determining the choice of sites lies in the quality of meshes produced by the particular choice of
sites. In what follows, the quality of meshes produced by the sites is examined.

5. Voronoï Mesh Quality Analysis

Quality metrics for mesh analysis have been explored in the literature (Knupp, 2001; Shewchuk,
2002; Bhatia & Lawrence, 1990a). Most mesh generation approaches set a predefined quality fac-
tor for each cell as such they easily achieve meshes with high quality. This is not always useful
or justifiable. For example, in images it’s highly unlikely that mesh sites are deterministically
or randomly distributed as assumed in these methods, thus this work discovers sites using image
features with the view point of obtaining quality factors as high as possible.

Let X be a nonempty set of polygons in a Dirichlet tessellation, x, y ∈ X. A polygon x ∈ X in
a tessellation is called a cell. A question that arises naturally is that which sites are best or more
favorable, leading to high quality cells? We will attempt to answer this in terms of the overall mesh
quality factor qall for the mesh cells produced by a particular set of sites. Qualities of individual
mesh cells computed here are defined according to the geometry of the cell (Shewchuk, 2002;
Bhatia & Lawrence, 1990a).

Let S be a set of tessellation cells, A the area of a tessellation containing a 3-sided polygon
cell s ∈ S , l1, l2, l3 the lengths of the sides of s with Q(s) the quality of cell s. Then, for example,
(Bhatia & Lawrence, 1990b), (Bank & Xu, 1996) as well as (Field, 2000) use the following
smooth quality measure for a 3-sided cell.

Q3(s) = 4
√

3
A

l2
1 + l2

2+, l2
3
.

For a four sided mesh cell, the quality factor Q4(s) is defined by

Q4(s) =
4A

l2
1 + l2

2 + l2
3 + l2

4
.

The quality Q(s) of 3D tetrahedron (polyhedron with 4 sides) cell in R3 is defined by

Q43D(s) =
6
√

2V
l3
rms
.

Here, V is the volume of the tetrahedron and lrms is given by:

lrms =

¿
ÁÁÀ1

6

6

∑
i=1

l2
i .

E. A-iyeh et al. / Theory and Applications of Mathematics & Computer Science 5 (2) (2015) 158– 185 167

Since the focus is on meshes of 2D surfaces in R2, we only briefly consider 3D meshes. An overall
mesh quality indicator may be defined for any meshed surface by making use of the qualities of
the individual cells. One such indicator is defined by qall defined below.

qall =
1
N

N

∑
i=1

qi.

For a plane tessellated by a set of sites S , the indicator of the overall tessellation quality is influ-
enced by the qualities of the individual cells qi. This provides a useful tool for discriminating sites
and their tessellation quality.

Theorem 5.1. For any plane, there exists a set of sites for which the mesh quality is maximum.

Proof. Consider an arbitrary n-sided mesh cell. Assume the cell is a quad cell without loss of
generality. For maximum q, the partial derivatives of q with respect to the lis should be equal.

∂q
∂l1
= ∂q
∂l2
= ... = ∂q

∂ln

−8Al1

(l2
1 + l2

2 + ... + l2
n)2
= −8Al2

(l2
1 + l2

2 + ... + l2
n)2
... = −8Aln

(l2
1 + l2

2 + ... + l2
n)2
.

This happens when l1 = l2 = ... = ln. So generators chosen such that their half planes are equidistant
from each other would satisfy this condition.

To synthesize and crystallize the preceding deliberations on mesh quality analysis, the follow-
ing algorithm is provided.

5.1. Algorithm for Mesh Quality Computation
It is clear that a Voronoï diagram is a collection of several polygons of different dimensions in

accordance with the criteria already laid out, thus the quality factor of each polygon is computed
as follows:

Input: set of sites S , set of cells V(S)
Output: Mesh Quality(Q(s))
for each Voronoï region Vi(s) ∈ V(S), site s ∈ S do

Access the number of sides and coordinates of the vertices of the polygon;
Using the coordinates, compute the lengths li and Area A of the polygon;
Use li and A in the appropriate expression to compute cell quality Q(s), s ∈ S ;

end for
Q(S) = {Q(s)} ∎
The results presented in the following sections show tessellated image spaces side-by-side with

the distribution of the quality factors of their cells. These are shown for image data of several sub-
jects. From the distribution of quality factors, we obtain the mean quality measure as an indicator
of overall quality of meshes due to each set of generating sites.

168 E. A-iyeh et al. / Theory and Applications of Mathematics & Computer Science 5 (2) (2015) 158– 185

6. Application: Digital Image Tessellation Quality

Mesh sites are obtained using the 2D face sets from (Craw, 2009). The images are monochrome
with dimensions 181 by 241 showing subjects with different expressions and orientations. The
sites so obtained from them are used to tessellate the regions and subsequently, quality factors of
cells are computed. The quality factors are shown in histogram plots next to the tessellated images
(Fig. 2-Fig. 21).

2.1: Corners 2.2: CorHist 2.3: Edges 2.4: EdHist

Figure 2. Corner & Edge Tessellations and Quality Histograms.

Remark 6.1. Corner-Based vs. Edge-Based Voronoï Tessellations.
A corner-based Voronoï tessellation of a face image is shown in Fig. 2.1. The corresponding
corner-quality mesh histogram is given in Fig. 2.2. The horizontal axis represents mesh cell qual-
ities and vertical axis represents the frequencies of the qualities. Because the number of image
corners found are both sparse and grouped together in the facial high points representing pixel
gradient changes in directions, the corresponding corner-based mesh consists of fairly large poly-
gons surrounding the corners. Also, observe that the corner-based mesh histogram has a fairly
normal distribution (skewed to the right).

An edge-based Voronoï tessellation of a face image is shown in Fig. 2.3. The corresponding
edge-quality mesh histogram is given in Fig. 2.4. By contrast with image corners used as mesh
generating points, the number of edge pixels found is large. In addition, the edge pixels are
grouped closely together. Hence, the corresponding edge-based mesh contains many small Voronoï
regions grouped closely together. The resulting edge-based mesh histogram has more than one
maximum, which is an indicator that edge-based meshes have poor quality. 2
Remark 6.2. Dominant-Based vs. Keypoint-Based Voronoï Tessellations.
Fig. 3.1 shows dominant-based tessellations alongside their quality measures in Fig. 3.2. Simi-
larly, keypoint-based tessellations and their qualities are shown in Fig. 3.3 and Fig. 3.4 respec-
tively. Dominant-based cells tend to have quality values that fall within several ranges of the
quality scale. Even though dominant generators tend to have higher numbers like edge genera-
tors, they generally give higher qualities compared to edge-based cells. Keypoint-based cells like
dominant-based cells tend to have their qualities falling in several ranges of quality, only that the
number of fragmented ranges is usually smaller compared to that of dominant-based cells. Even

E. A-iyeh et al. / Theory and Applications of Mathematics & Computer Science 5 (2) (2015) 158– 185 169

3.1: Dominants 3.2: DomHist 3.3: Keypts 3.4: KeyHist

Figure 3. Dominant & Keypoint Tessellations and Quality Histograms.

though keypoint generators have smaller numbers compared to dominant generators, the loca-
tion and distribution of the features favor creation of more perfect mesh cells. The qualities of
dominant-based cells peak around mid scale whilst those of keypoints tend to be flat. 2

4.1: Corners 4.2: CorHist 4.3: Edges 4.4: EdHist

Figure 4. Corner & Edge Tessellations and Quality Histograms.

Remark 6.3. Corner-Based vs. Edge-Based Voronoï Tessellations.
The corner generators of Fig. 4.1 are concentrated in the mouth and eye regions of the subject. As
a consequence, unequal distribution of the cell qualities in those regions result in Fig. 4.2. Edge-
based cells on the other hand are distributed around the borders of the entire image giving peak
cell quality in about mid range of the scale (see Fig. 4.3, Fig. 4.4). 2
Remark 6.4. Dominant-Based vs. Keypoint-Based Voronoï Tessellations.
Dominant generators outweigh keypoints in number (see Fig. 5.1,Fig. 5.3). The generators are
however concentrated around the mouth and eye regions but with extra points around the chin
region in the case of dominant generators. Due to these distributions of the generators, both sets
of generators have comparatively high qualities with peculiar quality factor distributions as shown
in Fig. 5.2 and Fig. 5.4. 2

170 E. A-iyeh et al. / Theory and Applications of Mathematics & Computer Science 5 (2) (2015) 158– 185

5.1: Dominants 5.2: DomHist 5.3: Keypts 5.4: KeyptHist

Figure 5. Dominant & Keypoint Tessellations and Quality Histograms.

6.1: Corners 6.2: CorHist 6.3: Edges 6.4: EdHist

Figure 6. Corner & Edge Tessellations and Quality Histograms.

Remark 6.5. Corner-Based vs. Edge-Based Voronoï Tessellations.
Sets of generators of a subject are shown in Fig. 6.1 and Fig. 6.3. In addition to generators around
the eye and mouth regions, generators around the nose and lower neck areas are returned for
corner sites. Edges on the other hand are returned for regions of feature discontinuities. The
quality plots of Fig. 6.2 and Fig. 6.4 represent the cells with more well laid out features on one
hand and clustered generators on the other. 2
Remark 6.6. Dominant-Based vs. Keypoint-Based Voronoï Tessellations.
Dominant generators returned here exclude most of the keypoint generators (Fig. 7.1,Fig. 7.3).
Also, keypoint generators are more localized as opposed to the more or less global distribution of
dominant generators. These fundamentally different generators produced a somewhat flat distri-
bution of cell qualities (taken in two halves) and an alternating distribution of qualities seen in
Fig. 7.4 and Fig. 7.2 respectively. 2
Remark 6.7. Corner-Based vs. Edge-Based Voronoï Tessellations.
Distinct generators are returned in the case of Fig. 8.1 as opposed to less distinct ones in Fig. 8.3.
Although corner generators are smaller in number, they have covered a lot of distinct and impor-
tant features in the image. Edge generators however are localized to boundary regions. Given the
layout of generators, the corner generators favored creating meshes approaching perfect lengths
than edge generators as seen in Fig. 8.2 and Fig. 8.4 respectively. 2

E. A-iyeh et al. / Theory and Applications of Mathematics & Computer Science 5 (2) (2015) 158– 185 171

7.1: Dominants 7.2: DomHist 7.3: Keypts 7.4: KeyptHist

Figure 7. Dominant & Keypoint Tessellations and Quality Histograms.

8.1: Corners 8.2: CorHist 8.3: Edges 8.4: EdHist

Figure 8. Corner & Edge Tessellations and Quality Histograms.

Remark 6.8. Dominant-Based vs. Keypoint-Based Voronoï Tessellations.
In Fig. 9.1 the layout of the generators does not favour polygons with equal lengths. This is
evident in the fragmented nature of the quality factors in Fig. 9.2. Generators however in Fig. 9.3
performed better in their quality distributions in Fig. 9.4. 2
Remark 6.9. Corner-Based vs. Edge-Based Voronoï Tessellations.
Examine for a brief moment the corner and edge generators in Fig. 10.1 and Fig. 10.3 alongside
their quality factors in Fig. 10.2 and Fig. 10.4 respectively. Notice that some generators are
clustered around the eye regions. The situation however is still better in terms of affording better
overall quality as opposed to similar clustering of edge detectors in several areas. 2
Remark 6.10. Dominant-Based vs. Keypoint-Based Voronoï Tessellations.
Dominants and their tessellations in Fig. 11.1 occupy a larger area compared to keypoints and
their tessellations in Fig. 11.3. Although many cells result in Fig. 11.2, most of the quality factors
are concentrated in the first half of the scale. Keypoints on the other hand are better laid out and
although of a smaller number, they cover a comparable space and give a higher overall quality
measure from Fig. 11.4. 2

A complete set of results based on centroids of Voronoï regions specified by corner, edge,
dominant and keypoint tessellations is shown in Fig. 12-Fig. 21. For those results shown, genera-
tors have been obtained corresponding to Voronoï regions of corner, edge, dominant and keypoint

172 E. A-iyeh et al. / Theory and Applications of Mathematics & Computer Science 5 (2) (2015) 158– 185

9.1: Dominants 9.2: DomHist 9.3: Keypts 9.4: KeyptHist

Figure 9. Dominant & Keypoint Tessellations and Quality Histograms.

10.1: Corners 10.2: CorHist 10.3: Edges 10.4: EdHist

Figure 10. Corner & Edge Tessellations and Quality Histograms.

tessellations. These are the centroids of Voronoï regions in Fig. 2-Fig. 11. In the following text,
remarks are included pertaining to the regions and their qualities.

Remark 6.11. Corner centroid-Based vs. Edge centroid-Based Voronoï Tessellations.
In comparing Fig. 2.1 to Fig. 12.1 we notice that the numbers of generators is the same. However,
an interesting situation arises. The polygons in the latter case have a reduced variability in their
lengths. This led to better quality measures with quality distributions as in Fig. 12.2. In a similar
vein the number of generators are the same for edge generators and edge-centroid generators. The
overall quality has been improved from the neighborhoods of 0.3 to above 0.5 (Fig. 12.3,Fig. 12.4).2
Remark 6.12. Dominant centroid-Based vs.Keypoint-Based Voronoï tessellations.
Notice that the locations of centroid generators are different from those of dominant generators.
This distribution led to a mesh covering of about three quarters of the image as seen in Fig. 13.1.
These generators favored better mesh qualities with the distribution seen in Fig. 13.2. Keypoint
centroids of Fig. 13.3 and their tessellations however cover comparable areas with keypoint gen-
erators. The use of the centroid generators improved the mesh qualities as shown in Fig. 13.4.2

E. A-iyeh et al. / Theory and Applications of Mathematics & Computer Science 5 (2) (2015) 158– 185 173

11.1: Dominants 11.2: DomHist 11.3: Keypoints 11.4: KeyptHist

Figure 11. Dominant & Keypoint Tessellations and Quality Histograms.

12.1: Corner-
centroids

12.2: Cor-
centHist

12.3: Edcen-
troids

12.4: EdcentHist

Figure 12. Corner & Edge Centroid Tessellations and Quality Histograms.

Remark 6.13. Corner centroid-Based vs.Edge centroid-Based Voronoï Tessellations.
The centroid sites of Fig. 14.1 barely covered the eyes, nose and most of the mouth region. As ex-
pected, edge centroids cover and tessellate the entire image Fig. 14.3. Although the mesh qualities
are improved, they are consistent with distribution of cell lengths in Fig. 14.2 and Fig. 14.3. 2
Remark 6.14. Dominant centroid-Based vs.Keypoint-Based Voronoï tessellations.
Observe in the tessellated spaces that the dominant centroid generators are mostly clustered in all
areas except in the eyes and the mouth (see Fig. 15.1). Keypoint centroids however are distributed
primarily around the facial features such as the mouth, nose and mouth as observed in Fig. 15.3.
These generators are less clustered compared to their counterparts for dominant and keypoint
generator tessellations. With the favorable condition for improved cell qualities obtained by using
the centroids, the qualities are distributed across the entire quality scale as seen in Fig. 15.2 and
Fig. 15.4. In most of the cases, the minimum cell quality for keypoint centroid-based generators is
in the neighborhoods of 0.4-0.5. 2
Remark 6.15. Corner centroid-Based vs.Edge centroid-Based Voronoï Tessellations.
Observe that several generators are located in the eye ball regions in Fig. 16.1. The tessellated
regions cover up to the chin region. Less varying polygonal lengths led to distribution of mesh

174 E. A-iyeh et al. / Theory and Applications of Mathematics & Computer Science 5 (2) (2015) 158– 185

13.1: Dominant-
centroids

13.2: Domcen-
tHist

13.3: Keyptcen-
troids

13.4: Keyptcen-
tHist

Figure 13. Dominant & Keypoint Centroid Tessellations and Quality Histograms.

14.1: Cor-
centroids

14.2: Cor-
centHist

14.3: Edgecen-
troids

14.4: EdcentHist

Figure 14. Corner & Edge Centroid Tessellations and Quality Histograms.

qualities in Fig. 16.2. Most of the image plane is however covered by edge centroid generators
(Fig. 16.3). Although the quality factors are fragmented, they cover the entire scale with the
distribution shown in Fig. 16.4 with minimum quality starting at about 0.3. 2
Remark 6.16. Dominant centroid-Based vs.Keypoint-Based Voronoï tessellations.
Dominant generators cover most of the image plane. However, most of the generators tend to be
concentrated just below the eyes and nose regions. Also notice that regions without clustering of
the cells tend to be polygons whose lengths tend to be equal. This distribution of the generators
affords cells and qualities in Fig. 17.1 and Fig. 17.2. Although there are keypoint centroid gen-
erators in the eye, nose and mouth regions, they are not clustered as in the previous case (see
Fig. 17.3). They are better spaced out giving the qualities in Fig. 17.4. 2
Remark 6.17. Corner centroid-Based vs.Edge centroid-Based Voronoï Tessellations.
Centroid corner generators tessellate the image region around the facial features. This placement
of the generators yielded cells with flat distribution of qualities across the scale (see Fig. 18.1,
Fig. 18.2). Edge centroid generators on the other hand tessellated the entire image but with the
sites clustered together in most areas. Even though the whole image space is covered, the resulting
cells do not promote better overall quality as compared with centroidal corner tessellations (see
Fig. 18.3, Fig. 18.4). 2

E. A-iyeh et al. / Theory and Applications of Mathematics & Computer Science 5 (2) (2015) 158– 185 175

15.1: Dominant-
centroids

15.2: Domcen-
tHist

15.3: Keypoint-
centroids

15.4: Keyptcen-
tHist

Figure 15. Dominant & Keypoint Centroid Tessellations and Quality Histograms.

16.1: Corner-
centroids

16.2: Cor-
centHist

16.3: Edgecen-
troids

16.4: EdcentHist

Figure 16. Corner & Edge Centroid Tessellations and Quality Histograms.

Remark 6.18. Dominant centroid-Based vs.Keypoint-Based Voronoï tessellations.
Dominant generators tessellated most of the image with cells of improved qualities compared to
previous situations (Fig. 19.1 and Fig. 19.2). The qualities of the cells cover the entire scale in
both scenarios. However, you would notice that the cells of Fig. 19.3 are of better quality Fig. 19.4.2
Remark 6.19. Corner centroid-Based vs.Edge centroid-Based Voronoï Tessellations.
Cell qualities cover the entire scale in Fig. 20.2 and Fig. 20.4. The difference however lies in the
numbers of the generators and their positions as seen in Fig. 20.1 and Fig. 20.3. 2
Remark 6.20. Dominant centroid-Based vs.Keypoint-Based Voronoï tessellations.
Although common generators are returned in Fig. 21.1 and Fig. 21.3, the concentration of points
in the left cheek region and the lower neck region of the test subject favored better mesh qualities
generation as seen in comparing Fig. 21.2 and Fig. 21.4. 2

176 E. A-iyeh et al. / Theory and Applications of Mathematics & Computer Science 5 (2) (2015) 158– 185

17.1: Dominant-
centroids

17.2: Domcen-
Hist

17.3: Keypoint-
centroids

17.4: KeyptHist

Figure 17. Dominant & Keypoint Centroid Tessellations and Quality Histograms.

18.1: Corner-
centroids

18.2: Cor-
centHist

18.3: Edgecen-
troids

18.4: EdcentHist

Figure 18. Corner & Edge Centroid Tessellations and Quality Histograms.

The overall quality measures of meshes for each test subject class based on corner, edge,
dominant and keypoint sites is presented in Fig. 22. For several images of the same subject, qall

is computed for each set of generators. The plot therefore presented shows the relationships of
sets of generators and the overall quality of meshes for tessellated images. In the plot, the trend
indicates that for sets of generators and their tessellations, keypoints give the meshes with the
highest qualities. This is due to the distribution of the sites in such a way that they tend to produce
perfect polygons. Edge generators on the other hand consistently give low quality tessellations.
This is the case because edge sites tend to be clustered together thus producing qualities on the
lower side of the scale. The qualities of corner and dominant generators assume a place in between
those of edge and keypoint tessellations. The qualities of the cells by sets of generators is in
proportion to distributions that tend to give perfect polygons.
The method of centroids of regions defined by image centroids shows how mesh qualities may
be improved (Fig. 23). In this figure, the qualities of the cells have been improved for all sets of
generators. However, the order of mesh qualities has been preserved. This improvement results
from the energy minimization property of centroids and the quasi perfect polygons centroids tend
to produce.

Remark 6.21. What High Quality Meshes Reveal About Tessellated Images.
Sets of sites are used to generate a Voronoï diagram (also called a mesh) on a digital image. Each

E. A-iyeh et al. / Theory and Applications of Mathematics & Computer Science 5 (2) (2015) 158– 185 177

19.1: Dominant-
centroids

19.2: Domcen-
tHist

19.3: Keypoint-
centroids

19.4: Keyptcen-
tHist

Figure 19. Dominant & Keypoint Centroid Tessellations and Quality Histograms.

20.1: Corner-
centroids

20.2: Cor-
centHist

20.3: Edgecen-
troids

20.4: EdcentHist

Figure 20. Corner & Edge Centroid Tessellations and Quality Histograms.

region of a site is convex set represented geometrically by a polygon.
Associated with a set of sites are the qualities of the individual cells and their overall quality

measure. So given sets of generators and overall tessellation qualities, the tessellation quality
characterizes the underlying local structure of a collection of Voronoï regions. Quality of Voronoï
polygons give us shape information about the region they cover. For the tessellated spaces, no-
tice that the numbers of interior Voronoï polygons is greater than open border polygons. This
shows that the mesh generation patterns are globular in nature. For example, the following qual-
ity expressions yielding q = 1 would indicate the presence of equilateral triangle and perfect
quadrilateral respectively.

q = 4
√

3A
l2
1 + l2

2 + l2
3

q = 4A
l2
1 + l2

2 + l2
3 + l2

4
.

For small quality measurements as seen for edge point patterns sets, the measures are an indicator
that the generators are on a curve and are closely spaced.
The qualities of cells and the overall quality of a tessellation characterizes the regularity and
repeatability of a mesh generator set. If the space is covered with individual cells all of unit

178 E. A-iyeh et al. / Theory and Applications of Mathematics & Computer Science 5 (2) (2015) 158– 185

21.1: Dominant-
centroids

21.2: Domcen-
tHist

21.3: Keypoint-
centroids

21.4: Keyptcen-
tHist

Figure 21. Dominant & Keypoint Centroid Tessellations and Quality Histograms.

1 1.5 2 2.5 3 3.5 4

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

Corner (1), edge (2), dominant (3) and keypoint (4) sites

O
ve

ra
ll

qu
al

ity

category1
category2
category3
category4
category5

Figure 22. (a) Plot of overall quality factors against choice of sites for image cate-
gories.

quality, it indicates that the pattern points produce perfect polygons in the space. Associated with
this is the simplicity of the design of the underlying pattern. Higher qualities indicate simple and
predictable distributions whiles the converse holds for low qualities. This reveals the regularity
of the points in the distribution of the pattern set. It also follows that the density of the points is
uniform in the plane of the pattern space.
The quality of mesh cells and their associated image spaces give information on the separability
of dot patterns. Generally, the higher the quality the greater the separation between points in the
set. For example, the quality of edge generators is small compared to those of corners, keypoints
and dominant generators and hence the separation of edge point pattern sets is poor compared to
corner, keypoint and dominant pattern sets.
An extension of the separability of dot patterns and their associated factors is the notion of how
adequately the point pattern represents the image space. For example if keypoints are used as mesh
generators, then the generated mesh contains a distribution of polygons that surround objects in

E. A-iyeh et al. / Theory and Applications of Mathematics & Computer Science 5 (2) (2015) 158– 185 179

1 1.5 2 2.5 3 3.5 4
0.5

0.55

0.6

0.65

0.7

0.75

Corner (1), edge (2), dominant (3) and keypoint (4) sites

O
ve

ra
ll

qu
al

ity

category1
category2
category3
category4
category5

Figure 23. (a) Plot of overall quality factors against centroids of sites for image cate-
gories.

an image. In other words, the high quality of a keypoint-based mesh yields more information about
image objects. To illustrate, edge tessellations give meshes with overall quality of 0.352 versus
0.665 for keypoint tessellations in Fig. 24.1 and Fig. 24.2 respectively.

24.1: Sufficient1 24.2: Sufficient2

Figure 24. Meshes demonstrating sufficiency of coverings

Another important piece of information furnished by meshes relates to symmetry. The higher
the quality, the greater the symmetry of image objects. High quality meshes tend to have connected
sets of highly symmetrical polygons. To demonstrate symmetry, consider two generators S 1(x1, y1)
and S 2(x2, y2) on either side of a vertical line, y through a nose point. The generators S 1 and S 2

are symmetrical if and only if ∥(x1, y1), y∥ = ∥(x2, y2), y∥. The mesh coverings in Fig. 25 are due to
dominant generators and their centroids. If you draw a vertical line through the center of the nose
region, you would notice that the generators in Fig. 25.2 demonstrate a better reflection of features
than in Fig. 25.1. Symmetry thus furnishes us with a tool for feature location given features on one

180 E. A-iyeh et al. / Theory and Applications of Mathematics & Computer Science 5 (2) (2015) 158– 185

half of the space.

25.1: Symmetry1 25.2: symmetry2

Figure 25. Symmetry of features

Last but not least, the quality of an image mesh covering may be used to estimate image quality.
Two image quality assessment methods will be compared here: Image structural similarity index
(SSIM) and image quality through Voronoï tessellations. SSIM compares normalized local pixel
patterns (Wang et al., 2004). For a signal pair x, y it is defined by (Wang et al., 2004)

S S IM(x, y) =
(2µxµy +C1)(2σxy +C2)
(µ2

x + µ2
y +C1)(σ2

x +σ2
y +C2)

In the definition above, the SSIM between x and y uses signal statistics; the mean values of the
signals µx, µy, their variances σ2

x, σ
2
y , cross correlation between signals σxy and constants C1 and

C2.
Voronoï mesh image quality on the other hand is defined by using the geometry of the polygons
enclosing image object points and regions in a tessellated space. Given the q measures of a tes-
sellated image space, the image quality is defined using qall.
Notice that S S IM(x, y) uses the entire image spaces for image quality assessment and the images
must be of the same size. Besides the size constraint, huge signal sizes can make it a computation-
ally intensive approach. Voronoï analysis of image quality on the other hand uses a small set of
the features used in SSIM. To demonstrate, four image signals and their mesh coverings are given
in Fig. 26 and Fig. 27 respectively.

Table 1. SSIM and Quality Indexes

Image SSIM qall

1 0.5569 0.562207

2 - 0.581664

3 0.5969 0.538463

4 - 0.538030

E. A-iyeh et al. / Theory and Applications of Mathematics & Computer Science 5 (2) (2015) 158– 185 181

26.1: Image 1 26.2: Image 2 26.3: Meshed
Covering 1

26.4: Meshed
Covering 2

Figure 26. An image pair and their meshed domains for SSIM and quality compar-
isons

27.1: Image 3 27.2: Image 4 27.3: Meshed
Covering 3

27.4: Meshed
Covering 4

Figure 27. An image pair and their meshed domains for SSIM and quality compar-
isons

Image quality indicators of the signals in Fig. 26 and Fig. 27 is reported in Table. 1. Note that
although the entire feature space is utilized in the calculation of the SSIM, they are comparable
with those obtained with Voronoï tessellations. Notwithstanding, the Voronoï image quality method
provides a quality indicator for each image whereas two signals are needed to output their SSIM.
The ideal index possible is 1. An image Voronoï index of 1 means that the point pattern spatial
geometry or arrangement is perfectly regular while an SSIM of 1 would mean a perfect match
between the two images.2

Note that there are differences between the SSIM and qall indexes, although small. The dif-
ferences stem from the fact that the mesh approach uses polygonal regions and their shape infor-
mation to capture image quality, whilst the SSIM index depends on all pixel values in the image.
Also, the SSIM index depends on constants, as it it affects the indicators. The mesh approach
however depends on image features only.

Note that mesh qualities show that low overall quality generators are not sufficient descriptors
of image features. On the other hand high mesh qualities indicate important and influential image

182 E. A-iyeh et al. / Theory and Applications of Mathematics & Computer Science 5 (2) (2015) 158– 185

features useful for image and mesh analysis. Also, note that the numbers of generator sites are
different for corner, edge, dominant and keypoint sites. Even though edges tend to have the highest
numbers, their qualities are very poor in comparison to the other generators. This shows that high
quality meshes such as those generated by keypoints identify better the most influential, more well
laid out and important features in image characterization and representation.

7. Conclusion

Voronoï generating points useful in image tessellations and visual image quality analysis have
been identified. Previous works focused on generating points based on random distributions, sites
without consideration of feature locations with scant attention given to resulting mesh quality.
Various mathematical results pertaining to meshes, quality have been identified and proved. Cen-
troidal tessellations have been used as a means to improve tessellation quality. This appears to be a
new way of tessellation quality improvement as the literature hardly considers feature-based cen-
troidal tessellations and resulting qualities. The measurement of image mesh quality offers a means
of choosing suitable mesh generating points or sites based on their sufficiency in characterizing
features of digital images. An important limitation of the model here is that slight perturbation
of generators would mean changing locations leading to possibly different polygonal lengths and
areas, hence the need to readjust or compute quality measures. Choosing a subset of the entire
signal space for generators does not seem to be a significant limitation since it usually covers a
significant portion of the space. However, we can always increase the numbers of generators to
cover larger spaces although at higher computational costs.

References

Agrell, Erik (1996). Voronoi regions for binary linear block codes. Information Theory, IEEE Transactions on
42(1), 310–316.

Ahuja, Narendra and Bruce Jay Schachter (1982). Pattern models. John Wiley & Sons Inc.
Arbeláez, Pablo A and Laurent D Cohen (2006). A metric approach to vector-valued image segmentation. Interna-

tional Journal of Computer Vision 69(1), 119–126.
Aurenhammer, Franz (1991). Voronoi diagrams - a survey of a fundamental geometric data structure. ACM Computing

Surveys (CSUR) 23(3), 345–405.
Bank, R.E. and J. Xu (1996). An algorithm for coarsening unstructured meshes. Numerische Mathematik 73, 1–36.
Bern, Marshall and P Plassmann (1999). Mesh generation. Handbook of Computational Geometry.
Bhatia, RP and KL Lawrence (1990a). Two-dimensional finite element mesh generation based on stripwise automatic

triangulation. Computers & Structures 36(2), 309–319.
Bhatia, R.P. and K.L. Lawrence (1990b). Two-dimensional finite element mesh generation based on stripwise auto-

matic triangulation. Computers & Structures 36(2), 309–319.
Brauwerman, Roger, Sarah Joy Zoll, Christopher L Farmer and Max Gunzburger (1999). Centroidal voronoi tessella-

tions are not good jigsaw puzzles. http: // www. math. iastate. edu/ reu/ 1999/ cvt. pdf .
Brown, Matthew and David G Lowe (2002). Invariant features from interest point groups.. In: BMVC. number s 1.
Burns, Jared (2009). Centroidal voronoi tessellations. https://www.whitman.edu/Documents/Academics /Mathemat-

ics/burns.pdf.
Canny, John (1986). A computational approach to edge detection. Pattern Analysis and Machine Intelligence, IEEE

Transactions on (6), 679–698.

E. A-iyeh et al. / Theory and Applications of Mathematics & Computer Science 5 (2) (2015) 158– 185 183

Craw, Ian (2009). 2d face sets. http://pics.stir.ac.uk/2D_face_sets.htm. Pain Expression Subset.
Demir, Cigdem and Bülent Yener (2005). Automated cancer diagnosis based on histopathological images: a system-

atic survey. Rensselaer Polytechnic Institute, Tech. Rep.
Du, Qiang, Vance Faber and Max Gunzburger (1999). Centroidal voronoi tessellations: applications and algorithms.

SIAM review 41(4), 637–676.
Ebeida, Mohamed S and Scott A Mitchell (2012). Uniform random voronoi meshes. In: Proceedings of the 20th

International Meshing Roundtable. pp. 273–290. Springer.
Ebeida, Mohamed S, Scott A Mitchell, Andrew A Davidson, Anjul Patney, Patrick M Knupp and John D Owens

(2011). Efficient and good delaunay meshes from random points. Computer-Aided Design 43(11), 1506–1515.
Feng, Xiaoyi, Yangming Lai, Xiaofei Mao, Jinye Peng, Xiaoyue Jiang and Abdenour Hadid (2013). Extracting local

binary patterns from image key points: Application to automatic facial expression recognition. In: Image Analysis.
pp. 339–348. Springer.

Field, D.A. (2000). Qualitative measures for initial meshes. Int. J. for Numerical Methods in Engineering 47, 887–906.
Förstner, Wolfgang and Eberhard Gülch (1987). A fast operator for detection and precise location of distinct points,

corners and centres of circular features. In: Proc. ISPRS intercommission conference on fast processing of pho-
togrammetric data. pp. 281–305.

George, Paul Louis (2006). Adaptive mesh generation in 3 dimensions by means of a delaunay based method. appli-
cations to mechanical problems. In: III European Conference on Computational Mechanics. Springer. pp. 18–18.

Guru, DS and R Dinesh (2004). Non-parametric adaptive region of support useful for corner detection: a novel
approach. Pattern Recognition 37(1), 165–168.

Hamanaka, Masatoshi and Keiji Hirata (2002). Applying voronoi diagrams in the automatic grouping of polyphony.
Information Technology Letters 1(1), 101–102.

Harris, Chris and Mike Stephens (1988). A combined corner and edge detector.. In: Alvey vision conference. Vol. 15.
Manchester, UK. p. 50.

Kang, Sung Kwan, Young Chul Choung and Jong An Park (2005). Image corner detection using hough transform. In:
Pattern Recognition and Image Analysis. pp. 279–286. Springer.

Kim, Bongjoe, Jihoon Choi, Yongwoon Park and Kwanghoon Sohn (2012). Robust corner detection based on image
structure. Circuits, Systems, and Signal Processing 31(4), 1443–1457.

Kitchen, Les and Azriel Rosenfeld (1980). Gray-level corner detection. Technical report. DTIC Document.
Knupp, Patrick M (2001). Algebraic mesh quality metrics. SIAM journal on scientific computing 23(1), 193–218.
Koenderink, Jan J and Whitman Richards (1988). Two-dimensional curvature operators. JOSA A 5(7), 1136–1141.
Leibon, Greg and David Letscher (2000). Delaunay triangulations and voronoi diagrams for riemannian manifolds.

In: Proceedings of the sixteenth annual symposium on Computational geometry. ACM. pp. 341–349.
Lindeberg, Tony (1993). Scale-space theory in computer vision. Springer Science & Business Media.
Lindeberg, Tony (1998). Feature detection with automatic scale selection. International journal of computer vision

30(2), 79–116.
Lindeberg, Tony (2008). Scale-Space. Wiley Online Library.
Liu, Jinyi and Shuang Liu (2004). A survey on applications of voronoi diagrams. Journal of Engineering Graphics

22(2), 125–132.
Lowe, David G (1999). Object recognition from local scale-invariant features. In: Computer vision, 1999. The pro-

ceedings of the seventh IEEE international conference on. Vol. 2. Ieee. pp. 1150–1157.
Lowe, David G (2004). Distinctive image features from scale-invariant keypoints. International journal of computer

vision 60(2), 91–110.
McLean, Alex (2007). Voronoi diagrams of music. URL http://doc. gold. ac. uk/˜ ma503am/essays/voronoi/voronoi-

diagrams-of-music. pdf. Accessed.

184 E. A-iyeh et al. / Theory and Applications of Mathematics & Computer Science 5 (2) (2015) 158– 185

Mikolajczyk, Krystian and Cordelia Schmid (2004). Scale & affine invariant interest point detectors. International
journal of computer vision 60(1), 63–86.

Mitchell, HB (2010). Image key points. In: Image Fusion. pp. 163–166. Springer.
Mitchell, Scott A (1993). Mesh generation with provable quality bounds. Technical report. Cornell University.
Møller, Jesper and Øivind Skare (2001). Coloured voronoi tessellations for bayesian image analysis and reservoir

modelling. Statistical modelling 1(3), 213–232.
Moravec, Hans P (1980). Obstacle avoidance and navigation in the real world by a seeing robot rover.. Technical

report. DTIC Document.
Owen, Steven J (1998). A survey of unstructured mesh generation technology. In: IMR. pp. 239–267.
Pan, Haixia, Yanxiang Zhang, Chunlong Li and Huafeng Wang (2014). An adaptive harris corner detection algorithm

for image mosaic. In: Pattern Recognition. pp. 53–62. Springer.
Park, Seung Jin, Muhammad Bilal Ahmad, Rhee Seung-Hak, Seung Jo Han and Jong An Park (2004). Image cor-

ner detection using radon transform. In: Computational Science and Its Applications–ICCSA 2004. pp. 948–955.
Springer.

Peraire, Jaime, Morgan Vahdati, Ken Morgan and Olgierd C Zienkiewicz (1987). Adaptive remeshing for compress-
ible flow computations. Journal of computational physics 72(2), 449–466.

Persson, Per-Olof (2004). Mesh generation for implicit geometries. PhD thesis. Citeseer.
Persson, Per-Olof and Gilbert Strang (2004). A simple mesh generator in matlab. SIAM review 46(2), 329–345.
Peters, J.F. (2015a). Proximal Delaunay triangulation regions. PJMS [Proc. Jangjeon Math. Soc.] pp. 1–10. accepted.
Peters, J.F. (2015b). Proximal Voronoï regions, convex polygons, & Leader uniform topology. Advances in Math.:

Sci. J. 4(1), 1–5.
Peters, J.F. (2015c). Visibility in proximal Delaunay meshes and strongly near Wallman proximity. Advances in Math.:

Sci. J. 4(1), 41–47.
Rajan, V.T. (1994). Optimality of the delaunay triangulation in Rd. Discrete & Computational Geometry 12(1), 189 –

202.
Ramella, Massimo, Mario Nonino, Walter Boschin and Dario Fadda (1998). Cluster identification via voronoi tessel-

lation. arXiv preprint astro-ph/9810124.
Rivara, Maria-Cecilia (1984). Mesh refinement processes based on the generalized bisection of simplices. SIAM Jour-

nal on Numerical Analysis 21(3), 604–613.
Rosten, Edward and Tom Drummond (2006). Machine learning for high-speed corner detection. In: Computer Vision–

ECCV 2006. pp. 430–443. Springer.
Ruppert, Jim (1995). A delaunay refinement algorithm for quality 2-dimensional mesh generation. Journal of algo-

rithms 18(3), 548–585.
Shewchuk, J (2002). What is a good linear finite element? interpolation, conditioning, anisotropy, and quality mea-

sures (preprint). University of California at Berkeley.
Smith, Stephen M. and J. Michael Brady (1997). SUSAN - a new approach to low level image processing. Interna-

tional journal of computer vision 23(1), 45–78.
Voronoï, G. (1903). Sur un problème du calcul des fonctions asymptotiques. J. für die reine und angewandte Math.

126, 241–282. JFM 38.0261.01.
Voronoï, G. (1907). Nouvelles applications des paramètres continus à la théorie des formes quadratiques. premier

mémoir. J. für die reine und angewandte Math. 133, 97–178.
Voronoï, G. (1908). Sur un problème du calcul des fonctions asymptotiques. J. für die reine und angewandte Math.

134, 198–287. JFM 39.0274.01.
Wang, Han and Michael Brady (1995). Real-time corner detection algorithm for motion estimation. Image and Vision

Computing 13(9), 695–703.

E. A-iyeh et al. / Theory and Applications of Mathematics & Computer Science 5 (2) (2015) 158– 185 185

Wang, Zhou, Alan C Bovik, Hamid R Sheikh and Eero P Simoncelli (2004). Image quality assessment: From error
visibility to structural similarity. Image Processing, IEEE Transactions on 13(4), 600–612.

Woźniak, Marcin and Zbigniew Marszałek (2014). An idea to apply firefly algorithm in 2d image key-points search.
In: Information and Software Technologies. pp. 312–323. Springer.

Theory and Applications of Mathematics & Computer Science 5 (2) (2015) 186– 193

Initial Maclaurin Coefficients Bounds for New Subclasses of
Bi-univalent Functions

Basem Aref Frasina,∗, Tariq Al-Hawaryb

aDepartment of Mathematics, Al al-Bayt University, Mafraq, JordanDepartment of Mathematics, Al al-Bayt
University, Mafraq, Jordan.

bDepartment of Applied Science, Ajloun College, Al-Balqa Applied University, Ajloun 26816, Jordan.

Abstract
In this work we introduce the subclasses LΣ(θ, α) and LΣ(θ, γ) of bi-univalent functions. Furthermore, we obtain

coefficient bounds involving the Taylor-Maclaurin coefficients |a2| and |a3| for functions belonging to these classes.The
results presented in this paper would generalize those in related works of several earlier authors.

Keywords: Analytic and univalent functions, Bi-univalent functions, Starlike and convex functions, Coefficients
bounds.
2010 MSC: 30C45, 30C50.

1. Introduction and preliminaries

LetA be the class of functions f which are analytic in the open unit diskU = {z : |z| < 1} with
the conditions f (0) = 0 and f ′(0) = 1 and having form

f (z) = z + a2z2 + a3z3 + · · · (z ∈ U). (1.1)

Further, by S we will denote the class of all functions inA which are univalent inU.
For each θ, −π < θ ≤ π, Silverman and Silvia (Silverman & Silvia, 1999) introduced the class

L(θ) =

{
f ∈ A: Re

(
f ′(z) +

1 + eiθ

2
z f ′′(z)

)
> 0, z ∈ U

}
and they proved that L(θ) ⊂ L(π), where L(π) is the well known class R that consists of univalent
functions in whose derivatives have positive real part in U (Alexander, 1915). The class L(0)

∗Corresponding author
Email addresses: bafrasin@yahoo.com (Basem Aref Frasin), tariq_amh@yahoo.com (Tariq Al-Hawary)

B.A. Frasin et al. / Theory and Applications of Mathematics & Computer Science 5 (2) (2015) 186– 193 187

was studied by Singh and Singh (Singh & Singh, 1989), Lewandowski et al. (Lewandowski et al.,
1976), Chichra (Chichra, 1977), and Silverman (Silverman, 1994).

It is well known that every function f ∈ S has an inverse f −1, defined by

f −1(f (z)) = z (z ∈ U)

and
f (f −1(w)) = w (|w| < r0(f); r0(f) ≥

1
4

)

where
f −1(w) = w − a2w2 + (2a2

2 − a3)w3 − (5a3
2 − 5a2a3 + a4)w4 + · · · .

A function f ∈ A is said to be bi-univalent inU if both f (z) and f −1(z) are univalent inU.
Let Σ denote the class of bi-univalent functions in U given by (1.1). For a brief history and

interesting examples in the class Σ, see (Srivastava et al., 2010).
Brannan and Taha (Brannan & Taha, 1988) (see also (Taha, 1981)) introduced certain sub-

classes of the bi-univalent function class Σ similar to the familiar subclasses S∗(α) and K(α) of
starlike and convex functions of order α(0 ≤ α < 1), respectively (see (Brannan & Taha, 1988)).
Thus, following Brannan and Taha (Brannan & Taha, 1988) (see also (Taha, 1981)), a function
f ∈ A is in the class S∗

Σ
[α] of strongly bi-starlike functions of order α(0 < α ≤ 1) if each of the

following conditions is satisfied:

f ∈ Σ and

∣∣∣∣∣∣arg
(
z f ′(z)
f (z)

)∣∣∣∣∣∣ < απ

2
(0 < α ≤ 1, z ∈ U)

and ∣∣∣∣∣∣arg
(
wg′(w)
g(w)

)∣∣∣∣∣∣ < απ

2
(0 < α ≤ 1, w ∈ U),

where g is the extension of f −1 to U . The classes S∗
Σ
(α) and KΣ(α) of bi-starlike functions of

order α and bi-convex functions of order α, corresponding (respectively) to the function classes
S∗(α) and K(α), were also introduced analogously. For each of the function classes S∗

Σ
(α) and

KΣ(α), they found non-sharp estimates on the first two Taylor–Maclaurin coefficients |a2| and |a3|

(for details, see (Brannan & Taha, 1988; Taha, 1981)).
Recently, Srivastava et al. (Srivastava et al., 2010), Frasin (Frasin, 2014), Frasin and Aouf

(Frasin & Aouf, 2011), Goyal and Goswami (Goyal & P.Goswami, 2012), Li and Wang (Li &
Wang, 2012), Siregar and Raman (Siregar & Raman, 2012) and Caglar et al.(Caglar et al., 2012)
introduced new subclasses of bi-univalent functions and found estimates on the coefficients |a2|

and |a3| for functions in these classes.
The object of the present paper is to introduce two new subclasses of the function class Σ and

find estimates on the coefficients |a2| and |a3| for functions in these new subclasses of the function
class Σ.

In order to establish our main results, we shall require the following lemma:

188 B.A. Frasin et al. / Theory and Applications of Mathematics & Computer Science 5 (2) (2015) 186– 193

Lemma 1. (Pommerenke, 1975) If p ∈ P, then |ck| ≤ 2 for each k, where P is the family of all
functions p analytic inU for which

Re (p(z)) > 0, p(z) = 1 + c1z + c2z2 + · · · (z ∈ U).

2. Coefficient bounds for the function class LΣ(θ, α)

We now introduce the subclass LΣ(θ, α) of the functions in the classA as follows.

Definition 2.1. A function f (z) given by (1.1) is said to be in the class LΣ(θ, α) where 0 < α ≤ 1
and θ ∈ (−π, π], if the following conditions are satisfied:

f ∈ Σ and

∣∣∣∣∣∣arg
(

f ′(z) +
1 + eiθ

2
z f ′′(z)

)∣∣∣∣∣∣ < απ

2
(z ∈ U) (2.1)

and ∣∣∣∣∣∣arg
(
g′(w) +

1 + eiθ

2
wg′′(w)

)∣∣∣∣∣∣ < απ

2
(w ∈ U), (2.2)

where the function g is given by

g(w) = w − a2w2 + (2a2
2 − a3)w3 − (5a3

2 − 5a2a3 + a4)w4 + · · · . (2.3)

We first state and prove the following result.

Theorem 1. Let f (z) given by (1.1) be in the function class LΣ(θ, α) where 0 < α ≤ 1 and
θ ∈ (−π, π]. Then

|a2| ≤
2α

[
(
3α + 9 + (1 − α) cos 2θ + 6 cos θ)2 + ((1 − α) sin 2θ + 6 sin θ

)2]1/4
(2.4)

and

|a3| ≤
2α2

5 + 3 cos θ
+

2α

3
√

5 + 4 cos θ
. (2.5)

Proof. It follows from (2.1) and (2.2) that

f ′(z) +

(
1 + eiθ

2

)
z f ′′(z) = [p(z)]α (2.6)

and

g′(w) +

(
1 + eiθ

2

)
wg′′(w) = [q(w)]α (2.7)

where p(z) and q(w) are in P and have the forms

p(z) = 1 + p1z + p2z2 + p3z3 + · · · (2.8)

B.A. Frasin et al. / Theory and Applications of Mathematics & Computer Science 5 (2) (2015) 186– 193 189

and
q(w) = 1 + q1w + q2w2 + q3w3 + · · · . (2.9)

Now, equating the coefficients in (2.6) and (2.7), we get

(3 + eiθ)a2 = αp1, (2.10)

3(2 + eiθ)a3 = αp2 +
α(α − 1)

2
p2

1, (2.11)

−(3 + eiθ)a2 = αq1 (2.12)

and
3(2 + eiθ)(2a2

2 − a3) = αq2 +
α(α − 1)

2
q2

1. (2.13)

From (2.10) and (2.12), we get
p1 = −q1 (2.14)

and
2(3 + eiθ)2a2

2 = α2(p2
1 + q2

1). (2.15)

Now from (2.11), (2.13) and (2.15), we obtain

6(2 + eiθ)a2
2 = α(p2 + q2) +

α(α − 1)
2

(p2
1 + q2

1)

= α(p2 + q2) +
(α − 1)(3 + eiθ)2

α
a2

2.

Thus

a2
2 =

α2(p2 + q2)
6α(2 + eiθ) − (α − 1)(3 + eiθ)2

that is ∣∣∣a2
2

∣∣∣ =
α2 |p2 + q2|∣∣∣6α(2 + eiθ) − (α − 1)(3 + eiθ)2

∣∣∣
Applying Lemma 1 for the coefficients p2 and q2, we have

|a2| ≤
2α

[
(
3α + 9 + (1 − α) cos 2θ + 6 cos θ)2 + ((1 − α) sin 2θ + 6 sin θ

)2]1/4
.

This gives the bound on |a2| as asserted in (2.4).
Next, in order to find the bound on |a3|, by subtracting (2.13) from (2.11), we get

6(2 + eiθ)a3 − 6(2 + eiθ)a2
2 = αp2 +

α(α − 1)
2

p2
1 −

(
αq2 +

α(α − 1)
2

q2
1

)
. (2.16)

Upon substituting the value of a2
2 from (2.15) and observing that p2

1 = q2
1, it follows that

a3 =
α2 p2

1

(3 + eiθ)2 +
α(p2 − q2)
6(2 + eiθ)

.

190 B.A. Frasin et al. / Theory and Applications of Mathematics & Computer Science 5 (2) (2015) 186– 193

Applying Lemma 1 once again for the coefficients p1, p2, q1 and q2, we readily get

|a3| ≤
2α2

5 + 3 cos θ
+

2α

3
√

5 + 4 cos θ
,

which completes the proof of Theorem 1.

Choosing θ = π in Theorem 1, we obtain the following particular case due to Srivastava et
al.(Srivastava et al., 2010):

Corollary 2.1. (Srivastava et al., 2010) Let f (z) given by (1.1) be in the function classLΣ(π, α); 0 <
α ≤ 1. Then

|a2| ≤ α

√
2

α + 1
(2.17)

and
|a3| ≤

α(3α + 2)
3

. (2.18)

Putting θ = 0 in Theorem 1, we obtain the following particular case due to Frasin (Frasin,
2014):

Corollary 2.2. (Frasin, 2014) Let f (z) given by (1.1) be in the function class LΣ(0, α), 0 < α ≤ 1.
Then

|a2| ≤ α

√
2

α + 8
(2.19)

and

|a3| ≤
9α2 + 8α

36
. (2.20)

3. Coefficient bounds for the function class LΣ(θ, γ)

Definition 3.1. A function f (z) given by (1.1) is said to be in the class LΣ(θ, γ) where 0 ≤ γ < 1,
θ ∈ (−π, π], if the following conditions are satisfied:

f ∈ Σ and Re
(

f ′(z) +
1 + eiθ

2
z f ′′(z)

)
> γ (z ∈ U) (3.1)

and

Re
(
g′(w) +

1 + eiθ

2
wg′′(w)

)
> γ (w ∈ U), (3.2)

where the function g is given by (2.3).

B.A. Frasin et al. / Theory and Applications of Mathematics & Computer Science 5 (2) (2015) 186– 193 191

Theorem 2. Let f (z) given by (1.1) be in the class LΣ(θ, γ), where 0 ≤ γ < 1, θ ∈ (−π, π]. Then

|a2| ≤

√
4(1 − γ)

6
√

5 + 4 cos θ
(3.3)

and

|a3| ≤
2(1 − γ)2

5 + 3 cos θ
+

2(1 − γ)

3
√

5 + 4 cos θ
. (3.4)

Proof. It follows from (3.1) and (3.2) that there exist p and q ∈ P such that

f ′(z) +

(
1 + eiθ

2

)
z f ′′(z) = γ + (1 − γ)p(z) (3.5)

and

g′(w) +

(
1 + eiθ

2

)
wg′′(w) = γ + (1 − γ)q(w) (3.6)

where p(z) and q(w) have the forms (2.8) and (2.9), respectively. Equating coefficients in (3.5) and

(3.6) yields

(3 + eiθ)a2 = (1 − γ)p1, (3.7)

3(2 + eiθ)a3 = (1 − γ)p2, (3.8)

−(3 + eiθ)a2 = (1 − γ)q1 (3.9)

and
3(2 + eiθ)(2a2

2 − a3) = (1 − γ)q2 (3.10)

From (3.7) and (3.9), we get
p1 = −q1 (3.11)

and
2(3 + eiθ)2a2

2 = (1 − γ)2(p2
1 + q2

1). (3.12)

Also, from (3.8) and (3.10), we find that

6(2 + eiθ)a2
2 = (1 − γ)(p2 + q2).

Thus, we have ∣∣∣a2
2

∣∣∣ ≤ (1 − γ)
6 |2 + eiθ|

(|p2| + |q2|)

≤
4(1 − γ)

6
√

5 + 4 cos θ

which is the bound on |a2| as given in (3.3).

192 B.A. Frasin et al. / Theory and Applications of Mathematics & Computer Science 5 (2) (2015) 186– 193

Next, in order to find the bound on |a3|, by subtracting (3.10) from (3.8), we get

6(2 + eiθ)a3 − 6(2 + eiθ)a2
2 = (1 − γ)(p2 − q2)

or, equivalently,

a3 = a2
2 +

(1 − γ)(p2 − q2)
6(2 + eiθ)

.

Upon substituting the value of a2
2 from (3.12), we obtain

a3 =
(1 − γ)2(p2

1 + q2
1)

2(3 + eiθ)2 +
(1 − γ)(p2 − q2)

6(2 + eiθ)
.

Applying Lemma 1 for the coefficients p1, p2, q1 and q2, we readily get

|a3| ≤
2(1 − γ)2

5 + 3 cos θ
+

2(1 − γ)

3
√

5 + 4 cos θ

which is the bound on |a3| as asserted in (3.4).

Choosing θ = π in Theorem 2, we obtain the following particular case due to Srivastava et
al.(Srivastava et al., 2010):

Corollary 3.1. (Srivastava et al., 2010) Let f (z) given by (1.1) be in the function classLΣ(0, γ), 0 ≤
γ < 1. Then

|a2| ≤

√
2(1 − γ)

3
(3.13)

and
|a3| ≤

(1 − γ)(5 − 3γ)
3

. (3.14)

Putting θ = 0 in Theorem 2, we obtain the following particular case due to Frasin (Frasin,
2014):

Corollary 3.2. (Frasin, 2014) Let f (z) given by (1.1) be in the function class LΣ(0, γ), 0 ≤ γ < 1.
Then

|a2| ≤
1
3

√
2(1 − γ) (3.15)

and
|a3| ≤

(1 − γ)(9(1 − γ) + 8)
36

. (3.16)

Acknowledgments
The authors thanks the referee for his valuable suggestions which led to improvement of this

study.

B.A. Frasin et al. / Theory and Applications of Mathematics & Computer Science 5 (2) (2015) 186– 193 193

References

Alexander, J.W. (1915). Functions which map the interior of the unit circle upon simple regions. Annals of Mathemat-
ics 17, 12–22.

Brannan, D.A. and T.S. Taha (1988). On some classes of bi-univalent functions. In: KFAS Proceedings Series. Vol. 3.
Pergamon Press, Elsevier Science Limited, Oxford. pp. 53–60.

Caglar, M., H. Orhan and N. Yagmur (2012). Coefficient bounds for new subclasses of bi-univalent functions.
arXiv:1204.4285 pp. 1–7.

Chichra, P.N. (1977). New subclasses of the class of close-to-convex functions. Proc. Amer. Math. Soc. 62, 37–43.
Frasin, B.A. (2014). Coefficient bounds for certain classes of bi-univalent functions. Hacettepe Journal of Mathemat-

ics and Statistics 43(3), 383–389.
Frasin, B.A. and M.K. Aouf (2011). New subclasses of bi-univalent functions. Applied Mathematics Letters

24(9), 1569–1573.
Goyal, S.P. and P.Goswami (2012). Estimate for initial maclaurin coefficients of bi-univalent functions for a class

defined by fractional derivatives. Journal of the Egyptian Mathematical Society 20, 179–182.
Lewandowski, Z., S.S Miller and E. Zlotkiewicz (1976). Generating functions for some classes of univalent functions.

Proc. Amer. Math. Soc. 56, 111–117.
Li, X.F. and A.P. Wang (2012). Two new subclasses of bi-univalent functions. International Mathematical Forum

7(30), 1495–1504.
Pommerenke, Ch. (1975). Univalent functions. Vandenhoeck and Rupercht, Gottingen.
Silverman, H.S. (1994). A class of bounded starlike functions. Internat. J. Mtah. Math. Sci. 17(2), 249–252.
Silverman, H.S. and E.M. Silvia (1999). Characterizations for subclasses of univalent functions. Math. Japonica

50(1), 103–109.
Singh, R. and S. Singh (1989). Convolution properties of a class of starlike functions. Proc. Amer. Math. Soc. 106, 145–

152.
Siregar, S. and S. Raman (2012). Certain subclasses of analytic and bi-univalent functions involving double zeta

functions. International Journal of Advanced on Science Engineering Information Technology 2(5), 16–18.
Srivastava, H.M., A.K. Mishra and P. Gochhayat (2010). Certain subclasses of analytic and bi-univalent functions.

Applied Mathematics Letters 23(5), 1188–1192.
Taha, T.S. (1981). Topics in Univalent Function Theory. Ph.D. Thesis, University of London.

Theory and Applications of Mathematics & Computer Science 5 (2) (2015) 194– 202

Zweier I-Convergent Double Sequence Spaces Defined by a
Sequence of Modulii

Vakeel A. Khana,∗, Nazneen Khana, Yasmeena

aDepartment of Mathematics, Aligarh Muslim University, Aligarh-202002, India

Abstract
In the present article we have introduced the double sequence spaces 2Z

I(F), 2Z
I
0(F) and 2Z

I
∞(F) for a

sequence of modulii F = (fi j). We have also studied their topological as well as algebraic properties.

Keywords: Ideal, filter, double sequence, sequence of modulii, Lipschitz function, I-convergence, monotone and
solid spaces.
2010 MSC: 30C45, 30C50.

1. Introduction

Let N, R and C be the sets of all natural, real and complex numbers respectively. We write

ω = {x = (xk) : xk ∈ R or C }

the space of all real or complex sequences. Let `∞, c and c0 denote the Banach spaces of bounded,
convergent and null sequences respectively normed by ||x||∞ = sup

k
|xk|.

The concept of statistical convergence was first introduced by Fast (Fast, 1951) in 1951 and
also independently by Buck (Buck, 1953) and Schoenberg (Schoenberg, 1959) for real and com-
plex sequences. Further this concept was studied by Connor (Connor, 1998, 1989; Connor &
Kline, 1996), Connor, Fridy and Kline (Connor et al., 1994) and many others. Statistical con-
vergence is a generalization of the usual notion of convergence that parallels the usual theory of
convergence. A sequence x = (xk) is said to be Statistically convergent to L if for a given ε > 0

lim
k

1
k
|{i : |xi − L| ≥ ε, i ≤ k}| = 0.

∗Corresponding author
Email addresses: vakhanmaths@gmail.com (Vakeel A. Khan), nazneen4maths@gmail.com (Nazneen Khan)

Vakeel et al. / Theory and Applications of Mathematics & Computer Science 5 (2) (2015) 194– 202 195

Later on it was studied by Fridy (Fridy, 1985, 1993) from the sequence space point of view and
he linked it with the summability theory. The notion of I-convergence is a generalization of the
statistical convergence. At the initial stage it was studied by Kostyrko, Šalát, Wilczyński (Kostyrko
et al., 2000). Later on it was studied by Šalát, Tripathy, Ziman (Šalát et al., 2004) and Demirci
(Demirci, 2001).

Here we give some preliminaries about the notion of I-convergence.
Let X be a non empty set. A set I ⊆ 2X(2X denoting the power set of X) is said to be an ideal if

I is additive i.e A, B ∈ I ⇒ A∪B ∈ I and hereditary i.e A ∈ I, B ⊆ A⇒ B ∈ I. A non empty family
of sets F ⊆ 2X is said to be filter on X if and only if φ < F , for A, B ∈ F we have A ∩ B ∈ F and
for each A ∈ F and A ⊆ B implies B ∈ F .

An Ideal I ⊆ 2X is called non-trivial if I , 2X. A non-trivial ideal I ⊆ 2X is called admissible
if {{x} : x ∈ X} ⊆ I. A non-trivial ideal I is maximal if there cannot exist any non-trivial ideal
J , I containing I as a subset. For each ideal I, there is a filter F (I) corresponding to I, i.e
F (I) = {K ⊆ N : Kc ∈ I}, where Kc = N − K.

Each linear subspace of ω, for example, λ, µ ⊂ ω is called a sequence space. A sequence space
λ with linear topology is called a K-space provided each of maps pi −→ C defined by pi(x) = xi

is continuous for all i ∈ N. A K-space λ is called an FK-space provided λ is a complete linear
metric space. An FK-space whose topology is normable is called a BK-space. Let λ and µ be two
sequence spaces and A = (ank) is an infinite matrix of real or complex numbers ank, where n, k ∈ N.
Then we say that A defines a matrix mapping from λ to µ and we denote it by writing A : λ −→ µ.

If for every sequence x = (xk) ∈ λ the sequence Ax = {(Ax)n}, the A transform of x is in µ,
where

(Ax)n =
∑

k

ankxk, (n ∈ N). (1.1)

By (λ : µ), we denote the class of matrices A such that A : λ −→ µ.
Thus, A ∈ (λ : µ) if and only if series on the right side of (1.1) converges for each n ∈ N and

every x ∈ λ. The approach of constructing the new sequence spaces by means of the matrix domain
of a particular limitation method have been recently employed by Altay, Başar and Mursaleen
(Altay et al., 2006), Başar and Altay (Başar & Altay, 2003), Malkowsky (Malkowsky, 1997),
Ng and Lee (Ng & Lee, 1978) and Wang (Wang, 1978). Şengönül (Şengönül, 2007) defined the
sequence y = (yi) which is frequently used as the Zp transform of the sequence x = (xi) i.e,

yi = pxi + (1 − p)xi−1

where x−1 = 0, p , 1, 1 < p < ∞ and Zp denotes the matrix Zp = (zik) defined by

zik =

p, (i = k),

1 − p, (i − 1 = k); (i, k ∈ N),
0, otherwise.

Following Basar and Altay (Başar & Altay, 2003), Şengönül Şengönül (2007) introduced the
Zweier sequence spacesZ andZ0 as follows

Z = {x = (xk) ∈ ω : Z px ∈ c}

Z0 = {x = (xk) ∈ ω : Z px ∈ c0}

196 Vakeel et al. / Theory and Applications of Mathematics & Computer Science 5 (2) (2015) 194– 202

Definition 1.1. (Khan & Khan, 2013) A double sequence of complex numbers is defined as a
function x : N × N → C. We denote a double sequence as (xi j), where the two subscripts run
through the sequence of natural numbers independent of each other. A number a ∈ C is called a
double limit of a double sequence (xi j) if for every ε > 0 there exists some N = N(ε) ∈ N such
that

|(xi j) − a| < ε, f or all i, j ≥ N

Definition 1.2. A double sequence space E is said to be solid or normal if (xi j) ∈ E implies
(αi jxi j) ∈ E for all sequence of scalars (αi j) with |αi j| < 1 for all (i, j) ∈ N × N.

Definition 1.3. E is said to be monotone if it contains the canonical preimages of all its stepspaces.

Definition 1.4. E is said to be convergence free if (yi j) ∈ E whenever (xi j) ∈ E and xi j = 0 implies
yi j = 0.

Definition 1.5. E is said to be a sequence algebra if (xi jyi j) ∈ E whenever (xi j), (yi j) ∈ E.

Definition 1.6. A sequence (xk) ∈ ω is said to be I-convergent to a number L if for every ε > 0.
{(i, j) ∈ N × N : |xi j − L| ≥ ε} ∈ I. In this case we write I-lim xi j = L. The space 2cI of all
I-convergent double sequences to L is given by

2cI = {(xk) ∈ ω : {(i, j) ∈ N × N : |xi j − L| ≥ ε} ∈ I, for some L∈ C}.

Definition 1.7. A sequence (xi j) ∈ ω is said to be I-null if L = 0. In this case we write I-lim xk = 0.

Definition 1.8. A sequence (xi j) ∈ ω is said to be I-cauchy if for every ε > 0 there exists a number
m, n dependent on ε such that {(i, j) ∈ N × N : |xi j − xmn| ≥ ε} ∈ I.

Definition 1.9. A sequence (xi j) ∈ ω is said to be I-bounded if there exists M > 0 such that
{(i, j) ∈ N × N : |xi j| > M} ∈ I.

Definition 1.10. A modulus function f is said to satisfy 42 condition if for all values of u there
exists a constant K > 0 such that f (Lu) ≤ KL f (u) for all values of L > 1.

Definition 1.11. Take for I the class I f of all finite subsets of N.Then I f is a non-trivial admissible
ideal and I f convergence coincides with the usual convergence with respect to the metric in X.

Definition 1.12. For I= Iδ and A ⊂ N×N with δ(A) = 0 respectively. Iδ is a non-trivial admissible
ideal, Iδ-convergence is said to be logarithmic statistical convergence.

Definition 1.13. A map ~ defined on a domain D ⊂ X i.e ~ : D ⊂ X → R is said to satisfy
Lipschitz condition if |~(x)−~(y)| ≤ K|x− y| where Kis known as the Lipschitz constant.The class
of K-Lipschitz functions defined on D is denoted by ~ ∈ (D,K).

Definition 1.14. A convergence field of I-convergence is a set

F(I) = {x = (xi j) ∈ 2`∞ : there exists I − lim x ∈ R}.

Vakeel et al. / Theory and Applications of Mathematics & Computer Science 5 (2) (2015) 194– 202 197

The convergence field F(I) is a closed linear subspace of 2`∞ with respect to the supremum
norm, F(I) = 2`∞ ∩ 2cI . Define a function ~ : F(I) → R such that ~(x) = I − lim x, for all
x ∈ F(I), then the function ~ : F(I) → R is a Lipschitz function. The following Lemmas will be
used for establishing some results of this article.

Lemma 1. Let E be a sequence space. If E is solid then E is monotone.

Lemma 2. Let K∈ £(I) and M⊆N. If M<I, then M∩N <I. (Tripathy & Hazarika, 2011).

Lemma 3. If I ⊂ 2N and M⊆N. If M <I, then M∩N <I. (Tripathy & Hazarika, 2011).

The idea of modulus was structured in 1953 by Nakano (Nakano, 1953).
A function f : [0,∞) −→ [0,∞) is called a modulus if
(1) f (t) = 0 if and only if t = 0,
(2) f (t + u) ≤ f (t) + f (u) for all t, u ≥ 0,
(3) f is nondecreasing, and
(4) f is continuous from the right at zero.

Ruckle (Ruckle, 1968, 1967)used the idea of a modulus function f to construct the sequence
space

X(f) = {x = (xk) :
∞∑

k=1

f (|xk|) < ∞}.

This space is an FK space, and Ruckle (Ruckle, 1973) proved that the intersection of all such X(f)
spaces is φ, the space of all finite sequences. The space X(f) is closely related to the space `1

which is an X(f) space with f (x) = x for all real x ≥ 0. Thus Ruckle (Ruckle, 1973) proved that,
for any modulus f :

X(f) ⊂ `1 and X(f)α = `∞

where

X(f)α = {y = (yk) ∈ ω :
∞∑

k=1

f (|ykxk|) < ∞}.

The space X(f) is a Banach space with respect to the norm

||x|| =
∞∑

k=1

f (|xk|) < ∞.

From the point of view of local convexity, spaces of the type X(f) are quite pathological. Therefore
symmetric sequence spaces, which are locally convex have been frequently studied by Garling
(Garling, 1966), Köthe (Köthe, 1970) and many more. After then Kolk (Kolk, 1993, 1994) gave
an extension of X(f) by considering a sequence of modulii F = (fk) and defined the sequence
space

X(F) = {x = (xk) : (fk(|xk|)) ∈ X}.

198 Vakeel et al. / Theory and Applications of Mathematics & Computer Science 5 (2) (2015) 194– 202

Recently Khan et al (Khan et al., 2013), introduced the following classes of sequences

ZI(f) = {(xk) ∈ ω : {k ∈ N : f (|xk − L|) ≥ ε, for some L∈ C } ∈ I},

ZI
0(f) = {(xk) ∈ ω : {k ∈ N : f (|xk|) ≥ ε} ∈ I},

ZI
∞(f) = {(xk) ∈ ω : {k ∈ N : f (|xk|) ≥ M, for each fixed M>0} ∈ I}.

We also denote by
mI
Z

(f) = ZI
∞(f) ∩ZI(f)

and
mI
Z0

(f) = ZI
∞(f) ∩ZI

0(f).

In this article we introduce the following sequence spaces.

2Z
I(F) = {(xi j) ∈ 2ω : {(i, j) ∈ N × N : fi j(|xi j − L|) ≥ ε, for some L∈ C } ∈ I},

2Z
I
0(F) = {(xi j) ∈ 2ω : {(i, j) ∈ N × N : fi j(|xi j|) ≥ ε} ∈ I},

2Z
I
∞(F) = {(xi j) ∈ 2ω : {(i, j) ∈ N × N : fi j(|xi j|) ≥ M, for each fixed M>0} ∈ I}.

We also denote by
2mI
Z

(F) = 2Z∞(F) ∩ 2Z
I(F)

and
2mI
Z0

(F) = 2Z∞(F) ∩ 2Z
I
0(F).

2. Main Results

Theorem 1. For a sequence of modulii F = (fi j), the classes of sequences 2Z
I(F), 2Z

I
0(F), 2mI

Z
(F)

and 2mI
Z0

(F) are linear spaces.

Proof. We shall prove the result for the space 2Z
I(F). The proof for the other spaces will follow

similarly. Let (xi j), (yi j) ∈ 2Z
I(F) and let α, β be scalars. Then

I − lim fi j(|xi j − L1|) = 0, for someL1 ∈ C;

I − lim fi j(|yi j − L2|) = 0, for someL2 ∈ C;

That is for a given ε > 0, we have

A1 = {(i, j) ∈ N × N : fi j(|xi j − L1|) >
ε

2
} ∈ I, (2.1)

A2 = {(i, j) ∈ N × N : fi j(|yi j − L2|) >
ε

2
} ∈ I. (2.2)

Since fi j is a modulus function, we have

fi j(|(αxi j + βyi j) − (αL1 + βL2) ≤ fi j(|α||xi j − L1|) + fi j(|β||yi j − L2|)
≤ fi j(|xi j − L1|) + fi j(|yi j − L2|)

Now, by (2.1) and (2.2), {(i, j) ∈ N × N : fi j(|(αxi j + βyi j) − (αL1 + βL2)|) > ε} ⊂ A1 ∪ A2.
Therefore (αxi j + βyi j) ∈ 2Z

I(F). Hence 2Z
I(F) is a linear space.

Vakeel et al. / Theory and Applications of Mathematics & Computer Science 5 (2) (2015) 194– 202 199

We state the following result without proof in view of Theorem 2.1.

Theorem 2. The spaces 2mI
Z

(F) and 2mI
Z0

(F) are normed linear spaces, normed by

||xi j||∗ = sup
i, j

fi j(|xi j|). (2.3)

Theorem 3. A sequence x = (xi j) ∈ 2mI
Z

(F) I-converges if and only if for every ε > 0 there exists
Nε ∈ N × N such that

{(i, j) ∈ N × N : fi j(|xi j − xNε
|) < ε} ∈ F (I). (2.4)

Proof. Suppose that L = I − lim x. Then Bε = {(i, j) ∈ N ×N : |xi j − L| < ε
2 } ∈ F (I). For all ε > 0,

fix an Nε ∈ Bε such that we have |xNε
− xi j| ≤ |xNε

− L| + |L − xi j| <
ε
2 +

ε
2 = ε which holds for all

(i, j) ∈ Bε . Hence {(i, j) ∈ N × N : fi j(|xi j − xNε
|) < ε} ∈ F (I).

Conversely, suppose that {(i, j) ∈ N × N : fi j(|xi j − xNε
|) < ε} ∈ F (I). That is {(i, j) ∈ N × N :

(|xi j − xNε
|) < ε} ∈ F (I) for all ε > 0. Then the set Cε = {(i, j) ∈ N × N : xi j ∈ [xNε

− ε, xNε
+ ε]} ∈

F (I) for all ε > 0.
Let Jε = [xNε

− ε, xNε
+ ε]. If we fix an ε > 0 then we have Cε ∈ F (I) as well as C ε

2
∈ F (I).

Hence Cε ∩C ε
2
∈ 2mI

Z
(F). This implies that Jε ∩ J ε

2
, φ that is {(i, j) ∈ N×N : xi j ∈ J} ∈ F (I)

that is diamJ ≤ diamJε where the diam of J denotes the length of interval J.
In this way, by induction we get the sequence of closed intervals Jε = I0 ⊇ I1 ⊇ ... ⊇

Ii j ⊇ ... with the property that diamIi j ≤
1
2diamI(i−1)(j−1) for (i,j=2,3,4, ...) and {(i, j) ∈ N × N :

xi j ∈ 2mI
Z

(F)} ∈ Ii j for (i,j=1,2,3,4, ...). Then there exists a ξ ∈ ∩Ii j where (i, j) ∈ N ×N such that
ξ = I − lim x. So that fi j(ξ) = I − lim fi j(x), that is L = I − lim fi j(x).

Theorem 4. Let (fi j) and (gi j) be modulus functions for some fixed k that satisfy the 42-condition.
If X is any of the spaces 2Z

I , 2Z
I
0, 2mI

Z
and 2mI

Z0
etc., then the following assertions hold.

(a)X(gi j) ⊆ X(fi j.gi j),
(b)X(fi j) ∩ X(gi j) ⊆ X(fi j + gi j)

Proof. (a) Let (xmn) ∈ 2Z
I
0(gi j). Then

I − lim
m,n

gi j(|xmn|) = 0. (2.5)

Let ε > 0 and choose δ with 0 < δ < 1 such that fi j(t) < ε for 0 < t < δ. Write ymn = gi j(|xmn|)
and consider

lim
m,n

fi j(ymn) = lim
m,n

fi j(ymn)ymn<δ
+ lim

m,n
fi j(ymn)ymn≥δ

(2.6)

Now for ymn < δ, we already have lim
m,n

fi j(ymn) < ε. For ymn ≥ δ, we have ymn <
ymn
δ
< 1 + ymn

δ
.

Since fi j is non-decreasing, it follows that fi j(ymn) < fi j(1 +
ymn
δ

) < 1
2 fi j(2) + 1

2 fi j(
2ymn
δ

)
Since fi j satisfies the 42-condition, therefore for ymn ≥ δ > 0 we can choose some K > 0 such

that fi j(ymn) < 1
2 K ymn

δ
fi j(2) + 1

2 K ymn
δ

fi j(2) = K ymn
δ

fi j(2)
Hence lim

m,n
fi j(ymn) ≤ max(1,K)δ−1 fi j(2) lim

m,n
(ymn) = ε′(say). Substituting in equation (2.6), we

get
lim
m,n

fi j(ymn) = ε + ε′. (2.7)

200 Vakeel et al. / Theory and Applications of Mathematics & Computer Science 5 (2) (2015) 194– 202

From (2.5), (2.6) and (2.7), we have I − lim
m,n

fi j(gi j(|xmn|)) = 0.

Hence (xmn) ∈ 2Z
I
0(fi j.gi j). Thus 2Z

I
0(gi j) ⊆ 2Z

I
0(fi j.gi j). The other cases can be proved

similarly.
(b) Let (xmn) ∈ 2Z

I
0(fi j) ∩ 2Z

I
0(gi j). Then I − lim

m,n
fi j(|xmn|) = 0 and I − lim

m,n
gi j(|xmn|) = 0

The rest of the proof follows from the following equality lim
m,n

(fi j + gi j)(|xmn|) = lim
m,n

fi j(|xmn|) +

lim
m,n

gi j(|xmn|).

Corollary 2.1. X ⊆ X(fi j) for some fixed (i, j) and X = 2Z
I , 2Z

I
0, 2mI

Z
and 2mI

Z0
.

Theorem 5. The spaces 2Z
I
0(F) and 2mI

Z0
(F) are solid and monotone .

Proof. We shall prove the result for 2Z
I
0(F).

Let (xi j) ∈ 2Z
I
0(F). Then

I − lim
(i, j)

fi j(|xi j|) = 0. (2.8)

Let (αi j) be a sequence of scalars with |αi j| ≤ 1 for all (i, j) ∈ N × N. Then the result follows from
(2.8) and inequality fi j(|αi jxi j|) ≤ |αi j| fi j(|xi j|) ≤ fi j(|xi j|) for all (i, j) ∈ N × N. The space 2Z

I
0(F)

is monotone follows from Lemma 1. For 2mI
Z0

(F) the result can be proved similarly.

Theorem 6. The spaces 2Z
I(F) and 2Z

I
0(F) are sequence algebras.

Proof. We prove the result for 2Z
I
0(F). Let (xi j), (yi j) ∈ 2Z

I
0(F). Then

I − lim fi j(|xi j|) = 0

and
I − lim fi j(|yi j|) = 0

Therefore, we have
I − lim fi j(|(xi j.yi j)|) = 0.

Thus (xi j.yi j) ∈ 2Z
I
0(F) and hence 2Z

I
0(F) is a sequence algebra. In a similar way we can prove

the result for the space 2Z
I(F).

Theorem 7. The spaces 2Z
I(F) and 2Z

I
0(F) are not convergence free in general.

Proof. Here we give a counter example. Let I = I f and fi j(x) = x3 for some fixed (i,j) and for all
x = (xmn) ∈ [0,∞). Consider the sequence (xmn) and (ymn) defined by

xmn =
1

m + n
and ymn = m + n for all (m, n) ∈ N × N.

Then (xmn) ∈ 2Z
I(F) ∩ 2Z

I
0(F), but (ymn) < 2Z

I(F) ∩ 2Z
I
0(F). Hence the spaces 2Z

I
0(F) and

2Z
I
0(F) are not convergence free.

Theorem 8. 2Z
I
0(F) ⊂ 2Z

I(F) ⊂ 2Z
I
∞(F).

Vakeel et al. / Theory and Applications of Mathematics & Computer Science 5 (2) (2015) 194– 202 201

Proof. Let (xi j) ∈ 2Z
I(F). Then there exists L ∈ C such that I − lim fi j(|xi j − L|) = 0. We have

fi j(|xi j|) ≤
1
2

fi j(|xi j − L|) +
1
2

fi j(|L|).

Taking the supremum over (i, j) on both sides we get (xi j) ∈ 2Z
I
∞(F). The inclusion 2Z

I
0(F) ⊂ 2Z

I(F)
is obvious.

Theorem 9. The function ~ : 2mI
Z

(F)→ R is the Lipschitz function, where
2mI
Z

(F) = 2Z
I
∞(F) ∩ 2Z

I(F), and hence uniformly continuous.

Proof. Let x = (xi j), y = (i j) ∈ 2mI
Z

(F), x , y.
Then the sets

Ax = {(i, j) ∈ N × N : |xi j − ~(x)| ≥ ||x − y||∗} ∈ I,

Ay = {(i, j) ∈ N × N : |yi j − ~(y)| ≥ ||x − y||∗} ∈ I.

Thus the sets,
Bx = {(i, j) ∈ N × N : |xi j − ~(x)| < ||x − y||∗} ∈ F (I),

By = {(i, j) ∈ N × N : |yi j − ~(y)| < ||x − y||∗} ∈ F (I).

Hence also B = Bx ∩ By ∈ mI
2Z

(F), so that B , φ.
Now taking (i, j) ∈ we have, B,

|~(x) − ~(y)| ≤ |~(x) − xi j| + |xi j − yi j| + |yi j − ~(y)| ≤ 3||x − y||∗.

Thus ~ is a Lipschitz function.
For the space 2mI

Z0
(F) the result can be proved similarly.

Theorem 10. If x, y ∈ 2mI
Z

(F), then (x.y) ∈ 2mI
Z

(F) and ~(xy) = ~(x)~(y).

Proof. For ε > 0
Bx = {(i, j) ∈ N × N : |xi j − ~(x)| < ε} ∈ F (I),

Bx = {(i, j) ∈ N × N : |yi j − ~(y)| < ε} ∈ F (I).

Now,

|xi jyi j − ~(x)~(y)| = |xi jyi j − xi j~(y) + xi j~(y) − ~(x)~(y)| ≤ |xi j||yi j − ~(y)| + |~(y)||xi j − ~(x)| (2.9)

As 2mI
Z

(F) ⊆ 2Z
I
∞(F), there exists an M ∈ R such that |xi j| < M and |~(y)| < M.

Using equation (2.9), we get

|xi jyi j − ~(x)~(y)| ≤ Mε + Mε = 2Mε

For all (i, j) ∈ Bx ∩ By ∈ 2mI(F).
Hence (x.y) ∈ 2mI

Z
(F) and ~(xy) = ~(x)~(y).

For the space 2mI
Z0

(F) the result can be proved similarly.

Acknowledgments: The authors would like to record their gratitude to the reviewer for his
careful reading and making some useful corrections which improved the presentation of the paper.

202 Vakeel et al. / Theory and Applications of Mathematics & Computer Science 5 (2) (2015) 194– 202

References

Altay, B., F. Başar and M. Mursaleen (2006). On the Euler sequence space which include the spaces which include
the spaces lp and l∞. Inform. Sci. 176(10), 1450–1462.

Başar, F. and B. Altay (2003). On the spaces of sequences of p-bounded variation and related matrix mappings.
Ukrainion Math.J. 55(1), 136–147.

Buck, R.C. (1953). Generalized asymptotic density. Amer.J.Math. 75(1), 335–346.
Connor, J.S. (1989). On strong matrix summability with respect to a modulus and statistical convergence.

Canad.Math.Bull. 32, 194–198.
Connor, J.S. (1998). The statistical and strong P-Cesaro convergence of sequences. Analysis 8, 47–63.
Connor, J.S. and J. Kline (1996). On statistical limit points and the consistency of statistical convergence.

J.Math.Anal.Appl. 197, 392–399.
Connor, J.S., J.A. Fridy and J. Kline (1994). Statistically Pre-Cauchy sequence. Analysis 14, 311–317.
Demirci, K. (2001). I-limit superior and limit inferior. Math. Commun. (6), 165–172.
Fast, H. (1951). Sur la convergence statistique. Colloq. Math. 2, 241–244.
Fridy, J.A. (1985). On statistical convergence. Analysis 5, 301–313.
Fridy, J.A. (1993). Statistical limit points. Proc.Amer.Math.Soc. 11, 1187–1192.
Garling, D.J.H. (1966). On symmetric sequence spaces. Proc.London. Math.Soc. 16, 85–106.
Khan, V.A. and N. Khan (2013). On some I- Convergent double sequence spaces defined by a modulus function.

Engineering,Scientific Research 5, 35–40.
Khan, V.A., Khalid Ebadullah, A. Esi and M. Shafiq (2013). On Zeweir I-convergent sequence spaces defined by a

modulus function. Afrika Matematika 3(2), 22–27.
Kolk, E. (1993). On strong boundedness and summability with respect to a sequence of modulii. Acta Com-

ment.Univ.Tartu 960, 41–50.
Kolk, E. (1994). Inclusion theorems for some sequence spaces defined by a sequence of modulii. Acta Com-

ment.Univ.Tartu 970, 65–72.
Kostyrko, P., T.Šalát and W.Wilczyński (2000). I-convergence. Real Analysis Exchange 26(2), 669–686.
Köthe, G. (1970). Topological Vector spaces 1. Springer,Berlin.
Malkowsky, E. (1997). Recent results in the theory of matrix transformation in sequence spaces. Math.Vesnik 49, 187–

196.
Nakano, H. (1953). Concave modulars. J. Math Soc. Japan 5, 29–49.
Ng, P.N. and P.Y. Lee (1978). Cesaro sequence spaces of non-absolute type. Pracc.Math. 20(2), 429–433.
Ruckle, W.H. (1967). Symmetric coordinate spaces and symmetric bases. Canad.J.Math. 19, 828–838.
Ruckle, W.H. (1968). On perfect symmetric BK-spaces. Math.Ann. 175, 121–126.
Ruckle, W.H. (1973). FK-spaces in which the sequence of coordinate vectors is bounded. Canad.J.Math. 25(5), 873–

875.
Šalát, T., B.C. Tripathy and M. Ziman (2004). On some properties of I-convergence. Tatra Mt. Math. Publ. 28, 279–

286.
Schoenberg, I. J. (1959). The integrability of certain functions and related summability methods. Amer.Math.Monthly

66, 361–375.
Şengönül, M. (2007). On the zweier sequence space. Demonstratio Mathematica (1), 181–196.
Tripathy, B.C. and B. Hazarika (2011). Some I-Convergent sequence spaces defined by Orlicz function. Acta Mathe-

maticae Applicatae Sinica 27(1), 149–154.
Wang, C.S. (1978). On nörlund sequence spaces. Tamkang J.Math. 9, 269–274.

Theory and Applications of Mathematics & Computer Science 5 (2) (2015) 203–212

Some Families of q-Series Identities and Associated Continued
Fractions

H. M. Srivastavaa,∗, S. N. Singhb, S. P. Singhb

aDepartment of Mathematics and Statistics, University of Victoria, Victoria, British Columbia V8W 3R4, Canada
and China Medical University, Taichung 40402, Taiwan, Republic of China

bDepartment of Mathematics, Tilak Dhari Post-Graduate College, Jaunpur 222002, Uttar Pradesh, India

Abstract
In this paper, by using some known q-identities, the authors derive several results involving q-series and associated

continued fractions. Some other closely-related q-identities are also considered.

Keywords: q-Series, q-Identities, q-Series identities, Rogers-Ramanujan identities, Continued fractions.
2010 MSC: Primary 11A55, 33D90; Secondary 11F20.

1. Introduction, Definitions and Notations

For q, λ, µ ∈ C (|q| < 1), the basic (or q-) shifted factorial (λ; q)µ is defined by (see, for
example, (Slater, 1966); see also the recent works (Cao & Srivastava, 2013), (Choi & Srivastava,
2014), (Srivastava, 2011), (Srivastava & Choi, 2012) and (Srivastava & Karlsson, 1985) dealing
with the q-analysis)

(λ; q)µ :=
∞∏
j=0

(
1 − λq j

1 − λqµ+ j

)
(|q| < 1; λ, µ ∈ C), (1.1)

so that

(λ; q)n :=

1 (n = 0)

n−1∏
j=0

(
1 − λq j

)
(n ∈ N)

(1.2)

∗Corresponding author
Email addresses: harimsri@math.uvic.ca (H. M. Srivastava), snsp39@gmail.com (S. N. Singh),

snsp39@yahoo.com (S. P. Singh)

204 H.M. Srivastava et al. / Theory and Applications of Mathematics & Computer Science 5 (2) (2015) 203–212

and

(λ; q)∞ :=
∞∏
j=0

(
1 − λ q j

)
(|q| < 1; λ ∈ C), (1.3)

where, as usual, C denotes the set of complex numbers and N denotes the set of positive integers
(with N0 := N ∪ {0}). For convenience, we write

(a1, · · · , ak; q)n = (a1; q)n · · · (ak; q)n (1.4)

and
(a1, · · · , ak; q)∞ = (a1; q)∞ · · · (ak; q)∞. (1.5)

In the literature on q-series, there usually are two types of identities as follows:

Type 1. Series = Product

and

Type 2. Series = Series.

The most famous identities of Type 1 are the following Rogers-Ramanujan identities:

∞∑
n=0

qn2

(q; q)n
=

1
(q; q5)∞(q4; q5)∞

(1.6)

and

∞∑
n=0

qn(n+1)

(q; q)n
=

1
(q2; q5)∞(q3; q5)∞

. (1.7)

The identities (1.6) and (1.7) have a remarkably fascinating history. They were first proved in
1894 by Rogers (Rogers, 1894), but his paper was completely overlooked. They were rediscov-
ered (without any published proof) by Ramanujan sometime before 1913. These identities were
discovered again in 1917 and proved independently by Schur (Schur, 1973).

There are numerous q-identities that are similar to the Rogers-Ramanujan identities (1.6) and
(1.7). These include (for example) the q-identities due to Jackson (Jackson, 1928), Rogers (see
(Rogers, 1894) and (Rogers, 1917)), Bailey (see (Bailey, 1947) and (Bailey, 1949)), and Slater
(Slater, 1952) (see also (McLaughlin & Sills, 2009)). In particular, Slater’s paper (Slater, 1952)
contains a list of 130 q-identities of the Rogers-Ramanujan type. On the other hand, in terms of
continued fractions, Ramanujan stated for |q| < 1 that

∞∑
n=0

qn2

(q; q)n

∞∑
n=0

qn(n+1)

(q; q)n

= 1 +
q

1+
q2

1+
q3

1+
· · · . (1.8)

H.M. Srivastava et al. / Theory and Applications of Mathematics & Computer Science 5 (2) (2015) 203–212 205

There are numerous q-identities of Type 2 in the ‘Lost’ Notebook of Ramanujan (see (Ra-
manujan, 1988)) and also in other places in the literature on q-series. Our aim in this paper is to
consider various q-identities of Type 2 in order to establish a number of results involving continued
fractions of the form involved in (1.8).

2. A Set of Main Results

In this section, we propose to derive continued-fraction expressions for the quotients of the
series involved in some known q-identities.

First of all, we consider the following identity (see (Bowman & McLaughlin, 2006, p. 4,
Theorem 1, Eq. (2.10)) and (McLaughlin et al., 2008, p. 41, Eq. (6.1.7))):

∞∑
n=0

qn(n−1)(−γ)n

(γq; q2)n(q2; q2)n
=

1
(γq; q2)∞

∞∑
n=0

qn(n−1)(−γ)n

(q; q)n
. (2.1)

and its companion identity given by (see (Bowman & McLaughlin, 2006, p. 4, Theorem 1, Eq.
(2.11)) and (McLaughlin et al., 2008, p. 41, Eq. (6.1.8)))

∞∑
n=0

qn(n−1)(−γ)n

(γ/q; q2)n(q2; q2)n
=

1
(γ/q; q2)∞

∞∑
n=0

qn(n−2)(−γ)n

(q; q)n
. (2.2)

I. We now investigate the quotient of the right-hand sides of (2.1) and (2.2) as follows:

(γ/q; q2)∞
(γq; q2)∞

∞∑
n=0

qn(n−1)(−γ)n

(q; q)n

∞∑
n=0

qn(n−2)(−γ)n

(q; q)n

=
1 − γ

q
∞∑

n=0

qn(n−2)(−γ)n

(q; q)n

∞∑
n=0

qn(n−1)(−γ)n

(q; q)n

=
1 − γ

q

1 +

∞∑
n=0

qn(n−2)(−γ)n

(q; q)n
−

∞∑
n=0

qn(n−1)(−γ)n

(q; q)n

∞∑
n=0

qn(n−1)(−γ)n

(q; q)n

=
1 − γ

q

1 +

∞∑
n=0

(−γ)nqn(n−2) (1 − qn)
(q; q)n

∞∑
n=0

(−γ)nqn(n−1)

(q; q)n

206 H.M. Srivastava et al. / Theory and Applications of Mathematics & Computer Science 5 (2) (2015) 203–212

=
1 − γ

q

1 +

∞∑
n=1

(−γ)nqn(n−2)

(q; q)n−1

∞∑
n=0

(−γ)nqn(n−1)

(q; q)n

=
1 − γ

q

1 + (−γ/q)
∞∑

n=0

(−γ)nqn(n−1)

(q; q)n

∞∑
n=0

(−γ)nqn2

(q; q)n

. (2.3)

Proceeding in the same way, we find that

(γ/q; q2)∞
(γq; q2)∞

∞∑
n=0

qn(n−1)(−γ)n

(q; q)n

∞∑
n=0

qn(n−2)(−γ)n

(q; q)n

=
1 − γ

q

1−
(γ/q)

1−
γ

1−
γq
1−

γq2

1−
γq3

1−
· · · . (2.4)

From (2.1), (2.2) and (2.4), we have

∞∑
n=0

qn(n−1)(−γ)n

(γq; q2)n(q2; q2)n

∞∑
n=0

qn(n−1)(−γ)n

(γ/q; q2)n(q2; q2)n

=
1 − γ

q

1−
(γ/q)

1−
γ

1−
γq
1−

γq2

1−
γq3

1−
· · · . (2.5)

The following special cases and consequences of (2.5) are worthy of note. Firstly, upon setting
γ = −q in (2.5), we get

∞∑
n=0

qn2

(q4; q4)n

∞∑
n=0

qn2

(−1; q2)n(q2; q2)n

=
2

1+
1

1+
q

1+
q2

1+
· · · , (2.6)

which, in light of the known result (Andrews & Berndt, 2005, p. 87, Entry (3.2.3)), yields

2(q; q5)∞(q4; q5)∞
(q2; q4)∞

∞∑
n=0

qn2

(−1; q2)n(q2; q2)n
= 1 +

1
1+

q
1+

q2

1+
· · · . (2.7)

H.M. Srivastava et al. / Theory and Applications of Mathematics & Computer Science 5 (2) (2015) 203–212 207

If we use another known result (Andrews & Berndt, 2005, p. 153, Corollary (6.2.6)) in (2.7),
we obtain

2
∞∑

n=0

qn2

(−1; q2)n(q2; q2)n
=

(q2; q4)∞
(q; q5)∞(q4; q5)∞

+
(q2; q4)∞

(q2; q5)∞(q3; q5)∞
. (2.8)

We next set γ = −q3 in (2.5) and obtain

∞∑
n=0

qn2+2n

(−q4; q2)n(q2; q2)n

∞∑
n=0

qn(n+2)

(q4; q4)n

=
1 + q2

1+
q2

1+
q3

1+
q4

1+
· · · , (2.9)

which, in conjunction with a known result (Andrews & Berndt, 2005, p. 87, Entry (3.2.3)), yields
the following consequence of (2.5):

(q2; q5)∞(q3; q5)∞
(q2; q4)∞

∞∑
n=0

qn(n+2)

(−q2; q2)n+1(q2; q2)n
=

1
1+

q2

1+
q3

1+
q4

1+
· · · . (2.10)

II. Let us consider the following q-identity of Type 2 (see (Bowman & McLaughlin, 2006, p. 4,
Theorem 1, Eq. (2.7)) and (McLaughlin et al., 2008, p. 40, Eq. (6.1.4))):

∞∑
n=0

(a; q)n

(q; q)n
γnqn(n−1)/2 = (−γ; q)∞

∞∑
n=0

(−aγ)n qn(n−1)

(−γ; q)n(q; q)n
, (2.11)

which, upon replacing γ by γq, yields

∞∑
n=0

(a; q)n

(q; q)n
γnqn(n+1)/2 = (−γq; q)∞

∞∑
n=0

(−aγ)nqn2

(−γq; q)n(q; q)n
. (2.12)

By taking the quotient of the left-hand sides of (2.11) and (2.12), we find that

∞∑
n=0

(a; q)n

(q; q)n
γnqn(n+1)/2

∞∑
n=0

(a; q)n

(q; q)n
γnqn(n−1)/2

=
1

1 +

∞∑
n=0

(a; q)n

(q; q)n
γnqn(n−1)/2 −

∞∑
n=0

(a; q)n

(q; q)n
γnqn(n+1)/2

∞∑
n=0

(a; q)n

(q; q)n
γnqn(n+1)/2

=
1

1 +

∞∑
n=1

(a; q)n

(q; q)n−1
γnqn(n−1)/2

∞∑
n=0

(a; q)n

(q; q)n
γnqn(n+1)/2

208 H.M. Srivastava et al. / Theory and Applications of Mathematics & Computer Science 5 (2) (2015) 203–212

·
1

1 + γ(1−a)
∞∑

n=0

(a; q)n

(q; q)n
γnqn(n+1)/2

∞∑
n=0

(aq; q)n

(q; q)n
γnqn(n+1)/2

. (2.13)

It is easily observed that

∞∑
n=0

(a; q)n

(q; q)n
γnqn(n+1)/2

∞∑
n=0

(aq; q)n

(q; q)n
γnqn(n+1)/2

= 1 +

∞∑
n=0

(a; q)n

(q; q)n
γnqn(n+1)/2 −

∞∑
n=0

(aq; q)n

(q; q)n
γnqn(n+1)/2

∞∑
n=0

(aq; q)n

(q; q)n
γnqn(n+1)/2

= 1 +

∞∑
n=0

(aq; q)n−1(−a)(1 − qn)
(q; q)n

γnqn(n+1)/2

∞∑
n=0

(aq; q)n

(q; q)n
γnqn(n+1)/2

= 1 −
aγq

∞∑
n=0

(aq; q)n

(q; q)n
γnqn(n+1)/2

∞∑
n=0

(aq; q)n

(q; q)n
γnqn(n+3)/2

, (2.14)

which, when combined with (2.14), yields

∞∑
n=0

(a; q)n

(q; q)n
γnqn(n+1)/2

∞∑
n=0

(a; q)n

(q; q)n
γnqn(n−1)/2

=
1

1+
γ(1 − a)

1−
aγq

∞∑
n=0

(aq; q)n

(q; q)n
γnqn(n+1)/2

∞∑
n=0

(aq; q)n

(q; q)n
γnqn(n+3)/2

. (2.15)

Finally, by iterating the above process, we get the following result:

∞∑
n=0

(a; q)n

(q; q)n
γnqn(n+1)/2

∞∑
n=0

(a; q)n

(q; q)n
γnqn(n−1)/2

=
1

1+
γ(1 − a)

1−
aγq
1+

γq(1 − aq)
1−

aγq3

1+
· · · . (2.16)

H.M. Srivastava et al. / Theory and Applications of Mathematics & Computer Science 5 (2) (2015) 203–212 209

Applying the q-identities (2.11), (2.12) and (2.16), we find that

∞∑
n=0

(−aγ)nqn2

(−γq; q)n(q; q)n

∞∑
n=0

(−aγ)nqn(n−1)

(−γ; q)n(q; q)n

=
(1 + γ)

1+
γ(1 − a)

1−
aγq
1+

γq(1 − aq)
1−

aγq3

1+
· · · , (2.17)

which, upon setting γ = −q, yields

∞∑
n=0

anqn(n+1)

(q2; q)n(q; q)n

∞∑
n=0

anqn2

[(q; q)n]2

=
(1 − q)

1−
q(1 − a)

1+
aq2

1−
q2(1 − aq)

1+
aq4

1−
· · · . (2.18)

In its further special case when a = 1, (2.18) yields

∞∑
n=0

qn(n+1)

(q; q)n+1(q; q)n
=

∞∑
n=0

qn2

(q; q)2
n
=

1
(q; q)∞

. (2.19)

For γ = 1 and a = −q, we find from (2.17) that

∞∑
n=0

qn(n+1)

(q2; q2)n

∞∑
n=0

qn2

(−1; q)n(q; q)n

=
2

1+
(1 + q)

1+
q2

1+
q(1 + q2)

1+
q4

1+
· · · . (2.20)

If, instead, we put γ = 1 and a = q in (2.17), we get

∞∑
n=0

(−1)nqn(n+1)

(q2; q2)n

∞∑
n=0

(−1)nqn2

(−1; q)n(q; q)n

=
2

1+
(1 − q)

1−
q2

1+
q(1 − q2)

1−
q4

1+
· · · . (2.21)

We now recall a known result (Andrews & Berndt, 2005, p. 152, Entry (6.2.32)) with a = −1
as follows:

∞∑
n=0

(−1)nqn(n+1)

(q2; q2)n
=

1
(−q; q)∞

∞∑
n=0

qn(n+1)/2 = (q2; q2)∞, (2.22)

which, in combination with (2.21), yields

2
(q2; q2)∞

∞∑
n=0

(−1)nqn2

(−1; q)n(q; q)n
= 1 +

1 − q
1−

q2

1+
q(1 − q2)

1−
q4

1+
· · · . (2.23)

210 H.M. Srivastava et al. / Theory and Applications of Mathematics & Computer Science 5 (2) (2015) 203–212

III. Let us consider the following known q-identity (see (Bowman & McLaughlin, 2006, p. 4,
Theorem 1, Eq. (2.9)) and (McLaughlin et al., 2008, p. 40, Eq. (6.1.6))):

∞∑
n=0

q3n(n−1)/2 γn

(γ; q2)n(q; q)n
=

1
(γ; q2)∞

∞∑
n=0

qn(2n−1)γn

(q2; q2)n
, (2.24)

which, upon replacing γ by γq2, yields

∞∑
n=0

qn(3n+1)/2 γn

(γq2; q2)n(q; q)n
=

1
(γq2; q2)∞

∞∑
n=0

qn(2n+1)γn

(q2; q2)n
. (2.25)

For the quotient of of the right-hand sides of (2.24) and (2.25), we have

(1 − γ)
∞∑

n=0

qn(2n+1)γn

(q2; q2)n

∞∑
n=0

q2n2−nγn

(q2; q2)n

=
(1 − γ)

1 +

∞∑
n=0

γnqn(2n−1)

(q2; q2)n
(1 − q2n)

∞∑
n=0

γnqn(2n+1)

(q2; q2)n

=
(1 − γ)

1 +

∞∑
n=1

γnqn(2n−1)

(q2; q2)n−1
∞∑

n=0

γnqn(2n−1)

(q2; q2)n

=
(1 − γ)

1 + γq
∞∑

n=0

γnqn(2n+1)

(q2; q2)n
∞∑

n=0

γnqn(2n+3)

(q2; q2)n

. (2.26)

Proceeding in the above way, we obtain

(1 − γ)
∞∑

n=0

qn(2n+1)γn

(q2; q2)n

∞∑
n=0

qn(2n−1)γn

(q2; q2)n

=
(1 − γ)

1+
γq
1+

γq3

1+
γq5

1+
γq7

1+
· · · . (2.27)

Finally, by applying (2.24), (2.25) and (2.27), we get

∞∑
n=0

qn(3n+1)/2γn

(γq2; q2)n(q2; q2)n

∞∑
n=0

q3n(n−1)/2γn

(γ; q2)n(q2; q2)n

=
1 − γ
1+

γq
1+

γq3

1+
γq5

1+
γq7

1+
· · · . (2.28)

H.M. Srivastava et al. / Theory and Applications of Mathematics & Computer Science 5 (2) (2015) 203–212 211

In its special case when γ = −1, we find from (2.28) that

∞∑
n=0

(−1)nqn(3n+1)/2

(q4; q4)n

∞∑
n=0

(−1)nq3n(n−1)/2

(−1; q2)n(q2; q2)n

=
2

1−
q

1−
q3

1−
q5

1−
q7

1−
· · · . (2.29)

Many other similar results involving q-series and associated continued fractions can also be
derived analogously.

3. Concluding Remarks and Observations

While q-identities of Type 1 include such important and widely-investigated results as the cel-
ebrated Rogers-Ramanujan identities, we have successfully derived several families of q-identities
of Type 2 involving q-series and associated continued fractions. We have also considered some
other closely-related q-identities of Types 1 and 2.

Such q-series identities of Type 2 as (for example) (2.1), (2.2), (2.11) and (2.24), upon which
our present investigation depends remarkably heavily, are derivable as special or limit cases of
relatively more familiar known q-identities (see, for details, (Bowman & McLaughlin, 2006, pp.
4–7) and (McLaughlin et al., 2008, p. 42)).

Acknowledgements

The second-named author (S. N. Singh) is thankful to The Department of Science and Technol-
ogy of the Government of India (New Delhi, India) for support under a major research project No.
SR/S4/MS:735/2011 dated 07 May 2013, entitled “A Study of Transformation Theory of q-Series,
Modular Equations, Continued Fractions and Ramanujan’s Mock-Theta Functions,” under which
this work was done.

References

Andrews, G. E. and B. C. Berndt (2005). Ramanujan’s Lost Notebook, Part I. Springer, Berlin, Heidelberg and New
York.

Bailey, W. N. (1947). Some identities in combinatory analysis. Proc. London Math. Soc. (Ser. 2) 49, 421–435.
Bailey, W. N. (1949). Identities of the Rogers-Ramanujan type. Proc. London Math. Soc. (Ser. 2) 50, 1–10.
Bowman, D. and J. McLaughlin (2006). Some more identities of the Rogers-Ramanujan type. Preprint 2006

[arXiv:math/0607202v2 [math.NT] 8 Jul 2006].
Cao, J. and H. M. Srivastava (2013). Some q-generating functions of the Carlitz and Srivastava-Agarwal types associ-

ated with the generalized Hahn polynomials and the generalized Rogers-Szegö polynomials. Appl. Math. Comput.
219, 8398–8406.

Choi, J. and H. M. Srivastava (2014). q-extensions of a multivariable and multiparameter generalization of the Gottlieb
polynomials in several variables. Tokyo J. Math. 37, 111–125.

212 H.M. Srivastava et al. / Theory and Applications of Mathematics & Computer Science 5 (2) (2015) 203–212

Jackson, F. H. (1928). Examples of a generalization of Euler’s transformation for power series. Messenger Math.
57, 169–187.

McLaughlin, J., A. V. Sills and P. Zimmer (2008). Rogers-Ramanujan-Slater type identities. Electron. J. Combin.
15, 1–59. Article ID DS15.

McLaughlin, J. and A. V. Sills (2009). Some more identities of the Rogers-Ramanujan type. Ramanujan J. 18, 307–
325.

Ramanujan, S. (1988). The ’Lost’ Notebook and Other Unpublished Papers (With an Introduction by G. E. Andrews).
Springer-Verlag, Berlin, Heidelberg and New York; Narosa Publishing House, New Delhi.

Rogers, L. J. (1894). Second memoir on the expansion of certain infinite products. Proc. London Math. Soc. (Ser. 1)
25, 318–343.

Rogers, L. J. (1917). On two theorems of combinatory analysis and some allied identities. Proc. London Math. Soc.
(Ser. 2) 16, 315–336.

Schur, I. (1973). Ein bertrag zur additiven zahlentheorie and zur theorie der ketlenbruchen. In: Gesammelte Ab-
handlungen, Band II. Springer-Verlag, Berlin, Heidelberg and New York. pp. 117–136. [Originally published
in Sitzungsherichte der Preussischen Akademie der Wissenschaften: Physikalischo-Methematische Klasse (1917),
302–321].

Slater, L. J. (1952). Further identities of the Rogers-Ramanujan type. Proc. London Math. Soc. (Ser. 2) 54, 147–167.
Slater, L. J. (1966). Generalized Hypergeometric Functions. Cambridge University Press, Cambridge, London and

New York.
Srivastava, H. M. (2011). Some generalizations and basic (or q-) extensions of the Bernoulli, Euler and Genocchi

polynomials. Appl. Math. Inform. Sci. 5, 390–444.
Srivastava, H. M. and J. Choi (2012). Zeta and q-Zeta Functions andAssociated Series and Integrals. Elsevier Science

Publishers, Amsterdam, London and New York.
Srivastava, H. M. and P. W. Karlsson (1985). Multiple Gaussian Hypergeometric Series. Halsted Press (Ellis Horwood

Limited, Chichester), John Wiley and Sons, New York, Chichester, Brisbane and Toronto.

Theory and Applications of Mathematics & Computer Science 5 (2) (2015) 213–220

Primality Testing and Factorization by using Fourier Spectrum of
the Riemann Zeta Function

Takaaki Mushaa,∗

a Advanced Science-Technology Research Organization 3-11-7-601,
Namiki, Kanazawa-ku, Yokohama 236-0005 Japan

Abstract
In number theory, integer factorization is the decomposition of a composite number into a product of smaller

integers, for which there is not known efficient algorithm. In this article, the author tries to make primality testing
and factorization of integers by using Fourier transform of a correlation function generated from the Riemann zeta
function. From the theoretical analysis, we can see that prime factorization for the integer composed of two different
primes can be conducted within a polynomial time and it can be seen that this special case belongs to the P class.

Keywords: Primality testing, prime factorization, Fourier transform, Riemann zeta function.
2010 MSC: 11A51, 11M06, 11Y05, 11Y11, 42A38.

1. Introduction

In number theory, integer factorization is the decomposition of a composite number into a
product of smaller integers. When the numbers are very large, no efficient, non-quantum integer
factorization algorithm is known. However, it has not been proven that no efficient algorithm
exists (Klee & Wagon, 1991). The presumed difficulty of this problem is at the heart of widely
used algorithms in cryptography such as RSA. Many areas of mathematics and computer science
have been brought to bear on the problem, including elliptic curves, algebraic number theory, and
quantum computing.

Recently, Shor’s algorithm has been proposed by Peter Shor, which is a quantum algorithm
for integer factorization. On a quantum computer, it has been proved that Shor’s algorithm runs
in polynomial time (Shor, 1997). But the polynomial time factoring algorithm of integers has not
been found for ordinary computing systems.

∗Corresponding author
Email address: takaaki.mushya@gmail.com (Takaaki Musha)

214 Takaaki Musha / Theory and Applications of Mathematics & Computer Science 5 (2) (2015) 213–220

In optics, we know that white light consists of all visible frequencies mixed together and the
prism breaks them apart so we can see the separate frequencies. It is like the Riemann zeta function
be consisted of primes shown as

ζ(s) =

∞∑
n=1

1
ns =

∏
p

1
(1 − p−s)

where p runs over all of primes.
From which, we can consider the white light as a zeta function and separate component fre-

quencies are primes. As we use a prism to decompose visible light into components of different
frequencies, we can use Fourier transforms as a prism to decompose the zeta function into primes.
In this paper, the method of primality testing and prime factorization by using Fourier transforms
of the Riemann zeta function is presented.

2. Frequency spectrum of a correlation function generated from the Riemann Zeta function

Riemann zeta function is an analytic function defined by ζ(s) =

∞∑
n=1

n−s . From which, we

define the Fourier transform of zσ(t, τ) shown as

Zσ(t, ω) = lim
T→∞

∫ +T

−T
zσ(t, τ)e−iωτdτ, (2.1)

where zσ(t, τ) is a time-dependent autocorrelation function (Yen, 1987) given by

zσ(t, τ) = ζ(σ − i(t + τ/2)) · ζ∗(σ − i(t − τ/2)). (2.2)

In this formula, ζ∗(s) is a conjugate of ζ(s) .
In the previous paper of author’s (Musha, 2014), Zσ(t, ω) can be shown as

Zσ(t, ω) =

∞∑
n=1

a(n, t)
nσ

2πδ(ω − 1
2 log n), (2.3)

where a(n, t) is a real valued function given by a(n, t) =
∑
n=kl

cos[log(k/l)t] and δ(ω) is a Dirac’s

delta function.
As a(n, t) is a multiplicative on n which satisfies a(mn, t) = a(m, t)a(n, t) for the case when

satisfying (m, n) = 1, we have the following equation for the integer n given by n = paqbrc · · ·

(Musha, 2012):

Zσ
(
t, 1

2 log n
)

=
2πδ(0)

nσ
sin[(a + 1)t log p]

sin(t log p)

·
sin[(b + 1)t log q]

sin(t log q)
sin[(c + 1)t log r]

sin(t log r)
· · · . (2.4)

From the Fourier transform of Zσ
(
t, 1

2 log n
)

given by Fn(ω) =

∫ +∞

−∞

Zσ
(
t, 1

2 log n
)

e−iωtdt , we

can obtain the following Lemma.

Takaaki Musha / Theory and Applications of Mathematics & Computer Science 5 (2) (2015) 213–220 215

Lemma 1. If n = p1 p2 p3 · · · pk, where p1, p2, p3, · · · , pk are different primes, Fn(ω) for ω > 0 is
consisted of 2k−1 discrete spectrum shown as:

Fn(ω) = 2π
2k∑

i=1

δ(ω − λi 1 log p1 − λi 2 log p2 − · · · − λi k log pk), (2.5)

where λi k equals to −1 or +1.

Proof.

As a(n, t) =

2k∑
i=1

[cos(λi 1 log p1) + cos(λi 2 log p2) + · · · · · · + cos(λi k log pk)], where log p1, log p2,

log p3, · · · , log pk are linearly independent over Z (Kac, 1959), thus Fn(ω) is consisted of 2k−1 dif-
ferent spectrum shown as

Fn(ω) =2π
2k∑

i=1

δ(ω − λi 1 log p1 − λi 2 log p2 − · · · − λi k log pk)

+ 2π
2k∑

i=1

δ(ω + λi 1 log p1 + λi 2 log p2 + · · · + λi k log pk).

Then we obtain following Theorems.

Theorem 1. If and only Fn(ω) is consisted of a single spectra for ω ≥ 0 , then n is a prime.

Proof.
It is clear from Lemma 1.

Theorem 2. If and only Fn(ω) is consisted of two spectrum for ω ≥ 0, then n has either form of
n = p · q (p , q), n = p2 or n = p3.

Proof.
From Theorem 1, there is only a case for the integer n = p1 p2 · · · pk , whenFn(ω) is consisted of
two spectrum, that is n = p · q (p , q).

For r ≥ 1 of the function a(pr, t):

r = 1, a(p, t) = 2 cos(t log p)

r = 2, a(p2, t) = 1 + 2 cos(2t log p)

r = 3, a(p3, t) = 2 cos(t log p) + 2 cos(3t log p)

r = 4, a(p4, t) = 1 + 2 cos(2t log p) + 2 cos(4t log p)

r = 5, a(p5, t) = 2 cos(t log p) + 2 cos(3t log p) + 2 cos(5t log p)

r = 6, a(p6, t) = 1 + 2 cos(2t log p) + 2 cos(4t log p) + 2 cos(6t log p)

216 Takaaki Musha / Theory and Applications of Mathematics & Computer Science 5 (2) (2015) 213–220

r = 7, a(p7, t) = 2 cos(t log p) + 2 cos(3t log p)
+ 2 cos(5t log p) + 2 cos(7t log p)

...

Including the spectra at ω = 0, there are cases for r = 2 and r = 3 when a(n, t) has two spectrum.

3. Method for primality testing and factorization by using Fourier spectrum

From Theorems 1 and 2, we can make a primality testing and a factorization of the integer n
consisted of two primes from the Fourier spectrum Fn(ω) (ω ≥ 0) by following calculations:

©1 zσ(t, τ) = ζ(σ − i(t + τ/2)) · ζ∗(σ − i(t − τ/2)), (3.1)

©2 Zσ(t, ω) =

∫ +∞

−∞

zσ(t, τ)e−iωτdτ, (3.2)

©3 Fn(ω) =

∫ +∞

−∞

Zσ(t, 1
2 log n)e−iωtdt. (3.3)

From which we can obtain the Fourier spectrum by Fn(ω) =

∫ +∞

−∞

Zσ(t, 1
2 log n)e−iωtdt. Then

we can make a primality testing and integer factorization for an integer n, the process of which is
shown in Figure 1.

Figure 1. Process to conduct a primality testing for the integer n.

From this process, we can recognize the prime as a single spectra from the frequency analysis
result. If there are two spectrum observed from the calculation result, n has either form of n = p ·q
(p , q), n = p2 or n = p3 from Theorem 2.

3.1. Numerical Calculation Method to obtain Fn(ω)
To conduct calculations to obtain the values of Fn(ω) by using discrete Fourier transform, we

can select the value for frequency resolution as ∆ f = 1/4πn from ∆ω =
∣∣∣1
2 log n − 1

2 log(n ± 1)
∣∣∣ ≈

1/2n, for large numbers.
Then we select the maximum frequency of DFT analysis to be fmax = 4[log n/4π] (where

[] is a Gauss’s symbol), which makes ω = log n to be at the center of frequency range.

Takaaki Musha / Theory and Applications of Mathematics & Computer Science 5 (2) (2015) 213–220 217

The element number N for DFT calculation satisfies fmax = N · ∆ f /2 , then we have N =

[8n log n] + 1.
As Eq.(3.1) can be written in a discrete form as

zσ(m, l) = ζ(σ − i(m∆t + l∆τ/2))·ζ∗(σ − i(m∆t − l∆τ/2)). (3.4)

From the relation of ∆ f · ∆t = 1/N, we obtain

zσ(m, l) = ζ

(
σ − i

(
4πn
N

m +
2πn
N

l
))
ζ∗

(
σ − i

(
4πn
N

m −
2πn
N

l
))
. (3.5)

As the total time T0 = N · ∆t = 4πn, then Eq.(3.2) in a discrete form can be given by

Zσ(m, k) =
4πn
N

N−1∑
l=0

zσ(m, l) exp[−i2π(k∆ f) · (l∆τ)]. (3.6)

At the frequency of ω = 1
2 log n, we have

k∆ f · l ∆τ =
log n
4π
×

π

2 log n
l =

l
8
, (3.7)

then we have

y(m) =
4πn
N

N−1∑
l=0

zσ(m, l) exp
(
−i
π

4
l
)
, (3.8)

which corresponds to Zσ
(
t, 1

2 log n
)

.
From which, we have the discrete form of Eq.(3.3) given by

Y(k) =
4πn
N

N−1∑
m=0

y(m) exp
(
−i2π

km
N

)
, (3.9)

which shows the spectrum of Fn(ω) .
Thus we need the following three steps for calculations to obtain Fn(ω) .

©1 Input the integer n and we let N = [8n log n] + 1,

©2 zσ(m, l) = ζ

(
σ − i

(
4πn
N

m +
2πn
N

l
))
· ζ∗

(
σ − i

(
4πn
N

m −
2πn
N

l
))
,

©3 For m = 0 ∼ N − 1, calculate y(m) =
4πn
N

N−1∑
l=0

zσ(m, l) exp
(
−i
π

4
l
)
,

©4 For k = 0 ∼ N − 1, calculate Y(k) =
4πn
N

N−1∑
m=0

y(m) exp
(
−i2π

km
N

)
.

3.2. Some examples of primality testing
To confirm the validity of discrete computational algorism given in this paper, we try to com-

pute some examples shown as follows:
To generate the Riemann zeta function, we use Mathematica by Wolfram Research.
At the calculation, we set σ = 1.1 to compute Fn(ω) to minimize the noise generated by DFT

calculations.

218 Takaaki Musha / Theory and Applications of Mathematics & Computer Science 5 (2) (2015) 213–220

(Calculation program by using Mathematica).
σ=1.1; (Real Part of Zeta function)

n0=17; (Input an Integer)

n1=Ceiling[8*n0*Log[n0]];(Element number for calculation)

x[m ,l]:=Zeta[σ-I*(4*Pi*n0*m/n1+2*Pi*n0*l/n1)]*
Conjugate [Zeta[σ-I*(4*Pi*n0*m/n1-2*Pi*n0*l/n1)]];(Autocorrelation function of

zeta function)

data=Table[N[4*Pi*n0/n1*Sum[x[m,l]*Exp[-I*Pi*l/4],{l,0,n1 -1}]],{m,0,n1-1}];

ListPlot[Abs[InverseFourier[data]],PlotJoined→True,PlotR

ange→{{0,n1/2}, {0,200}}, Frame→True]; (DFT calculation and plot results)

Figure 2. Computational result for n=17(left) and n=37(right).

From calculation, we can see that there exists only one spectrum at the center and it can be
shown that both of numbers, 17 and 37 are primes.

Figure 3. Computational result for n=16(left) and n=21(right).

These results corresponds to a(p4, t) = 1 + 2 cos(2t log p) + 2 cos(4t log p) (three spectrum
including ω = 0) and a(p·q, t) = cos[(log q − log p)t] + cos[(log q − log p)t] (two spectrum), and
we can see that they are composite numbers.

Takaaki Musha / Theory and Applications of Mathematics & Computer Science 5 (2) (2015) 213–220 219

4. Running time for prime factorization by using DFT algorithms

As the value of Riemann zeta function can be generated by the formula (Gourdon & Sebah,
2003)

ζ(s) =
1

d0(1 − 21−s)

m∑
k=1

(−1)k−1dk

ks + γm(s), (4.1)

where dk = m
m∑

j=k

(m + j − 1)! 4 j

(m − j)! (2 j)!
, we can compute ζ(σ + it) with d decimal digits of accuracy,

which requires number of term m roughly equal to m ≈ 1.3d + 0.9|t| (Gourdon & Sebah, 2003).
To calculate Eq.(3.4), we need to compute up to t = N · ∆t = 4πn, hence we need m ≈

1.3d + 3.6πn to obtain the value of ζ(σ+ it) with d decimal digits of accuracy, which has expected
running time O(n2) .

As the running time to require DFT calculation is O(N2), thus we need the running time to
complete calculations of steps from©1 to©4 , to be estimated as O(n2(log n)2). Hence it can be seen
that primality testing of integer can be conducted in a polynomical time by using this algorithm.

Moreover, we can factor the integer which is composed of two different primes by steps from
©1 to©4 , because the calculated result of Fn(ω) has only two spectrum according to Theorem 2.

As two spectrum obtained can be given by ω1 = log q − log p and ω2 = log q + log p (Musha,
2014), we obtain p =

√
n · exp(−ω1) and q =

√
n · exp(ω1) (q > p) from them if we let ω1 is a

small spectrum obtained from the calculation of Fn(ω). From these obtained values for p and q,
we have finally to examine whether they satisfy n = p · q or not.

Thus it can be seen that prime factorization for the integer composed of two different primes
can be conducted in a polynomial time. There is no efficient, non-quantum integer factorization
algorithm is not known now (Yang, 2002), and it has been widely believed that no algorithm is
existed that can factor all integers in polynomial time. Thus the presumed difficulty of this problem
is at the heart of widely used algorithms in cryptography such as RSA. Contrary to this, we can
see that prime factorization for the integer composed of two different primes can be conducted
within a polynomial time and it can be shown that this special case belongs to the P class from the
theoretical analysis.

However, the validity of this factoring algorithm has been confirmed for only small integers
by the restriction of a computer capacity and hence it is necessary to confirm the validity of this
algorithm for large integers by using more powerful computer systems.

5. Conclusion

From the spectrum obtained by the Fourier transform of a correlation function generated from
the Riemann zeta function, we can see the primality of a integer n if and only the Fn(ω) has a single
spectra for ω ≥ 0. Furthermore, it can be shown that the prime factorization can be conducted
within a polynomial time for the special case that the integer is composed of two different primes
and hence we can conclude that that prime factorization for the integer composed of two different
primes is in the P class.

220 Takaaki Musha / Theory and Applications of Mathematics & Computer Science 5 (2) (2015) 213–220

References

Gourdon, X. and P. Sebah (2003). Numerical evaluation of the Riemann Zeta-function. http://numbers.

computation.free.fr/Constants/Miscellaneous/zetaevaluations.pdf.
Kac, M. (1959). Statistical Independence in Probability Analysis and Number Theory. The Mathematical Association

of America.
Klee, V. and S. Wagon (1991). Old and new unsolved problems in plane geometry and number theory. The Mathe-

matical Association of America.
Musha, Takaaki (2012). A study on the Riemann hypothesis by the Wigner distribution analysis.. JP J. Algebra

Number Theory Appl. 24(2), 137–147.
Musha, Takaaki (2014). Primality testing and integer factorization by using Fourier transform of a correlation func-

tion generated from the Riemann Zeta function. Theory and Applications of Mathematics & Computer Science
4(2), 185–191.

Shor, P. W. (1997). Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum com-
puter. SIAM J. Comput. 26(5), 1484–1509.

Yang, S. Y. (2002). Number Theory for Computiong (2nd Edition). Springer-Verlag, New York.
Yen, N. (1987). Time and frequency representation of acoustic signals by means of the Wigner distribution function:

Implementation and interpretation. The Journal of the Acoustical Society of America 81(6), 1841–1850.

http://numbers.computation.free.fr/Constants/Miscellaneous/zetaevaluations.pdf
http://numbers.computation.free.fr/Constants/Miscellaneous/zetaevaluations.pdf

	110-400-1-PB
	111-404-2-PB
	1 Introduction
	2 Theoretical delineation
	3 Case Study
	4 Conclusion

	112-408-2-PB
	113-412-4-PB
	1 Introduction
	2 Problem Solving in Turing Machines and Hypercomputation
	3 The $-Calculus Algebra of Bounded Rational Agents
	3.1 The $-Calculus Syntax
	3.2 The $-Calculus Semantics: The k-Search

	4 The $-Calculus Expressiveness and its Support to Solve TM Undecidable Problems
	4.1 Solving the Turing Machine Halting Problem and Approximating the Universal Search Algorithm
	4.2 Deciding the Diagonalization Language, Nontrivial Properties, Solving Post Correspondence Problem and Busy Beaver Problem

	5 Conclusions

	114-416-1-PB
	1 Introduction
	2 Preliminaries
	3 Main Results
	4 Examples

	115-420-2-PB
	1 Introduction and Preliminaries
	2 Main Results

	117-425-1-PB
	1 Introduction
	2 Inductive Turing machines as models of stabilizing computations
	3 Comparing results of stabilizing computations
	4 Conclusion

	118-429-1-PB
	1 Introduction
	2 Preliminary Results
	3 Main Results

	119-433-2-PB
	1 Introduction
	2 Fast Growth and Approximation Errors

	120-437-2-PB
	1 Introduction
	2 Problem definition
	3 A mixed integer linear programming formulation for the RRDP
	4 Conclusions

	122-442-1-PB
	1 Introduction
	2 Preliminaries
	3 Main result
	4 Acknowledgements

	123-446-3-PB
	1 Introduction and definitions
	2 Main Results

	128-454-1-PB
	1 Introduction and preliminaries
	2 Fuzzy vector spaces under triangular norms
	3 Katsaras's type fuzzy norm

	129-458-2-PB
	130-462-2-PB
	1 Introduction and preliminaries
	2 Coefficient bounds for the function class L(,)
	3 Coefficient bounds for the function class L(,)

	132-466-2-PB
	1 Introduction
	2 Main Results

	134-470-2-PB
	1 Introduction, Definitions and Notations
	2 A Set of Main Results
	3 Concluding Remarks and Observations

	135-474-2-PB
	1 Introduction
	2 Frequency spectrum of a correlation function generated from the Riemann Zeta function
	3 Method for primality testing and factorization by using Fourier spectrum
	3.1 Numerical Calculation Method to obtain bold0mu mumu Fn() Fn()2005/06/28 ver: 1.3 subfig package Fn() Fn() Fn() Fn()
	3.2 Some examples of primality testing

	4 Running time for prime factorization by using DFT algorithms
	5 Conclusion

