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Abstract

In this paper we present practical algorithmic optimizasiaddressing two problems. The first one is concerned
with computing a maximal matching in an induced subgraph gfié graph. For this problem we present a faster
sequential algorithm using bit operations and a way of irm@lsting it in a parallel environment. The second problem
is concerned with computing minimum cost perfect matchingsipartite graphs. For this problem we extend the
idea behind the Hopcroft-Karp maximum matching algorithmd then we consider a more general situation in which
multiple minimum cost perfect matchings need to be compiméige same graph, under certain cost restrictions. We
present experimental results for all the proposed optiticiza.
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1. Introduction

The problem of computing maximum or maximal matchings iraltipe graphs has been con-
sidered many times in the scientific literature. Many of theppsed algorithms use the fact that
computing a maximum matching in a bipartite graph is eqentlo computing a maximum flow
in a slightly modified graph. Thus, results from the theoryetwork flows can be used for com-
puting maximum matchings. If only a maximal matching is rexedthen simpler greedy-type
algorithms can be employed. In this paper we present sguexetical algorithmic improvements
for some of the algorithms used for computing maximal maigiin grid graphs and minimum
cost perfect matchings in bipartite graphs.

The rest of this paper is structured as follows. In Secflome define the main terms and
techniques used in this paper. In Sect®bmwe discuss related work. In Sectidnwe present
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faster algorithms for computing maximal matchings in inellisubgraphs of grid graphs based on
algorithms which use bit operations. In Sectibmwe extend an idea used for computing maxi-
mum matchings in bipartite graphs to the computation of mium cost perfect matchings. The
idea consists of using multiple edge-disjoint augmentiaig per iteration in order to reduce the
number of iterations of the algorithm. In Secti®mwe consider another perfect matching problem.
In this problem we are interested in computing a minimum eesfect matching in a complete
bipartite graph under certain restrictions regarding thet computation. The cost of the matching
is considered to be equal to the sum of the costs of the edgestfre matchingxceptfor the
cost of the minimum cost edge from the matching (i.e. the mum cost edge of the matching
is considered to have cost 0 when computing the cost of thehimaf). In Sectior’ we present
experimental evaluations of all the algorithms discussetthis paper. Finally, in Sectio we
conclude.

2. Terms and Definitions

A bipartite graph is a graph whose vertices can be split wm $etsL (left) andR (right).
We consider the vertices to be numbered from 1Ltan the left set and from 1 t¢R] in the
right set (it is acceptable to have vertices with the samebmurm the graph, because they will
be diferentiated based on the debr R to which they belong). Every edge, {) of the graph is
between a nodg € L and a nodg € R. A matching in a bipartite graph is a set of edges such that
no two edges in the set have a common vertex. A maximum magchiz matching of maximum
cardinality. A maximal matching is a matching to which no medges can be added (i.e. all the
edges outside of the matching have a common vertex with st teee edge from the matching).
A perfect matching is a matching in which every node of thefria an endpoint of an edge from
the matching (such a matching may exist only whién= |R)).

In order to reduce the maximum matching problem to a maximom firoblem we need to
construct a directed graph as follows. We will have a spemdEeS called thesourceand another
special nodel called thesink We will also keep all the nodes from the given bipartite dgrap
Each edge X, y) of the original bipartite graph will be replaced by a diesttarc fromx to y
having capacity 1. We will also add capacity 1 arcs frSrto every nodex € L and from every
nodey € Rto T. In case the edges of the bipartite graph have costs thetsearegnaintained on
the directed arcs from the nodeg L to the nodey € R (we will denote byc(x, y) the cost of the
edge betweer € L andy € R). All the arcs havings or T as an endpoint will have cost 0.

One of the best known maximum flow algorithms is the Edmondgpkalgorithm Edmonds
& Karp, 1972. This algorithm can be summarized as follows: As long asibbsfind a shortest
path fromS to T in the residual graph and augment the flow along that path. n/éne costs
are involved the algorithm can be adjusted in order to find @mim cost path frons to T in
the residual graph. Note that the residual graph may conegative costs. This version of the
Edmonds-Karp algorithm is known as theccessive shortest patlgorithm (Todinoy, 2013. A
simple breadth-first search algorithm is used for findingatgist path in the first case (i.e. when
edge costs are not involved), while a minimum cost path élgorneeds to be used in the second
case (i.e. when edge costs are involved), for instancepma@HFord-Moore Papaefthymiou &
Rodrigue 1997 or even Dijkstra’s algorithmTodinov, 2013 after modifying the graph’s arc
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costs in order to remove negative costs. Thus, the algogthmaists of multiple iterations, in each
of which the flow is increased along a single path. The most tonsuming part in each iteration
is the traversal of the graph in order to find an augmenting.plat a graph withv vertices and
E arcs finding the shortest augmenting path taR@¢ + E) time when no costs are involved and
O(V - E) time when costs are involved (@(V + E - log(V)) or O(E + V - log(V)) time when
Dijkstra’s algorithm is used on the modified residual grapkts). Then, augmenting the flow
along the found path is easy (it takes o@l{) time). In the case of bipartite graphs it ifscient

to find a path fronS to an unmatched vertex iR (because this vertex is directly connectedto
through an existing arc in the residual graph).

3. Related Work

The best algorithm for computing a maximum matching in spdpartite graphs is the
Hopcroft-Karp algorithm Klopcroft & Karp, 1973, which has a time complexity dd(E - VV)
whereV is the number of vertices aril is the number of edges of the graph. For dense bipar-
tite graphs the algorithm proposed iAlf et al., 1991 has a slightly better time complexity of

O(Vv1® ‘/IogI%V))' Both of these algorithms have a better time complexity tthee Edmonds-Karp
algorithm for finding a maximum flow presented in the previgestion. However, due to its
simplicity, the Edmonds-Karp algorithm is used in many ficat implementations. Moreover,
experimental evaluations showed that for some types oftiipgraphs some modified versions
of the Edmonds-Karp algorithm (which use breadth-first dedrom all the source’s neighbors
for finding augmenting paths) are faster than the Hopcraitpkalgorithm, despite having a worse
theoretical time complexityGherkasskyet al., 1998.

Edmonds-Karp is not the only algorithm for computing maximtiows in graphs. In fact,
many such algorithms were proposed in the scientific litweat Some of the most popular ones
are Dinic’s algorithm Dinic, 1970, Karzanov's algorithmKarzanoy 1974 and the push-relabel
maximum flow algorithm Goldberg & Tarjan1989.

A minimum cost perfect bipartite matching can be compute@(ivi®) time using the Hungar-
ian algoritm Munkres 1957). Thesuccessive shortest patlgorithm for minimum cost maximum
flows can be implemented @(V - (E + V - log(V))) time in order to compute a minimum cost
maximum matching by using Fibonacci heapsedman & Tarjan1987. The algorithm consists
of O(V) iterations and each iteration runs@(E + V - log(V)) time. Dynamic versions of the
minimum cost perfect bipartite matching problem, in whiclge costs can be changed, have also
been considered\ills-Tetteyet al.,, 2007).

Maximum matchings can also be computed in general graphgusiobipartite graphs (see,
for instance, Gabow’s algorithnG@bow 1976, having anO(V3) time complexity). Minimum
cost perfect matchings have also been considered in soro@kplasses of graphs, e.g. graphs
induced by points in the plan&dradarajan1998. Greedy algorithms for maximal matchings,
including parallel versions, were presentedBie{loch et al,, 2012. The problem of maintaining
maximal matchings in dynamic graphs has been addresséi&iman & Solomon2013.
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4. Faster Algorithm for Maximal Matchings in Induced Subgraphs of Grid Graphs using
Bit Operations

We consider amM - N grid graph in which every node has a coordina¢g/ (0 < x < N -1,
0 <y < M -1) and some nodes are missing. The graph is defined by thecitrgdjacency
structure of the existing nodes (i.e. two nodes at distanicettie grid are neighbors). We are
interested in computing a maximal matching in this graphteNbat a maximal matching simply
implies that no other edge of the graph can be added to thénmgtand not that the matching has
maximum cardinality. Computing a maximum cardinality niég can be done easily, because
the graph is bipartite (we can separate the nodes into twapgrbased on the parity of their sum
of x andy coordinates) and there are many polynomial-time maximurtchiadg algorithms in
such graphs (see Secti@h

Computing a maximal matching can be achieved faster, in ©gh - N) time. Let’s consider
the following Greedy algorithm (Algorithr) which traverses the grid graph in increasing order
of they-coordinate and for eaghin inceasing order of thg-coordinate.

Algorithm 1 GreedyO(M-N) Algorithm for Finding a Maximal Matching in an Induced Subgh
of a Grid Graph

C = 0 {At the end of the algorithn@ will be the size of the maximal matching.
fory=0toM -1do
for x=0toN-1do
if node §, y) exists in the grapkhen
if y> 0andnode & y— 1) exists in the grapand node &,y — 1) is not matchethen
Match the nodesx(y) and &,y — 1)

C=C+1
else if x > 0 and node & — 1,y) exists in the grapland node & — 1,y) is not matched
then
Match the nodesx(y) and k — 1,y)
C=C+1
end if
end if
end for

end for

We can implement a faster version of the Algoritirby using bit operations. Note that the
presented algorithm will only compute the size of the maximatching and not the matching
itself. The speed increase is due to using bit operationshandling multiple nodes at the same
time. We will split each row of the grid graph (correspondingy-coordinate) into blocks oB
bits. Blocki of each row contains bits referring to the coordinates, ..., (i + 1)- B— 1. We will
denote byblock(y, i) the blocki of the row corresponding to the coordingtéNe will have bitj of
block(y, i) setto 1 if the nodei{B+ |, y) exists in the graph, and set to 0 otherwise(p < B—1).
We will traverse the graph from= 0toy = M — 1 as in Algorithml. During the traversal we
will maintain a row of blocks corresponding to the previoaw/iin which 1 bits will correspond



Mugurel lonut Andreicg Theory and Applications of Mathemati&sComputer Science 4 (1) (2014)13- 5

to existing unmatched nodes. When considering a newyrdte first step is to perform alND
between the current row and the previous row of unmatche@sodll the 1 bits in the result
of this operation will represent nodes from the current rowal are matched to nodes from the
previous row. After performing this match we will clear thetthed 1 bits from the current row.
The next step is to match nodes from the current row which @jgcant to each other faster than
O(N) time. In order to achieve this we will need to use a preprsiogsstep. For each sequence
S of B bits we will computeMCnt(S) that is the number of pairs of adjacent bits matche8 in
and MRegS) the B-bit sequence containing the remaining unmatched 1 bifs. dlVe will start
with MCnt(S) = 0 andMRegS) = S. Then we will traverse all the bitsof S from 1 toB - 1.

If MRegS)(j) = 1 andMreqS)(j — 1) = 1 then we increasBICnt(S) by 1 and we clear the bits
jandj—1in MRegS). Thus, we can computdCnt(S) andMRegS) in O(B) time, obtaining a
preprocessing time dd(28 - B). Within the same time complexity we will also compute fockea
B-bit sequencé& the number of 1 bits ir5, BCn{(S).

With these values we can perfom the matching on the currentyroe will consider each
blocki from 0 to (N — 1)/B and we will maintain the state of the current row as a sequehce
blockscrow. First we copyblocky,i) to crow(i). Then, ifi > 0 and bitB — 1 of cromi — 1) is
1 and bit O ofcrow(i) is 1 we match these two bits and then we set them to zero. wtels we
replacecrow(i) by MRegcrow(i)). The detailed algorithm is presented in Algoriti2n

The time complexity of Algorithn® is O(28 - B+ M - N/B). TheO(28 - B) term is the time
complexity of the preprocessing stage and @@ - N/B) is the time complexity of the actual
algorithm. The presented algorithm can even be implementagbarallel manner. First of all the
preprocessing stage is obviously parallelizable: each@ft values of the tabledRes MCnt
andBCntca be computed independently. In order to parallelize theahealgorithm we will need
to refactor it first. We will first perform all the horizontalatchings on each of thd rows. We can
first perform the matching within each block of each row inelegiently in parallel and store the
resultin a variable specific to eaatoy, blocK) pair (this means that we would have such a variable
for each block of each row). Then we can handle the matchibgdsan bit O of odd-numbered
blocks and biB — 1 of the preceding even-numbered block in parallel, folldywg another stage
in which we handle the matching between bit O of even-nuntbbtecks and bitB — 1 of the
preceding odd-numbered block in parallel. Then we can landitchings between nodes on
different rows. In order to parallelize this stage we will firshsider all the rows corresponding
to oddy coordinates being matched to the adjacent row with a smalidreveny coordinate.
Obviously, each block of all of thesil/2 (we consider integer division) rows can be handled
independently in parallel. Then we will consider all the sovorresponding to evgncoordinates
being matched to the adjacent row with a smaller and ypddordinate. Each block of these
M — M/2 rows can also be handled independently, in parallel. Thallphalgorithm presented
here can use up to®2rocessors in the preprocessing stage and i\ tdN/B processors in the
maximal matching computation stage. Note that the resuli@parallel version may fier from
the result of the sequential algorithm (Algoritifhbecause a élierent maximal matching will be
computed (due to the fiierent order of performing the vertical and horizontal mag)h
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Algorithm 2 GreedyO(28-B+M-N/B) Algorithm for Finding a Maximal Matching in an Induced
Subgraph of a Grid Graph

Compute the tableBIRes MCntandBCnt
C=0
prowi) =0 (0<i<(N-1)/B)
fory=0toM -1do
crow(i) « blockly,i) (0<i<(N-1)/B)
fori=0to(N-1)/Bdo
vmatcl{i) = crom(i) AND prow(i)
C = C + BCnt(vmatcli)))
crowm(i) = crow(i) XOR vmatclfi)
end for
C = C + MCnt(crow0))
crowm0) = MRegcrow(0))
fori=1to(N-1)/Bdo
if bit B— 1 of crowm(i — 1) is 1and bit O of crow(i) is 1then
C=C+1
Clear bitB — 1 of crom(i — 1) and bit O ofcrow(i).
end if
C = C + MCnt(crow(i))
crom(i) = MRegcrowi))
end for
prow(i) = crom(i) (0<i < (N -1)/B)
end for

5. Using a Maximal Set of Edge-Disjoint Paths for Reducing te Number of Iterations of
Minimum Cost Perfect Matching Algorithms

The best algorithm for computing a maximum matching in a Spdiipartite graph is the
Hopcroft-Karp algorithmidopcroft & Karp, 1973 which has a time complexity @(E- VV). The
main idea behind that algorithm is to enhance a standard ewigmg path algorithm as follows.
After each BFS traversal of the graph in order to find an augmgmpath, the matching will not
be increased only along one path, but rather along a maxietafsdge-disjoint shortest paths
(note that in this case edge-disjoint paths are also veligrint paths, because they are paths in
a shortest path tree; the only common vertex is the sdsyce

The same idea can be used when computing a minimum cost perééching. At each iter-
ation of thesuccessive shortest patitgorithm {Todinov, 2013 we need to find a minimum cost
path in the residual graph. Note that the residual graph naag larcs with negative costs, but
does not have negative cycles. Thus, we either need to usert@stpath algorithm which sup-
ports negative costs (e.g. Bellman-Ford-ModPagaefthymiou & Rodrigyel997) or we need
to modify the costs in order to obtain non-negative costy anld, thus, use Dijkstra’s algorithm
(Todinoy, 2013.
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No matter what shortest path algorithm we use, at the endeadlgorithm we have the min-
imum cost of a path starting at the source and ending at eadfxe R. We can sort all these
nodes in ascending order of the cost of the minimum cost matk&ch them (ignoring the un-
reachable nodes, if any). Then, rather than only increasi@gnatching along the minimum cost
augmenting path, we can consider these nodes in sorted éimieeach node we trace back its
shortest path to the source. If the matching was already antgd at the current iteration along
at least one edge of the path, then we ignore noded we move on to the next one. If the cur-
rent path does not intersect with any of the paths along wiielmatching was augmented at the
current iteration then we can augment the matching alorsgothih and mark its edges in order to
know that no other shortest path containing (some of) thegescan be used for augmenting the
matching at the current iteration.

A direct implementation of this modified matching augmeotatlgorithm take©(V?) time
per iteration, because there may®@/) verified paths and each verification may t&g/) time.

On the other hand, we cannot guarantee that the matchingevdlugmented along more than one
path. A scenario in which all the paths have the first edge mroon (from the source to a vertex
X € L) and the minimum cost path has only this edge in common wighatiher paths is quite
possible. Sinc®(V?2) may be a higher time complexity than that of computing theimum cost
paths, we may end up increasing the running time of the dlgurinstead of decreasing it. Thus,
we need to reduce the time complexity of the matching augatientpart. This can be achieved
as follows. Let's remember that the minimum cost paths atkspa a shortest path tree (where
the length of a path is its cost). We will consider the paththensame order as before and we
will consider all the edges to be initially unmarked. If trest edge of the current path is not
marked then we will be able to augment the matching along tinet path. After augmenting
the matching along the current path, et L be the first vertex on the path (after the source). We
will traverse the whole subtree of the shortest path tregetbatx and we will mark all the edges
of this subtree. Augmenting the matching along all the fmsgpaths takes at mo&x(V) time
overall (because the paths are edge-disjoint). Markingdtlges of the shortest path tree also takes
at mostO(V) time overall, because there &¢V) edges in the shortest path tree and each edge is
marked at most once. Thus, the matching augmentation #igotakes onlyO(V) time plus the
time needed for sorting the paths in increasing order of ttasts (e.gO(V - log(V)) time).

The first version of the algorithm proposed in this sectiotidscribed in pseudocode in Algo-
rithm 3. The input to the algorithm consists of two magsst, containing the cost of the shortest
path fromS to every vertexx € R (we considerdist(x) = +oo if the vertexx is not reachable
from S), and parent containing theparentin the shortest path tree for each vertex of the graph.
Left-set verticesx are denoted asx(L) in the algorithm and right-set verticgsare denoted as
(v, R). In order to maintain the pseudocode simpler, we will makgraph vertices instead of the
edges (because, as mentioned earlier, in this case thedesjgiert paths are also vertex-disjoint).
The second version of the algorithm is described in psewtmao Algorithm4. The input to
the Algorithm4 also consists of the same two magist and parent together with an extra map,
children, which contains the children in the shortest path tree of @actex of the graph.

This algorithm basically augments the matching along a makset of edge-disjoint paths (in
fact, because they are paths of a shortest path tree, theqrathlso vertex-disjoint except for the
source vertex). It is important. however, to consider thpgeg@s in increasing order of their costs,
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Algorithm 3 Increasing the Matching Along a Maximal Set of Edge-Disjdaths - TheD(V?)
Algorithm
Input: dist, parent.
Set all the vertices of the graph as unmarked.
Sort the vertices € Rin increasing order adiist(x).
for x € Rin increasing order adlist(x) such thadist(x) < +oco do
y = (X,R), OK = true
while y # S and OK = truedo
if vertexy is markedthen
OK = false
else
y = parenty)
end if
end while
if OK = truethen
Increase the matching along the shortest path f&otm (x, R) (the reverse of the path can
be found by following the parent pointers starting froxR)).
y=(xR)
whiley # S do
Mark vertexy as marked.
y = parenty)
end while
end if
end for

Algorithm 4 Increasing the Matching Along a Maximal Set of Edge-Disjdtaths - TheD(V)
Algorithm
Input: dist, parent, children.
Set all the vertices of the graph as unmarked.
Sort the verticex € Rin increasing order odlist(x).
for x € Rin increasing order odlist(x) such thadist(x) < +oco do
if (x, R) is not markedhen
Increase the matching along the shortest path f&otm (x, R) (the reverse of the path can
be found by following the parent pointers starting froxR)).
Let (y, L) be the first node on the path frogto (x, R) after S. Recursively mark all the
vertices located in vertex/(L)’'s subtree of the shortest path tree. Tdeldrenmap will
be used for retrieving for each vertexhe setchildrenv) that is the set of the shortest path
tree children of the vertex
end if
end for




Mugurel lonut Andreic# Theory and Applications of Mathemati&sComputer Science 4 (1) (2014)13- 9

in order to make sure that the residual graph at the nextiberdoes not contain negative cycles.
The reason for which this optimization works is as followsalperfect mtaching every vertex has
to be matched. When augmenting the matching along a shpd#sto a node, even ifx is not
the right-side node with the minimum cost path, the poinh&t tany future minimum cost path to
nodex (in any future residual graph) will not have a lower cost thf@current shortest path 10
So there is no reason for us not to augment the matching at@atgath, as long as this does not
block paths with lower costs along which the matching coatdehbeen augmented.

Note that this optimization is not correct in a maximum matghalgorithm. It is not correct to
augment the matching along a path which does not have thalblohinimum cost, because we
are not sure if the right side verteoneeds to be in the optimal matching or not. And since vertices
added to the matching are never removed by this algorithspibssible to make a mistake in this
case.

This optimization does not change the theoretical time deriy of the minimum cost perfect
matching algorithm, because we cannot provide any extraagtees regarding the number of
augmenting paths per iteration (and, thus, we cannot peayichrantees regarding the reduction
in the number of iterations).

6. Minimum Cost Perfect Matching With the Minimum Cost Edge I gnored

In this section we consider the following problem. Given anptete bipartite graph witi
nodes on the left side andnodes on the right side and costs on its edges, we want to find a
minimum cost perfect matching in which the cost is definedvastim of the costs of all the edges
in the matching except for the cost of the edge with the srsiatiest.

A simple method for solving this problem is to iterate ovéitla¢ edgesi( j) and fix them as
the smallest edge in the matching. Then we would computewalusinimum cost maximum
matching in the bipartite graph from which left nodeight nodej and all the edges’( j’) with
c(i’, )) <c(i,]) (orc(i’, J’) = c(i, j) and the edgei’, ') was considered before the edggj)) are
removed. If the maximum matching has sizen—1 then we found a potential solution, as follows.
The potential solution consists of the- 1 edges of the found matching plus the edgé¢)( The
cost of the matching (according to the definition used in sigistion) is equal to the sum of the
costs of then — 1 edges oM. Note that the fixed edge, () is the edge with the minimum cost
in the perfect matching (the one whose cost is not consideredrds the cost of the matching).
Once the edgd,(j) was fixed we needed to minimize the total cost of the other edges of the
perfect matching. Moreover, the other edges of the perfettinng needed to have costs which
were larger than or equal @i, j). The minimum cost maximum matching contains then — 1
edges we were looking for, in case its cardinalityis 1. If its cardinality is less than — 1 then
we can conclude that there is no perfect matching contaithi@egdgei( j) as the minimum cost
edge.

This solution requires the computation®@fn?) independent minimum cost maximum match-
ings. The key to obtain a better solution is to notice that@ie?) matchings that we need to
compute are not totally independent. We will sort all thedges first in ascending cost order and
then we will consider them in this order. For the first edge v a@mpute the minimum cost
maximum matching from scratch. Let's assume that we reattfeeddgei( j). This time we will
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not compute the new matching from scratch. Instead, let'sicker the matchingl obtained for
the previous edge in the sorted order. We will remove fidnany edge with an endpoint at the
left nodei or the right nodej (if any). Then we will remove fromM all the edges with a cost
smaller tharc(i, j) (or equal toc(i, j) but for which the corresponding edge was considered before
the current edge (j) in the sorted order). All the other edgesifwill be maintained. We will
start the (usual) minimum cost maximum matching for the €dgé¢ with all the remaining edges
from M as part of the matching. Note that the algorithm may replaogesof these edges by other
edges. This can happen if the reverse of an eggg (x € L andy € R) from M is, at some point,
part of the shortest path fro®ito T in the (new) residual graph. When considering the maximum
matching problem as a maximum flow problem, the fact that aye €dy) is removed from the
matching means that the flow is pushed back along that edgedar to be redirected somewhere
else).

By applying the optimizations from the previous paragraghexpect that the number of iter-
ations required for computing each new minimum cost maxinmuaching will be significantly
reduced.

This problem can also be viewed as a dynamic minimum cosegienfatching problem, in
which the edge costs can be modified (for instance, insteeghodving edges from the graph we
can consider that their cost increased-to).

7. Experimental Results

We implemented the three optimizations presented in thp&ipand compared them against
their unoptimized versions. All the tests were run on a maehiunning Windows 7 with an Intel
Atom N450 1.66 GHz CPU and 1 GB RAM. All the algorithms were Ierpented in the €+
programming language and the code was compiled using #ked®@mpiler version 3.3.1.

First we tested our new algorithm for computing a maximalahigiy in an induced subgraph
of a grid graph. We chos®l = N = 2048 and we randomly generated the induced subgraph -
each pointxy) (0 < x<N-1,0<y< M-1) had an equal probability of being part of the
subgraph or not. Thus, each of the tested subgraphs hadxapptely 50% of the nodes of the
full grid graph. We generated 100 subgraphs and ran Algoritifthe unoptimized version) and
Algorithm 2 (the optimized version) on each of them. We computed the totaing time for
all the graphs. Algorithnl took 53 seconds. For Algorithr@ we considered two values f@:

B = 16 andB = 8. ForB = 16 the running time was.?4 sec and foB = 8 it was 113 sec. Note
that in this case we computed the tabM&nt, Mres and BCnt each time (i.e. for each of the
100 tests). However, when running the algorithm on multiegts with the same value Bf these
tables only need to be computed once, in the beginning. Mrishanged the algorithm in order
to compute these tables only once in the very beginning ahdon@ach of the 100 tests. The
new running times were.92 sec forB = 16 and 113 sec forB = 8. Note that the running time
is unchanged foB = 8 because the sizes of the tables are small and the time neededhpute
them is negligible compared to the time needed to computentitehing. However, foB = 16,
when the sizes of the tables increase significantly, it ishragtter to compute the tables in the
beginning and reuse them for each test.
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Then we repeated the tests for induced subgraphs of grichgregntaining 75% and 100%
of the nodes of a full grid graph. For graphs with 75% of the e®df a full grid graph the
running times of our optimized algorithm were21 sec forB = 8 and 093 sec forB = 16 (note
that we only considered the case when the tables are compstaxhce). The running time of the
unoptimized version was@9 sec. When considering the full grid graph we obtaineddhewing
running times: M0 sec forB = 8 and 055 sec forB = 16 for the optimized version and4® sec
for the unoptimized version.

We did not test other values &fbecause the implementation would become less feasible. For
B > 16 the sizes of the precomputed tables would become too. |&g@eB = 8 andB = 16 we
were able to make use of existing@-+ data typesynsigned chaiand unsigned short intin
order to store a block. Fd # 8 andB # 16 (andB < 16) we cannot exactly fit a block into an
existing GC++ data type.

Second we tested the improvement brought by the use of neugge-disjoint paths for aug-
menting the matching in a minimum cost bipartite perfectahig algorithm. The expected
improvement consisted in a reduction of the number of itenat The standard algorithm would
usen iterations wherélL| = |R| = n. We chosen = 256 and we generated 100 complete bipartite
graphs. The cost of each edge was chosen to be a random inétgreren 1 and 10000 (inclusive).
The unoptimized algorithm we used was the standaitessive shortest paslgorithm with the
Bellman-Ford-Moore algorithm for computing minimum costilps at each iteration. The opti-
mized algorithm simply included th®&(n?) matching augmentation along multiple edge-disjoint
minimum paths described in Sectidn We measured both the total running time and the total
number of iterations. The total running time (for all the Ifi@phs) and the total number of iter-
ations of the standard algorithm were:.ZBsec and 25600 iterations. With our optimization the
total running time was .3 sec and the total number of iterations was 1022. We notaie ¢ven
with the most basic implementation of our optimization, thening time was reduced 10 times
and the number of iterations was reduced 25 times. Althobghriinning time improvements
may not translate directly when other minimum cost path aatampon algorithms are used (e.g.
Dijkstra’s algorithm) or when th®(V + V - log(V)) matching augmentation optimization is used
(instead of theD(V?) version), the improvement in the number of iterations doasdepend on
these algorithms and, thus, it is applicable to any impleatean of thesuccessive shortest path
minimum cost bipartite perfect matching algorithm.

Then we considered the same testing scenario, except thattfe costs were chosen as ran-
dom integers between 1 and 2 (inclusive). The total runrimg of our optimized algorithm was
2.98 sec and the total number of iterations was 5100. The nuofbi&rations of the standard
algorithm remained the same (as expected), but its runmmgydropped to 183 sec.

We also considered the complete bipartite graph with thewahg costsc(x,y) = min(x,y)

(1 < x,y < n)yandn = 256. In this case our optimization did not reduce the numbéemtions

at all (due to the special structure of the bipartite grapteis never able to augment the matching
along more than one path per iteration). However, the runtime with our optimization enabled
was almost identical to the unoptimized version. We corelticht our optimization has a great
potential for reducing the number of iterations of thecessive shortest pathiinimum cost per-
fect matching algorithm and even in the pathological cadesnwt cannot reduce the number of
iterations, it doesn’t cause any significant overhead.
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Although there is a large flerence between the number of iterations obtained by our opti
mization in the cases of random complete bipartite grapdsrathe case of the specific bipartite
graph from the previous paragraph, we did not consider ayipexs of bipartite graphs for testing.
Understanding the correlation between the performancermdptimization and the specific prop-
erties of the costs of the edges of the bipartite graph istenasting topic, but we defer its study to
a later date, because we feel that this topic is more ap@tedor a separate, more experimentally
focused, paper.

For the problem presented in Secti6rwe tested our optimization of not recomputing the
perfect matching from scratch each time. The first minimurst gerfect matching algorithm
that we used was the one which contained our matching augitm@ntoptimization presented
in Section5 and tested earlier. We generated 10 bipartite graphs mith128 and edge costs
randomly selected between 1 and 10000 (inclusive). We ctedpthe total execution time and
the total number of iterations of thsaccessive shortest pagtgorithm. When the matching was
computed from scratch each tim@((?) times) the total running time was 805 sec and the total
number of iterations was 1305200. When we applied our op#tian from Sectior6, the total
running time was 221 sec and the total number of iteratiorss244886. When using the standard
successive shortest pagiigorithm in order to compute a minimum cost perfect matghend
not using our optimization of not recomputing the matchirmnf scratch each time), the total
running time was 5798 sec and the total number of iteratias20610157. When we applied our
optimization from Sectio® and also used the standard minimum cost perfect matchiogitim
the total running time was 232 sec and the total number ddtitars was 251789. We can see
that our optimization of not recomputing each minimum castfgct matching from scratch is
very dfective. When combined with the optimization presented ictiSe 5, of augmenting the
matching along multiple paths at each iteration, we obththe best results. However, even when
just the standarduccessive shortest pathinimum cost perfect matching algorithm is used in
conjunction with our optimization from Sectidgthe improvements over the naive unoptimized
version are significant. Nevertheless, more tests may reebd performed in the future in order
to understand gticiently well how good our proposed optimization really is.

8. Conclusions

In this paper we presented three practical algorithmicnoigations addressing problems like
computing maximal matchings in induced subgraphs of graghlgs or computing minimum cost
perfect matchings in bipartite graphs (under certain ict&ins). The proposed optimizations
were evaluated experimentally and compared against thgtinmaed algorithms. The execution
time was significantly reduced in each case, thus provingv#teity and dfectiveness of our
optimizations.
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In this paper we prove some fixed point theorems for Reich type contractions on cone rectangular metric spaces
endowed with a graph without assuming the normality of cone. The results of this paper extends and generalize several
known results from metric, rectangular metric, cone metric and cone rectangular metric spaces in cone rectangular
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1. Introduction

In 1906, the French mathematician M. Fréchet Fréchet (1906) introduced the concept of met-
ric spaces. After the work of Fréchet several authors generalized the concept of metric space by
applying the conditions on metric function. In this sequel, Branciari Branciari (2000) introduced a
class of generalized (rectangular) metric spaces by replacing triangular inequality of metric spaces
by similar one which involves four or more points instead of three and improved Banach contrac-
tion principle Banach (1922) in such spaces. The result of Branciari is generalized and extended
by several authors (see, for example, Flora et al. (2009); Bari & Vetro (2012); Chen (2012); Isik
& Turkoglu (2013); Lakzian & Samet (2012); Arshad et al. (2013); Malhotra et al. (2013a,b) and
the references therein).

Let (X, d) be a metric space and 7: X — X be a mapping. Then T is called a Banach contrac-
tion if there exists A € [0, 1) such that

d(Tx,Ty) < Ad(x,y) forall x,ye X. (1.1)

Email address: satishmathematics@yahoo.co.in (Satish Shukla)
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Banach contraction principle ensures the existence of a unique fixed point of a Banach contraction
on a complete metric space.
Kannan Kannan (1968) introduced the following contractive condition: there exists A € [0, 1/2)
such that
d(Tx,Ty) < Ald(x,Tx)+d(y, Ty)] forall x,ye X. (1.2)

Reich Reich (1971) introduced the following contractive condition: there exist nonnegative con-
stants A, u, 0 such that A+ u+ 6 < 1 and

d(Tx,Ty) < Add(x,y) + ud(x, Tx) + dd(y, Ty) forall x,ye X. (1.3)

Examples show that (see Kannan (1968); Reich (1971)) the conditions of Banach and Kannan are
independent of each other while the condition of Reich is a proper generalization of conditions of
Banach and Kannan.

On the other hand, the study of abstract spaces and the vector-valued spaces can be seen in
Kurepa (1934, 1987); Rzepecki (1980); Lin (1987); Zabreiko (1997). L.G. Huang and X. Zhang
Huang & Zhang (2007) reintroduced such spaces under the name of cone metric spaces and gen-
eralized the concept of a metric space, replacing the set of real numbers, by an ordered Banach
space. After the work of Huang and Zhang Huang & Zhang (2007), Azam et al. Azam et al. (2009)
introduced the notion of cone rectangular metric spaces and proved fixed point result for Banach
type contraction in cone rectangular space. Malhotra et al. Malhotra er al. (2013b) generalized
the result of Azam et al. Azam et al. (2009) in ordered cone rectangular metric spaces and proved
some fixed point results for ordered Reich type contractions.

Recently, Jachymski Jachymski (2007) improved the Banach contraction principle for map-
pings on a metric space endowed with a graph. Jachymski Jachymski (2007) showed that the
results of Ran and Reurings Ran & Reurings (2004) and Edelstein Edelstein (1961) can be derived
by the results of Jachymski (2007). The results of Jachymski Jachymski (2007) was generalized
by several authors (see, for example, Bojor (2012); Chifu & Petrusel (2012); Samreen & Kamran
(2013); Asl et al. (2013); Abbas & Nazir (2013) and the references therein).

The fixed point results in cone rectangular metric spaces (also in rectangular metric spaces)
endowed with a graph are not considered yet. In this paper, we prove some fixed point theorems
for Reich type contractions on the cone rectangular metric spaces endowed with a graph. Our
results extend the result of Jachymski Jachymski (2007) and the result of Malhotra et al. Malhotra
et al. (2013b) into the cone rectangular metric spaces endowed with a graph. Some examples are
provided which illustrate the results.

2. Preliminaries

First we recall some definitions about the cone rectangular metric spaces and graphs.

Definition 2.1. Huang & Zhang (2007) Let E be a real Banach space and P be a subset of E. The
set P is called a cone if:

(1) P is closed, nonempty and P # {6}, here @ is the zero vector of E;

(i) a,beR, a,b>0, x,ye P= ax+ by e P;
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(i) xe Pand —xe P = x=6.
Given a cone P C E, we define a partial ordering “ < 7 with respect to P by x < y if and only if
y — x € P. We write x < y to indicate that x < y but x # y. While x < y if and only if y — x € P°,
where P° denotes the interior of P.
Let P be a cone in a real Banach space E, then P is called normal, if there exist a constant K > 0
such that for all x,y € E,

0 < x <y implies ||x|| < K]||y]|.
The least positive number K satisfying the above inequality is called the normal constant of P.

Definition 2.2. Huang & Zhang (2007) Let X be a nonempty set, E be a real Banach space.
Suppose that the mapping d : X X X — E satisfies:

(1) 8 <d(x,y), forall x,y € X and d(x,y) = 6 if and only if x = y;
(1) d(x,y) =d(y,x) for all x,y € X;
(i) d(x,y) <d(x,z) +d(y,z), forall x,y,z € X.
Then d is called a cone metric on X, and (X, d) is called a cone metric space. In the following we

always suppose that E is a real Banach space, P is a solid cone in E, i.e., P* # ¢ and “ < 7 is
partial ordering with respect to P.

For examples and basic properties of normal and non-normal cones and cone metric spaces we
refer Huang & Zhang (2007) and Rzepecki (1980).
The following remark will be useful in sequel.

Remark. Jungck et al. (2009) Let P be a cone in a real Banach space E, and a, b, ¢ € P, then:

(a) Ifa<band b < cthena < c.

(b) Ifa< band b < cthena <« c.

(c) If @ < u < cforeach c € P’ then u = 6.

(d) If c € P’ and a,, — 6 then there exist ny € N such that, for all n > n, we have a, < c.
(e) If0<a, <b,foreachnanda, — a, b, > bthena < b.

(f) Ifa < dawhere 0 < A < 1thena = 6.

Definition 2.3. Azam et al. (2009) Let X be a nonempty set. Suppose the mappingd : XXX — E,
satisfies:

(1) 8 <d(x,y), forall x,y € X and d(x,y) = 6 if and only if x = y;
(i1) d(x,y) =d(y,x) forall x,y € X;
(i) d(x,y) <d(x,w)+d(w,z) +d(z,y) for all x,y € X and for all distinct points w, z € X — {x, y}
[rectangular property].

Then d is called a cone rectangular metric on X, and (X, d) is called a cone rectangular metric
space. Let {x,} be a sequence in (X, d) and x € (X, d). If for every ¢ € E, with 8 < c thereisny € N
such that for all n > ny, d(x,, x) < c, then {x,} is said to be convergent, {x,} converges to x and x
is the limit of {x,}. We denote this by lim, x, = x or x, — x, as n — oo. If for every ¢ € E with
0 < c there is ng € N such that for all n > ny and m € N we have d(x,, X,+,) < c, then {x,} is
called a Cauchy sequence in (X, d). If every Cauchy sequence is convergent in (X, d), then (X, d)
is called a complete cone rectangular metric space. If the underlying cone is normal then (X, d) is
called normal cone rectangular metric space.
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The concept of cone metric space is more general than that of a metric space, because each
metric space is a cone metric space with £ = R and P = [0, +00).

Example 2.1. Let X =N, E=R? o, >0and P = {(x,y) : x,y > 0}.
Define d : X Xx X — E as follows:

0,0) ifx=y,
d(x,y) =1 3(a,p) ifxandyarein{l,2},x #y,
(a,8) otherwise.

Now (X, d) is a cone rectangular metric space but (X, d) is not a cone metric space because it lacks
the triangular property:

3(a,p) =d(1,2) > d(1,3) + d(3,2) = (o, B) + (@, B) = 2, B),
as 3(a, B) - 2(e, B) = (. B) € P.

Note that in above example (X, d) is a normal cone rectangular metric space. Following is an
example of non-normal cone rectangular metric space.

Example 2.2. Let X = N, E = Cg[0, 1] with [|x]| = ||xlle + |X|lc and P = {x € E : x(1) > O fort €
[0, 1]}. Then this cone is not normal (see Rezapour & Hamlbarani (2008)).
Define d : X X X — E as follows:

e’ otherwise.

6 ifx=y,
d(x,y) =1 3¢ ifx,ye{l,2},x #y,
Then (X, d) is non-normal cone rectangular metric space but (X, d) is not a cone metric space
because it lacks the triangular property.

Now we recall some basic notions from graph theory which we need subsequently (see also
Jachymski (2007)).

Let X be a nonempty set and A denote the diagonal of the cartesian product X X X. Consider
a directed graph G such that the set V(G) of its vertices coincides with X, and the set E(G) of its
edges contains all loops, that is, E(G) 2 A. We assume G has no parallel edges, so we can identify
G with the pair (V(G), E(G)). Moreover, we may treat G as a weighted graph by assigning to each
edge the rectangular distance between its vertices.

By G™! we denote the conversion of a graph G, that is, the graph obtained from G by reversing
the direction of edges. Thus we have

EG™ ={(x,y) e XX X: (y,x) € E(G)}.

The letter G denotes the undirected graph obtained from G by ignoring the direction of edges.
Actually, it will be more convenient for us to treat G as a directed graph for which the set of its
edges is symmetric. Under this convention,

E(G) = E(G)U E(G™). 2.1
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If x and y are vertices in a graph G, then a path in G from x to y of length / is a sequence (x; 520
of [ + 1 vertices such that xo = x,x; = y and (x,_1,x;) € E(G) fori = 1,...,l. A graph G is
called connected if there is a path between any two vertices of G. G is weakly connected if G is
connected.

Throughout this paper we assume that X is nonempty set, G is a directed graph such that
V(G) = X and E(G) 2 A.

Now we define the G-Reich contractions in a cone rectangular metric space.

Definition 2.4. Let (X, d) be a cone rectangular metric space endowed with a graph G. A mapping
T: X — X is said to be a G-Reich contraction if:

(GR1) T is edge preserving, that is, (x,y) € E(G) implies (T'x, Ty) € E(G) for all x,y € X;

(GR2) there exist nonnegative constants A, i, d such that A + u + 6 < 1 and

d(Tx,Ty) < Ad(x,y) + ud(x, Tx) + 6d(y, Ty) 2.2)
for all x,y € X with (x,y) € E(G).

An obvious consequence of symmetry of d(-, -) and (2.1) is the following remark.

Remark. If T is a G-Reich contraction then it is both a G~'-Reich contraction and a G-Reich
contraction.

Example 2.3. Any constant function 7: X — X defined by Tx = ¢, where ¢ € X is fixed, is a
G-Reich contraction since E(G) contains all the loops.

Example 2.4. Any Reich contraction on a X is a Gy-Reich contraction, where E(Gy) = X X X.

Example 2.5. Let (X, d) be a cone rectangular metric space, C a partial orderon X and 7: X — X
be an ordered Reich contraction (see Malhotra et al. (20130)), that is, there exist nonnegative
constants A, i, 0 such that 4 + u + 6 < 1 and

d(Tx,Ty) < Ad(x,y) + ud(x, Tx) + dd(y, Ty)

for all x,y € X with x C y,. Then T is a G-Reich contraction, where E(G;) = {(x,y) € XX X: x C
¥}

Definition 2.5. Let (X, d) be a cone rectangular metric space and 7: X — X be a mapping. Then
for xo € X, a Picard sequence with initial value x, is defined by {x,}, where x, = Tx,_; for all
n € N. The mapping T is called a Picard operator on X if 7 has a unique fixed point in X and
for all xy € X the Picard sequence {x,} with initial value x, converges to the fixed point of 7. The
mapping 7T is called weakly Picard operator, if for any x, € X, the limit of Picard sequence {x,}
with initial value x, that is, lim x, exits (it may depend on x) and it is a fixed point of 7.

n—oo

Now we can state our main results.
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3. Main results

Let (X, d) be a cone rectangular metric space, and G be a directed graph such that V(G) = X
and E(G) 2 A. The set of all fixed points of a self mapping T of X is denoted by Fix7, that is,
FixT = {x € X: Tx = x} and the set of all periodic points of T is denoted by P(T), that is, P(T) =
{x € X: T"x = x, for some n € N}. Also we use the notation X; = {x € X: (x,Tx), (x,T*x) €
E(G)}. (X, d) 1s said to have the property (P) if:

whenever a sequence {x,} in X converges to x with (x,, x,+1) € E(G) forall n € N,
then there is a subsequence {x;,} with (x,, x) € E(G) for alln € N. P)

Proposition 3.1. Let (X,d) be a cone rectangular metric space endowed with a graph G and
T: X — X be a G-Reich contraction. Then, if x,y € FixT are such (x,y) € E(G) then x = y.

Proof. Let x,y € FixT and (x,y) € E(G), then by (GR2) we have

dx,y) = d(Tx,Ty)

< Ad(x,y) + pd(x,Tx) + 6d(y, Ty)
= Ad(x,y) + ud(x, x) + dd(y,y) = Ad(x,y).
As A < 1, by (f) of Remark 2, we have d(x,y) = 6, that is, x = y. ]

Theorem 3.1. Let (X, d) be a cone rectangular metric space endowed with a graph G. Let T : X —
X be a G-Reich contraction. Then for every xo € Xr the Picard sequence {x,}, is a Cauchy
sequence.

Proof. Let xo € X7 and define the iterative sequence {x,} by x,,; = Tx, for all n > 0. Since
xo € X7 we have (xo, Txy) € E(G) and T is a G-Reich contraction, by (GR1) we have (T xo, T?x,) =
(x1, x2) € E(G). By induction we obtain (x,, x,+1) € E(G) for all n > 0.

Now since (x,, x,+1) € E(G) for all n > 0 by (GR2) we have

d(-xn’ -xn+1) = d(Txn—l ’ T-xn)
/ld(xn—l’ xn) + Md(xn—la Txn—l) + 6d(xna Txn)
Ad(xn—l ’ xn) + ﬂd(xn—l ’ xn) + 5d(xm xn+l)7

IA

that is,
A+
d(xna xn+1) =< 1 ’;d(-xn—l, xn) = a/d(xn—la -xn),
+
where @ = 'l; <l(asA+u+06 < 1). Setting d, = d(x,, x,+1) for all n > 0, we obtain by

induction that
d, < a"dy forall neN. 3.1)

Note that, if xy € P(T) then there exists k € N such that T*xy, = x; = x, and by (3.1) we have

dy = d(xo, x1) = d(x0, Tx0) = d(xs, Txz) = d(xp, Xp1) < @*d(x0, x1) = ad.
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Since A € [0, 1) the above inequality yields a contradiction. Thus, we can assume that x,, # x,, for
all distinct n,m € N.

As xy € X7 we have (xg, T%xy) = (x9, x2) € E(G) and by (GR1) we obtain (Txy, Tx;) = (x1, X3) €
E(G). By induction we obtain (x,, x,,2) € E(G) for all n > 0. Therefore it follows from (GR2) that

d(Txp-1, TXy41)

Ad(xp-1, Xp41) + pd(X-1, TX4-1) + 6d(Xp11, T Xpi1)
Ald(Xp-15 %) + d(Xps Xp12) + d(Xn125 Xp1)] + pd(X,-1, X,)
+0d (X115 Xp42),

d(-xn, -xn+2)

IA A

IA

that is,

A+ A+6
d(x,, Xp2) = ﬁdn—l + mdnn

which together with (3.1) yields
A+ u+[A+6]a?

d(x,, x, < 1,
(Xns Xn42) -1 " dy
20+ u+6
n=1g ,
= T -2 0
that is,
d(Xp, Xn42) < B’ dy, (3.2)

where 5 = u;’_—“f > (. We shall show that the sequence {x,} is a Cauchy sequence.
We consider the value of d(x,, x,,) in two cases.
If p is odd, say 2m + 1, then using rectangular inequality and (3.1) we obtain

d(xn+2m’ xn+2m+l) + d(xn+2m—l ’ xn+2m) + d(xn, -xn+2m—l)

dn+2m + dn+2m—l + d(xn, xn+2m—1)

d(xn > Xn+2m+1 )

s dn+2m + dn+2m—1 + dn+2m—2 + dn+2m—3 +-e+ dn
< a,n+2md0 + a,n+2m—1d0 + a,n+2m—2d0 4ot a/”do,
that is,
a
d(-xm xn+2m+l) =< 1 — adO- (33)

If p is even, say 2m, then using rectangular inequality, (3.1) and (3.2) we obtain

IA

d(xn+2m—1’ xn+2m) + d(-xn+2m—1a xn+2m—2) + d(xm xn+2m—2)
dn+2m—1 + dn+2m—2 + d(xn’ xn+2m—2)
dn+2m—1 + dn+2m—2 + dn+2m—3 +-+ dn+2 + d(Xn, xn+2)

an+2m—ld0 + an+2m—2d0 + an+2m—3d0 S an+2d0 +ﬂan_]d(),

d(xn, xn+2m)

IA I

IA

that is,

al’l

do + Ba" " d,. 3.4)

d(xn, xn+2m) =<
1l-«a
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Since 8 > 0 and @ < 1, we have %do,ﬂa/"‘ldo — @ as n — oo so it follows from (3.3), (3.4) and
(a), (d) of Remark 2 that: for every ¢ € E with 6 < c, there exists ny € N such that

d(x,, X4+p) < ¢ forall peN.
Therefore, {x,} is a Cauchy sequence. O

Theorem 3.2. Let (X,d) be a complete cone rectangular metric space endowed with a graph G
and has the property (P). Let T: X — X be a G-Reich contraction such that Xr # 0, then T is a
weakly Picard operator.

Proof. If X; # 0 then let xo € X7. By Theorem 3.1, the Picard sequence {x,}, where x, = T" ' x,
for all n € N, is a Cauchy sequence in X. Since X is complete, there exists u € X such that

X, > U as n — oo, 3.5)

We shall show that u is a fixed point of 7. By Theorem 3.1 we have (x,, x,.1) € E(G) foralln > 0,

d, < d(x,, x,41) 2 &"dy, where o = % < 1 and by the property (P) there exists a subsequence

{xx,} such that (x; ,u) € E(G) for all n € N. Also, we can assume that x,, # x,_; for all n € N. So,
using (2.2) we have

d(u, Tu)

IA

d(u, xz,) + d(xx,» Xg,+1) + d(Xg, 41, Tu)

d(u, xy,) + di, + d(Tx;,, Tu)

d(u, xi,) + o dy + Ad(xy,, u) + pd(xy,, Txy,) + 0d(u, Tu)
(1 + Dd(u, x,) + (1 + wya*dy + 6d(u, Tw),

INIA

that is,
1+4 l+u
< — n .
d(u, Tu) < T 5d(xkn’“) + =5 6@ do (3.6)

Since a**dy — 6, x, — u as n — oo we can choose n € N such that, for every ¢ € E with § < ¢

d a*d
20+ YO =500
(3.6) that: for every ¢ € E with 8 < ¢ we have

we have d(x;,,u) < c for all n > ng. Therefore, it follows from

d(u,Tu) < ¢ forall n > ny.

So, by (c) of Remark 2, we have d(u, Tu) = 6, that is, Tu = u theerefore u € FixT. Thus T is a
weakly Picard operator. L

In the above theorem the mapping 7 is not necessarily a Picard operator. Indeed, such mapping
T may has infinitely many fixed points. Following example verifies this fact.

Example 3.1. Let X = N = U N, where Ny = N U {0} and N, = {2¢2n - 1): n € N for all
kEN()

k € Ny. Let E = Cg[0,1] with ||x]| = [[xlle + |I¥|l and P = {x € E : x(r) > O for ¢ € [0, 1]}. Let

d: X X X — E be defined by

t

0 ifx=y,
d(x,y) =1 3¢ ifx,ye{l,2},x#y,
e otherwise.
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Then (X, d) is a cone rectangular metric space endowed with graph G, where

EG) = A U (N, X Np) U{(l,x): x €Ny}

keNp\{1}

Note that (X, d) is not a cone metric space. Define a mapping 7: X — X by

2k, ifxe N, ke Ny\ {1};
Tx=3 6, ifx=2;
1, ifxe N \{2.

Then it is easy to see that 7" is a G-Reich contraction with 4 € [1/3,1),u = 6 = 0. All the
conditions of Theorem 3.2 are satisfied and 7" has infinitely many fixed points, precisely Fix7T =
{2": k€ Ng\ {1}} , therefore T is not a Picard operator but weakly Picard operator. Note that, if a
Reich contraction on a cone rectangular metric space has a fixed point then it is unique therefore
T is not a Reich contraction in (X, d) since FixT is not singleton.

Remark. Unlike from Reich contraction, the above example shows that there may be more than one
fixed points of a G-Reich contraction in a cone rectangular metric space and therefore a G-Reich
contraction in a cone rectangular space need not be a Picard operator.

In following theorem we give a necessary and sufficient condition for 7 to be a Picard operator.

Theorem 3.3. Let (X, d) be a complete cone rectangular metric space endowed with a graph G
and has the property (P). Let T: X — X be a G-Reich contraction such that X; # 0, then T is
a weakly Picard operator. Furthermore, the subgraph G, defined by V(G,) = FixT is weakly
connected if and only if T is a Picard operator.

Proof. The existence of fixed point follows from Theorem 3.2. Let u,v € FixT, then since Gy,
is weakly connected there exists a path (x,-)fzo in Gy, from u to v, that is, xo = u,x; = v and
(xi-1,X;) € E(Gy,) fori = 1,2,...,1. Therefore by Proposition 3.1 and Remark 2 we obtain u = v.
Thus, fixed point is unique and 7 is a Picard operator. ]

Remark. In Jachymski (2007), for T to be a Picard operator Jachymski assumed that G must be
weakly connected. From the above theorem it is clear that for 7" to be a Picard operator it is
sufficient to take that FixT is weakly connected. Next example will illustrate this fact.

1111
Example 3.2. Let X = {1 33713 , E = Cg[0, 1] with [|x]| = |[xlle + [I¥|lc and P = {x € E :
x(t) > 0forte[0,1]}). Letd: X X X — E be defined by

el il e o))t

11 3t
d(2 4) d(5 3) ge dx,x)=0=0 forall xe€X,

1\ n-1
d(l,—):” ¢ forn=2,3,45 dxy) =dyx forall xyeX,

n n
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Then (X, d) is a cone rectangular metric space endowed with graph G, where

sor-so LR EDED )

Note that (X, d) is not a cone metric space. Define 7: X — X by

1 11
~ 'f ==,z
2 BT s
1 1
-, if x=—;
Tx=1{ 9 3
. 1
1, 1fx:Z;
1
T if x=1.

2
Then T is a G-Reich contraction with 4 € [§ 1) ,iu = 0 = 0. All the conditions of Theorem 3.3

1
are satisfied and T is a Picard operator and FixT = {5} Note that the graph G is not weakly

1 1
connected. Indeed, there is no path from 1 to — or form — to 1 for all n = 2,3,4,5. Also, one

n n
can see that T is neither a Reich contraction in cone rectangular metric space (X, d) nor a G-Reich
contraction with respect to the usual metric.

With suitable values of constants A, u and 6 we obtain the following corollaries.

Corollary 3.1. Let (X,d) be a complete cone rectangular metric space endowed with a graph G
and has the property (P). Let T : X — X be a G-contraction, that is,

(G1) T is edge preserving, that is, (x,y) € E(G) implies (Tx,Ty) € E(G) for all x,y € X
(G2) there exists A € [0, 1) such that
d(Tx,Ty) < Ad(x,y) forall x,y € X with (x,y) € E(G).

Then, if X7 # O then T is a weakly Picard operator. Furthermore, the subgraph G, defined by
V(Gy,) = FixT is weakly connected if and only if T is a Picard operator.

Corollary 3.2. Let (X,d) be a complete cone rectangular metric space endowed with a graph G
and has the property (P). Let T : X — X be a G-Kannan contraction, that is,

(GK1) T is edge preserving, that is, (x,y) € E(G) implies (Tx,Ty) € E(G) for all x,y € X;
(GK2) there exists A € [0, 1/2) such that

d(Tx,Ty) < Ald(x,Tx)+d(y, Ty)] forall x,y € X with (x,y) € E(G).

Then, if X; # O then T is a weakly Picard operator. Furthermore, the subgraph G, defined by
V(Gy,) = FixT is weakly connected if and only if T is a Picard operator.



24 Satish Shukla / Theory and Applications of Mathematics & Computer Science 4 (1) (2013) 14-25

Following corollary is a fixed point result for an ordered Reich contraction (see Malhotra et
al. (2013b)) and a generalization of result of Ran and Reurings Ran & Reurings (2004) in cone
rectangular metric spaces.

Corollary 3.3. Let (X,d) be a complete cone rectangular metric space endowed with a partial
order Cand T : X — X be a mapping. Suppose the following conditions hold:

(A) T is an ordered Reich contraction;

(B) there exists xo € X such that xo C T xg;

(C) T is nondecreasing with respect to C;

(D) if{x,} is a nondecreasing sequence in X and converging to some z, then x, C z.

Then T is a weakly Picard operator. Furthermore, FixT is well ordered (that is, all the elements
of FixT are comparable) if and only if T is a Picard operator.

Proof. Let G be a graph defined by V(G) = X and E(G) = {(x,y) € X X X: x C y}. Then by
conditions (A) and (C), T is a G-Reich contraction and by condition (B) we have X7 # 0. Also by
condition (D) we see that property (P) is satisfied. Now proof follows from Theorem 3.3. ]

Conclusion. In the present paper we have proved the existence and uniqueness of fixed point
theorems for a G-Reich contraction in cone rectangular metric spaces endowed with a graph. We
note that the results of this paper generalize the ordered version of theorem of Reich (see Reich
(1971) and Malhotra et al. (2013b)). Note that, in usual metric spaces the fixed point theorem for
G-contractions generalizes and unifies the ordered version as well as the cyclic version of corre-
sponding fixed point theorems (see Kirk et al. (2003) and Kamran et al. (2013)). We conclude
with an open problem that: is it possible to prove the cyclic version of the result of Reich in cone
rectangular metric spaces or rectangular metric spaces?

Acknowledgments. I would like to express my gratitude to the referees and Professor Stojan
Radenovi¢ for the valuable successions on this paper.
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1. Introduction

In 1933, Whittaker (Whittaker, 1933), (Whittaker, 1949) introduced the subject of basic sets
of polynomials of a single complex variable. This subject is developed by several authors using
one and several complex variables. It is of fundamental importance in the theory of basic sets of
polynomials of several complex variables to define some kinds of basic sets of polynomials in C".
This is the main aim of this paper. We will define and study Hadamard products of basic sets of
polynomials in complete Reinhardt domains and in hyperelliptical regions.

We start with basic concepts, notations and terminology on this paper.

Let C represent the field of complex variables. In the space C? of the two complex variables z
and w, the successive monomial 1, z, w, 2, zw, w?, ... are arranged so that the enumeration number
of the monomial z/w* in the above sequence is

1
SG+RG+B+k k=0,

The enumeration number of the last monomial of a polynomial P(z, w) in two complex vari-
ables is called the degree of the polynomial. A sequence {P;(z; w)};’ of polynomials in two com-
plex variables in which the order of each polynomial is equal to its degree is called a simple set

Email address: ahsayed80@hotmail.com (A. El-Sayed Ahmed)
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( see (Kishka, 1993), (Kumuyi & Nassif, 1986) and (Sayyed & Metwally, 1998)). Such a set is
conveniently denoted by {P;(z; w)}, where the last monomial in P, ,(z, w) is Z"w".

If further, the coefficient of this last monomial is 1, the simple set is termed monic. Thus, in
the simple monic set {P,, ,(z; w)} the polynomial P, ,(z, w) is represented as follows.

m+n  k

Pun(zw)= D 3" P 2wl (P = 1P =0, > n).
k=0 j=0

Let z = (z1, 2, ..., 2») be an element of C"; the space of several complex variables. The following
definition is introduced in (Mursi & Makar, 1955a,b).

Definition 1.1. A set of polynomials {P,[z]} = {Py, P1, Pa, ..., P,, ...} is said to be basic when every
polynomial in the complex variables z,; s € I = {1,2,3, ..., n} can be uniquely expressed as a finite
linear combination of the elements of the basic set {Pn[z]}.

Thus according to (Mursi & Makar, 1955b), the set {Pp[z]} will be basic if and only if there
exists a unique row-finite matrix P such that PP = PP = I, where P = [Pyy] is the matrix of
coefficients, P is the matrix of operators of the set {Py,[z]} and I is the infinite unit matrix.

Similar definition for a simple monic set can be extended to the case of several complex vari-
ables by replacing m,n by (m) = (m, my, ms, ...,m,) , j,k by (h) = (hy, hy, hs, ..., h,) and z, w by z,
where each of (m) and (h) be multi-indices of non-negative integers.

The fact that the simple monic set {Py,[z]} of several complex variables is necessarily basic
follows from the observation that the matrix [Py, 5] of coefficients of the polynomials of the set is
a lower triangular matrix with non-zero diagonal elements. (These elements are each equal to 1
for monic sets).

Definition 1.2. The basic set {P,[z]} is said to be algebraic of degree ¢ when its matrix of coeffi-
cients P satisfies the usual identity

P +a P+ .+ = 0.

Thus, we have a relation of the form

-1
Pupn = Omnyo + Z )’S.PE::})I,
si=1

where Pf;‘l)l are the elements of the power matrix P*' and y,,, s =0,1,2,...,£ — 1 are constant

numbers. In the space of several complex variables C". Let z = (zy, 22, ..., Z,) be an element of
C"; the space of several complex variables, a closed complete Reinhardt domain of radii a,r(> 0);
s €l ={1,2,3,...,n}is here denoted by l:[ar] and is given by

[iory =T 1= {ze C":|z| <ayr ;s €I}, where a, are positive numbers. The open
complete Reinhardt domain is here denoted by I'j,s and is given by

Fior =T ]={Z€(C”:|zs|<asr ;s €l

[aq 1,2 e,
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Consider unspecified domain containing the closed complete Reinhardt domain I'j,. This
domain will be of radii a,r;; r; > r, then making a contraction to this domain, we will get the
domain D([ar™]) = D([a 7", asr?, ..., a,r"]), where r* stands for the right-limit of r; at r.

Now let m = (m;, m,, ..., m,) be multi-indices of non-negative integers. The entire function
f(z) of several complex variables has the following representation:

(o)

f(z) = Z amz™.

m=0
Suppose now that the function f(z), is given by

(59

f@= ) ant"

m=0

is regular in [,y and
M|f;ar] = gup|f(z)|.

Llor]

For the basic set {Pn[z]} and its inverse {I_Dm[z]} , we have

Pm[z] = Z Pm,hzha
h

Pulz] = ) Py,
h

2" = Z PunPnlz] = Z PunPulz].
h b

.....

A basic set satisfying the condition

lim {Np)® = 1, (1.1)

(m)—o0

is called, as in (Mursi & Makar, 1955a,b) and (Kishka & El-Sayed Ahmed, 2003) a Cannon set.
Let {Pn[z]} be a basic set of polynomials of the several complex variables z; s € I, then the
Cannon sum for this set in the complete Reinhardt domains is given as follows:

QP [or]) = | [ (@)™ ™ > |Prun|M(Pm, [ax]),
s=1 h

where
M(Pu, [ar])= max|Pu[z]].

[ar]
The Cannon function is defined by:

.

Q(P.lor]) = lim {Q(Pn,lorD)} "
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When this associated series converges uniformly to f(z) in some domain it is said to represent f(z)
in that domain; in other words, as in the classical terminology of Whittaker for a single complex
variable (see (Whittaker, 1949)), the basic set Py,[z] will be effective in that domain. For more
information about basic sets of polynomials we refer to ((Abul-Ez, 2000)-(Whittaker, 1949)).

The convergence properties of basic sets of polynomials are classified according to the classes
of functions represented by their associated basic series and also to the domain in which are rep-
resented.

Concerning the effectiveness of the basic set of polynomials of several complex variables in
complete Reinhardt domains, we have the following results from (Mursi & Makar, 1955a,b).

Theorem 1.1. (Mursi & Makar, 1955a,b) The necessary and sufficient condition for the basic
set {Pmlz]} of polynomials of several complex variables to be effective in the closed complete
Reinhardt Iy, v is that

QP;ry) = ]—[ a,r. (1.2)
s=1

. . . . 2 .
In the space of several complex variables C", an open elliptical region };|_, 'i—'z < 1 is here

2 p—
denoted by E, and its closure )|, |i_|2 < 1; is denoted by E, , where ry; s € I are positive
numbers. In terms of the introduced notations these regions satisfy the following inequalities:

E, ={w:|w<1)

E, ={w:w/ <1},
where w = (Wi, Wo, W3, ..., W,) , Wy = i—, s € 1. Suppose now that the function f(z), is given by

(o)

f@) =) ana"

m=0

is regular in E,, and

M[f;r] = sup|f(2)].

Er,

Then it follows that {|z,| < rt,; |t = 1}C Es; hence

M(fipsl  Mlfips) . . M[f;ps]
lam| < = < inf —2275
omm N s Q. s
qu tS I:Il(pStS)
__ M[fips]
=
[1p5"
s=1
forall 0 < py < ry; s € I, where
(m)
1 2
Om = Inf — = {(m)}
=t m —on m
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mg

and 1 < oy < (4/n)™ on the assumption that m;> = 1, whenever m; = 0; s € I. Thus, it follows
that 1
lim sup{ - il }<m> < %
I e )™ e
s=1 s=1
and since p, can be chosen arbitrary near to ry; s € I, we conclude that

1
) a my 1
<11>m sup{ n| m! } <-—
m)—oco ( >_ s
Om l'[l(rs)m " l_[1 rs
§= s=

;0 ps<rgS€eL

Now, write

ZV: I_)m;jP ilz]

G(Pp; rg)= max sup
wy = |4
El’s J=u

b

where, r,; s € I are positive numbers. _
The Cannon sum of the set {Py,[z]} for E, will be

QPui 1) = T | |1} ™" G (P )

s=1

and the Cannon function for the same set is

QPir) = lim (Q(Pwir))™.

Concerning the effectiveness of the basic set of polynomials of several complex variables in hy-
perellipse, we have the following results from (El-Sayed Ahmed & Kishka, 2003).

Theorem 1.2. (El-Sayed Ahmed & Kishka, 2003) The necessary and sufficient condition for the
basic set { Pz} of polynomials of several complex variables to be effective in the closed hyperel-
lipse E, is that

Q(P;ry) = 1_[ ry.
s=1

Convergence properties (effectiveness) for Hadamard product set simple monic sets of poly-
nomials of a single complex variable is introduced by Melek and El-Said in (Melek & El-Said,
1985). In (Nassif & Rizk, 1988) Nassif and Rizk introduced an extension of this product in the
case of two complex variables using spherical regions. In (El-Sayed Ahmed, 2006), the same
author has studied this problem in C" using hepespherical regions. It should be mentioned here
the study of this problem in Clifford analysis (see (Abul-Ez, 2000)). For more details on basic
sets of polynomials in Clifford setting, we refer to (Abul-Ez, 2000; Abul-Ez & De Almeida, 2013;
Abul-Ez & Constales, 2003; Aloui et al., 2010; Aloui & Hassan, 2010; Hassan, 2012; Saleem et
al., 2012) and others. In the present paper, we aim to investigate the extent of a generalization of

this Hadamard product set in C" using hyperspherical regions.
In (Nassif & Rizk, 1988), Nassif and Rizk introduced the following definition.
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Definition 1.3. Let {P,,,(z, w)} and {g,,.(z, w)} be two simple monic sets of polynomials, where

(m,n)
Pun(z,w) = Z PT]’."Z" w,
,)=0
(m,n)
Gnn(zw) = > 7w,
(i,)=0
Then the Hadamard product of the sets {P,, ,(z, w)} and {g,, »(z, w)} 1s the simple monic set {U,, ,(z, w)}
given by

(m,n)
Una(zw) = D U2,

@,)=0

where o
Ul = Py () < (mom)),
0',"]‘
and .
1 {m+n}?
O-m’” = |lt‘_1 m+n = m%n%

In this paper, we give an inevitable modification in the definition of Hadamard product of basic
sets of polynomials of two complex variables as to yield favorable results in the case of several
complex variables in complete Reinhardt domains in C”, by using k basic sets of polynomials
instead of two sets.

Now, we are in a position to extend the above product by using k basic sets of polynomials of
several complex variables in complete Reinhardt domains, so we will denote these polynomials by
{Pimlzl}, {PamlZ]}, ..., {Prml[z]} and in general write {P,, m[Z]}; 52 = 1,2,3, ..., k.

Definition 1.4. Let {P,, m[z]}; 5o = 1,2,3,...,k be simple monic sets of polynomials of several

complex variables, where
(m)

Pomlz] = > Py mnz" (1.3)
(h)=0

Then the Hadamard product of the sets { P, m[z]} 1s the simple monic set {Hy[z]} given by
(m)

Hulz) = ) Hup?", (1.4)

(h)=0

k
Houn = ([ ] Prama). (1.5)
so=1

If we substitute by k£ = 2 and consider polynomials of two complex variables instead of several
complex variables, then we will obtain Definition 1.3. It should be remarked here that Definition
1.4 is different from that used in (Metwally, 2002).

where
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2. Effectiveness in complete Reinhardt domains

In this section, we will study the effectiveness of the extended Hadamard product of simple
monic sets of polynomials of several complex variables defined by (1.4) and (1.5) in closed com-
plete Reinhardt domains and at the origin.

Let {P,, m[Z]} be simple monic sets of polynomials of several complex variables z;; s € I, so

that we can write
(m)

Pomlzl = ) Poymn?", 2.1)
(h)=0

where
prvmeestin = 1. 00 = 1,2, .., k.

§2,M1,M2,...,Mp

The normalizing functions of the sets {P,, m[z]} are defined by (see (Nassif & Rizk, 1988))

. o
W(Py,s agr) = <11>m sup{M[PsZ,m;asr]} , (2.2)

where M| Py, m; a,r| are defined as follows:

M[PS2,m;asr] = S_up Psz,m[z]|-

r[m‘]

Notice that the sets {P,, m[z]} are monic. By applying Cauchy’s inequality in (2.2), we have

1
|Psz,m,h| < - sup
[T(®™ o
s=1

Py, mlz]],

which implies that
M[Pg,m; asr] > rl(afsr)<m>.
s=1

It follows from (2.2) that

u(Py,; agr) > 1_[ a,r. (2.3)
s=1
Next, we show if p is positive number greater than r, then
fjas
U(Ps,sap) < —— (P agr),  ap > a,r. (2.4)
[Tar
s=1

In fact, this relation follows by applying (2.2) to the inequality

n
[Tap o

s=1

M[Pg,m; agr] < K( M[ Py, m; ayr],

n

[T a,r
s=1
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which in its turn, is derivable from (2.2), Cauchy’s inequality and the supremum of z™, where
K =0(m) + 1).

Now, let {P,, m[Z]}; s» = 1,2, 3, ...,k be simple monic sets of polynomials of several complex
variables, and that {H}, [z]} is the set defined as follows

k
Hylz) = | | Pomlz]. (2.5)
s2=1
The following fundamental result is proved.

Theorem 2.1. If, for any a,;r > 0

M(Psz;a'sr) = 1—[ asr, (2.6)

s=1

then .
u(H; agr) = n a,r. 2.7)

s=1

Proof. We first observe that, if p be any finite number greater than r, then by (2.1), (2.2) and (2.9),
we obtain that

u(Pyiap) = | | awp. 2.8)
s=1
Now, given r* > r, we choose finite number 7’ such that
a,r < a,r’ < agrt. (2.9)
Then by (2.1) and (2.6), we obtain that
M(Pyp;or) <n| [ )™ where 5> 1, (2.10)
s=1

where (h) = hy + hy + hs + ... h,,. Also from (2.4), we can write

(m) &

Hylz) = > | | PomnPonlzl.

(h)=0 s,=1

Hence (2.9) and (2.10) lead to

n
[

: ny\—n
s=1

M|H,; ar] < nK(l —( - ) ) M|Pg, m; asr’],
[Tar
s=1
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Making (m) — oo and applying (2.7), we get
. o -
u(H; agr) = <h)m sup{amM[an;a/sr]} < u(Py,; agr’) = l—[ ar’,
m)— oo =1

which leads to the equality (2.6), by the choice of r* near to r, and our theorem is therefore
proved. [

Remark. From Theorem 2.1, if we consider the simple monic sets {Py, m[2]} accord to condition
(2.6), then it is not hard to prove by induction for the j-power sets {P(SJZ)’m [z]} that

u(PY; ayr) = 1_[ ar. 2.11)
s=1

Now, we give the following result.

Theorem 2.2. Let {P,, m[z]}; 52 = 1,2,3, ...,k be simple monic algebraic sets of polynomials of
several complex variables, which accord to condition (10). Then the set will be effective in the
closed complete Reinhardt domain l_“[m].

Proof. Suppose that the monomial z™ admit the representation

" = ZI_Jm,hPh[Z]-
h

Since the set {P, m[z]} is algebraic, we find there exists a relation of the form

k
Pimn = ) a;P) 5 () < (m)), (2.12)
j=1
where k is a finite positive integer which together with the coefficients (a j)’J‘.zl, is independent of
the indices (m), (h). The coeflicients P(IJ:nh are defined by
Pz = Y P 1<j<k
(h)=1
It follows that _ _
P W)™ < owM[PY s ar]. (2.13)

According to (2.11) for given r* > r and from the definition corresponding to u(P(lj);asr), we
deduce that

M[PY}; a,r] < K(ar)™. 2.14)
Applying (2.13) and (2.14) in (2.12), we obtain that
. [T (@)™
[P o] < 8K ——r (2.15)

[T(a,r)™
s=1
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where
B =max{la;;0< j<k} and ¢ isaconstant. (2.16)

In view of the representation

" = Z PmnPnlz],
b

the Cannon sum of the set {PY}Il [z]} will be

(m)

QP ) = Y PaylM[P):arl, (2.17)
(h)=0

where, . ‘

M[P\: a,r] = sup [P\ [2]]. (2.18)
Diar)
Therefore (2.14), (2.15) and (2.17) (for r* > r) give
PV s @) < (KB [(ar™. (2.19)
s=1

Hence the Cannon function of the set {P(I{:n[z]} turns out to be
ﬁ n
QPsaur) = Tim {Q(Pan]” = [ Jaur
s=1
which, by the choice of r*, implies that

Q(PY; ar) = l_[ ar.
s=1

As very similar, we can obtain that the sets {P(fon[z]}; y =2,3,4, ...,k will be effective in the losed
complete Reinhardt domain I'[,,;. Our theorem is therefore proved. []

3. Effectiveness in hyperelliptical regions

Now, we are in a position to extend the above product by using k basic sets of polynomials of
several complex variables, so we will denote these polynomials by {P n([z]}, {PomlZ]}, ..., {PrmlZ]}
and in general write {P,, m[Z]}; 52 = 1,2,3, ..., k.

Definition 3.1. Let {P,, m[z]}; 5o = 1,2,3,...,k be simple monic sets of polynomials of several

complex variables, where
(m)

Psz,m[z] = Z Psz,m,hzh' (3.1)
(h)=0
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Then the Hadamard product of the sets {P,, m[Z]} 1s the simple monic set {Hy[z]} given by

(m)

Hpylz] = Z Hm,hzh, (3.2)
(h)=0
where
ookl k
Hm == Ps mh | 3.3
2] () o

If we substitute by k = 2 and consider polynomials of two complex variables instead of several
complex variables, then we will obtain Definition 1.3. It should be remarked here that Definition
1.4 is different from that used in (Metwally, 2002).

Let {P;, m[Z]} be simple monic sets of polynomials of several complex variables z; s € I, so

that we can write
(m)

Pomlzl = )" Py, mu?", (34)
(h)=0

where
prvmeestin = 1. 0 = 1,2, .., k.

§2,M1,M2,...,Mp

The normalizing functions of the sets {P,, m[z]} are defined by (see (Nassif & Rizk, 1988))

/l(Psz; rs) = <n1]l>r_l’>loo Sup{O-mM[PsZ,m; rs]}<m> ’ (35)

where M[P, m; r¢| are defined as follows:

M[Pg,m; 15| = sup
Ers

Py, mlzl|-

Notice that the sets {P,, m[z]} are monic. By applying Cauchy’s inequality, we deduce

Om
|Ps, mnl < e sup| Py, m[z]],
Ers

T
which implies that
[T 7™
M[Psz,m; rs] > L
Om
It follows from (3.4) that
(P 1s) 2 1. (3.6)

Next, we show if p; are positive numbers greater than r, then

n

[[lps

U(Pyy;05) £ —— p(Pyyi1y),  ps > 1y (3.7
rS
u
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In fact, this relation follows by applying (3.4) to the inequality

fir

(m)
M[Psz,m;ps] S K( ) M[Psz,m; rs],

n
[17s
s=1

which in its turn, is derivable from (3.4), Cauchy’s inequality and the supremum of z™, where
K =0(m) + 1).

Now, let {P;, m[z]}; 5o = 1,2, 3, ...,k be simple monic sets of polynomials of several complex
variables, and that {H},[z]} is the set defined as follows

k
Hylz) = | | Pomlzl. (3.8)

sp=1
The following fundamental result is proved.

Theorem 3.1. If, for any r; > 0

n

p(Poir) = | (3.9)

s=1
then
u(H;ry) = rs. (3.10)

s=1

Proof. We first observe that, if p be any finite number greater than r, then by (3.4), (3.5) and (3.7),
we obtain that

u(Pyips) = | | ps (3.11)
s=1
Now, given r; > r,, we choose finite number 7| such that
re <r.<r. (3.12)
Then by (3.4) and (3.8), we obtain that
MPywir) < L[ [ 171™ where 7> 1, (3.13)
Oh

s=1
where (h) = hy + hy + hy + ... h,. Also from (3.7), we can write

(m) &k

Hylzl = Y [ [ PamnPonlzl.

(h)=0 5,=1

Hence (3.9) and (3.10) lead to
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1 n
u(H*;ry) = lim sup{()'mM[an;rs]}< ) < u(Py,sr) = l_l ri,
(m)—o0 i
which leads to the equality (3.8), by the choice of r; near to r,, and our theorem is therefore
proved. [

Remark. From Theorem 3.1 if we consider the simple monic sets {Py, m[z]} accord to condition
(3.8), then it is not hard to prove by induction for the j-power sets {P(SJZ)’m [z]} that

n

u(PPir) = | | . (3.14)
s=1
Remark. It should be remarked that the results of this paper improve some results in (El-Sayed
Ahmed, 2006, 2013).

4. Conclusion

We have obtained some essential and important results for the effectiveness of the Hadamard
product set of polynomials in complete Reinhardt domains and in heperelliptical regions. From the
established theorems, representations and convergence of power set of the the Hadamard product
set are introduced in complete Reinhardt domains and in heperelliptical regions too. Various
problems relating to the properties of the Hadamard set of simple basic sets of polynomials are
treated with particular emphasis on distinction between the single and several complex variables
cases. An important result is established for the relationship between the Cannon functions of
simple sets of polynomials in several complex variables and those of the directly Hadamard sets.
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Abstract

In this paper, the Banach contraction principle and Schaefer theorem are applied to establish new results for the
existence and uniqueness of solutions for some Caputo fractional differential equations. Some examples are also
discussed to illustrate the main results.
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1. Introduction

The theory of fractional differential equations has excited in recent years a considerable interest
both in mathematics and in applications, (see (Bengrine & Dahmani, 2012; Delbosco & Rodino,
1996; Diethelm & Walz, 1998; El-Sayed, 1998)). In particular, existence and uniqueness of so-
lutions for fractional differential equations have attracted the attention of many mathematicians
(Diethelm & Ford, 2002; Houas & Dahmani, 2013; Zhang, 2011; Ntouyas, 2012; Su, 2009; Yang,
2012; Zhang, 2011).

This paper deals with the existence and uniqueness of solutions to the following problem

DYx(t)+ f(t.y (1), D%y (1)) = 0,1 € J, 1.1
DPy(t)+ g(t,x(1),D7x (1)) = 0,1 € J,
x(0) = y(0) = 0,x(1) = 4 x (i) = 0,y (1) = A1y (1) = 0,
X 0=y 0=0x" 1)-x @=0y 1)-1y & =0,
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Email addresses: zzdahmani@yahoo.fr (Zoubir Dahmani ), 1z. tahbarit@yahoo.fr (Louiza Tabharit)



Zoubir Dahmani et al. / Theory and Applications of Mathematics & Computer Science 4 (1) (2013) 40-55 41

where D¢, DP , DY and DY, are the Caputo fractional derivatives, 3 < a,8 < 4,6 < a - 1,0 <
B-1,0<én<1,J =1[0,1],4;, A, are real constants satisfying A1 # 1,42 # 1 and f, g are
two functions which will be specified later.

This paper is organized as follows: In section 2, we present some preliminaries and lemmas. In
section 3, we present our main results for the existence and uniqueness of solutions of (1.1). In
section 4, some examples are treated to illustrate our results.

2. Preliminaries
To present our main results, we need the the following two definitions:

Definition 2.1. The Riemann-Liouville fractional integral operator of order @ > 0, for a continu-
ous function f on [0, oo[ is defined as:

1 A
JOF (1) = mfo -0 f@dra >0, 2.1)

o =fQ,

where I' (@) := fooo e Uulay.
Definition 2.2. The fractional derivative of f € C" ([0, oo[) in the Caputo’s sense is defined as:

t
DYf (1) = _ f t - fD(ydrn -1 < a,n e N*. (2.2)
IF'(n-a) Jo
More details about fractional calculus can be found in (Mainardi, 1997; Podlubny et al., 2002).
We need also to introduce the spaces:
X={x:xeC((0,1]),Dxe C([0,1D}and Y = {y : y € C([O, 1]),D5y € C ([0, 1])}. For these
spaces, we associate respectively the norms || x ||x=|| x || + || D7x ||;]| x ||= sup|x ()|, || D x ||=

teJ
sup [D7x (0] and || y ly=Il y | + 1l D%y Il: |l y lI= sup [y ()], || D% I|= sup |D°y (1)] . It is clear that,
teJ teJ teJ
X1l . llx) and (Y,]| . |ly), are two Banach spaces.

Also, (X X Y, ||(x, y)llxxy) is a Banach space. Its norm is given by ||(x, Y)llxxy = llxllx + [Vlly -

The following lemmas are crucial for our main results (Kilbas & Marzan, 2005; Lakshmikan-
tham & Vatsala, 2008):

Lemma 2.1. For a > 0, the general solution of the equation D¥x (t) = 0 is given by

x(f)=co+cyt+ et + o+ cp g7, (2.3)
wherec; € R,i=0,1,2,..,n—1,n=[a] + 1.
Lemma 2.2.
JED%x (1) = x (1) + co + 1t + ot + oo + cyq 7L, 2.4)

forsomec; € R,i=0,1,2,...,n—1,n=[a] + 1.
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We prove also the following lemma which is needed to present the integral solution for the
problem (1.1):

Lemma 2.3. Let h € C([0,1]),t € J,3 < a < 4. Then the solution of the equation
DY () +h() =0, (2.5)

where,

x(0) = 0,x(1)=Ax(m) =0, (2.6)
X0 = 0,x (I)=Ax (&) =0
is given by the following expression
0 = ~pos f (t= )" h(s,y(s), Dy (9)) ds @.7)
At

a—1 5
MIO (1= 9" h(5,y(9), Dy () ds

1
a—1 5
_mf(; (1-5) h(s,y(s),D y(s))ds

(/12 - /12/11773) 1+ (Ain— )P
6(An—1)(1é- DI (a-2)
(1-am®) e+ - (I . )

_6(11n—1)(12§—1)r(a_2)f0 (1=s) h(s,y(s),D y(s))ds_

Proof: Let ¢c; € R,i = 0,1,2,3. Then by lemmas 2.1, 2.2, the general solution of (2.5) can be
written as:

3
fo €= 9" h(s,y(s), D’y (9))ds

x(t)——mf (t =)V h(s)ds —co— et — cof” — 38, (2.8)

Using (2.6), we immediately get ¢y = ¢p = 0. On the other hand, we have

= Ty o NT N — sl - @ @@ a-1
1 = (/lln—l)F(a)f (n—1s) h(S)dS+(/11n—l)F(a)f(l )2 h(s)ds(2.9)

(1 -4r) f €= 9" 3 h(s)d
- i ) S )
6n-DLé-DIr@-2 Jy

(1= 1 -
6(/1177—1)(/125—1)1“(@ 2)f0 (1 =97 h(s)ds.

To obtain the value of c3, we remarque that

A2

=— a3 1 1 a3
T 6“25‘”““—2)5@ X h(S)dS+6(/12§—1)F(a—2)f0(1 7 g((sz)f;

Finally, substituting the values of ¢ and c3 in (2.8), we obtain (2.7).
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3. Main results

We begin by introducing the quantities:

W1l nt+1 (=i Haa =202+ 1= p* |+l -1

Ny 17— (a+T) Ol -1~ (a-1) :
N, = . 11 +1 R PRl YiU M ol LSV
2 T Tla—o+D) " yn=IT(e+DIC2-0) = 8 n—11E—1(@-DI2—0)
17—l 2+ A -1
in—-1IE-1T(a— DI G—0)°
Na = nelHbA (Jia= A2 [+ A= )B4+ 1=y [+ -1
3 -1 (B+1) Ol 1L TTBE-1) ’
N, = 1 N I P+1 N | =01 |EE 24| 1-217
4 T TE-5+D T -1 B+DIQ2=08) * 6lA1n—1AE— 1T (B—DI(2-3)

A=l 2+ -1
n—1LE-1TE-DIE-5)"

We impose also the hypotheses:

(H1) : The functions f , g : [0,1] x R — R are continuous.

(H?2) : There exist non negative functions a;, b; € C ([0, 1]),i = 1,2 such that for all ¢ € [0, 1]
and (x1,y1), (x2,y2) € R2, the inequalities

ay () |xy — x2| + b1 (D y1 — yal, 3.1
ap () |x1 — x| + ba () [y1 — yal,

|f(ta le’l) - f(ta x2’y2)|
g (2, x1,¥1) — g (£, X2, y2)

IA A

are valid, and

wy =supaj (t),wy =supby (t),w) =supay (t), @y =supby (1).
teJ teJ teJ teJ

(H3) : There exist positive constants L; and L, such that
|f (t, x,y)| < Li,|g (t,x,y)| < L, foreacht € J and all x,y € R.
Our first main result is given by the following theorem:
Theorem 3.1. Assume that (H2) holds and suppose that
(N1 + Np) (w1 + wp) + (N3 + Ny) (@ + @) < 1. (3.2)
Then the problem (1.1) has a unique solution on J.

Proof: We apply Banach fixed point theorem. So, we consider the operator ¢ : X XY — X XY
defined by:

¢ (x,y) (1) := (1Y (1), 2x (1)), (3.3)
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where

0 = f (1= 971 £ (5, (9, DOy (5)) ds (3.4)
At

R _ aa-1
mm—l)r(a)f (=" f(5:9(9), D’y (5)) ds

1
-_— _ a—1 5
(/lln—l)F(a)fo (1= f(s.7(), D (5)) ds

(/12 _/12/117]3)t+ (/12/11)7_/12) t3 f A D6 ]
6(An—-1D)(ME-DI(@-2) Jo €= f(S’y(S)’ y(s)) s

(1-an¥)t+ -2 1 . )
_6<ﬂln—1)(ﬂzg—1)r(a_z)f0 (1= )7 f(5.y(s), D%y () ds

and

drx(t) : = F(,B)f (t— sy 1g(s x(s),D7x(s))ds (3.5)

Ayt

a—1 o
T Jy T 80,0 ) ds

1
- _ a1 o
um_nr(ﬁ)fo (1= 9" g(s,x(s), D7x(s)) ds

(/12 - /12/11773) t+ (Ad1n— A2) 3
6(A1n—1) (26 - DI (B-2)
(1-am?)t+n-n 1 s )

_6(/1117— 1) (A€ — 1)1“('3_2)‘[) (1 =5 g(s,x(s), D" x(s)) ds.

And we shall prove that ¢ is a contraction mapping.
Let (x,y),(x1,y1) € X X Y. Then, for each t € J, we have:

'3
f & - )3 g(s,x(5),D7x(s))ds
0

t
91y () = 131 (O] < ﬁf (t =9 |f (5,905, D% () = £ (5,31 (5), D1 (5))| ds

- f(s,y1 (s). D% (s)) ds
+Mm—tllr(a)f0 (1= (559, D° () = f (5,31 (9, D’y (9))|ds  (3.6)

ds

(

umulllfr(a) f (=9 f (5.7(5). Dy (s)
(
(

A=+ in-1e (¢ ~
+ 26|/11277—117||/'1t2?—i|1"](7;—22)|t fo € =9 (5.9, D% (5)) = £ (531 (), DOy ()

[1=Au 3|+l m—113

1
G- 1T a-2) fo (1= 73| f (5,(9), DOy (5)) = £ (5,31 (5), D3y ()| ds

Thanks to (H2), we obtain
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(m=11+121 ¥ +1) w1||y—y1||+wz D°y-DOy,

[(|/12 AP [+ A=) 2+ 1= 3 [+ =11 | (w1 ly=y1 I+wa | DOy- D%H)
Ol -1 1T (a—1)

Consequently,

(#130) = $131 O1 < Ny @1 + ) (I =il +]|D%y = Dwi ). (3:38)
Hence,
161 0) = 91 Gl < Ny @i + ) (I =yl + [Py = DPwi ). (3.9)

We have also,
t
D761y (1)~ D7¢1y1 (0] < 7l | =97 (5,5 (), DOy (s)) -
I'(a—0) 0
1 1-0 7 _
+|/l177—|1|11"|(ta)l"(2—0')f (=) 1 f(s,y(s),Déy (s)) B

T f (1= 9" f (5,59, D% () = £ (5,31 (), D°y1 (8))| ds

l/lz—/12/11773|t1 d &
+[ 6I/11U—lll/lzf—llr(a—%)l"(Z—O') )f (é; _ S)(Y—3 f(S,y(S) ’Déy(s)) _ f(S,y1 (S) ’D(Syl (S)) ds

(5,31 (), D%yy (9))|ds

~ =

(5,31 (), D%yy (9))|ds

| Ain—2013~

T 2T G0

N =11~
An=TT2E-TI (@2 G=0)

|-y |t~ !
+( 6|/117]_1||/12§_1|r(63l’_—2)r(2—0') ]f (1 _ S)a_3 ‘f(s,y(s),Déy (S)) _f(S,yl (S),D6y1 (s))'ds

(3.10)
By (H2), yields
- - (@1+@)([ly=y1lI+[|D°y—-D%yy])
|D 1y (1) — D" 11 (t)l < T(a—o+1)
+(w1+w2>[ul|n“+1](||y—y1||+||D5y—D‘5y1||)
[An—1T @+ DI'2—-0) 3.11)

(w1+w2)[|/12 AP [E 24 1= | (y=yi 14| DOy- DOy )
- 1LE- 1 (@- I 2-0)
+(w1+wz>[uzm Al 24 =11 (1y=y1 l1+]| DPy— D‘Sylll)
A= TILE- 1 (@- DI G—0)

This implies that,

Y% A n%+1
R N e e [ (SERSURY [y | [EREA

(wi+w)|[a—-in?le*2+{1-27)|

GIin-TI2E~TM (@~ DI 2=0) ( _ +HD5 _pd H)
(@1+w)| I -k 2+ 1| b= il Y )

|tin—=1]2¢ =1 (a=DI'(4=0)
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Therefore,
D713 () = D791 0] < Na @1 + ) (I =yill+ [P0y - D). G13)

Consequently,

[D761 63 = D761 0| < Mo (@1 + o) (I =yall+ POy = i) G4

By (3.9) and (3.14), we can write

61 0) = 91 Gl < Vi + N2 @1 + @) Iy =ill+ [Py = Do) 31s)
With the same arguments as before, we have
g2 (x) = d2 (Dlly < (N3 + Na) (@ + @) (Il = xll + [D7x = D]} (3.16)
Using (3.15) and (3.16), we can state that

(N1 + Np) (w1 + wy)

||¢(x7y)_¢(x1’y1)”XXY < +(N3 +N4) (WI +w2)

](Il(x—m,y—m)ll;(xy)- (3.17)

Thanks to (3.2), we conclude that ¢ is contraction. As a consequence of Banach fixed point
theorem, we deduce that ¢ has a unique fixed point which is a solution of (1.1).
The second main result is based on Schaefer theorem. We have:

Theorem 3.2. Suppose that (HI) and (H3) are satisfied. Then, the problem (1.1) has at least one
solution on J.

Proof: A: Thanks to (H1), we can state that the operator ¢ is continuous on X X Y.

B: We will prove that ¢ maps bounded sets into bounded sets in X X Y.

So, taking p > 0, and (x,y) € By := {(x,y) € X X Y;[|(x, Y)llxxy < p}, then for each t € J, we
have:

1
by @l < fo = 9 |7 (5.9, DP9 s -
Ui
+M177|il%fo (n -9 'f(s,y(s),D‘;y(s))|ds

=1 fo " 5! £ (5.3(5). Dy ()| ds

|/12—/12/11773|l+|/12/1177—/12|t3 d -3 5
SL-TILE-10@=2) |, &= 9" ‘f(s’y(s)’D y(s))‘ds

I A 3 5
*oin T, (=97 | (5.36). D% 9) ds
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The condition (H3) implies that

L=+ | L (=i [Haadin-aal)er 2+ (1= +Hain-1)]

9y O < =MD 6T TR~ T(a-T) (3-19)
[ =1llA In*+1
< I [Aim—1(e+1)
= (|/12 LA [+ =) 2+ 1= A0 [+ -1
ol41n—1llA2¢—1I(a—1)
Then,
llor Il < L1 Ny. (3.20)
For DY, we have the following inequalities
1 ' 1 s
|DU¢1)’ (f)| Smfo (t—9)"7" 'f (S,)’(S),D y(S))'dS
Ayt = " a-1 5
+|/l]7]—1|r(a)r(2—0') f (TI - S) ‘f s,y(s) aD y(s))' ds
a—1 0
e f (=97 (5.3, Dy (9)| s .
|/12 /12/117]3|[1 T ¢ (321)
1 11T 2-0) _ a3 S
+r((1—2) : |/12/l172]—/12|t3_0— f (é: S) ‘f(S,Y(S),D y(s))‘ds
|1l 28— 1I'(4-0)
1=t 1
1 %O —12E—1T2—0) _ a3 s
+F(a—2) ! |/lln_1|t3—(r ]f (l S) 'f(S,y(S),D y(S))'dS
[in—1llA26-1I'(4-07)
By (H3) again, yields the following formula
D71y (0| < Ly | + il (3.22)
1y = | Ta—o+D) " =1 (a+DI2—0) :
(=i [g 24 1=
+Ly| SU-TE-TT@-1I2-0)
! oAy =€+, 7-1]
|12 -1l (e—DI'(4-0)
T 111 3!
< I Ta—o+1) * =1+ DI 2—0)
U bl 21l Gy din-ole* - 1]
ol =161l a-DI'2-0) * [4n—-1l[A2&- 1T (e-DI'(4-0)
Hence, we can write
D781 0| < L1V, (3.23)

Using (3.20) and (3.23), we obtain

g1 Wllx < L1 (N1 + N2). (3.24)
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As before, we obtain

llp2 (Olly < Lo (N3 + Ng).

By (3.24) and (3.25), we get

llp Ce, Wlixxy < Ly (N1 + Np) + Ly (N3 + Ny).

Therefore,

C:

I Cx, Mllxxy < 0.

Now, we prove the equi-continuity of ¢.

Let us take (x,y) € By, and 11,1, € J, with 1 < 1. We have:

t
61y (1) =1y (D < fo 1(<r1—s)“—l—(tz—s)“‘l)1f(s,y<s>,05y<s>)1ds

5]
@ , 2 97| (5, Dy (9)| ds
il
ulty=11) . 5
w-%fo =97 |f (5,99, Dy ()| ds

1
it [ =9 (9. D ) s

| o= |(to—11)+H A - /lzl t3—l3

(3.25)

(3.26)

(3.27)

(3.28)

L —TLe-Ta=2) f (€ -9 3‘f S y(s), D‘Sy(S))'

[1-17°|(t1=t2)+H A1n— 1| t3—t3 3 5
611 —1[[A2é— 1T (a— 2) f (1 -9 ‘f 5,y(s),D y(S))‘

o (Es2A5-0) Lo | Li-n)
= I'(a+1) [Ain—1T(a+1) [Ain—1T(a+1)

Lll/lz L APE2(t—t)+Li | b lin—Aol€%~ 2(t3 t3)
6l n—1[l26-1l'(a—1)
Li|i-an? |-+ Lilin-11(5-5)
6l n—1]|426-1I'(e-1)

Therefore,

=1+l |, [o-bin’ler
91y () =1yl < Ly [I/lm M@+ D) T 8- 1D | 72

3
1 1= _
M@ D T e 1r@-n | 1 ~ 1)

A1 n—Anl€" >
L [6|/1177—1I|/12€—llf(a—1)] (

+L1

3_3 LyjAn-1] 3
B-1)+ O T—TlLE—TIMa=1) (7

L 2L
r(ail)(t tz) Maan (2 = 1"

(3.29)

tg)
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We have also

11
ID7¢1y (12) = D71y (11| < 1y fo (1 =97 == 9" ) | (5.3 (), Dy (s))| ds
5)
tras ), (2= 9 (5@ Dy )] ds
|/l| 1 -0 l‘l O‘ ol s d
= 1|F(a)F(2 0') (U—S) f(s,y(S) D y(S)) s
1 -0 tl 0'
1 o
um SN a)f (1 -9 f(S y(s),D y(S)) ds
l/lZ /12/11’73|(1 o l‘l (r
O =1l 0e— 1|r(a z)r(z o) a3 5
S e R f €= 97| (53, Dy ()| ds

T =TE TN a- 2)F(4 o)

1/117]3 1(rtl(r
2

6l417—1[l42¢—- 1|F(a 2)1“(2 o) a3 5
" =157 -577) f (1-15) ‘f (s,9(),D y(s))‘

|4n=T{lA26 =TI (= 2)F(2 o)

(3.30)

The condition (H3) implies that

L - - -
D71y (12) = D71y (11| < oy (1777 - 577 +2( - 1))

[A1m*+1 1
[n—1C(a+ DL 2—0) 1— -0 l[4in—11I (a+1)F(2 o) - -0
6l -1l 26-1[ (a-DI'(2-0) - TLE- T e—DI2-0)
Ll n—1pl¢ 2 (3 o _ 3 0')+ Lilin-1 (t3—0' t3—0‘)
[A1n=1[l2é- 1T (a—DI'(4~0) 1 =121 (a=DI'(4-0) \"1 2 )
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The inequalities (3.29) and (3.31) imply that:

3| ga—2
=1+, I [a-tin’le
— < —
¢1y (12) — 1y (tDllx < Ly [|/1177—1|F(01+1) + 6 —1e—1T@-1) (1)
_ 3 -2
1 UM _ Jadi=Aalé® 33
L1 | eTies D + e iieetresn | - 2+ L | gmiieraen | (5 ~ 1)
Lilin-1] 3_.3 Ly @ _ i\
6|/1117—1||/12§—1|F(a—1)(t1 5) + sy (1 =15 + 22— 1)7)
[A1]7%+1 ]
Ly a-o a0 a—o =1 (e+ DI 2-0) -0 -0
e (677 =577+ 2 = 1)) + Ly 71/12—/12/11773|§a_2 (177 -17)
=1 e-Dr2—o) |

; -
1 |1_/1177 | -0 _ -0

L1 | =TT+ D=0 T 6 =TLE=TTe-DI2=0) (tl 5 )

LA 1n—-2p18%2 <t3—o- _ t3—o-) + Lilin—1] (t3—o- _ t3—o-)
=Tlaé—1a-Drd—o) (22 1 =TT a-Drd—o) 2 )

With the same arguments as before, we can write

An—1]+]2 =[P 2
g2 (12) = o x (1)l < Ly ['Mﬁ,_l'g'(ﬁg"{f + 6M!,f_1||32;_1||r(ﬂ_1)] (1 = 11)(3.33)

_ 3 —2
i [1-177| _ i n—Alé? 3.3
M IrED t et | 1~ 2) * L2 | g7 =T ITG-D (5-1)

+L,

Lyl -1 3.3 L
+6|1177—1|2|121§—1|F(ﬂ—1) (tl N tz) + r(ﬁil) (’f - t§ +2(p - tl)ﬁ)

P +1
L —0 _ po - =1L B+ (2= 1= 1-
+r("‘—‘2§+1)(z¢f 20y 5)+L2 | lTb—la(ﬁm%léﬁ‘z) (n°-17")
L= TE= 1T (-1 2—0) |

it (1 - 47)

+Ly 1 +
[Ain—1TBE+DI2-6) ~ 6|41 7-1[|26- 1T (B-1I'(2-9)
Lol =2y |E52 (t3—5 3 t3—5) N LolAin-1] (t3—5 B t3—5)
[i7—1[A€- 1T (B-1)I'(4-06) \"2 1 [An—1][26-1I(B-1)[(4-0) \'1 2 )

Thanks to (3.32) and (3.33), we can state that ||¢ (x,y) (12) — ¢ (x,y) tDllxxy — 0 astr — 1.
Combining A, B, C and using Arzela-Ascoli theorem, we conclude that ¢ is completely continuous

operator.
D: We shall show that

Q:={(x,y) € XXY,(x,y) =ud(x,y),0 <u <1}, (3.34)

is a bounded set.
Let (x,y) € Q, then (x,y) = u¢ (x,y), for some 0 < u < 1. Thus, for each ¢ € J, we have:

y (1) = pupry @), x (1) = upox (7).
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Therefore,
1 1 ! a—1 0
;Iy(t)l < mj(;(t—s) ‘f(s,y(s),D (s))‘ds (3.35)
7
e fo (=9 |1 (5.7 9.0° (9) ds
n
+|/11n—t1|r(a)j(; UE ’f(S,y(S),D‘S(S))’ds
[ o= 17 i+ A1 =2a 1 3 5
e TRE e, -9 ‘f(s,y(S),D (S))‘ds

- |- (! 3 5
tA e ), =" £ (s.9(9).0° ()| ds

Thanks to (H3), we can write

1 LA =11+, % +1)
,l_l |y (t)l < I/lm—llf(a+1) (336)

Ll(lzz LA [H =)+ 1=y |+ - 1)
610 7~ 112~ T (a—T)

Thus,
(=L )
=1 (a+1
VOIS UL (dp-tpap | tptin-al)er 21—l in-1 (3:37)
6L n-TTLE-T(@-1)
Hence,
[y ()| < uN{Ly,t € J. (3.38)
On the other hand,
1 ! o
L7y 0) < G fO (1= 97 f (5.3(9, D% (9)| ds (3.39)
'~ § -1 5
+Mm—1|f(a)r<2—a>fo (=9 £ (5.3 ). D% 5)] ds

[10'

T e=o) fon =9 |F (5.3(5). D (5))| ds

[ |/12—/12/117]3|t1_0- ]

6|1 n—1]|126-1T'(a-2)T 2—0) a3 1)
+ N |/12/11n_/12|t3—0' f(f S) ‘f(s’y(s)’D (S))‘ds
| =TT e E=o) |

|1_/lln3|tl—0'

[ 1 ~1
+| TR @-2TC-0) f (1 )23 ‘ f(sy(s), 00 (S))‘ s
-1 0

-T2 E-0) |
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Thanks to (H3), we have

1, - 1 417" +1
" |D y(t)| < Ly [r(a_ﬁl) T =@+ DI 2=0)

PO S i L VU SR VAL S P 20 |
L@ T=TTE=TMe-Dre-0) * Mi-TIGE-1Me-DlE-o) |

Therefore,

o 1 [A1|n¥+1
ID7y@)| < pLy [F(a—o-+1) t =1 DI 2=0)

| =€ 24| 1-17| =l 2+ A =1

+ulq

Thus,
‘Dﬁy (z)' < uL{No,t € J.

From (3.38) and (3.42), we get
Ivllx < pLy (N +Np).

Analogously, we can obtain
llxlly < puLp (N3 + Nag).

It follows from (3.43) and (3.4) that

G Wllxxy < pLy (N + No) + pLy (N3 + Ny) .

Hence,
llg (x, Wllxxy < oo.

6l n—1llA26- 1T (a-DI'2-0) * |4in=1ll2¢-1l(e-DI'(4-0) | *

(3.40)

(3.41)

(3.42)

(3.43)

(3.44)

(3.45)

(3.46)

This shows that the set € is bounded. Thanks to A,B,C and D, we conclude that ¢ has at least one

fixed point. Theorem 3.2 is thus proved.

4. Examples

Example 4.1. Let us consider the coupled equations:

7 (2| Ve ™ |cos(nt)| D%Y(t)'
DIx(r)+ X —=0,r€[0,1],
7(n2+3)" b)) 7,,(1+et)2(2+‘ D3y(,)‘)
ne 2t D%x(t)
3nlx(@)l

11
D3y(n)+

(5 +3 Vi) (1 +1x(0)]) " 21 13
5(t+3 ﬁ) (1+‘D2x(z‘))

x(0) = 0.x(1) = 3x(}) = 0.y ) = 0.y (1) - 3y(}) = 0.
¥ 0 =0,x"()-3x"(3)= 0" ©=0y"(-%H"(3)=0.

=0,t€[0,1],

4.1
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It is clear that

—t
t
fltxy) = &l N G cos I e 10,11, %,y € R,
T(r2 +3) @+1x)  Tr(l+e)7 @2+ DD
3 =2t
gt x,y = 7 + re " b ,t€[0,1],x,y € R.

(5 +33m) (L4 1) 5(r+3y7) (1 + Dyl

For x,y,x1,y1 € R,t € [0, 1], we have

1 -7t
If (&, x,y) = f@ x1, 1) < —le—x1|+ 2|y—Y1|,
7(m2 +3) Tm(1+¢€)
and
3r ne2nt
gt x,y)—gt,x,y)l £ —F——=lx—xil+ — ly = yil.
(5€t +3\/E) 5(t+3ﬁ)
Hence,
1 e !
ap(n) = —z,bl (r = \/_—tz’
7(m2 +3) Tr(1+e)
and o
3r me <7
ap (1) = zZ—’bz (r) = — 5"
Se’” +3+n 5 (t +3 \/7_T)
These imply that
1 \r
w; = sup aj(t) = —,wy = sup by (t) = =,
t€[0,1] 63 t€[0,1] 28n
3 1
w) = sup ap(t) = ———=,wr = sup br(1) =,
1€[0,1] 5+3+n 1€[0,1] 45
Ny = 1,08935, N, = 3,444, N3 = 0,77571, Ny = 2,51754,
and

(N| + Np) (W] + w2) + (N3 + Ny) (@] + @) = 0, 16329 + 0, 36466 = 0,52795 < 1.

So by Theorem 3.1, the problem (4.1) has a unique solution (x, y) on [0, 1].

53
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Example 4.2. The following example illustrates Theorem 3.2. We take:

2e”"|cos(1y(1))|
2 1
(2+ D3 y(t)‘)

D%x(t) + 1 > +
(t2+1)(2+ D3y(t)() 7(1+¢!
e =0,t€[0,1],

1
+
(et2+1)(1+|x(t)|) (t+1)2(1+’D§x(t)')

x(0) = 0,x(1) = 3x(3) = 0,y () = 0,y () - 3¥(3) = 0,
)

=0,r€[0,1],

t

10
D3y()+

4.2)

X0 =05 (-3 (2) =00 © =05 () -%"(3)=0
We have
1 27" |cos (tx))|
t,x, =
f( X y) ([2 + 1)(2+ |y|) 7(1 +€t)2(2+ |y|)
and
(t,x,y) = 1 + e’
e (e + 1) +1x) G+ DA+

So by Theorem 3.2, the problem (4.2) has at least one solution on [0, 1].
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Abstract

Divisibility of trinomials by given polynomials over finite fields has been studied and used to construct orthogonal
arrays in recent literature. Dewar et al. (Dewar et al., 2007) studied the division of trinomials by a given pentanomial
over [F, to obtain the orthogonal arrays of strength at least 3, and finalized their paper with some open questions. One
of these questions is concerned with generalizations to the polynomials with more than five terms. In this paper, we
consider the divisibility of trinomials by a given maximum weight polynomial over F, and apply the result to the
construction of the orthogonal arrays of strength at least 3.
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1. Introduction

Sparse irreducible polynomials such as trinomials over [F, are widely used to perform arith-
metic in extension fields of [F, due to fast modular reduction. In particular, primitive trinomials
and maximum-length shift register sequences generated by them play an important role in vari-
ous applications such as stream ciphers (see (Golomb, 1982), (Jambunathan, 2000)). But even
irreducible trinomials do not exist for every degree. When a primitive (respectively irreducible)
trinomial of a given degree does not exist, an almost primitive (respectively irreducible) trinomial,
which is a reducible trinomial with primitive (respectively irreducible) factor, may be used as an
alternative (Brent & Zimmermann, 2004). This encouraged the researchers to study divisibility of
trinomials by primitive or irreducible polynomials (Cherif, 2008), (Golomb & Lee, 2007), (Kim &
Koepf, 2009). The divisibility of trinomials by primitive polynomials is also related to orthogonal
arrays.

Let f be a polynomial of degree m over [F, and let a = (ay, ay, - - - ) be a shift-register sequence
with characteristic polynomial f. Denote by C/ the set of all subintervals of this sequence with

*Corresponding author
Email address: ryul_kim@yahoo.com (Ryul Kim)
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length n, where m < n < 2m, together with the zero vector of length n. Munemasa (Munemasa,
1998) observed that very few trinomials of degree at most 2m are divisible by a given primitive
trinomial of degree m and proved that if f is a primitive trinomial satisfying certain properties,
then C/ is an orthogonal array of strength 2 having the property of being very close to an orthog-
onal array of strength 3. Munemasa’s work was extended in (Dewar et al., 2007). The authors
considered the divisibility of a trinomial of degree at most 2m by a given pentanomial f of degree
m and obtained the orthogonal arrays of strength 3. They suggested some open questions in the
end of their paper. One of them is to extend the results to finite fields other than [F,. In this regard,
Panario et al. (Panario et al., 2012) characterized the divisibility of binomials and trinomials over
[F5. Another question in (Dewar et al., 2007) is related to extend the results to the polynomials with
more than five terms. In this paper we analyze the division of trinomials by a maximum weight
polynomial over [F,.

In the theory of shift register sequences it is well known that the lower the weight, i.e. the
number of nonzero coefficients of the characteristic polynomial of shift register sequence, is, the
faster is the generation of the sequence. But Ahmadi and Menezes (Ahmadi & Menezes, 2007)
point out the advantage of maximum weight polynomials over [, in the implementation of fast
arithmetic in extension fields.

We show that no trinomial of degree at most 2m is divisible by a given maximum weight
polynomial f of degree m, provided that m > 7. Using this result we can also obtain the orthogonal
arrays of strength at least 3. The rest of the paper is organized as follows. In Section 2, some basic
definitions and results are given and in Section 3, some properties of maximum weight polynomials
and shift register sequences generated by them are mentioned. We focus on the divisibility of
trinomials by maximum weight polynomials in Section 4, and conclude in Section 5.

2. Preliminaries

A period of a nonzero polynomial f(x) € F,[x] with f(0) # 0 is the least positive integer e for
which f(x) divides x°—1. A polynomial f(x) € IF,[x] is called reducible if it has nontrivial factors;
otherwise irreducible. A polynomial f(x) of degree m is called primitive if it is irreducible and
has period 2™ — 1. The reciprocal polynomial of f(x) = aux"™ + a1 X" '+ -+ ajx+ay € F,[x]
with a,, # 0 is defined by

fi(x) =x"f(1/x) = apx™ + a X"+ a, X+ ay,.

We refer to (Lidl & Niederreiter, 1994) for more information on the polynomials over finite fields.
Throughout this paper we only consider a binary field [¥, and all the polynomials are assumed to
be in [F,[x], unless otherwise specified.

A shift-register sequence with characteristic polynomial f(x) = x + Y7, ¢;x' is the sequence
a = (ay, ay, - - ) defined by the recurrence relation

m—1

Apym = § Ciljpn

=

forn > 0.
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A subset C of I is called an orthogonal array of strength ¢ if for any r— subset T = {iy, i, - - - , i}
of {1,2,--- ,n} and any r—tuple (b, b,,---,b,) € T, there exist exactly |C|/2" elements ¢ =
(¢1,¢2,-+ ,c,) of C such that ci; = bjforall 1 < j <t (Munemasa, 1998). From the defini-
tion, if C is an orthogonal array of strength ¢, then it is also an orthogonal array of strength s for
alll <s<t.

The next theorem, due to Delsarte, relates orthogonal arrays to linear codes.

Theorem 2.1. (Delsarte, 1973) Let C be a linear code over F,. Then C is an orthogonal array of
maximum strength t if and only if C*, its dual code, has minimum weight t + 1.

Munemasa (Munemasa, 1998) described the dual code of the code generated by a shift-register
sequence in terms of multiples of its primitive characteristic polynomial and Panario et al. (Panario
et al., 2012) generalized this result as follows by removing the primitiveness condition for the
characteristic polynomial.

Theorem 2.2. (Panario et al., 2012) Let a = (ay, ay, - - - ) be a shift register sequence with minimal
polynomial f, and suppose that f has degree m with m distinct roots. Let p be the period of f
and?2 <n < p. Let C',f be the set of all subintervals of the shift register sequence a with length n,
together with the zero vector of length n. Then the dual code of Cf is given by

n—1

(€ ={(br, -+~ by : Y binix'is divisible by £.}

i=0

A maximum weight polynomial is a degree-m polynomial of weight m (where m is odd) over
F,(Ahmadi & Menezes, 2007), namely,
P |
fO=x"+x""+ M T+l ——— 4+ X
x+1
If you take
gx) = (x+ Df(x) = x™ + X+ x4 1,

then the weight of g(x) is 4, and its middle terms are consecutive, so reduction using g(x) instead
of f(x) is possible and can be effective in the arithmetic of an extension field F,» as if the reduction
polynomial were a trinomial or a pentanomial. This fact motivated us to consider the divisibility
of trinomials by maximum weight polynomials.

3. Character of shift register sequence generated by a maximum weight polynomial

In this section we state a simple property of maximum weight polynomials and characterize
the shift register sequences generated by them.

Proposition 3.1. Let f(x) = x" + x" '+ -+ xX* 4+ X1+ oo+ 1 € Fylx]. If £(x) is irreducible,
then gcd(m,[) = 1.



Ryul Kim et al. / Theory and Applications of Mathematics & Computer Science 4 (1) (2013) 56—64 59
Proof. Suppose ged(m,l) =d > 1,m = mid and [ = [,d. Then we have

gx) = (x+Df)=x""+ XA+ 1
= M@+ D+ + D= L D)+ (M)
= A D)+ .

So (x? + 1)/(x + 1) is a factor of f(x), which means f(x) is reducible. [J

Proposition 3.2. Let f(x) = x" +x" '+ .-+ X + 71 + ... + 1 € Fy[x] be a primitive polynomial

and
m—1

Apim = Z Apyi + Apiy(n 2 0)
i=0
be a shift-register sequence with characteristic polynomial f. Then for all positive integer n,

Apim = Ap—1 t Ap—141 T Ay

Proof. Since f(x) is the characteristic polynomial of (ag,a;,---), we geta; = ap+a; +---+ay
where ay, a;,- - ,a,_; are initial values not all of which are zero. We use induction on 7.
Ifn=1,
Ani1 = @+ +a+ay+-+ay

a0+(a0+---+al+al+l+al+2+---+am)+al+1

ag+a;+ apg.

Now assume that the equation a,,,,, = a,-1 + a,-14; + a,.; holds true for all positive integers less or
equal to n. Then,

Amin+l = Ape1t ot Qpep+ Qpippo T 000+ Apyy
= (ag+- - +an)+(a+ - +a)+ aun
(et + 0 F Apin)
= aq+(ao+ - +ay)+ apyer +(ao +a;+ ap)
+ar +apg tap2) + -+ (Aot + Aot + Q)

= ap+ Qup t Apigel

This completes the proof. []

4. Divisibility of trinomials by maximum weight polynomials

In this section we consider the divisibility of trinomials by maximum weight polynomials,
provided that the degree of the trinomial does not exceed double the degree of the maximum
weight polynomial. Let f(x) = x" +x" '+ .-+ x!*! + x"! + ... + 1 € F,[x] and suppose that f(x)
divides a trinomial g(x) with

t

g = fFOhX) =@ +x" X X D Z X',

k=0
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m m—-1 -~ [+1(@{)1I-1--- 0 iy
m m-1 --- I+1 () I-1--- 0 ip—1

m m—1 -.- Il+4+1 () I-1-..- 0 i1
+ m m—-1 --- [+1 () 1-1--- 0 10

L] L] ]

Figure 1. An illustration of equation g(x) = f(x) 3} _, x*

where x'*s are the non-zero terms of 4(x) and 0 = iy < i; < --- < i;. The above equation can be
illustrated as in Figure 1.

Here (/) stands for the missing terms. We adopt the same terminology as in (Dewar et al., 2007),
(Panario et al., 2012). In particular, if the sum of coefficients in the same column of Figure 1 is
0, then we write that the corresponding terms x' cancel and if the sum is 1 then we say that one
of the corresponding terms is left-over. The proof of our main results will be done with Figure 1.
Since the most top-left term m + i, and the most bottom-right term 0 + i are trivial left-over terms,
we have only one left-over term undetermined. Below a left-over term means the left-over term
which is neither m + i; nor O + iy. And we always assume that m + ij is in the same column as
s+ 1,0 < s <m—1 and denote the number of terms in A(x) as N.

Lemma 4.1. Let f(x) = x" + X" '+ + X1 + X1 + ... + 1 € F,[x] and g(x) be a trinomial of
degree at most 2m divisible by f(x) with g(x) = f(x)h(x). Then N equals to 3 or 5.

Proof. Since g(x) is a trinomial and f(x) has an odd number of terms, 4(x) also has an odd
number of terms, that is, ¢ is even. Suppose that N is greater or equal to 7. If s > [ then for every
even number k, m + i,_; 1S a left-over term. Since ¢ > 6, we have more than 2 left-over terms which
contradicts the assumption.

Consider the case of s < /. First assume that there exists a unique left-over term to the left of
m + ip. It is sufficient to show [/ > 3 because if so, 0 + i, is an extra left-term which leads to a
contradiction. Observe a position [ + i,. If [ +i, > m + i, , then clearly [ > i,_, — iy > 4, so we have
done. Assume that [ + i, < m + i,_,. Then [ + i, > m + i,_4 because if not, then m + i,_, and m + i;_4
are left-over terms. Thus we have [ > i,_4 —iy. If [+ i, >m +i,_4thenl >2andifl+i, =m+i,_4
then i,_4 — iy > 2 because if i,_4 — iy = 2then m + i,_s = [ + i,_; and so an extra left-over term
appears.

Next assume that there is no left-over term to the left of m+iy. Then it is clear that m+i,_, = [+,
and [ > i,_, — iy > 5 hence 0 + i, and O + i4 are left-over terms; contradiction. [J

Lemma 4.2. Under the same condition as in Lemma 1, if s < [ then m + iy cannot be a left-over
term.

Proof. Assume that m + iy is a left-over term. Then all the remaining terms in other columns
must cancel and by Lemma 1 N =3 or N =5. If N =3, thenl+i; > m+ i, from s < [ and



Ryul Kim et al. / Theory and Applications of Mathematics & Computer Science 4 (1) (2013) 56—64 61

thus an extra left-over term occurs in the column of / + ;. Now assume that N is 5. We see easily

[+i, =m+1i_,and i, — i,_; = 1. If there is an extra left-over term to the left of m + iy, then we
have done. If there is no any extra left-over term to the left of m + iy, then i, — i; = 2 because if
Ih—ip = 1thenm+ i, = [+ i,_; and so m + i; is an extra left-over term and if i, — i; > 2 then

[—-2+i,=1-1+i_ =m-2+1i,and so ! — 2 + i, is an extra left-over term. Then from the
condition i; < m, it follows [/ > 3 and thus O + i, is an extra left-over term; contradiction. [J

Theorem 4.1. Let f(x) = X" + x" '+ + 2L+ X7V + ... + 1 € Fy[x). If g(x) is a trinomial of
degree at most 2m divisible by f(x) with g(x) = f(x)h(x), then

1) f(x) is one of the polynomial exceptions given in Table 1.

2) f(x) is the reciprocal of one of the polynomials listed in the previous item.

Table 1. Table of polynomial exceptions

No g(x) JS(x) h(x)

1 ©+xt+1 Crx+1 X+x+1

2 O+t +1 XC+a2+1 X+’ +1

3 X4x+1 P+ +x2+x+1 *ex+1

4 X +x+1 Crxt+d+x+1 X4+x+1

5 B+ +1 P+ +1 C+x+1

6 AP+l T+ P+ x4+l X+ +x+ 1
7 xP+x41 X+ + X+ x4+ 2+ X+ 241

Proof. We divide into three cases: s > lors=1/[or s <.
Casel: s> 1L

Since A(x) has an odd number of terms, s < m — 2 and m + i is a left-over term, hence all the
remaining terms in other columns must cancel. There is no missing term to the left of s + i,, and
therefore m + i,_, is a left-over term. This means iy = i,_,, namely, N = 3. Since m — 1 + iy must
cancel, s = [+ 1 and m — 2 + i, cancels up automatically from i, —i,_; = 1. We see easily that [ = 1
or m — 3 + iy 1S a missing term because m — 3 + iy must cancel up. If / = 1, then clearly m = 5 and
we get the 5th polynomial in Table 1. If m — 3 + i is a missing term, then / = m — 3. Since [ -1+,
must cancel up, / must equal to 2 and so we get the 4th polynomial in Table 1.

Case2: s=1

In this case, m + iy cannot be a left-over term because the number of non-zero terms in column
of m + iy is even. If there is a unique left-over term to the left of m + iy, then it must be m — 1 + i,
or m+ i.

Case 2.1: m — 1 + i, is a unique left-over term to the left of m + i,.

Clearly i,y =i, —2. If N =3 then m — 1 + iy is an extra left-term and if N = 5 then m + i,_, is
so. This contradicts to the assumption.

Case 2.2 : m + i, is a unique left-over term to the left of m + ij.

This is the case of N = Sand i, — i,-; = i, —i; = 1. m — 1 + iy cancels automatically because
m— 1+ iy =1+ 1i_;. Thus we have only two possible cases: [ = lorl # 1,l+i, = m —2 + .
Assume that [ = 1 then m — 3 + iy must be in the column of / + i, and m — 5 + iy must cancel with
0 + i; so we get the 7th polynomial in Table 1. And assume that / # 1,1+ i, = m — 2 + iy then
i;-1 — i, = 1 and observing m — 4 + iy implies thatm —4 = [,[ -3 #0orm —4 > [,] = 3. In these
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two cases we have an extra left-over term [/ — 2 + iy; contradiction.
Case 2.3 : There is no left-over term to the left of m + i.

It is obvious that N = 3 and i, — i; = 1. If i; — iy > 3 then we have two left-over terms among
Jj+io(1 < j < 3). Hence i; — iy is less or equals to 3. Examining all cases for i; — iy we get the
reciprocals of the 1st, 3rd and 4th polynomials in Table 1.

Case3: s<|I.

By lemma 2, m+ij is not a left-over term. So there exists z(1 < z < r—1) such that m+iy = [+1i..
Case3.1: m+igy=101+1i_,.

Clearly we have i,_; > i, — 3. First assume that i,_; = i, — 3. Then /equalstom — 1 or m — 2. If
[=m-1,thenl—-1+i, =m-2+1i,1saleft-overtermso!—3+ i =[+1i,_; = m+ iy and h(x) has
three terms. Since the unique left-over term has already been determined, 0+i, = [—-1+i,_; = [+
and we get the 3rd polynomial in Table 1. If / = m -2, then m — 1 + i, is a left-over term and m + i,
must cancel with O + i, which means iy — iy = 2 and /[ = 3. But then 1 + i, appears as an extra
left-over term; contradiction.

Next assume that i,_; = i, — 2. When! #m —1,m— 1+ i, is a left-over term and [ < m — 3
because if [ = m — 2 then m + i,_; is an extra left-over term. [ + i, must cancel with m + i,_, and in
fact N is 5. Thus i, —i; = 1. By the condition m + iy = [ +i,_;, we have i} —iy = 1. Since m — 1 + i
must cancel up, /=2 =0orm —3 = [. If ] — 2 = 0 then we get the 6th polynomial in Table 1 and
the equation m — 3 = [ leads to a contradiction due to an extra left-over term in column of /-3 + .
When [ = m — 1, clearly N is 3 from the conditin [ + i{,_; = m + iy. By research of possible values
of [ we get the reciprocals of the 2nd and 5th polynomials in Table 1.

Next assume that i;_; = i; — 1. If N = 5 then m + i,_, is a left-over term and i;,_, — i; = 1, hence
an extra left-over term occurs in the comumn of /+i;. Thus N is 3. Since [—1+1i; = [+i,_; = m+ij,
[+1+i,_;i1s aleft-overterm. If m — 1 # [, then / — 1 = O from consideration of m — 1 + iy and
therefore we get the 2nd polynomial in Table 1. If m — 1 = [, then [ — 1 cannot be zero, so we get
the 1st polynomial in Table 1.

Case3.2: m+iy=1+1i.

In this case N is 5 and clearly 2 < [ < m — 2. Observe a column of [ + i,.
Case3.2.1: m+i, <l+1,.

We have a left-over term in the column of [ + i; and i, — i,_; = 1. Then m + i, must cancel with
[ —1+1i, and also i, — i; — 1. By the condition [ + i, = m + iy, m — 1 + iy must cancel with [ + ;.
From i; < m we have [ > 3 and i; — iy = 1 because if not, then 1 + i is an extra left-over term.
Hence [ equals to m — 2. Since m — 1 + iy must cancel up, [ — 4 # 0. Observing the term [ — 1 + iy,
we see that / — 5 = 0 and then [ — 2 + i appears as an extra left-over term; contradiction.
Case3.22: m+i,=1+1,.

Assume that m — 1 + i, is a left-over term. Then clearly l < m—2and i, — i, = 2. If i, —ip = 2,
then m + iy must concel with [ + i,_; which contradicts to the condition m + iy, = [ + t,_,. And if
i — iy > 2, then an extra left-over term occurs in the column of / + 1 + i; or [ + 2 + i, which again
leads to a contradiction.

Now assume that m — 1 + i, is not a left-over term. Then i, — i,_; = 1 and m + i; cancels with
[+i_jorm+i; <l+i,_;. f m+1i, cancels with [+i,_; then m + i, is a left-over term and i, —i; = 1.
From i, < m, we have 0 < /- 2. Since if i} — iy > 2 then 1 + ij is an extra left-over term, i; —ip = 1

and [ = m—2 = 4. Then [+ 2+ i, appears as an extra left-over term; contradiction. If m+i; < [+1i,_4
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then m + i; must cancel with m — 2 + i, or m — 3 + i,. Briefly considering as above, we arrive at a
contradiction in both cases.
Case3.2.3: m+i,>1+1,.

You shall see that ] < m — 3,i, —i,_; = 1 and m + i, is a left-over term. Since m — 1 + i,
must cancel, m —1+i, = [+i,orm—1+1i, = m+ i;. In the first case i, — i; = 3 because
l+i,y=m-2+i,=101-1+1i. Since m+1i; <l+i._y,11s greater or equals to 3. If iy —ip > 1
then 1 + iy is an extra left-over term and if iy — iy = 1 then / = 3 and m — 2 + i is an extra left-over
term, which leads to a contradiction. In the second case we have [ + i, = m + iy; contradiction.
Case33: m+iy=1+1i.

In this case we have [ > 3 from i, < m. First assume that 1 + i is a left-over term. Then
clearly iy —ip = 2, +ip = 0+ and [+ 1 +ip =1l-1+i; =1+i, = 0+i_. Since
[+2+iy=1l+i;,=2+i,=1+i_, =0+1i,, wehavem = [+2. Thenfrom5+i, =4+i,_; =3+1,
we have / = 5 which corresponds the reciprocal of the 6th polynomial in Table 1.

Next assume that 1 + iy is not a left-over term. Theni; —ip = 1, =m—-1and 0O +i,is a
left-over term because if not, then O + i, = [ + i, and thus N = 3 which is the case mentioned
above. Considering the first and last terms in every rows, we have the following equations:

1 —bL=1,0+i=10+iy,l+i>m+1i,i,—i; =2,
O+, =1+ip,i,— i1 =2.
This implies the reciprocal of the 7th polynomial in Table 1. [

Note that every polynomial f(x) listed in Table 1 has degree less than 8. From this fact we can

immediately get the following corollary.

Corollary 4.1. Let f(x) be a maximum weight polynomial of odd degree m greater than 7 and g(x)
be a trinomial of degree at most 2m. Then g(x) is not divisible by f(x).

Combining these facts with Theorem 1 and Theorem 2, we get the following corollary on
orthogonal arrays of strength 3.

Corollary 4.2. Let f(x) be a primitive maximum weight polynomial of odd degree m greater than
7. If m < n < 2m, then C!is an orthogonal array of strength at least 3.

5. Conclusion

In this paper, we analyzed the divisibility of trinomials by maximum-weight polynomials over
[F, and used the result to obtain the orthogonal arrays of strength 3. More precisely, we showed
that if f(x) is a maximum-weight polynomial of degree m greater than 7, then f(x) does not divide
any trinomial of degree at most 2m. Our work gives a partial answer to one of the questions posted
in (Dewar et al., 2007). As anticipated in (Dewar et al., 2007), (Panario et al., 2012), one seems
to need some new techniques to give a complete answer to the question.
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Abstract
Let0 < p < +ocoand Qp = {z e ChexpVe(z) < R}, for some R > 1, where Vg = sup {é In|P4l, P; polynomial

of degre < d,||P,llg < 1} is the Siciak extremal function of a L-regular compact E.
The aim of this paper is the characterization of the generalized growth of analytic functions of several complex
variables in the open set by means of the best polynomial approximation in L,-norm on a compact E with respect to

the set Q, = {z e C"exp Ve(2) < r}, l<r<R.

Keywords: Extremal function, L-regular, generalized growth, best approximation of analytic function, LP-norm.
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1. Introduction

Let E be a compact L-regular of C". For an entire function f in C" developed according
an extremal polynomial basis (A;); (see Zeriahi (1987)), M. Harfaoui (see Harfaoui (2010) and
Harfaoui (2011)) have generalized growth in term of coefficients with respect the sequence (A ).
The growth used by M. Harfoui was defined according to the functions @ and S (see Harfaoui
(2010), pp. 5, eq. (2.14)), with respect to the set:

Q, ={zeC", exp(Vp)(2) <},

where
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1
Vi = sup{;l log|P,|, P; polynomial of degree < d, ||Pyllz < 1}

is the Siciak’s extremal function of E which is continuous in C" (Because E is L-regular). The
(a, B)-order and the (a, B)-type of f an entire function (or generalized order and generalized type)
are defined respectively by:

log(llfllg, 11l
pl@,f) = lim Supa( e/ Qr)) and o(a,p) = limsup a( ! Qr)

v Blog(r) . W

where

I£lls. = sup|f @)
Q,

These results have been used to establish the generalized growth in terms of best approximation
in L,-norm for p > 1.
Let f be a function defined and bounded on E. For k € N put

2 (E, f) = inf{”f - P” . PePuCh),

LP(E.u)

where P (C") is the family of all polynomials of degree < k and u the well-selected measure (The
equilibrium measure u = (dd“Vg)" associated to a L-regular compact E) (see Zeriahi (1983)) and
LP(E, ), p > 1, is the class of all functions such that:

[y = ([ 177 )" <o

For an entire function f € C" M. Harfaoui established a precise relationship between the gen-
eral growth with respect to the set (see (Harfaoui (2010)): Q, = {z e C": exp(Ve)(z) < r}, and the
coeflicients of the development of f with respect to the sequence (A ), called extremal polynomial
(see Zeriahi (1987)). He used these results to give the relationship between the generalized growth
of f and the sequence (ﬂf (E, ). Note that M. Harfaoui did not study the case 0 < p < 1 because
the triangle inequality is not satisfied. A. Janik (see Janik (1991)) characterized the («, 8)-order of
an analytic function g in Qx defned by

Qp = {z e C", exp(Ve(2)) < R}, for some R > 1,

by means of polynomial approximation and interpolation to g on on a L-regular compact E, with
respect to the set

Q. ={zeC", exp(Ve) <r, 1<r<R}

In his work A. Janik used the best approximation defined, for a function defined and bounded
on E, by:
&) =& (LB =l f~ 1 |l

EP =EX(f,E)=|l f =1, Il
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ED =&Y (fLE) =l lys1 — 1 I,

where t, denoted the nth Chebychev polynomial of the best approximation to f on E and /,, denoted
the nth Lagrange interpolation polynomial for f with nodes at extremal points of E (see Siciak
(1962)).

The (a, B)-order of an analytic function was defined as follows:

If E be a compact L-regular. If f is an analytic function in

Qr = {z e C": exp(Ve(2) < R}

for some R > 1. We define the (a, 8)-order of f (or generalized order) by

wp) i o(log(llfllg;))
plop) = Im s s R IR — 1)

where ||f||Q = sup|f(z)| = sup{ | f@) |l expVe() <rl<r< R}

In this work we study the generalized order and generalized type, which will be defined later,
for an analytic function in the open set , with respect to the set Q, in terms of coefficients of the
analytic function in the development according to the sequence of extremal polynomials. So we
obtain a generalization of the results of M. Harfaoui (see Harfaoui (2010) and Harfaoui (2011))
and A. Janik (see Janik (1984), and Janik (1991)) replacing C" by Q and the entire function in C"
by analytic function in Qg .

After studying the generalized type of an analytic function in g, for some R > 1, we use this
results to characterize the generalized type by means of best polynomial approximation on E in
L,-norm for 0 < p < +oo.

Recall that the generalized growth used by M. Harfaoui (see Harfaoui (2010) and Harfaoui
(2011)) called (a, B)-growth was defined with respect to functions @ and 8 defined as:

Let @ and g be two positive, strictly increasing to infinity differentiable functions ]0, +oo[ to
10, +oo[such that for every ¢ > O:

such that
lim a(cx) =1
X—+00 a/(x) ’
. ,8( I+ xa)(x)) '
dm ey o b ime =0

(B (calx))
lim ———~= <
=+ a(log(x))
CY(X/,B_I(CCZ(X))) = (1 + o(x))a(x), for x — +co,

where d(u) means the differential of u.

2. Definitions and notations

Before we give some definitions and results which will be frequently used in this paper.
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Definition 2.1. (Siciak (1977)) Let E be a compact set in C" and let |||| E denote the maximum
norm on E. The function

Ve = sup {% log|P4|, P; polynomial of degree < d, ”Pd”E <l,de N}

is called the Siciak’s extremal function of the compact E.

Definition 2.2. Zeriahi (1983) A compact E in C" is said to be L-regular if the extremal function,
V&, associated to E is continuous on C".

Regularity is equivalent to the following Bernstein-Markov inequality (see Siciak (1962)): For
any € > 0, there exists an open U D E such that for any polynomial P, | P||U < ecdes(P )||P|| o

In this case we take U = {z e C"; Ve(z) < 6}.
Regularity also arises in polynomials approximation. For f € C(E), we let

e(E, ) = inf{[[f - P, P ePuCh)
where P (C") is the set of polynomials of degree at most d. Siciak (see Siciak (1977)) showed:

yd 1
If E is L-regular, then lim sup(sd(E f )) = — < lif and only if f has an analytic continuation
r

d—+o0

1

to {z € C"; Ve(2) < log (—)} It is known that if E is an compact L-regular of C”, there exists a
r

measure u, called extremal measure, having interesting properties (see Siciak (1962) and Siciak

(1977)), in particular, we have:

(P;) Bernstein-Markov inequality: Ve > 0, there exists C = C; is a constant such that

. — Sk
(BM) : |Pd||,, = C(1 + &)*||P, e’ @2.1)
for every polynomial of n complex variables of degree at most d.
(P,) Bernstein-Waish (B.W) inequality:
For every set L-regular E and every real r > 1 we have:
deg(f) Py’
]|, < MO | £ dp) (2.2)
E

Note that the regularity is equivalent to the Bernstein-Markov inequality.
Lets: N — Nk — s(k) = (s1(k), ...., s,(k)) be a bijection such that

ls(k + 1) > [s(k)| where [s(k)| = s1(k) + .... + s,(k).

A. Zeriahi (see Zeriahi (1987)) has constructed according to the Hilbert Schmidt method a
sequence of monic orthogonal polynomials according to a extremal measure (see Siciak (1962)),
(A, called extremal polynomial, defined by

k-1

A2) =% + Za P (2.3)

J=1
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k=1

—1; s(k) .»5(J)
D [mf{ 2+ ]Z:;ajz

We need the following notations which will be used in the sequel: (N;) v = w(E) =
1/ sk .

(e pony VD) = () = x|, = max|ac@] and 7 = (a) ™, where s, = deg(a). With

that notations and (B.W) inequality we have

1/ sk
such that HA" L, ),(al,az, v ly) € (C”}] .
i

A, < acr (2.4)
where s, = deg(A;). For more details (see Zeriahi (1983)).

Definition 2.3. Zeriahi (1983) Let E be a compact L-regular. If f is an analytic function in
Qg = {z e C": exp(Ve(2) < R}

for some R > 1. We define the (a, §)-growth ( (@, §)-order and («, 8)-type) of f (or generalized

~ a(logdlfllg)) . o Tog(lIf5)
order) by p(e,f) = limsup————=, o(@,f) = limsup , where ||f||; =
r—R ﬁ(R/(R - r)) r—R I:ﬂ(R/(R _ r)):lp(ﬂ”ﬁ) -
sup|f(2)] = sup{ | f(2) |: exp Vi(z) < r.1 < r <R},

ZGQr

Note that in the classical case a(x) = B(x) = log(x). We need the following lemma (see Zeriahi
(1987)).

Lemma 2.1. ( Zeriahi (1987)) If E is a compact L-regular subset of C", then for every 6 > 1, there
exists an integer Ny > 1 and a constant Cy > 0 such that:

(r+ DM Iflig,

(l" _ 1)2N—1 }"k

w(E, f) < Cy (2.5)

+00

forevery k > 1, everyr > 1 and every f € 0(5,9). If f= Z fi.Ax be an entire function, then for
k=0

every 0 > 1, there exists Ng € N* and Cy > 0 such that

(r+ DM flig,

(r _ 1)2[\/—1 rsk ’

(2.6)

‘fk’vk <Gy

forevery k>0 andr > 1. Cy and Ny do not depend on r or k, or f.

Note that the second assertion of the lemma is a consequence of the first assertion and it
replaces Cauchy inequality for complex function defined on the complex plane C.
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3. Generalized order and coefficient characterizations with respect to extremal polynomial

The purpose of this section is to establish the relationship of the generalized growth of an
analytic function in Qg with respect to the set Q, = {z e C: exp(Ve(z) < r} and coefficients of an
entire function f € C”" in the development with respect to the sequence of extremal polynomials.

Let (Ay)x be a basis of extremal polynomial associated to the set E defined the relation (2.3).
We recall that (A;), is a basis of O(C") (the set of entire functions on C"). So if f is an entire

function then f = Z S Ax.
k=1

Put
a(sy)

lim sup

k—+o00 k
i)
log (17} R™)

To prove the aim result of this section we need the following lemmas:

::u(a,’ﬁ)' (31)

Lemma 3.1. ( Zeriahi (1987)) Let E be a compact L-regular subset of C". Then

lim
k—+00

[ |Ax(2)|

1/sk
] = exp(Vk(2)), (3.2)
Vi

for every z € C"\ E the connected component of C" \ E,

1/sx
A
lim [” "”E] ~ 1. (3.3)

k—+00 Vi

Lemma 3.2. For every r > 1 and u > 0, the maximum of the function

X

B (a(x)/u)

x — w(x,r) = x.1og(r/R) +

is reached for x = x, solution of the equation

[ 1= dlog (87! @(x)/w)/d(log(x)
fma {ﬂﬁ[ ]} (3.4)

log (R/r)

. The maximum of the

dw(x,r)

Proof. Put G(x,p) = B~ (a(x)/p), then w(x,r) = x.log(r/R) + il
G(x, 1)

function x — w(x,r) is reached for x = x, solution of the equation of = 0. We have
X
dG(x, 1) - _* dG(x,p)

(Gerw) log (R/7)

G(x,u) — x.

w(x,r)
dx

-
= 1 —
0e og(R)+
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dG(x,n)  dG(x,u) dlog(x) 1 dG(x, u)

Si - . . :
N Ty T dlogn) dx  x dlog(v)

we get

1 dGp | dlogGlap
G(x,p) dlog(x) dlog(x)
log (R/r) B log (R/r)

Gx,p) =

1- d(/s-l(a(x)/u))/d(log(x»]}

We deduce x = x, = a/“{,ua/[
log (R/r)

Lemma 3.3. Let f = Z fx.Ax and E a L-regular compact. For every r €]1, R[, we put
k=0

M(f,r) = sup{ || fi-Ae llz 7%, 7> 0}

keN
o o log(M(f. 1))
PPy = B PRI R =)

then p(a, B) < u(a,B) and p(a, B) < p(a, B).

Proof. By the definition of i (3.1) we have, for r sufficiently close to R and u = u + €,

a(sy)

log (1 fi | 7} RY) £ —————.
D pate)

a(sy)
5z a(0)
t — log(r) and the Lemma 3.3 we get x, = (1 + o(l))a‘l(y.ﬂ(R/(R - r))) as r — R. Indeed this
d( (ca(x)))

a(log(x))
log( Il fe.Ax e .rsk) < Co.a‘l(,u.ﬁ(R/(R - r))), k € N. Passing to the maximum for the variable

k € N we obtain, for r sufficiently close to R log (M( f, r)) < Co.a_l(,u.ﬁ(R/ (R- r))), k € N. Then,
a(log(M(f, 1))
BR/(R—T1))

() pla.p) < p.

Then log( | fi .T,ik.rsk) < silog(r/R) + . By the proprieties of a and S,the function

result is a consequence of lim <b, log(l+1t)=(1+o0()).t, t— 0. Therefore

X—+00

by the proprieties of @, we obtain < u. Passing to upper limit for r — R we have

Moreover we have for z € Q, and k € N, ||fllg < Z | fi | MAdle, < Z | fi | Al
k>0 k>0

Write r = VrR.Vr/R, then Iifllg, < >° | fi | JAdlle.(VER)*.(\r/R)*. Because Vr/R < 1

k>0
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then lIfllg < D sup( | fi | AWl (VrR™).(NVr/R)™ thus IIfll, < M(f,r) Y (Vr/R)™ <

k=0 kev k>0

— 1 —
M(f,r).————. where ' = Vr.R. Therefore lo s ) < log(M(f,r)) —log(l — Vr/R).
" v g(lIfllg,) < log(M(f.r)) —log(1 - Vr/R)
Wer a(log (IIfll5,) < a(log (M(f, Vr.R) - log (1 - V¥/R))) p(R/(R - VFR) Pacsing |
e have < . . Passing to
BRIR - 1) B(R/(R - VrR) B(R/(R - r-R)) s
the upper limit we get
(++) p(a,B) < p(a,p).
By the relations (*) and (**) we obtain p(«, 8) < u(a, B). O
Theorem 3.1. Let E be a compact L-regular and f = Z Ji-Ay such that
k=1
. a(sy)
lim sup = u(a,B) < oo. 3.5)
k—+o0 [ Sk ]
log (Ika.T,i" .RSk)
Then f is analytic in Qg, for some R > 1 and its (a, §)-order p(a, B) = u(a, B).
Proof. It is known that for every polynomial P(see Siciak (1977))
deg(P) n
| PQ) 1N Pl (exp(Ve()) . forevery zeC". (3.6)
So for every r €]1, R[, and for P = f;.A; we get
| feAu@) 1<) fil 11 A Dl (exp (Vi(2))) " for everyz € C". 3.7)
Then for every z € Q,, we have | f;.A(2) <] fi | . || Ak |lg -r**. So, for every r €]1, R[ the series

Z fi-Ay 1s convergent in €,, whence Z Ji-Ay 1s analytic in Qg.

1
Now we shall show that y is the (@, 8)-order of f. By the Lemma 3.3, to complete the proof of

the theorem it suffices to show that p(«, 8) > u(a, ). By definition of p, we have, for every € > 0
there exists r. €]1, R[ such that for every r €]r,, R[ log (||f||5r) < oz‘l[(p(a/,ﬁ) + €).B(R/(R — r))].
Applying (2.6) and (3.3) we have, for every k € N and r > 1 sufficiently close to R

s (r— 1M
log (| fi | 7. R") < —s; log (r/R) +log (Co. ( ) + log (IIfllg, )- (3.8)

R — r)—(2N+l)

then log (| fi | 7} R™) < @(r, s¢), where

— 1)Ne
@(r, s0) = —slog (r/R) + log (Cog -, B! |(p(a.B) + &) BRIR - 1))

R — r)—(2N+1)
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1

Put p = p(a,B) and r, = R.{l - } Replacing in the relation

el
p+e B lal(s)/(p+6)
(3.8) r by r, and applying the proprieties of the functions « and £:

o(x/B™ (ca(x))) = (1 + 0(x))a(x), for ¢ >0, x — +oo,

. . . s Sk
and the proprieties of the logarithm, we obtain log|( | f; | 7;*.R%*) < C;. where
prop ¢ 214 ‘ )< O oo o)
Ci tant. Therefore 1 S R) < C. d ,th
1 1S a constan erefore og( | fu | T, ) 1 a0/ 0+ 9) us
C.
p LR > a(s)/ (o + ©).
log (| fi | T.R)
Passing to the upper limit, after a simple calculus, we obtain u(a, 5) < p(a, ). O]

4. Generalized type and coefficient characterizations with respect to extremal polynomial

The purpose of this section is to establish the relationship of the generalized type of an analytic
function in Qg with respect to the set Q, = {z € C: exp(Ve(z) < r} and its coeflicients in the
development according to the sequence of extremal polynomials.

Let E be a compact L-regular and f = Z fx-Ayx be an analytic function of («,)-order p =
k=1
p(a,B), and put:

7e(a,B) = lim sup a(si)

k— 400 Sk plap)’
{ﬁ (logum.r,ik.RSk))}

Proposition 4.1. Let f = Z fiAx and E a L-regular compact. For every r €]1, R[, we put
k=0

M(f.r) = sup {1 fel -l Al )

a(log(M(f. )
)/)(w,ﬁ)

4.1

We need the following proposition:

oi(a,B) = lim sup

=k (BR/(R - 1)
then o(a,B) < o1(a, ).

Proof. For z € Q, and k € N, using the similar arguments and inequalities as in Lemma 2.3

o(a,B)
a(log(Ifl)) o log (M(f. VFR) - log (1 - VF/R))) [“(R/ (k- m»]
o(a,f) < o(ap) ' o(a,p)
[ﬁ(R/(R - r))] [a(R/(R —~ «/r._R»] [a(R/(R - r))]
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a(R/(R — Vr.R))
We have lim sup =1. ]

p(a.f)
[a(R/ (R - r))]

]p(w,ﬁ)

r—R

Proceeding to the upper limit we get
() o, a) < oi(a.p).

Theorem 4.1. Let E be a compact L-regular and [ = Z fi A If f is of finite generalized (a, B)-

k=1
order p(a, B), and

T(a,B) = lim sup a(sx)

< 400
k—+00 {ﬁ( Sk )}p(a,ﬂ)
log (| fil. 7" .R*)

Then f is analytic in Qg, for some R > 1, and its (a, B)-type o(a,B) = tp(a, B).

4.2)

Proof. Put v = 1¢(a,B), p = p(a,B), and o = o(a, ). The function is analytic by the definition
7e(a, B) and the arguments used in theorem 3.1.

1. Now we show that o(a, ) < Te(a, ). If T < oo, by the definition of 7, for every € > 0, there

P
exists ky € N such that for every k > k. a(s;) < (7 + €). {ﬁ(l (0 fST %R k))} . A simple
og k| T, LS

calculus gives for, 7 = 7 + €.

Sk

log (| fi| T} R") < , (4.3)
B! (la(sk))l/p
?
for every k > k.for every k > k..
Since log( | fil .T}i".rs") < s;log(r/R) + log( | fi T}ik.Rsk). By (4.3), we get
s Sk
log (| fi | 7.r) < s log(r/R) + (4.4)

1 1p\
—1 _
B ((?@(Sk)) )
For every r €]1, R[, and r and r sufficiently close to R, we put
X

()

1 1 1
Ifweput F = F(x,7,-) =7} ((:a/(x)) p) then ¢(x, r) = xlog (r/R)+ %, and the maximum
0 T

¢(x,r) = xlog (r/R) +

of the function x — ¢(x, r) is reached for x = x, solution of the equation of

dg(x,r) _ 09

= —(x,r a
dx 0x

) =log (r/R) + %c {I?} =0
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Fey dF X dF
p(x,r) r ~Tdx _ _ Fdx .. dF _
We have yral 0 log(R) + —(F)z =0,or F = log (R/1) Since el
1 dF | - dlog F
dF  dlog(x) _ 1 dF (F = F dlog(x) 3 dlog(x)
dlogx) dx  xdlogx) " E T T Tog Ry log(R/D) O
dlog B! ((ia(x))” ”)
~ T
" e\ _ dlog(x)
7 (7)) - —srs
el e 8
1 —dlog|B (;a(x)) /d(log(x))
We deduce x = x, = a1 { |78 . We have log (L) =
log (R/r) R
_ p
1 r—R | r—R b 0! and d[log(ﬂl((a(X))))] < b where b i
og (T + )~ ( ecause - )an o0 < b, where b is

a positive constant. Then by the proprieties of @ we get

x = (1+o())p s (Fa®R/(R - r)Y).

By (4.4), we have log( | fi | T,‘f.rsk) < sup ¢(x,r) = ¢(x,, r). Replacing s; by x, in this last
reN

(1 +oM)B (Fe®R/R-)Y) R

. Since

R/(R-71) R-—r

and £— ! < 1, then lOg( | fic | T;ik.rsk) <cp’! (F-(“(R/(R - r)))p)'

> 1

relation we obtain log( | fi | T]‘ik’rsk) <

P
Thensuplog (| fi | 7}.r" < C.o™' (T((R/(R = ))’) or log(M(f. 7)) < C (T.(a(R/(R - 1)Y).

keN
a(log(M(f,r)))
((R/(R = 1))’

. - _ __a(log(M(f,r)))
Proceeding to the upper limit for r — R, get (e, @) = lim 5> ST
=R (a(R/(R - 1)))

log(M(f,
By the relations (*) of the proposition 4.1 we obtain o(a, @) = lim a(log(M(f r))p) <T
=R (a(R/(R - 1)))
Thus o(a,B) < 1g(a,B). The result is obviously holds for 7 = +oo.
. Now we show that o(a, 5) > tg(,B). Puto = o(a,B) + €, p = p(a, 8). Suppose that o < co.
By definition of o (e, 5), we have for every € > 0, there exist r. €]1, R[, such that for every

T.

IA

Therefore
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r>re(R>r>re> Dlog(Ifllg) < o!|a(BR/(R - r))) |- Applying (3.3) and (2.6) we
get, for every k € N and r sufficiently close to R:

tog (| fi | 7.r") < —s¢ log(r) + log (Co. (T@’:il)) +log (Il

As for every r €]1,R[ log( | fi | T} Rsk) = —s; log (r/R) + log( | fi | T Sk) then log( |

o o r+ ) .
fo | T5R k) < —silog (r/R) + log(Co %) + log(||f||g) or log( | fi | T5R k) <
(r+ 1)Ne

(
—silog r/R) + log (Co- ooy ) + o [T (BRIR - ) |

_ _ ' log (| fi | 7}.R%)
Since s; > 1, we obtain, for k sufficiently large, < w(r, k) where w(r, k) =

Sk
—log (r/R) + Sllog (co.%) 7. (BRIR - )]

1 (r+ 1N I = P )
Since 1_1)r+r1oo S_k log (Co. m) +—a [o:(,B(R/ (R- r))) ] = 0 we get, for r sufficiently
close to R, khm w(r,k) = —log (r/R) = log (R/r).

—+00

Then for k sufficiently large and r sufficiently close to R, we have w(r, k) = (1+o(1))log (R/r), k —
+o00, then

1 ,
5 log (| fi | 7*.R™) < (1 + o(1)) log (R/r). (4.5)

1/p

1
ﬁ_l(ga(sk))
Choose r, = R. . Using the relation (4.5) and the proprieties of the func-

1/p
1+p (—CY(Sk))
| | . log( | fel i R) R
tion ¢t — log(#), we obtain, for r sufficiently close to R <(1 +0(1))(— - 1).
Sk r
R +
because log( ) log(#) = log (1 +
r
R - 'k 1

Replacing r by the chosen r; in this last relation we obtain =
Tk

1p’

ﬁ‘l(ia/(sk))
(o
log (| fi | 7} .R%)

Then, for r sufficiently close to R and k r sufficiently large we get

Sk
1 1 l/P Sk 1 1/p Sk
——— thus g~ (Sx) —a(sy)) <B :
PRI (FTED R e
o)
Therefore éa(sk) < ﬁ[ >k ) or a(se) S ST =0+e€.
v log | fil 7. ﬁ[ 5 ]
log (| fi | T.r%)
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Proceeding to the upper limit we obtain o(a, 8) > Tg(a, 8). The result is obviously holds for
o(a,pB) = +oo.

]
5. Generalized (a, §)-growth and best polynomial approximation of analytic functions in
L?—norm.

Let E a L-regular compact of C". The purpose of this paragraph is to give the relationship
between the generalized order of an analytic function and speed of convergence to O in the best
polynomial in L,-norm on E. We need the following lemma.

Lemma 5.1. . Let f = Z [ A an element of LP(E, u), for p > 0, and

k>0
2 (E. f) = mf{H f- P”Lp@,m’ P € PuCH).
Th
“ | a(s) | a(k)
lim sup = lim sup G.D
k—+o0 [ Sk ] k—+o0 [ k ]
log (|ka.T}z" .Rsk) log (ﬂf(E, f).Rk)
and
lim sup a(s) — lim sup k) (5.2)

k—+00 Sk plap) k—+o00 plap)’
et p—
e AT log (x}/(E. f).R")

+00

Proof. Assume that p > 2. If f € LP(E,u) where p > 2, then f = Z Ji-Ar with convergence in
k=0

1 — 1 —
L*(E, ), hence for k > 0, f, = — ff.Akd,u and therefore f, = — f(f — Py_1).Ardu (because
Vi E Vi E
1
vit Jg
using inequalities Bernstein-walsh and Holder that we have for all € > 0

deg(Ay) = si). Since the relation, | fk| < | f- Pk_1|.|Zk|,u is satisfied, is easily verified by

|| vi < Con(1 + £)% .1 _ (E. ). (5.3)

forall k > 0. L
If 1 < p <2, let p’ such that — + — = 1, we have p’ > 2. According to the inequality of

Holder we have: |fk|.v,% < Hf - P

. But HAk

< - .

LI’(E,,u).HlAk L' (E.u) LY (E o) = C”Ak”E Cak(E) This

shows, according to inequality (BM), that: |fk|vi <CC..(1+ 8)Sk'Hf — P e
M
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Hence the result | fk|.v,% <C.(+ s)sk.n;"_l(E , f). In both cases we have therefore

el vi < Aol + &)1 _(E. f) (5.4)

where A, is a constant which depends only on ¢.
After passing to the upper limit in the relation (5.4) and applying the relation (3.3) we get

. a(si) : a(si)

im sup < lim sup

k—+0co0 Sk k—+00 [ k :|
log (Ifil 7} R™) log (n(E. f).R¥)

k
To prove the other inequality we consider the polynomial of degree s, Pi(z) = Z fj.Aj then

5;=0
+00 +00
m _(E.f) < Z |fJ|HAJHU(E : < Cy Z |fj|||A]||E By Bernstein-Walsh inequality we have
H
S =S8k Sj=Sk

fk|-Vk

+0o0
m(E, ) < Ce Z(l + €)Y fj|.vj for k > 0 and p > 1. If we take as a common factor (1 + &)*.

S =5k

the other factor is convergent thus we have ﬂﬁ (K, f) <C(1+e)*.

fk|.vk and by (3.3) we have, then

m(E, f) < C(1 + €)>,

fi| T (5.5)

k
We deduce lim sup (s > lim sup a®)

k—+00 [ Sk ] k—+0c0 [ k ]
log (|fil- T R ) log (! (E. f).R¥)

Applying this Lemma 5.1 we get the following main result:

[]

Theorem 5.1. Let f € LP(E,u), then f is u-almost-surely the restriction to E of an analytic
function in C" of finite generalized order p(a, B) if and only if
a(k)

p(a,B) = limsup + 00, (5.6)
k—+oco k

[log (nf(E, f).R")

Theorem 5.2. Let f € LP(E,u), then f is u-almost-surely the restriction to E of an analytic
function in C" of finite generalized order p(a,8) and finite generalized type o(a, ) if and only if

a(k) (5.7)

o(a,B) = limsup

k—s+00 I plap)’
B
{ [log (ﬂf(E, f).Rk)]}
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Proof. We prove only the first Theorem 5.1, the second is proved by the same arguments.
Suppose that f is u-almost-surely the restriction to E of an entire function g of general order p
(0 < p < +00) and show that p = p(a, B).
We have g € LP(E,u),p >2and g = Z gr-Arin L*(E, p) Since g is an element of L*(E, ) then

k=0
g = ,:ZOZ gr-Ax and according to the Theorem 3.1 p(g, @, ) = li]fr_l) fgp a/(:::) and with
[log (|fk|.T]S€k .Rfk)]
the Lemma 5.1 (relation(5.1)) we have lim sup a(s) = lim sup (k)
k400 [ Sk ] k00 [ k ]
log (Ifil 7 R) log (! (E, £).R¥)
But g = f on E hence p = lim sup a(s) < +o00,

k

[log (n2(E. £).R¥)
Now suppose that f is a function of L”(E, u) such that the relation (5.6) is verified. The proof
isdone in three steps p > 2,1 < p<2and0 < p < 1.

k—+00

+00
Step.1. Let p > 2, then f = ka.Ak, because f is an element of L*(E, u) ((L”(E,,u))pzl is
k=0
decreasing sequence). Consider in C" the series Ji-Ax, k > 0. By the relation (5.6) and the
inequality (BW) we have the inequality on coefficients | A; | (2.4), it can be seen that this series
converges normally on all compact of C”, to an analytic function denoted f;. We have f; = f,
obviously, u-almost surly on E.
We verify easily that this series converges normally on all compact of C" to an analytic function
denoted f;. We have f; = f, obviously, u-almost surly on E, and by Theorem 3.1 we have

k
lim sup a(s) = lim sup ak) < +o00.
k—+oo [ Sk :| k—+00 [ k
log (Ifil T R log (n(E. f).R¥)
. : a(k)
According to the Lemma 5.1 we get p(f;) = lim sup < +o00,

k
[log (n(E. £).R¥)

Let fi = Z Ji-Ag, then f1(z) = f(z) u-almost surely for every z in E. Therefore the (a, 8)-order
k=0

k—+c0

a(k)
[ k
log (ﬂi(E, f).Rk)
check p(f1) = p so the proof is completed.
Step.2. Now let p € [1,2[ and f € LP(E,u). By (BM) inequality and Holder inequality we
have again the inequality the relation (5.4) and by the previous arguments we obtain the result.

of fiis: p(fi,@,B) = limsup < +oo (see Theorem 3.1). By Lemma 5.1 we

k—+00
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Step.3. Let 0 < p < 1, of course, for 0 < p < 1 the L,-norm does not satisfy the triangle
inequality. But our relations (5.3) and relation (5.4) are also satisfied for 0 < p < 1 (see Kumar
(2011)), because using Holder’s inequality we have, for some M > 0 and all » > p (p fixed)

W Nerep< Mol f e -

Using the inequality f | f 1 au <l fIET f | £ 17 duwe get || f @< £ 177
E

E

f ||2/rfE’#) . We deduce that (E, u) satisfies the Bernstein.Markov inequality. For € > O there is a

constant C = C(e, p) > 0 such that, for all (analytic) polynomials P we have

Il Plle< C(1 + €)degpy- || Pllirey -

Thus if (E, p) satisfies the Bernstein-Markov inequality for one p > 0 then (5.4) and (5.5) are
satisfied for allp > 0.
The rest of proof is easily deduced using the same reasoning as in step 1 and step 2. ]
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Abstract

In this paper we obtain some common fixed point theorems for Hardy and Rogers type fuzzy mappings on closed
balls in a complete metric space. Our investigation is based on the fact that fuzzy fixed point results can be obtained
simply from the fixed point theorem of multi-valued mappings with closed values.In real world problems there are
various mathematical models in which the mappings are contractive on the subset of a space under consideration but
not on the whole space itself. Our results generalize several results of literature.

Keywords: Fuzzy fixed point, Hardy and Rogers mapping, contraction, closed balls, continuous mapping.
2010 MSC: 47TH10, 54H25, 54A40.

1. Introduction

It is a well-known fact that the results of fixed points are very useful for determining the exis-
tence and uniqueness of solutions to various mathematical models.In 1922,Banach a Polish math-
ematician proved a theorem under appropriate of a fixed point this result is called Banach fixed
point theorem.This theorem is also applied to prove the existence and uniqueness of the solutions
of differential equations. Many authors have made different generalization of Banach fixed point
theorem. The study of fixed points of mappings satisfying certain contractive conditions has been
at the center of vigorous research activity, and it has a wide range of applications in different areas
such as nonlinear and adoptive control systems, parameterize estimation problems, fractal image
decoding,computing magneto static fields in a nonlinear medium and convergence of recurrent
networks.

*Corresponding author
Email addresses: vhbadshah@gmail . com (V. H. Badshah), cp_wadhwani@yahoo.co.in (Chandraprakash
Wadhwani)
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The notion of fixed points for fuzzy mappings was introduced by Weiss (Weiss, 1975) and
Butnariu (Butnariu, 1982). Fixed point theorems for fuzzy set valued mappings have been stud-
ied by Heilpern (Heilpern, 1981) who introduced the concept of fuzzy contraction mappings and
established Banach contraction principle for fuzzy mappings in complete metric linear spaces
which is a fuzzy extension of Banach fixed point theorem and Nadlers (Nadler, 1969) theorem for
multi-valued mappings. Park and Jeong (Park & Jeong, 1997) proved some common fixed point
theorems for fuzzy mappings satisfying in complete metric space which are fuzzy extensions of
some theorems in (Azam, 1992; Park & Jeong, 1997). In this paper we obtain some common fixed
point theorems of Hardy and Rogers type fuzzy mappings on closed balls.

2. Basic concepts

Let (X, d) be a metric space, then we use the following notations: Let
2%¥ = {A: A is a subset of X},

CL2Y ={Ae2X: Ais nonempty and closed},
C(2¥) = {A € 2¥: A is nonempty and compact},
CB(2*) = {A € 2¥: A is nonempty, closed and bounded},
For A, B € CB(2%), d(x,A) = ;Iel}z d(x,y), d(A,B) = xeiAI,lyfe A d(x,y) then the Hausdroft metric dy on

acA beB
A fuzzy set in X is a function with domain X and values in [0, 1] and I* is the collection of all

fuzzy sets in X . If A is a fuzzy set and x € X then the function values A(x) is called the grade of
membership of x in A. The a-level set of a fuzzy set A, is denoted by [A],, and is defined as:

CB(2%) induced by d is defined as: dy(A, B) = {sup d(a, B),supd(A, b)} .

[A]l, ={x:A(x) > aif @ € (0,1]} and [A]p = {x : A(x) > O}.

For x € X, we denote the fuzzy set y, by {x} unless and until it is stated, where y, is the
characteristic function of the crisp set A. Now we define a sub-collection of IX as follows:
7(X) = {A € I : [A],is nonempty and closed}, for A.B € IX, A ¢ B means A(x) < B(x) for
each x,y € X. For A, B € 7(X) then define D{A, B} = dy([A], [B]y).

A point x* € X is called a fixed point of a fuzzy mappings T: X — I¥ if x* ¢ Tx* see (Heilpern,
1981)

Lemma 2.1. (Nadler, 1969) Let A and B be nonempty closed and bounded subsets of a metric
space (X,d) . Ifa € A, then d(a, B) < dy(A, B).

Lemma 2.2. (Nadler, 1969) Let A and B be nonempty closed and bounded subsets of a metric
space (X,d) and 0 < & € R then for a € A there exists b € B such that d(a, B) < dy(A, B) + &.

Lemma 2.3. (Nadler, 1969) The completeness of (X, d) implies that (CB(2%), dy) is complete.
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Theorem 2.1. (Hardy & Rogers, 1973) Let (X,d) be a complete metric space and a mapping
T: X — X suppose there exists non-negative constants a,, a, as, ds, ds satisfying a, + a, + az +
as + as < 1 such that for each x,y € X

d(Fx,Fy) < aid(x,y) + axd(x, Fx) + a;d(y, Fy) + a4d(x, Fy) + asd(y, Fx)
holds then F has a unique fixed point in X.

3. Main Results

The mapping satisfies the contractive condition in Theorem (2.1) is called Hardy and Rogers
type mapping. It is mentioned that Hardy and Rogers contractive condition does not implies that
the mapping T is continuous, which differentiates it from Banach contractive condition for ¢ € X
and 0 < r < R. Let S,(c) = {x € X/d(c, x) < r} be the ball of radius r centered at c, the closure
of §,(c) is denoted by S,(c). We present a result regarding the existence of common fixed point
for fuzzy mappings satisfying Hardy and Rogers type contractive condition on closed balls. The
theorem is as follows:

Theorem 3.1. Let (X,d) be a complete metric space xy € X and mapping F,T: S (x9) — 7(X).
Suppose there exist a constants a,, a», as, as, as satisfying a; + a, + az + a4 + as < 1 with

D\(Fx,Ty) < aid(x,y) + axd(x, [Fx]1) + azd(y, [Tyl1) + asd(x, [Ty]1) + asd(y, [Fx]))  (3.1)

forall x,y € S,(xy) and

d(xo, [Fo]y) < 29— G2 = @3 — 2a0)r 3.2)
(1 —-asz—a4)

holds. Then F and T has a common fuzzy fixed point in S (xg) that is there exists x* € S ,(xg) with
{x*} C Fx*NTx".
Proof. Choose x; € X such that {x;} C Fx, and

(1 —a; —ay —az —2ay)r

d(xo, x1) < TE— (3.3)

(a1+a2+a4)
(1-az—ayq)
which implies that x; € §,(xp). Now choose £ > 0 such that

since [Fxg]; # ¢ for the sake of simplicity chooses A = this gives us d(xg, x1) < (1 — D)r

Ad(xo, x1) + ——— < A1 = Dr. (3.4)
(1 -as—ay)

Then choose € > 0 such that {x,} C Tx; and by using inequality (3.1) and Lemma 2.1 we have

d(xy, x2) D(Fxy,Tx;) +¢

ard(xo, x1) + axd(xo, [Fxoly) + azd(xy, [Tx1]1) + asd(xo, [Tx1]1) + asd(x;, [Fxol; + &

IANIAN A

ayd(xo, x1) + ad(xo, x1) + azd(x;, x2) + asd(xo, x2) + asd(xy,x;) + €
(a1 + ap)d(xo, x1) + aszd(x;, x2) + asd(xo, x2) + &€
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. B _ (atartas)
1.e. d(xy, x;) < Ad(xp, x1)+ ryE— where 1 = TE—

A(1 = Dr. Note that x, € S ,(xp) since

. Now by inequality (3.4) we get d(x;, x;) <

d(xp,x) < d(xg,x)+dx,x)<(-Dr+A1 -Dr=>0-Dr(1+ 1)
< A=DA+A+2+2+.)r=r

continue this process and having chosen {x,} in X such that {xy1} € Fxo and {xa42} € T Xox41
with d(Xops1, Xoks2) < A1 = D)r where k =0, 1,2, ...

Notice that {x,} is cauchy sequence in S ,(xy) which is complete. Therefore a point x* € S ,(x)
exists with lim,_,.x, = x*. It remains to show that {x*} € Tx* and {x"} C Fx*. Now by using
Lemma 2.1 and inequality (3.1) we get

d(x",[Tx']y) d(x", xop+1) + d(xX2p41, [TX"]1)

d(x", xaps1) + D1(Fxap42, TX)

d(x", Xops1) + ard(Xops2, X°) + ard (X1, [FXopi2]1) + azd(x", [Tx7]1)
+agd(Xops2, [TX 1) + asd(x”, [Fx2,12]1)

d(x", Xon11) + @1d(Xops2, X°) + a2d(Xan42, Xons1) + azd(x", [T X"]})

+asd(Xons2, [TX]1) + asd(X", x2,41)

ININ A

IA

IA

d(x", Xpp41) + a1d(X2n12, X°) + a2d(X2p42, Xons1) + Aad(X2pi2, X°)
+asd(x", [Tx"])) + asd(x", Xpp41)

IA

d(X", Xan11) + a1d(X2p42, X°) + @2d(X2p42, X2p41)
+asd(Xpn12, X7) + asd (X", Xp541)

— Qasn — o

This implies that d(x*,[Tx"];) = 0, which implies that {x*} C Tx*. Similarly consider that

d(x*,[Fx']1) < d(x*, xpp12) + d(xpp42, [FX*]1) to show that {x*} C Fx*. This implies that the
mappings F and T have a common fixed point S ,(xp), i.e. {x*} C Fx* N Tx". ]

Corollary 3.1. Let (X, d) be a complete metric space xo € X and mapping F: S (xo) — 7(X).Suppose
there exist a non negative constants ai, a,, as, ds, as satisfying a, + a, + az + a4 + as < 1 with

Di(Fx, Fy) < aid(x,y) + ad(x, [Fx]) + azd(y, [Fyl) + asd(x, [Fyl)) + asd(y, [Fx])
forall x,y € S ,(xo) and

(1—a; —ay — a3 —2ay)r

d(xo, [Fxol1) < 1
—daz —day

holds. Then F has a common fuzzy fixed point in S ,(xy) that is there exists x* € S ,(xo) with
{x"} C Fx".

Proof. Put T = F in Theorem 3.1 we get x* € S ,(xp) such that {x*} C Fx*. O
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Theorem 3.2. Let (X, d) be a complete metric space xy € X and mapping F,T : X: — 1(X).Suppose
there exist a constants ay, a,, as, dy, ds satisfying a, + a, + as + a, + as < 1 with

Di(Fx,Ty) < aid(x,y) + axd(x, [Fx]y) + azd(y, [Tyl)) + asd(x, [Ty],) + asd(y, [Fx];)

forall x,y € X and

l—ay—ay—as -2
d(xo, [Fxoly) < Lo 91— G2 = @3 — 2au)r

1—613—614

holds.Then F and T has a common fuzzy fixed point in X that is there exists x* € X with
(X'} S Fx*NTx"
Proof: Fix xy € X and choose r > 0 such that

| —ai—ar—as 2
d(xo,[Fx0]1)<( = G2~ @3~ 204)0

1- asz — dg
Now Theorem 3.1 guarantees that there exists x* € X with
(X} S Fx"NTx".

Corollary 3.2. Let (X, d) be a complete metric space xo € X and mapping F: X — 1(X).Suppose
there exist a constants a,, a,, as, dy, ds satisfying a, + a, + as + ay + as < 1 with

D\(Fx,Fy) < aid(x,y) + axd(x,[Fx]y) + a3d(y, [Fyl)) + asd(x, [Fyl;) + asd(y, [Fx];)

forall x,y € X and

1l—a —a —ay — 2a4)r
d(xo, [Fxoly) < =91 =62 = @3 — 2d4)

1 - as — dy
holds.Then F has a common fuzzy fixed point in X that is there exists x* € X with

(X"} C Fx".

Proof: In Theorem 3.2 take T=F we get x* € X such that {x*} C Fx".

4. The importance and future of this theory:

Fuzzy sets and mappings play important roles in the fuzzification of systems. In particular,
in the recent years the fixed point theory for fuzzy mappings and for a family of these mappings
obtained via implicit functions named Hardy and Rogers type mappings. In this article can further
be used in the process of finding the solution of functional equations in fuzzy systems. As far
as the application of contraction mapping is concerned the situation is not fully exploited. It
is quite possible that a contraction 7 is defined on the whole space X but it is contractive on
the subset Y of the subset of the space rather on the whole space X. Moreover the contraction
mapping under consideration may not be continues. If Y is closed, then it is complete,so that a
mapping 7 has a fixed point x in Y,and x, — x as in the case of whole space X provided we
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improve a simple restriction on the choice of xy, so that x/,s remains in Y. In this paper, we have
discussed this concept for fuzzy Hardy and Rogers mappings on a complete metric space x which
generalize/improves several classical tendon with (Azam et al., 2013) will become the foundation
of fuzzy theory on closed balls.

An example of a fuzzy mapping which is contractive on the subset of a space but not on the
whole space is as follows:

Example 4.1. Let X = R and d : XxX — R is defined by d(x,y) = |x — y| where x,y € X consider
the mapping F : X — 7(X) is defined by

Fx) = X(-x, 1f xis irrational;
() = X (i), if x s rational.

then F' is Hardy and Rogers type fuzzy mapping on the closed balls S 1 )(%) = [0, 1] but not on the
whole space X.
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Abstract

We prove some fixed point theorems for ordered F-generalized contractions in ordered 0-f-orbitally complete
partial metric spaces. Our results generalize some well-known results in the literature, in particular the recent result of
Wardowski [Fixed Point Theory Appl. 2012:94 (2012)] from metric spaces to ordered O- f-orbitally complete partial
metric spaces. Some examples are given which illustrate the new results.
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1. Introduction

In 1994, Matthews (Matthews, 1994) introduced the notion of a partial metric space, as a part
of the study of denotational semantics of dataflow networks. In a partial metric space, the usual
distance was replaced by partial metric, with an interesting property of “nonzero self distance” of
points. Also, the convergence of sequences in this space was defined in such a way that the limit
of a convergent sequence need not be unique. Matthews showed that the Banach contraction prin-
ciple is valid in partial metric spaces and can be applied in program verifications. Later on, several
authors generalized the results of Matthews (see, for example, (Ahmad et al., 2012; Bari et al.,
2012; Kadelburg et al., 2013; Nashine et al., 2012; Vetro & Radenovié, 2012)). O’Neill (O’Neill,
1996) generalized the concept of partial metric space a bit further by admitting negative distances.
The partial metric defined by O’Neill is called dualistic partial metric. Heckmann (Heckmann,
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Radenovié ), kadelbur@matf.bg.ac.rs (Zoran Kadelburg)
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1999) generalized it by omitting small self-distance axiom. The partial metric defined by Heck-
mann is called the weak partial metric. Romaguera (Romaguera, 2010) introduced the notions of
0-Cauchy sequences and O-complete partial metric spaces and proved some characterizations of
partial metric spaces in terms of completeness and O-completeness.

The existence of fixed points of mappings in partially ordered sets was investigated by Ran and
Reurings (Ran & Reurings, 2004) and then by Nieto and Rodriguez-Lopez (Nieto & Lopez, 2005,
2007). In these papers, some results on the existence of a unique fixed point for nondecreasing
mappings were applied to obtain a unique solution for a first order ordinary differential equation
with periodic boundary conditions. Later on, these results were generalized by several authors in
different spaces.

Recently, Wardowski (Wardowski, 2012) has introduced a new concept of F-contraction and
proved a fixed point theorem which generalizes Banach contraction principle in a different direc-
tion than in the known results from the literature in complete metric spaces.

In this paper, we prove some fixed point theorems for ordered F-generalized contractions in
ordered O-f-orbitally complete partial metric spaces. The results of this paper generalize and
extend the results of Wardowski (Wardowski, 2012), Ran and Reurings (Ran & Reurings, 2004),
Nieto and Rodriguez-Lopez (Nieto & Lopez, 2005, 2007), Altun et al. (Altun et al., 2010), Ciri¢
(Ciri¢, 1971, 1972) and some other well-known results in the literature. Some examples are given
which illustrate our results.

2. Preliminaries

First we recall some definitions and properties of partial metric spaces (see, e.g., (Matthews,
1994; Oltra & Valero, 2004; O’Neill, 1996; Romaguera, 2010, 2011)).

Definition 2.1. A partial metric on a nonempty set X is a function p: X x X — R* (R* stands for
nonnegative reals) such that for all x,y,z € X:

(P1) x =y ifandonly if p(x,x) = p(x,y) = p(y,y);
(P2) p(x, x) < p(x,y);

(P3) p(x,y) = p(y, x);

(P4 p(x,y) < p(x,2) + p(z,y) — p(z,2).

A partial metric space is a pair (X, p) such that X is a nonempty set and p is a partial metric on X.

It is clear that, if p(x,y) = 0, then from (P1) and (P2) x = y. Butif x =y, p(x, y) may not be 0.
Also, every metric space is a partial metric space, with zero self distance.

Example 2.1. If p: R*xXR*" — R* is defined by p(x,y) = max{x, y}, for all x,y € R, then (R*, p)
is a partial metric space.

For some more examples of partial metric spaces, we refer to (Aydi et al., 2012) and the
references therein.

Each partial metric on X generates a T topology 7, on X which has as a base the family of
open p-balls {B,(x,€): x € X, € > 0}, where B,(x,e) = {y € X : p(x,y) < p(x,x) + €} for all



Satish Shukla et al. | Theory and Applications of Mathematics & Computer Science 4 (1) (2014) 87-98 89

x € X and € > 0. A mapping f: X — X is continuous if and only if, whenever a sequence {x,} in
X converging with respect to 7, to a point x € X, the sequence {fx,} converges with respect to 7,
to fx e X.

Theorem 2.1. (Matthews, 1994) For each partial metric p: X X X — R* the pair (X, d) where,
d(x,y) =2p(x,y) — p(x,x) — p(y,y) for all x,y € X, is a metric space.

Here (X, d) is called the induced metric space and d is the induced metric. In further discussion,
unless something else is specified, (X, d) will represent the induced metric space.
Let (X, p) be a partial metric space.

(1) A sequence {x,} in (X, p) converges to a point x € X if and only if p(x, x) = lim,_,. p(x,, X).
(2) Asequence {x,}1in (X, p)is called a Cauchy sequence if there exists (and is finite) lim,; ;00 P(X5 Xi)-
(3) (X, p) is said to be complete if every Cauchy sequence {x,} in X converges with respect to
T, to a point x € X such that p(x, x) = lim,, ;e p(Xp, Xp).
(4) A sequence {x,} in (X,p) is called a 0-Cauchy sequence if
lim,, ;0 p(xn, Xx,) = 0. The space (X, p) is said to be O-complete if every 0-Cauchy se-
quence in X converges with respect to 7, to a point x € X such that p(x, x) = 0.

Lemma 2.1. (Matthews, 1994; Oltra & Valero, 2004; Romaguera, 2010, 2011) Let (X, p) be a
partial metric space and {x,} be any sequence in X.

(i) {x,}is a Cauchy sequence in (X, p) if and only if it is a Cauchy sequence in the metric space
(X, d).
(ii) (X, p) is complete if and only if the metric space (X, d) is complete. Furthermore, lim,,_,, d(x,, x) =
0 if and only if p(x, x) = lim, e p(X,, X) = limy, 100 P(Xys Xi1)-
(iii) Every 0-Cauchy sequence in (X, p) is Cauchy in (X, d).
(iv) If (X, p) is complete then it is 0-complete.

The converse assertions of (iii) and (iv) do not hold. Indeed, the partial metric space (QNR™, p),
where Q denotes the set of rational numbers and the partial metric p is given by p(x, y) = max{x, y},
provides an easy example of a O-complete partial metric space which is not complete. Also, it is
easy to see that every closed subset of a O-complete partial metric space is O-complete.

The proof of the following lemma is easy and for details we refer to (Karapinar, 2012) and the
references therein.

Lemma 2.2. Assume x, — z as n — oo in a partial metric space (X, p) such that p(z,z) = 0. Then
lim, e p(x,,y) = p(z,y) forall y € X.

The notion of orbital completeness of metric spaces was introduced in (Ciri¢, 1971) and
adapted to partial metric spaces in (Karapinar, 2012) as follows:

Let (X, p) be a partial metric space and f: X — X be a mapping. For any x € X, the set
O(x) = {x, fx, f*x,...} is called the orbit of f at point x. (X, p) is called f-orbitally complete if
every Cauchy sequence in O(x) converges in (X, p).

Now, we define 0- f-orbital completeness of a partial metric space.
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Definition 2.2. Let (X, p) be a partial metric space and f: X — X be a mapping. (X, p) is said to
be 0- f-orbitally complete, if every 0-Cauchy sequence in O(x) = {x, fx, f°x, ...}, x € X, converges
with respect to 7, to a point u € X such that p(u, u) = 0.

Note that every complete partial metric space is O-complete, and every O-complete partial
metric space is 0-f-orbitally complete for every f: X — X. But, the converse assertions need not
hold as shown by the following example.

Example 2.2. Let X = R*N(Q\ {1}) and p: X X X — R be defined by

|x_)’|, ifx’ye [07 1)’
p(x,y) =

max{x,y}, otherwise.
Define f: X — X by fx = 3 forall x € X. Then (X, p) is a partial metric space. Note that (X, p) is
not complete because the induced metric space (X, d), where

2x—yl, ifx,y [0, 1)

|x —y|, otherwise,

d(x,y) = {

is not complete. Also (X, p) is not O-complete. Indeed, for x,, = 1 —% for all n € N, we observe that,
P(Xa, X)) = |2 = 1| > 0 as n — co. But, there is no u € X such that lim,_e p(x,, u) = p(u, u) = 0.
Now, it is easy to see that (X, p) is O- f-orbitally complete.

Consider, together with Wardowski in (Wardowski, 2012), the following properties for a map-
ping F: R* - R:
(F1) F is strictly increasing, that is, for @, 8 € R*, @ < 8 implies F(a) < F(B);
(F2) for each sequence {a,} of positive numbers, lim,_,., @, = O if and only if lim,_,., F(a,) =
_00;

(F3) there exists k € (0, 1) such that lim,_,+ o F(@) = 0.

We denote the set of all functions satisfying properties (F1)—(F3), by 7.

For examples of functions F € ¥, we refer to (Wardowski, 2012). Wardowski defined in
(Wardowski, 2012) F-contractions as follows:

Let (X, p) be a metric space. A mapping 7: X — X is said to be an F-contraction if there
exists F € ¥ and 7 > O such that, for all x,y € X, o(Tx, Ty) > 0 we have

T+ F(p(Tx,Ty)) < F(p(x,y)).
Similarly, we adopt the following definitions.

Definition 2.3. Let X be a nonempty set, < a partial order relation defined on X and p be a partial
metric on X (then, (X, <, p) is called an ordered partial metric space). A map f: X — X is called:

1. an ordered F-contraction if there exists ' € ¥ and 7 > 0 such that, for all x,y € X with
x <yand p(fx, fy) > 0 we have

T+ F(p(fx, fy) < F(p(x,y)). (2.1)
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2. an ordered F-weak contraction if there exists F € # and T > 0 such that, for all x,y € X
with x < yand p(fx, fy) > 0 we have

T+ F(p(fx, fy)) < F(max{p(x,y), p(x, fx), p(y, fy)}. (2.2)

If inequality (2.2) is satisfied for all x,y € X, then f is called an F'-weak contraction;
3. an ordered F-generalized contraction if there exists F € ¥ and 7 > 0 such that, for all
x,y € X with x <y and p(fx, fy) > 0 we have

p(x, fy) + p(y, fx) N
5 .

If inequality (2.3) is satisfied for all x,y € X, then f is called an F-generalized contraction.

T+ F(p(fx, fy)) < F(max{p(x,y), p(x, fx), p(y, fy), (2.3)

The following example shows that the class of F-contractions in partial metric spaces is more
general than that in metric spaces.

Example 2.3. Let X = R" and p: R*XR* — R* be defined by p(x,y) = max{x, y} forall x,y € X.
Note that the metric induced by p (as well as the usual metric) on X is given by d(x,y) = |x — Y|
for all x,y € X. Define f: X — X by

fre 1 ifxe[0,1);
o, ifx=1.

Then forx =1,y = % there isno 7 > 0 and F € F such that

T+ F(d(fx, fy)) < F(d(x,y)).

On the other hand, for 7 = log?2 and F(a) = loga + «, it is easy to see that f is an F-contraction
in (X, p).

3. Main results
The following is our first main result.

Theorem 3.1. Let (X, <, p) be an ordered partial metric space and f: X — X be an ordered
F-generalized contraction for some F € F. If (X, p) is O-f-orbitally complete and the following
conditions hold:

(i) f is nondecreasing with respect to “<”, that is, if x <y then fx < fy;
(ii) there exists xo € X such that xo < fxo;
(iii) (a) f is continuous, or
(b) F is continuous and for every nondecreasing sequence {x,}, x, - u € X asn — o
implies x, < u for all n € N.

Then f has a fixed point u € X. Furthermore, the fixed point of f is unique if and only if the set of
all fixed points of f is well-ordered.
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Proof. First, we shall show the existence of fixed point of f. Let x, € X be the point given by
(i1). We define a sequence {x,} in X by x,,; = fx, for all n > 0. If there exists ny € N such that
Xno+1 = Xy, then x,, is a fixed point of f. Therefore, assume that x,,; # x, for alln > 0. As,
Xxo < fxo we have xy < xi, and since f is nondecreasing with respect to <, we have fxy < fx;
that is x; < x,. Similarly, we obtain x, < x,,; for all n > 0. Also, f is an ordered F-generalized
contraction therefore, for any n € N it follows from (2.3) and symmetry of p that

T+ F(p(fXn, fXn-1)) = T+ F(p(fXu-1, [ X))
< F(max{p(xna xn—l)’ p(xna fxn)s p(xn—la fxn—l)a
p(xm fxn—l) + p(xn—l’ fxn)
> }
= F(max{p(xna xn—l)’ p(xm xn+1)a p(xn—la xn)7
p(xna xn) + p(xn—la xn+1)
> 1
< F(maX{P(xm xn—l)a p(-xna xn+1)a
p(xn—la xn) + p(-xn+la -xn)
> 1.

Note that, for any a,b € R* we have max{a, b, %} = max{a, b}, therefore it follows from the
above inequality that

T+ F(p(xn+1’ -xn)) < F(maX{p(xm xn—])a p(-xn’ -xn+1)})
F(p(Xus1, X)) < F(max{p(x,, X,-1), p(Xp, Xp1)}) — T. 3.1

If, max{p(x,, X,—1), (X, Xu+1)} = (X, Xn41) then from (3.1) we have
F(p(xns1, X0)) < F(p(Xn, Xni1)) = T < F(p(Xn, Xp11)),
a contradiction. Therefore, max{p(x,, X,_1), p(X,, X,+1)} = p(X,, x,_1) and from (3.1) we have
F(p(xp:1,x,)) < F(p(xp, x,-1)) — 7 forall n e N. (3.2)
Setting p, = p(x,+1, X,,) it follows by successive applications of (3.2) that
F(pn) < F(pn-1) =T < F(pu2) =2t < --- < F(py) — nt. (3.3)
From (3.3) we have lim,_,, F'(p,) = —o0, and since F' € ¥ we must have

lim p, = 0. 3.4)

n—oo

Again, as F € F there exists k € (0, 1) such that
lim(p,)*F(p,) = 0. (3.5

From (3.3) we have
(P [F(pn) = F(po)] < —nt(py)* < 0.
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Letting n — oo in the above inequality and using (3.4) and (3.5) we obtain

lim n(p,)* = 0. (3.6)

n—oo

It follows from (3.6) that there exists n; € N such that n(p,)* < 1 for all n > ny, that is,
1
Pn < =V for all n > n;. (3.7)
n

Let m,n € N with m > n > n;. Then it follows from (3.7) that

p(-xm xm) < p(-xn’ -xn+l) + p(xn+19 xn+2) +--+ p(xm—l’ -xm)
- [p(xm xn) + P(Xn+1, xn+l) +---t p(xm—la xm—l)]

SPnt Dnst +00
1 1

< - 4.
Sk T e Dk

1
2.

=n

Ask € (0,1), the series ) -, lﬁ converges, so it follows from the above inequality that lim,,_,., p(x,, X,,) =
0, that is, the sequence {x,} is a 0-Cauchy sequence in O(xy) = {xo, fxo, fzxo, ...}. Therefore, by
0- f-orbital completeness of (X, p), there exists u € X such that

lim p(x,,u) = lim p(x,, x,) = p(u,u) = 0. (3.8)

We shall show that u is a fixed point of f. For this, we consider two cases.
Case I: Suppose (a) is satisfied, that is, f is continuous. Then using (3.8) and Lemma 2.2, we
obtain

P, fu) = Tim p(,, fu) = Tim p(fx, 1, fu) = p(fu, fu)

Suppose that p(fu, fu) > 0. Then as u < u, using (2.3) we obtain

T+ F(p(fu, fu)) < F(max{p(u, u), p(u, fu), p(u, fu), pu, fu) ;‘ p(u, fu)}
= F(max{p(u, u), p(u, fu)})

= F(p(u, fu)),

that is, F(p(fu, fu)) < F(p(u, fu)) and from F € ¥ we have p(fu, fu) < p(u, fu) = p(fu, fu), a
contradiction. Therefore, p(fu, fu) = p(u, fu) = 0, thatis, fu = u, so u is a fixed point of f.
Case II: Suppose that (b) is satisfied. Then we consider two subcases.
(i): For each n € N, there exists k, € N such that p(x; .1, fu) = 0 and k, > k,_, where ko = 1.
Then, using Lemma 2.2, we have

)

p(u, fu) = lim p(xg,+1, fu) = 0.
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Therefore, fu = u, that is, u is a fixed point of f.

(ii): There exists n, € N such that p(x,, fu) # O for all n > n,. In this case, since {x,} is a
nondecreasing sequence and x, — u as n — oo, we have x,, < u for all n € N. Therefore, using
(2.3) we obtain

T+ F(p(Xs1, fu)) = 7+ F(p(fxa, fu))
(X, fu) + p(u, fxn)

< F(max{p(x,, u), p(x,, f xn), p(u, fu), > 1))

< F(max{p(x,, u), p(Xn, Xns1), p(ut, f10),
p(-xn’ u) + P(”’ fl/l) + P(U’ xn+l)
5 D.

From (3.8), there exists n3 € N such that, for all n > n; we have

p(xn’ I/t) + p(u9 fl/l) + p(”’ xn+1)
2

max{p(Xu, ), p(Xn, Xn41), p(ut, fu), } = pu, fu),

so, for n > max{n,, n3} we obtain

T+ F(p(Xpe1, fu)) < F(p(u, fu).

As F is continuous, letting n — oo in the above inequality and using (3.8) and Lemma 2.2 we
obtain

T+ F(p(u, fu)) < F(p(u, fu)),

a contradiction. Therefore, we must have p(u, fu) = 0 thatis fu = u. Thus u is a fixed point of f.

Suppose that the set of fixed points of f is well-ordered and u,v € F; with p(u,v) > 0, where
F; denotes the set of all fixed points of f. As F is well-ordered, let u < v. Then from (2.3) we
obtain

T+ F(p(u,v)) = 7+ F(p(fu, fv))
< F(max{p(u,v), p(u, fu), p(v, fv),

< F(max{p(u, v), p(u, u), p(v,v), p(v, 0)})
< F(p(u,v)),

pu, fv) + p(v, f u)}

> )

a contradiction. Similarly, for v < u we get a contradiction. Therefore, the fixed point of f is

unique. For the converse, if the fixed point of f is unique then F, being a singleton, is well-
ordered. []

The following corollaries are immediate consequences of the above theorem.

Corollary 3.1. Let (X, <, p) be an ordered partial metric space and f: X — X be an ordered
F-contraction. Let (X, p) is O- f-orbitally complete and the following conditions hold:

(i) f is nondecreasing with respect to “<”, that is, if x < y then fx < fy;
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(ii) there exists xo € X such that xo < fxo,
(iii) (a) f is continuous, or
(b) F is continuous and for every nondecreasing sequence {x,} such that x, — u € X as
n — oo it follows that x, < u for alln € N.

Then f has a fixed point u € X. Furthermore, the fixed point of f is unique if and only if the set of
all fixed points of f is well-ordered.

Corollary 3.2. Let (X, <, p) be an ordered partial metric space and f: X — X be an ordered
F-weak contraction. If (X, p) is O- f-orbitally complete and the following conditions hold:

(i) f is nondecreasing with respect to “<”, that is, if x <y then fx < fy;
(ii) there exists xy € X such that xo < fxo;
(iii) (a) f is continuous, or
(b) F is continuous and for every nondecreasing sequence {x,} such that x, — u € X as
n — oo it follows that x, < u for all n € N.

Then f has a fixed point u € X. Furthermore, the fixed point of f is unique if and only if the set of
all fixed points of f is well-ordered.

Remark. We note that every metric space is a partial metric space with zero self distance. Therefore
we can replace the partial metric p by a metric p in Theorem 3.1. Also, after this replacement, the
0- f-orbital completeness reduces to orbital completeness of the metric space. Therefore, by this
replacement in Theorem 3.1, we obtain the fixed point result for ordered F-generalized contraction
in orbitally complete metric spaces.

In the above theorems the fixed point of the self map f is the limit of a 0-Cauchy sequence and
due to O-f-orbital completeness of the space this limit has zero self distance. The next theorem
shows that, if an ordered F'-generalized contraction has a fixed point then its self distance must be
zero, that is, it does not depend on the properties of space such as completeness etc.

Theorem 3.2. Let (X, <, p) be an ordered partial metric space and f: X — X be an ordered
F-generalized contraction. If f has a fixed point u then p(u,u) = 0.

Proof. Suppose that u € F; and p(u, u) > 0. Then, it follows from (2.3) that
7+ F(p(u,u)) = v+ F(p(fu, fu))

< F(max{p(u, u), p(u, fu), p(u, fu),
= F(p(u, u)).

pu, fu) + p(u, fu)}
2

)

As t > 0, the above inequality yields a contradiction. Therefore, we have p(u,u) = 0 for all
uc Ff. O

The following example illustrates our results.
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Example 3.1. Let X = [0,2] N (Q \ {1}) and define p: X X X — R* by

|x_y|’ ifx’y € [O, l)a
p(x,y) =10, ifx=y=2;

max{x,y}, otherwise.
Then (X, p) is a partial metric space. Define a partial order relation “<” on X by
<= {(xy:xyel0,1),y<xU{(xy): xye(l,2),y <x} U{Z,2)}

Define f: X — X by

X ifxel0,1);
fx= ‘1—‘, if x € (1,2);
2, ifx=2.

Then it is easy to see that (X, p) is a 0- f-orbitally complete partial metric space. Let F(a) = loga
for all @ € R*. Then f satisfies all the conditions of Corollary 3.1 (except that the set of fixed
points of f is well-ordered) with 7 < log2. Note that, F'; = {0,2} with p(0,0) = p(2,2) = 0 and
(2,0),(0,2) ¢ <. Now, the metric d induced by p is given by

d(x.y) 2lx—yl, ifx,yel[0,1);
X,y) = .
Y |x —y|, otherwise,

and (X, d) is not complete. Similarly, if p is the usual metric on X then (X, p) is not complete,
therefore the results from metric cases are not applicable here. This example shows also that
an ordered F-contraction may not be an F-contraction (not even an F-generalized contraction).
Indeed, for x € [0, 1), y = 2 there exists no F' € ¥ and 7 > 0 such that

p(x, fy) + p(y, fx) .

T+ F(p(fx, fy)) < F(max{p(x,y), p(x, fx), p(y, f¥), >

Therefore, f is not an F-generalized contraction in (X, p). Similarly, for x = 0, y = 2 one can see
that f is not an F-generalized contraction in (X, d) and (X, p).

In the following theorem the conditions on self map f, “nondecreasing”, continuous and O-f-
orbital completeness of space, are replaced by another condition on self map f.

Theorem 3.3. Let (X, <, p) be an ordered partial metric space and f: X — X be an ordered F-
generalized contraction. Let there exists u € X such that u < fu and p(u, fu) < p(x, fx) for all
x € X. Then f has a fixed point u € X. Furthermore, the fixed point of f is unique if and only if
the set of all fixed points of f is well-ordered.

Proof. Let G(x) = p(x, fx) for all x € X. Then by assumption we have

G(u) < G(x) forall x e X. 3.9
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We shall show that fu = u. Suppose that G(u) = p(u, fu) > 0. Then since u < fu, it follows from
(2.3) that

F(G(fw) = F(p(fu, ffu)

< F(max{p(u, fu), plu, fu), p(fu, f fuy, eI T+ DU T,y

2
< Famax{p(u, fu, p(fu, £ fu), LT PIRIT,,
= F(max{G(u), G(fu), w» —r

= F(max{G(u), G(fu)}) — 7.

If max{G(u), G(fu)} = G(fu), then it follows from the above inequality that F(G(fu)) < F(G(fu)),
a contradiction. If max{G(u), G(fu)} = G(u), then again we obtain F(G(fu)) < F(G(u)) and
F € F so G(fu) < G(u), a contradiction. Thus, we must have G(u) = p(u, fu) = 0, thatis fu = u
and so u is a fixed point of f.

The necessary and sufficient condition for the uniqueness of fixed point follows from a similar
process as used in Theorem 3.1. ]
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Abstract

In this article we introduce the sequence spaces c(I)(F, p), ! (F, p) and I!_(F, p) for F = (f;) a sequence of moduli
and p = (px) sequence of positive reals and study some of the properties and inclusion relation on these spaces.
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1. Introduction

Throughout the article N, R, C and w denotes the set of natural,real,complex numbers and the
class of all sequences respectively.

The notion of the statistical convergence was introduced by H. Fast (Fast, 1951). Later on it
was studied by J. A. Fridy (Fridy, 1985, 1993) from the sequence space point of view and linked
it with the summability theory. The notion of /-convergence is a generalization of the statistical
convergence. At the initial stage it was studied by Kostyrko, Salat and Wilczysiski (Kostyrko &
Salat and W. Wilczynski, 2000). Later on it was studied by Salat, Tripathy and Ziman (Salit er
al., 1963) and Demirci (Demirci, 2001). Recently it was studied by V. A. Khan and K. Ebadullah
(Khan & Ebadullah, 2011; Khan et al., 2011; Khan & Ebadullah, 2012; Khan et al., 2012) and
Tripathy and Hazarika (Tripathy & Hazarika, 2009, 2011).

Here we give some preliminaries about the notion of /-convergence.

Let N be a non empty set. Then a family of sets 7 C 2" (2" denoting the power set of N) is said
to be an ideal if / is additivei.e A,B€ I = AU B € I and hereditaryie A€ I, BCA = Bel.

A non-empty family of sets £(/) C 2V is said to be filter on N if and only if ¢ ¢ £(I),for
A, B € £(I) we have A N B € £(1) and for each A € £(I) and A C B implies B € £(I).

*Corresponding author
Email addresses: vhbadshah@gmail . com (Vakeel A. Khan), cp_wadhwani@yahoo.co.in (Khalid Ebadullah)
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An Ideal I € 2V is called non-trivial if I # 2V. A non-trivial ideal I C 2" is called admissible
if {{x}:xeN}CI.

A non-trivial ideal I is maximal if there cannot exist any non-trivial ideal J # I containing / as
a subset.
For each ideal I, there is a filter £(/) corresponding to I. i.e £(/) = {K € N : K¢ € I},where
K‘=N-K.

Definition 1.1. A sequence (x;) is said to be I-convergent to a number L if for every € > O.
{k € N :|x; — L| > €} €. In this case we write I-lim x; = L. The space ¢’ of all I-convergent
sequences to L is given by

¢ ={(x) : (ke N: |x; — L| > €} € I, for some Le C}.
Definition 1.2. A sequence (xy) is said to be /-null if L = 0. In this case we write /-lim x; = 0.

Definition 1.3. A sequence (x;) is said to be I-cauchy if for every € > 0 there exists a number m
=m(e) suchthat{k € N : |x; — x,,| > €} € I.

Definition 1.4. A sequence (x;) is said to be /-bounded if there exists M >0 such that {k € N :
x| > M} e 1.

Definition 1.5. Let (x;), (yx) be two sequences. We say that (x;) = (y) for almost all k relative to
I(a.akrl),if{tke N:x, #y}el

Definition 1.6. For any set E of sequences the space of multipliers of E, denoted by M(E) is given
by
M(E)={a€w:ax € E forall x € E}).

Definition 1.7. The concept of paranorm(See (Maddox, 1969)) is closely related to linear metric
spaces. It is a generalization of that of absolute value.

Let X be a linear space. A function g : X — R is called paranorm, if for all x,y, z € X,

PD gx)=0if x=6,

(P2) g(—x) = g(x),

(P3) g(x +y) < g(x) + &),

(P4) If (1,) is a sequence of scalars with 4, —» A (n — o) and x,,a € X with x, - a (n — o),
in the sense that g(x, —a) = 0 (n — o), in the sense that g(4,x, — da) = 0 (n — o).

A paranorm g for which g(x) = 0 implies x = 6 is called a total paranorm on X, and the pair
(X, g) is called a totally paranormed space.
The idea of modulus was structured in 1953 by Nakano. (See (Nakano, 1953)).
A function f : [0,00)—[0,00) is called a modulus if
() f(t) =0if and only if t = 0,
(2) f(t+u)< f(H)+ f(u) for all t,u=0,
(3) f is increasing, and
(4) f is continuous from the right at zero.
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Ruckle (Ruckle, 1968, 1967, 1973) used the idea of a modulus function f to construct the
sequence space

X(f) = {x = () : ) flxd) < oo,
k=1

This space is an FK space,and Ruckle (Ruckle, 1968, 1967, 1973) proved that that the intersecton
of all such X(f) spaces is ¢, the space of all finite sequences.

The space X(f) is closely related to the space /; which is an X(f) space with f(x) = x for all real
x > 0.Thus Ruckle (Ruckle, 1968, 1967, 1973) proved that, for any modulus f.

X(f) € I, and X(f)* = L.

The space X(f) is a Banach space with respect to the norm ||x|| = ] f(|xx]) < oo.

Spaces of the type X(f) are a special case of the spaces structured ll;y1 B. Gramsch in (Gramsch,
1967). From the point of view of local convexity, spaces of the type X(f) are quite pathological.
Symmetric sequence spaces, which are locally convex have been frequently studied by D. J. H
Garling (Garling, 1966, 1968)and W. H. Ruckle (Ruckle, 1968, 1967, 1973).

After then E. Kolk (Kolk, 1993, 1994) gave an extension of X(f) by considering a sequence of

modulii F' = (f;) and defined the sequence space
X(F) ={x = (x) : (fi(Ixx])) € X}.(See (Kolk, 1993, 1994)).
The following subspaces of w were first introduced and discussed by Maddox (Maddox, 1986,
1970, 1969). I(p) = {x € w : 2 |x/|P* < oo}, lo(p) = {x € w : sup|x|P* < oo}, ¢(p) = {x € w :
h/fn |x, — | =0, for some! € ]&:}, cop)={xew: liIEn [x|Px = O,k}, where p = (py) 1s a sequence

of strictly positive real numbers.
After then Lascarides (Lascarides, 1971, 1983) defined the following sequence spaces:
lo{p} = {x € w : there exists r > 0 such that sup |x;r|P*t; < oo},

k
colp} = {x € w: there exists r > 0 such that lilgn |xp Pt = 0, },

{p} = {x € w : there exists r > 0 such that } |x;r|P*t;, < oo},

k=1
Where #, = p;', forall k € N.
We need the following lemmas in order to establish some results of this article.

Lemma 1.1. Leth = iI]}f prand H = sup py. Then the following conditions are equivalent.(See[28]).
k

(a) H < ooandh > 0.

(D) co(p) = co or l(p) = l.
(C) loo{p} = loo(p)

(d) colp} = co(p).

(e) p} = I(p).

Lemma 1.2. Let Ke £(I) and MCN. If M¢I, then MNK ¢ I.(See (Tripathy & Hazarika, 2009,
2011)). (c.f (Dems, 2005; Gurdal, 2004, Khan & Ebadullah, 2011, 2012; Kolk, 1993, Lascarides,
1971; Tripathy & Hazarika, 2011)).
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2. Main Results

Throughout the article L., ¢/, ¢}, m' and m{ represent the bounded , I-convergent, /-null, bounded

I-convergent and bounded /-null sequence spaces respectively.
In this article we introduce the following classes of sequence spaces.

c(F,p) ={(xx) € w: fillxy — L|’*) > € for some L} € I
co(F,p) = {(x) € w: fillal™) > e} € 1.
L(F.p) = () € w = sup fillu™) < o} € 1.
Also we denote by m/(F, p) = ¢!(F, p) N I(F, p) and m{|(F, p) = c{(F, p) N l(F, p).
Theorem 2.1. Let (py) € L. Then c'(F, p), cé(F, p), m!(F, p) and mé(F, p) are linear spaces.

Proof. Let (xi), (yx) € ¢!(F, p) and «, 8 be two scalars. Then for a given € > 0 we have

(keN: fllxe — LiI™) > ——, for some L, € C} € I
M,

{k e N: fillyx = Lo|P*) > L, forsome L, e C} € 1
M,

where M|, = D.max{1,sup|a|’*}, M, = D.max{1,sup|B|”*} and D = max{1,28~'} where H =
k k

suppr = 0. Let Ay = {k € N ¢ fi(lxx — Ly|P*) < ﬁ, for some L; € C} € £(1), A, = {k € N :

k

filyr = Lo|P*) < ﬁ, for some L, € C} € £(1) be such that A{, AS € I. Then

Az = {k e Nt filll@x + Byi) = filaLy + BLo)I™) < €} 2 {k € N : o™ fullxe — Li™) < 2_;4]'&'”'1)}

€
N LB fillye = Lal™) < ——|BI-. D).
{k € N |8 fllyx — Lol )<2M2|'B| }

Thus A = A{ N AS € I. Hence (ax; + Byx) € c!(F, p). Therefore c!(F, p) is a linear space. The rest
of the result follows similarly. ]

Theorem 2.2. Let (py) € l. Then m'(F, p) and m{(F, p) are paranormed spaces, paranormed by
g(x) = sup fi(lxl %) where M = max{1, sup p}.
k k

Proof. Let x = (x),y = (yx) € m!(F, p). (1) Clearly, g(x) = 0if and only if x = 0. (2) g(x) = g(-x)

is obvious. (3) Since £~ < 1 and M > 1, using Minkowski’s inequality and the definition of f

we have sup fi(|x, + yklpﬁk) < sup fk(lxklpﬁk) + sup f(lyklpﬁk) (4) Now for any complex A we have
k ! k

(A) such that A, — A, (k — oo). Let x; € m!(f, p) such that fi(|x; — L|”*) > €. Therefore,
Pk Pk Pk
g(xx—L) = sup fi(lxx—L|*) < sup fi(Ixe| ) +sup fi(IL|* ). Hence g(A,x,—AL) < g(A,x,)+g(AL) =
k k k

2,8(xx) + Ag(L) as (k — o0). Hence m!(F, p) is a paranormed space. The rest of the result follows
similarly. []
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Theorem 2.3. A sequence x = (x;) € m'(F, p) I-converges if and only if for every € > 0 there
exists N, € N such that {k € N : fi(|x; — xn %) < €} € m!(F, p).

Proof. Suppose that L = [ —limx. Then B, = {k € N : [x; — L|’* < 5} € m!(F, p). For all € > 0.
Fix an N € B.. Then we have |xy, — xi|?* < |xy, — L|”* +|L — x| < 5 + 5 = € which holds for all
k € B.. Hence {k € N : fi(|x;y — xn.|P*) < €} € m!(F, p).

Conversely, suppose that {k € N : fi(|xy — xn |P%) < €} € m!(F, p). That is {k € N : (|x; —
xy.|P) < €} € m!(F, p) for all € > 0. Then the set C. = {k € N : x; € [xy, — €, xy,_ + €]} €
m!(F, p) forall € >0. Let J. = [xy, — €, xy, + €]. If we fix an € > 0 then we have C. € m/(F, p)
as well as C< € m'(f, p). Hence C. N C< € m'(F, p). This implies that J = J. N J¢ # ¢ that is {k €
N : x; € J} € m!(F, p) that is diamJ < diamJ. where the diam of J denotes the length of interval
J. In this way, by induction we get the sequence of closed intervals J, = Ip 2 [} 2 ... 2 I; 2 ...
with the property that diaml; < idiamli_; for (k = 2,3,4,...) and {k € N : x; € I} € m/(F, p)
for (k = 1,2,3,...). Then there exists a & € NI; where k € N such that ¢ = I — limx. So that
fi(&) =1 —1lim fi(x), thatis L = I — lim fi(x). O

Theorem 2.4. Let H = sup p; < oo and I an admissible ideal. Then the following are equivalent.
k

(a) (xi) € ¢!(F, p);

(b) there exists(yy) € c(F, p) such that x; = Yy, for a.a.k.r1; (c) there exists(y;) € c(F, p) and
(xp) € c{)(F, p) such that x; = y; + zi for allk € N and {k € N : fi(lyx — L|’*) > €} € I ; (d) there
exists a subset K = {k; < ky....} of N such that K € £(I) and ’}1_)1‘{)10 Ji(lxg, = L|P) = 0.

Proof. (a) implies (b). Let (x;) € c!(F,p). Then there exists L € C such that {k € N :

fillxy — LIPY) > €} € 1. Let (m,) be an increasing sequence with m, € N such that {k < m, :

Jfi(lxx = L|P¥) > €} € 1. Define a sequence (yx) as yx = xi, for all k < m;. Form, < k < my,t € N.
) Xk if |x, — LIPx < l_l,

Yk = L, otherwise.

yi} €k <my: fi(lxe — LIP) > €} € 1. We get x; = yy, for a.akrl

Then (y;) € c(F, p) and form the following inclusion {k < m, : x; #

(b) implies (c).For (x;) € c!(F, p). Then there exists (yx) € c(F, p) such that x; = yy, for a.a.k.r.L

Xy — Y, ifkek, Then

Let K = {k € N : x; # y}, then k € 1. Define a sequence (z;) as z; = 0. otherwise

z € c{(F, p) and y; € c(F, p).

(c) implies (d).Let Py = {k € N : fi(Ix|?) > e} € I and K = P{ = {k; < kp < k3 < ...} € £(]).
Then we have lim fi(|x;, — L|P#) = 0.

(d) implies (a). Let K = {k; < ky < k3 < ...} € £() and lim fi(|xz, — L|"*») = 0. Then for any
€ > 0, and Lemma 1.9, we have {k € N : fi(|lxy — L|?*) > €} C K° U {k € K : fi(|xy — LI*) > €}.
Thus (x;) € c!(F, p). O

Theorem 2.5. Let (py) and (qi) be two sequences of positive real numbers. Then mé(F, p) 2
my(F, q) if and only zf%{lrlr(l inf % > 0, where K¢ C N such that K € I.
€
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Proof. Let lk1r1r<1 inf ‘Z—’; > 0. and (x;) € mé(F, q). Then there exists S > 0 such that p; > Bgy, for
€

all sufficiently large k € K. Since (x;) € mé(F, q), for a given € > 0, we have By = {k € N :
Je(lxk|?*) > €} € I Let Gy = K° U By. Then Gy € I. Then for all sufficiently large k € Gy,
{k e N: filxe™) > €} C{k € N: fi(|x}*®) > €} € I. Therefore (x) € m{(F, p). O

Theorem 2.6. Let (pi) and (qi) be two sequences of positive real numbers. Then mé(F, q) 2

mé(F, p) if and only zf%{lr}{l inf Z—f{ > 0, where K¢ C N such that K € I.
€

Proof. The proof follows similarly as the proof of Theorem 2.5. L

Theorem 2.7. Let (pi) and (qx) be two sequences of positive real numbers. Then mi(F,q) =
m{(F, p) if and only U‘Erlr(l inf Z—’k‘ > 0, and %{1111;1 inf ;qT],Z > 0, where K C N such that K¢ € I.
€ €

Proof. On combining Theorem 2.5 and 2.6 we get the required result. ]

Theorem 2.8. Let h = ir/:f pr and H = sup py. Then the following results are equivalent.
k
(a) H< ooand h > 0. (b) C(I)(F,p) = C(I).

Proof. Suppose that H < co and h > 0,then the inequalities min{1, s} < s?* < max{1, s"} hold for
any s > 0 and for all £k € N. Therefore the equivalent of (a) and (b) is obvious. O]

Theorem 2.9. Let F = (f;) be a sequence of modulii. Then c{(F, p) C ¢!(F, p) C IL(F, p) and the
inclusions are proper.

Proof. Let (x;) € c!(F, p). Then there exists L € C such that  — lim fi(Jx; — L|”*) = 0. We have
Je(xelPF) < %fk(lxk — LIP¥) + %fk(lLlpk). Taking supremum over k both sides we get (x;) € I/ (F, p).
The inclusion c{(F, p) C ¢/(F, p) is obvious. Hence c(F, p) C ¢!(F, p) C IL(F, p). O

Theorem 2.10. If H = sup p; < oo, then for a sequence of moduli F, we have I', ¢ M(m'(F, p)),
where the inclusion may lﬁe proper.

Proof. Let a € I',. This implies that sup|a;| < 1 + K. for some K > 0 and all k. Therefore
x € m!(F, p) implies sip Sfellagxg|Pv) < (1k+ K sgp fi(lx|PF) < oo. which gives I/, ¢ M(m!(F, p)).

To show that the inclusion may be proper, consider the case when p; = % for all k. Take a; = k for

all k. Therefore x € m!(F, p) implies sup fi(|arxi|P*) < sup fk(lkli) sup fr(|xx|P*) < co. Thus in this
k k k

case a = (a) € M(m!(F, p)) while a ¢ I,. H

Acknowledgments. The authors would like to record their gratitude to the reviewer for his careful reading and
making some useful corrections which improved the presentation of the paper.



Vakeel A. Khan et al. / Theory and Applications of Mathematics & Computer Science 4 (1) (2014) 99-105 105

References

Demirci, K. (2001). I-limit superior and limit inferior. Math. Commun. (6), 165-172.

Dems, K. (2005). On I-Cauchy sequences. Real Analysis Exchange. 30, 123—128.

Fast, H. (1951). Sur la convergence statistique. Collog.Math. 2, 241-244.

Fridy, J.A. (1985). On statistical convergence. Analysis 5, 301— 313.

Fridy, J.A. (1993). Statistical limit points. Proc.Amer.Math.Soc. 11, 1187-1192.

Garling, D.J.H. (1966). On symmetric sequence spaces. Proc. London. Math. Soc. 16, 85-106.
Garling, D.J.H. (1968). Symmetric bases of locally convex spaces. Studia Math. Soc. 30, 163—181.
Gramsch, B. (1967). Die klasse metrisher linearer raume 1(¢). Math. Ann. 171, 61-78.

Gurdal, M. (2004). Some types of convergence. Doctoral Dissertation.

Khan, V.A. and K. Ebadullah (2011). On some I-Convergent sequence spaces defined by a modullus function. Theory
and Application of Mathematiccs and Computer Science 1(2), 22-30.

Khan, V.A. and K. Ebadullah (2012). I-convergent difference sequence spaces defined by a sequence of modulii. J.
Math. Comput. Sci. 2(2), 265-273.

Khan, V.A., K. Ebadullah and A. Ahmad (2011). I-pre-Cauchy sequences and Orlicz function. Journal of Mathemat-
ical Analysis 3(1), 21-26.

Khan, V.A., K. Ebadullah and S. Suantai (2012). On a new I-convergent sequence space. Analysis 1(2), 265-273.

Kolk, E. (1993). On strong boundedness and summability with respect to a sequence of modulii. Acta Comment. Uniyv.
Tartu 960, 41-50.

Kolk, E. (1994). Inclusion theorems for some sequence spaces defined by a sequence of modulii. Acta Comment. Uniyv.
Tartu 970, 65-72.

Kostyrko, P. and T. Salt and W. Wilczyiiski (2000). I-convergence. Real Analysis Exchange 26(2), 669—686.
Lascarides, C. G. (1983). On the equivalence of certain sets of sequences. Indian J. Math. 25, 41-52.

Lascarides, Constantine G. (1971). A study of certain sequence spaces of Maddox and a generalization of a theorem
of Iyer. Pacific J. Math. 38(2), 487-500.

Maddox, L.J. (1969). Some properties of paranormed sequence spaces. J. London. Math. Soc.

Maddox, L.J. (1970). Elements of functional analysis. Cambridge University Press.

Maddox, I.J. (1986). Sequence spaces defined by modulus. Math. Proc. Camb. Soc.

Nakano, H. (1953). Concave modulars. J. Math Soc. Japan.

Ruckle, W.H. (1967). Symmetric coordinate spaces and symmetric bases. Canad. J. Math. 19, 828-838.
Ruckle, W.H. (1968). On perfect symmetric BK-spaces. Math. Ann. 175, 121-126.

Ruckle, W.H. (1973). FK-spaces in which the sequence of coordinate vectors is bounded. Canad. J. Math. 25(5), 873—
875.

Salat, T., B.C. Tripathy and M. Ziman (1963). The spaces [(p,) and mp,). Proc. London. Math. Soc. 15(3), 422-436.
Tripathy, B.C. and B. Hazarika (2009). Paranorm I-convergent sequence spaces. Math Slovaca 59(4), 485-494.

Tripathy, B.C. and B. Hazarika (2011). Some I-convergent sequence spaces defined by orlicz function. Acta Mathe-
maticae Applicatae Sinica 27(1), 149-154.



> . Theory and Applications of
. &q Mathematics & Computer Science

(ISSN 2067-2764, EISSN 2247-6202)
http://www.uav.ro/applications/se/journal/index.php/tamcs

Theory and Applications of Mathematics & Computer Science 4 (1) (2014) 106-113

Some Inequalities Involving Fuzzy Complex Numbers

Sanjib Kumar Datta®*, Tanmay Biswas®, Samten Tamang?

“Department of Mathematics, University of Kalyani,Kalyani, Dist-Nadia, PIN- 741235, West Bengal, India.
bRajbari, Rabindrapalli, R. N. Tagore Road, P.O.- Krishnagar, Dist-Nadia, PIN- 741101, West Bengal, India.

Abstract

In this paper we wish to establish a few inequalities related to fuzzy complex numbers which extend some standard
results.
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1. Introduction, Definitions and Notations

The idea of fuzzy subset u of a set X was primarily introduced by L.A. Zadeh (Zadeh, 1965)
as a function u : X — [0, 1]. Fuzzy set theory is a useful tool to describe situations in which the
data are imprecise or vague. Fuzzy sets handle such situation by attributing a degree to which a
certain object belongs to a set. Among the various types of fuzzy sets, those which are defined
on the universal set of complex numbers are of particular importance. They may, under certain
conditions, be viewed as fuzzy complex numbers.

A fuzzy set zy is defined by its membership function u (z | Zf) which is a mapping from the
complex numbers C into [0, 1] where z is a regular complex number as z = x + iy, is called a fuzzy
complex number if it satisfies the following conditions :

1. u (z | zf) 1S continuous;

2. An a-cut of z; which is defined as z§ = {z | ,u(z | Zf) > a}, where 0 < @ < 1, is open,
bounded, connected and simply connected; and

3. z} = {z | 1 (z | zf) = 1} 1s non-empty, compact, arcwise connected and simply connected.

(For detail on the set z; as mentioned above, one may see (Buckley, 1989)).

Using this concept of fuzzy complex numbers, J. J. Buckley (Buckley, 1989) shown that fuzzy
complex numbers is closed under the basic arithmetic operations. In paper (Buckley, 1989) we
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also see the development of fuzzy complex numbers by defining addition and multiplication from
the extension principle which has been shown in terms of a-cuts.

We now review some definitions used in this paper.

Definition 1.1. (Buckley, 1989)The complex conjugate z; of z; is defined as

ul(zlz) =u(zlz),

where z = x — iy is the complex conjugate of z = x + iy. The complex conjugate z; of a fuzzy
complex number zy is also a fuzzy complex number because the mapping z = x +iy —» z=x— iy
is continuous.

Definition 1.2. (Buckley, 1989)The modulus |z f| of a fuzzy complex number z; is defined as

,u(rl |zf|) = sup {u(z | Zf) |z = r},

where r is the modulus of z.
Similarly we may define the modulus of a real fuzzy number R/ as follows:

w(lal | |Ry]) = suplue(a | Ry) llal = aifa > 0,la| = 0if a = 0 and |a| = —aif a < 0}.

Now in the following, we define two special types of fuzzy complex numbers 7 and nzy of the
fuzzy complex number z¢, for any complex number z € z; andn € R .

Definition 1.3. Fuzzy complex numbers Z; and nzy are defined as
wz | Zp) = u@ | zp)

and
u(z | nzg) = p(n.z | z¢).

In particular when n = 2, we have
pzlzp) =puE 1zp) and p(z|2z) = p.z | z) -
It can be easily verified that
G #2702y and 2z #zp + 27, but 2z +2p) = 225 + 225,

From the definition of fuzzy complex number one may easily verify that z and nzy are also fuzzy
complex numbers when z; is a fuzzy complex number. It should be noted that the significance of
Definition 1.3 is completely different from the definitions of additions and multiplications of fuzzy
complex numbers as mentioned in (Buckley, 1989).

In this paper we wish to establish a few standared inequalities related to fuzzy complex num-
bers.
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2. Lemmas
In this section we present some lemmas which will be needed in the sequel.

Lemma 2.1. (Buckley, 1989) Let zy, and zy, be any two fuzzy complex numbers. Suppose A =
25 +2p and M = zjy, .24, respectively. Then for 0 < a < 1, A* = S and M® = P holds where

S = {Zfl +2p [ (z1,22) €25 Xz?z}

and
P* = {2525 | (21.20) € 2 x 2.

Also zy, + z5, and z4,.2y, are fuzzy complex numbers.
The following lemma may be deduced in the line of Lemma 2.1 and so its proof is omitted.

Lemma 2.2. Let 24,25, 25, ..., 25, be any n number of fuzzy complex numbers. Also let A = zj, +
2+ 2+t 2p and M = 25,25 .25...2y, respectively. Then for 0 < a < 1, A* = §% and M* = P*
holds where

S = {Zfl +zp 2+t 2 1 (21,22,23, 0, 20) € z‘;l X z‘;-z X z‘;é X .. X z}’}

and
P = {zf1 ZpyZfyenZf, | (21522523 oo Zn) € z?l X z% X z% X ... X z;}

Lemma 2.3. (Buckley, 1989) If zy is any fuzzy complex number then

¥ |
fes|” = |25
where 0 < a < 1 and |Zf| is a truncated real fuzzy number.

Lemma 2.4. (Kaufmann & Gupta, 1985) If M and N be any two real fuzzy numbers then
(M +N)* =M"+N*

andif M > 0,N > 0 then
(M -N)* = M- N°.

Lemma 2.5. (Buckley, 1989) Let zy be a fuzzy complex conjugate number of a fuzzy complex
number zy. Then
Zr =1y

where 0 < a < 1.
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3. Theorems
In this section we present the main results of the paper.
Theorem 3.1. Let z;, and zy, be any two fuzzy complex numbers. Then
len = 2n] = |en| = [zs] -
Proof. The meaning of the inequality is that the interval |z h—zZ f2|a is greater that or equal to the

interval (|Zfl| - |Zf2|)a forO<a<l1.
Now from Lemma 2.1 and Lemma 2.3, we get that

[en = 2al" =|(en —20) | = k5~ il = (o~ 1z e i = 1.2). (3.1
Again in view of Lemma 2.4, we obtain from Lemma 2.3 that
(Jenl = al)” = leal” = lenl” = e | = %) = {leil = leal 1 20 € 240 = 1,2}, (3.2)

Hence the result follows from (3.1) and (3.2) and in view of
21 = 22| 2 |z1] = |22l -
This proves the theorem. []

J. J. Buckley (Buckley, 1989) proved the following results:
Theorem A (Buckley, 1989) Let zj and zy, be any two fuzzy complex numbers. Then

(D). |en =zl <] +|za]  and @) |z5.25|=|2n|2s] -

But he (Buckley, 1989) remained silent about the question when the equality holds in the in-
equality (1) of Theorem A. In the next two theorems, we wish to generalise the results of Theorem
A and find out the condition for which |z =2 f2| = |z f1| + |z f2| holds respectively.

Theorem 3.2. Let zy,,25,,24,, ..., 2r, be any n number of fuzzy complex numbers. Then
(©).
(i1). |Zfl.Zf2.Zf3...an| = |Zf1| |Zf2| |Zf3|

Proof. In view of Lemma 2.1, it follows from Theorem A that

Vo a4 e e O o an| < |Zf1| + |Zf2| + |Zf3| + ...+ |an| and

Zfa

|%+%+%+m+%ﬁkdﬂ%+%+m+%

<lzp| +|en| + |ep + - + 24,
< |Zf1| + |Zf2| + |Zf3| + |Zf4 + ...+ an|

< |Zf1| + |Zf2| + |Zf3| + ...+

Zfa

This proves the first part of the theorem.
Similarly with the help of Lemma 2.1 and the equality |sz Z f2| = |z f1| |z 5|, one can easily establish
the second part of the theorem. O]
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Remark. In view of Lemma 2.2, Lemma 2.3 and Lemma 2.4 it can also be shown that the intervals
|sz +2p t2pt+ .t an|a and |sz Zfy 2yl “ are less than or equal to the intervals

(1|Zf1| + |Zf2| + |Zf3| + ...+ |an|)a and (|Zf1| |Zf2| |Zf3| |an

)a respectively in Theorem 3.2 for 0 < o <

Theorem 3.3. Let zy and zy, be any two fuzzy complex numbers such that |sz + Zf2| = |Zfl| + |Z f2|
then either arg 7; — arg z, is an even multiple of m or j—; is a positive real number where z; and 7,
are any two members of zy, and zj, respectively.

Proof. The meaning of the equality is that the interval |z a+ 2 |a is equal to the interval (|z 0 | + |z 5 |)a
forO<a <.

Thus |Zf1 +Zf2| = |Zf1| + |Zf2| Le, |Zf1 +Zf2|a = (|Zf1| + |Zf2|)a Le., |Zf1 + Zf2|a = (|Zf1|(Z + |Zf2|a)
Le, |2 +25| = (5| + [G|1e, o+l =lul+ |zl |z € 2, i = 1,2; which is only possible
when either argz; — argz, is an even multiple of 7 or ;—; is a positive real number. Hence the
theorem follows. O]

Theorem 3.4. If z;, and z;, are any two fuzzy complex numbers with |zf1 + zfz| = |Zf1 - zf2| , then
arg z; and arg z, differ by 5 or %” where 7, and z, are any two members of zy, and zj, respectively.

Proof. The meaning of the equality is that the a-cuts of |zf] + zf2| is equal to the corresponding

a-cuts of |sz - zf2| forO0<a<1.
Now in view of Lemma 2.1 and Lemma 2.3, we obtain that

|Zf1 +Zf2|a = ‘(Zfl +zf2)a = |Z% +z?2| = {Izl +2llz €z, i= 1,2}. (3.3)
Similarly,

en =2l = |z = 26) | = |5 - 2l = {m - =l 1z e 2= 1.2). 3.4
Therefore from (3.3) and (3.4) it follows that |z + 25| = |z, — 25| which implies that |z; + z,| =

lz1 — 22| | z; € zf’ﬂ,i = 1,2 which is only possible when arg z; and arg z, differ by g or 37”
Thus the theorem is established. O]
Theorem 3.5. Let z;, and zy, be any two fuzzy complex numbers. Then

ESARY AR A

Proof. For 0 < a <1, we have

e =2l = |(en £ 2) | = | 2 5] = {ln 2wl 1z e 2,0 = 1,2). (3.5)
We also deduce that
lenl = esll” = (el = eal)'| = lleal” = eal] = lle5 | = [l = {leal = zall 1 2 € 256 = 1,2},

(3.6)
Hence the theorem follows from (3.5) and (3.6) and in view of the following inequality :

121 £ 20| > [|z1] = |z2]] -
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Theorem 3.6. If z;, and zy, are any two fuzzy complex numbers, then

2 |sz + Zf2| > (|Zf1| + |Zf2|) éﬁ ﬁ
1 J2

. . . (42 .
Proof. In order to prove this theorem, we wish to show that the interval (2 |z nt+2z f2|) is greater

|

Zh + Zh
fal * Ral
From Lemma 2.3 and Lemma 2.4, we get that

@ « N
{(|Zf1| + |Zf2|) } = {(|Zf1| + |Zf2|)a } _ {(|Zf1 |a " |Zf2|a) (i + Zh )
[enl el

@ (04
X . N
[Zi) + ( Zf ) } = {(|Z%| + |Z(;'2|) (Zfl |Zf1| 1) " (Zf2 |Zf2| 1) ‘}
s o
(Z% |Z.(;1|_1) + (Z?z |Z?z|_l)‘} = {(lle +|z2]) |[—

} forO<a<1.

than or equal to the interval {(lZf1| + |Z f2|)

Zh L 2h
A

A 2h
A

_ {<|zz| )
={( 1 +1=2)

|zei=1, 2} (3.7)

IZ1| |Z2|
Since
<2
2z + 22| = (|z| + |Z2|) — t
Iz | [I1N
in view of Definition 1.2 and Definition 1.3, the theorem follows from (3.3) and (3.7). O

Theorem 3.7. Let zy and zy, be any two fuzzy complex numbers. Then

= (2 |Z§1| -2 |Z?z|)

Proof. In view of Lemma 2.1, Lemma 2.3 and Lemma 2.4, we get for 0 < @ < 1 that
Zh T2 ’ ) = (Zfl +Zf2)2 ) = (Zfl "'Zfz)2 ) + (Zfl _Zf2)2 )
(2 +24) |
= (I + 2]+ Nz - 2)]) = i + 22|+ @ - 2212 e 2, = 1.2)
=l + 2P +la1 -2l |z e .i=1,2] . (3.8)
Analogously we also see that
Rl -2 = @R -2 = (2] =206 ]) = (2160 216 )

= 2| - 2|3| 1z e 2}.i= 1,2} = {2121 - 21eal” |z € 25,0 = 1,2} . (3.9)

+ ‘(Zfl - Zfz)2

‘(Zfl + Zf2)2

a

2 2

+ ‘(Zfl - Zfz) + ‘(Zfl - Zfz)

+

-2

Now in the line of Definition 1.3, it follows from (3.8)and (3.9) that the corresponding a-cuts are
equal. Hence the theorem follows as we obtain the equality of the two real fuzzy numbers. O]
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112
In the next theorem we establish a few properties of fuzzy complex conjugate numbers de-

pending on the concept of it.
Theorem 3.8. Let 2y be a fuzzy complex conjugate number of a fuzzy complex number z;. Then

D.zp =2z (2). (Zfl + Zfz) =25 £ 25, 3). (Zfl-ZfQ) =2 " s

@ (2)= L and ). || = ||
Proof. In view of Lemma 2.5 and for 0 < @ < 1, we obtain that
(éf) = (5) =7 = {z | forallz e z;'}.
Again
z? = {zl,u(zlzf) >a/} = {zl forallzez?}.

Since z = z, the first part of the theorem follows from above.
For the second part of the theorem, we have to prove that the a-cuts of (z hEz fz) are equal to

the corresponding a-cuts of 7, + z,.
Now it follows from Lemma 2.1 and Lemma 2.5 that

((an + Zfz))a =(zptzp) = (% +20) = {nEa lzei=12]

and 5 5 S .
(e £20) = (2) = (28) = () = () = {51 tnlzed,i=l, 2} :
Thus the second part of the theorem is established in view of z; + 2, = 71 + 2,.
We also observe that
(t20) =(nzn) = (@ 20) = [EE |z edi=1,2). (3.10)
(3.11)

We may also see that
(zr2p) = () () = 2% = {21.22 lesi=1, 2}.

Now from (3.10) and (3.11), we obtain that the corresponding a-cuts are equal. This proves the

third part of the theorem.
For the fourth part of the theorem, we deduce that

[ :
:{—1|z,~ez7_,z=1,2}
22 '

((i)) - (f) = () =4 ) = (5 6))

Zf

7 (@) - {— neis 1,2}_

| ) &) @) =5 (@) =5 2

<fi
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Hence the a-cuts of (%) are equal to the corresponding a-cuts of % which implies that the two
12 J2

fuzzy complex numbers are equal. Thus the fourth part of the theorem follows.
Again we have from Lemma 2.3 and Lemma 2.5 that

2" = |2 = {IZI | forallz e zf}

and . .
(|Zf|) = '(Zf) = |Z(; = {|z| | forallz e zf}.
Consequently the last part of the theorem follows in view of |z| = |Z| . [

4. Open Problem

As open problems, there are several scopes to investigate the theory of analyticity and sin-
gularity in case of functions of fuzzy complex variables; and analogously entire or meromorphic
functions of fuzzy complex variables may be defined. Naturally, the theory of different aspects of
growth properties of entire and meromorphic functions, comparative growth estimates of iterated
entire functions, results related to exponent of convergence of zeros of entire functions of fuzzy
complex variables etc. may also be studied afresh.
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Abstract

In this paper we study the action of a double infinite matrix A on f € H! (weighted Banach space, 1 < p < o0)
and on its wavelet coefficients. Also, we find the frame condition for A—transform of f € HJ whose wavelet series
expansion is known.

Keywords: Frames, Riesz basis, wavelet coefficients, Banach space and frame operators.
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1. Introduction

The mathematical background for today’s signal processing applications are Gabor (Feichtinger
& Strohmer, 1998), wavelet (Daubechies, 1992) and sampling theory (Benedetto & Ferreira,
2001). Without signal processing methods several modern technologies would not be possible,
like mobile phone, UMTS, xDSL or digital television. In other words, we can say that any ad-
vance in signal processing sciences directly leads to an application in technology and information
processing. A signal is sampled and then analyzed using a Gabor respectively wavelet system.
Many applications use a modification on the coefficients obtained from the analysis and synthesis
operations. If the coefficients are not changed, the result of synthesis should be the original signal,
i.e., perfect reconstruction is needed. One way is to analyze the signal using orthonormal basis.
For practical point of view it is noted that the concept of an orthonormal basis is not always useful.
Sometimes it is more important for a decomposing set to have other special properties rather than
guaranteing unique coefficients. This led to the concept of frames introduced by Duffin and Scha-
effer (Duffin & Schaeffer, 1952). Now a days it is one of most important foundations of Gabor
(Moricz & Rhoades, 1989), wavelet (S.T. Ali & Gazeau, 2000) and sampling theory (Aldroubi &
Grochenig, 2001). In signal processing applications frames have received more and more attention

Email address: d_kumar001@rediffmail.com (Devendra Kumar)
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(H. Bolcskei & Feichtinger, 1998; Kronland-Martinet & Grossmann, 1991; Munch, 1992; Sheikh
& Mursaleen, 2004).

Frame provide stable expansions in Hilbert spaces, but they may be over complete and the
coefficients in the frame expansion need not be unique unlike in orthogonal expansions. This
redundancy is useful for the application point of view that is to noise reduction or for the re-
construction from lossy data (Daubechies, 1992; Duffin & Schaeffer, 1952; Matz & Hlawatsch,
2002). The construction of stable orthonormal basis are often difficult in a numerical efficient way
than the construction of frames which are more flexible. Sometimes it is reasonable to use the
frames to analyze additional properties of functions beyond the Hilbert space. These properties
are encoded in the frame coefficients. Wavelet frames encode information on the smoothness and
decay properties or phase space localization of functions by means of the magnitudes of the frame
coeflicients. The aim is to study these properties in Banach space norms. Moreover, to charac-
terize an associated family of Banach spaces of functions by the values of the frame coefficients
which play an important role in non-linear approximation and in compression algorithms (DeVore
& Temlyakov, 1996). However, in (Grochenig, 2004) Grochenig showed that certain frames for
Hilbert spaces extend automatically to Banach frames. Using this theory he derived some results
on the construction of non-uniform Gabor frames and solved a problem about non-uniform sam-
pling in shift-invariant spaces. Recently, Kumar (Kumar, 2013) studied the convergence of wavelet
expansions associated with dilation matrix in the variable L” spaces using the approximate iden-
tity. In an another paper Kumar (Kumar, 2009) studied the convergence of non-orthogonal wavelet
expansions in L”(R),1 < p < co.

The space L*(R) of measurable function f is defined on the real line R, that satisfies L O:o |f(x)]Pdx <
oo. The inner product of two square integrable functions f, g € L*(R) is defined as

< f.g>= f f)g(dx, IIfIF =< f,f>"*.

Every function f € L?(R) can be written as f(x) = 2 ike: Cikpjk(x) (z is the set of integers).
This series representation of f is called wavelet series. Analogous to the notation of Fourier
coeflicients, the wavelet coeflicients cj; are given by c;; = f_ o; FX)@jx)dx =< f,pjx >, @i =
212p(27x - k).
Now, if we define continuous wavelet transform as (W,(f))(b, a) = |a|™'/ f_ o; F(x) (%b)dx, fe

L*(R) then the wavelet coeficients are given by c;x = (W,(f)) (%, %) .

A sequence {x,} in a Hilbert space H is a frame if there exist constant ¢; and ¢;,0 < ¢; <
¢y < oo, such that c1||fI? < Y,e.l < frxn > [* < collfI, for all f € H. The supremum of all
such numbers c¢; and infimum of all such numbers ¢, are called the frame bounds of the frame.
The frame is called tight frame when ¢; = ¢, = 1. Any orthonormal basis in a Hilbert space H is
a normalized tight frame. The connection between frames and numerically stable reconstruction
from discretized wavelet was pointed out by (Grossmann et al., 1985). In 1985, they defined that
a wavelet function ¢ € L*(R), constitutes a frame with frame bounds ¢; and ¢, if any f € L*(R)
such that ¢ || f]]* < Diker| < frpix > > < ¢||fII>. Again, it is said to be tight if ¢; = ¢, and is said
to be exact if it ceases to be frame by removing any of its element. For more details see (Chui,
1992; Daubechies et al., 1986).
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2. Notations and Auxiliary Results

Let N and y be countable index sets in some R?> and both y and N are separated i.e.,
inf,, ney:mzn IMm — n| > 6 > 0, and likewise for N.
Weight Functions of Polynomial Growth. A weight is a non-negative continuous function
on RY. An s—moderate weight v is called polynomially grows, if there are constants C, s > 0 such
that v(z) < C(1 + [t])*.

Lemma 2.1. If f(x) = X jken Cixjk(X) is a wavelet expansion of f € L*(R?) with wavelet coeffi-
cients cjy = f_o:o FOix()dx =< f,p;x > and A(apunjr) = [(1 +|m— j)(1 +|n— k)175-%¢ for some
g > 0and j,k € Nym,n € y, then the operator A defined on finite sequences (C;x)jren by matrix
multiplication (A¢)py, = Z;’;O Direo AmnjkCjx extends to a bonded operator from IP(N) to ID(y) for
all p € [1, 0] and all s—moderate weights v.

Proof. To prove the result we have to show the boundedness of A from li(N) to l},()() and from
[>(N) to I;7(x). Then using the interpolation technique of [4] for weighted L —space, the lemma
holds for all p € [1, co].

First we consider

Ml = D5 D @mpcix|vimmy < 37 37 [(1+lm = (1 +In— kD™~ lejxlvim, n)
m,n€y |jkeN m,n€y jkeN
< sup [ DA+ m = )1+ - k|>]‘“) x
m,ney

Jj.keN

( sup  [(1 +Jm = jD( + |n = kDI [v(j, k)]~ v(m, n)) X Z lc v k).

m,ney; j,keN J.keN

Using (Grochenig, 2004), Lemma 2.2 in above inequality we obtain

< sup (C(1+1j - k) (sup C+1j- k|)-5) X

JokeN jkeN

V(G T vm, mx > lejadv(i, k) = Clalln)-
J.keN
The first supremum in right hand side of above inequality is finite by (Grochenig, 2004),
Lemma 2.1] and second supremum in finite due to s—moderate and sub multiplicavity of the
weights. Now we have

lACklli=y = sup An jiC je| v(m, n)
m,ney jkeN
< sup Y [(1+ lm = JD(L+1n = kDT leulvim, m)
m,nE)(j’keN
< (Sup DA +m= D+ - k)]-d—e] X

m,ney JkeN
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sup (14 lm — jD(L +n = kD™ .v(m, m)v(j, k)™ | % (Sup ¢V k)) -
m,n ey J.keN
ke N

Again, using (Grochenig, 2004), Lemma 2.2 in above inequality we get

< (C sup (1 +1j - kl)‘d‘g) (sup(1 + 1 = k)~ *v(m, myv(j, k)™") x

Jj.keN

(sup lcjxlv(ji k)) < CC'lle;illis -

Jj.keN

Let {¢;« : j,k € N} be a Riesz basis of H with dual basis {?q;j,k : J,k € N} and v be a weight
function on R? of polynomial type. O

Definition 2.1. Assume that I(N) C [2(N). Then the Banach space H? is defined to be

Hl ={feH:f= ) cupi for cjxe L))
J.keN
with norm || f{|zz = llc;llz. It should be noted that ¢4 is uniquely determined, in fact, ¢ =<
frdjun >
By assumption I/(N) C 2(N), it means HY is a (dense) subset of H. On the other hand, if
0 SZ lﬁ and p < oo, we define H? to be the completion of the subspace H, of finite linear combi-

nations, i.e., Ho = {f = X jxen Cja®jx : supp c is finite }, with respect to the norm || f{|z» = ||c[[,p. If
p=coandlf ¢ I?, we take the weak completion of Hy to define HY. In these cases HY ¢ H.

Frame Operators and Localization of Frames. Let [ = {¢,,,, : m,n € x} be a frame for H
and S f = X5y < f>@Pmn > @mn be the corresponding frame operator. Each frame element has a
natural expansion with respect to the given Riesz basis as

Pmn = Z <‘10m,n’ 5j,k> ¢j,k = Z < ©m,ns ¢j,k > aj,k-

J.keN JkeN

The frame operator S is invertible on H. Our problem is how to extend the mapping properties
of § on Banach spaces H;. For this purpose we take f = Y. ;; fix¢;x such that

Sf = D <Fbmn>Pun= D, D fik <PiksPun > G

m,ney m,n€y jkeN

- Z Z Z fik < jses Omn > <(;0m,m$i,l> bii

m,ney i,leN jkeN

= Z [Z [Z < Qjks Pmn > <¢m,m$f,l>] fj,k) bi-

il Jk \mn
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Now let A = a;; be infinite matrix defined as

Qitjie = Z < @jk>Pmn > <90m,m$i,z> = <S¢j,k»$i,l>- (2.1)

m,ney

Define a mapping I such that T : H — B(N), (T'f)x = <f, aj’k> )

Since {¢;} 1s a Riesz basis, I" is invertible and an isometric isomorphism between H! and
I(N). Therefore, S = I'"'AT carries over to the Banach spaces HY. To study the behavior of frame
operator S on H?, it is sufficient to study the infinite matrix A on sequence space I2(N). For this
purpose we will use the following fundamental theorem of Jaffard [14].

Theorem A. Assume that the matrix G = (Gy )i ey satisfies the following properties:
(a) G is invertible as an operator on />(N), and
(b) |Gyl < C( + |k =1)7", k, 1 € N for some constant C > 0 and some r > d. Then the inverse
matrix H = G™! satisfies the same off-diagonal decay, that is
|Hyl < C'(1+k—1I)", k1€ N.
Using above theorem we can prove:

Theorem 2.1. Assume that the matrix A = (ayiji)is,jren Satisfies the following properties:

(a) A is invertible as an operator on I*(N), and
(b) laypl < CI(1 + i —jDA + |l =kDI™",i,1, j,k € N for some constant C > 0 and some r > d.

Then the inverse matrix T = A™! satisfies the same off-diagonal decay, i.e.,
|Tuj| < CTA +li = j)(A + 1= KkDI7, i, L, j.k € N.

Definition 2.2. The frame ' = {¢,,, : m,n € x} is said to be polynomially localized with respect
to Riesz basis {¢;,} with decay s > O (or simply s—localized), if

| < @mns Bjic > 1 < CLA + Im — jD(A + In — kD™
and
| < gom,,,,gj,k >|<C[(1+|m—jh)(1 +n—kD]*Vi,ke N and m,n € y.
Now we prove:

Proposition 2.1. Let [ = (@, : m,n € x) is an (s + d + &)—localized frame for € > 0,r > 0 and
1 < p < ocoThen

(i) the analysis operator defined by Cof = (< f\@mn >)mney is bounded from H} to Il ().
(ii) the synthesis operator defined on finite sequences by Dec = 3., e, CnnPmn €xtends to a
bounded mapping from I (y) to HY,.
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(iii) the frame operator S = S; = D.Cy = },1ne, < fr@Pmn > Pmn maps H into Hy, and the
series converges unconditionally for 1 < p < co.

Proof. (i) Assume that f = 3 ew fir®is | < fr@mn > | = | jken fik < Gjts @mn >| . In view of
Definition 2.4, we get < C 3 e |fi| [(1+Im—jD(1+n—kD] 7472 <CC’ 3 jyen | fisl (1+]j—K) 5742

If £ € HY, then | fllzr = ||(f3) ,-,keN||1£, oy @nd Lemma 2.1 gives that [IC. flly,, < CC’ {627 j,k€N||lc ™=
CClIf N

(ii) Now we have (D.¢)keny = <Zm,ne)( ConnPrmns :I;j,k> or

(Decrsant < 3 emal (o )| < € 3 lemall 1+ = 01+ = k1>
m,ney m,ney
< CC Y femal(1+1j = k)™ = CC (A%l .

m,ney

Now Lemma 2.1 (by interchanging N and x) gives ||D.cllzr = [|A%|clllipny < 1A lopllcllz -

(iii)) The boundlessness of frame operator S follows by combining (1) and (ii). For un-
conditional convergence of the series defining S, let £ > 0, choose Ny = Ny(e), such that
Il < £, @mn >mnoreny) Il < €. Then for any finite set Ni 2 Ny, from (i) and (ii), we obtain

Sf= D, <f-bmn> s

m,neN

< Cellopll < fs @mn > I < NCellop-£-

H}
Which implies that the series ., .e, < f>®mn > @ma converges unconditionally in HY. ]

Proposition 2.2. Assume that [ = {¢,,,, : m,n € x} is polynomially localized with respect to the
Riesz basis {¢;x} with decay s > d. Then

Al = lagil < C(A +|j—=kD)™ for i,l,jkeN.

Proposition 2.3. From (2.1) we get

lagul < C Z [(1+|m—=jDA +|n—=kDA + i —m))(1 + |l =nD]™*
m,ney
< cC Z[(l +li— DA+ -k <CC'C"(A+1j- k).
i,leN

3. Main Results
The following definition is due to Moricz and Rhoades (Moricz & Rhoades, 1989).

Definition 3.1. Let A = (a;jx) be a double non-negative infinite matrix of real numbers. Then,
A—transform of a double sequence x = {x;;} is Z;’;O Direo AmnjkX jx Which is called A—means or
A—transform of the sequence x = {x;}.
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Sheikh and Mursaleen (Sheikh & Mursaleen, 2004) study the frame condition by using the
action of frame operator A on non-negative infinite matrix in Hilbert space. In this paper our aim
is to extend these results on weighted Banach space in R,

Now we prove our main results:

Theorem 3.1. Let A = (ayj) be a double non-negative infinite matrix. If f(x) = X, ey Cmn®Pmn(X)
is a wavelet expansion of f € HY with wavelet coefficients c,,, =< f,@mn >, then the frame
condition for A—transform of f € HY is

cillfllzr < < cllfllgr

D, <Afonn>

m,ney

Ly
where {@,,,, : m,n € y} is an (s + d + g)—localized frame for e > 0,5 > 0and 1 < p < co.

Proof. We take f =} ;ien fix® x> then

DAL @ua> 12D > Afik < GitoPmn >| < D IAFll < Gt Pun > |
mney Jj.keN m,ney Jj.keN
<c )AL+ Im = DA+ =KD < CC Y ALl + 1 — k)
Jj.keN JkeN

If f € Hy, then || fllzr = I(fj4) jkenllr- Hence we get

D <Afigma>|| < CCAlI i < el fllag-

m,ney

P
Ly

Now, for any f € HY, define

-1 -1
f = Z <Af, Qun >|| f <Af,Qmn >= Z <Af,Qmn >|| <Af, Qmn >
m,ney l{,’ m,ney lg
then
D <Afigua>|| <1
m,ney l{,’
Hence, if there exists a positive constant @, such that
-1 -1
a
WMenally < |l > <Afsgma>| | Menally e\ > <Afogma>{ | Wl < {7
mney g m,ney " op

it follows that ||, < Af. @ >||zc] > c1ll fll-
Hence the proof is completed. []
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Theorem 3.2. If f = 3 ey CjxPjx and {pp,, - m,n € x} forms a frame with respect to Riesz basis
{¢jk}, then the a i are the wavelet coefficients of Af, where {d,} is defined as the A—transform of
{cjx} such that

diy = Z AiljkCj ks
J.keN

@jk = § dis < Pjxpis > -
iley

Proof. Using the definition of A—transform of f = >, ciipi; by assumption we get

<Af,pi; >= Z AijkCik < Pk iz >
Jj.keN

or

i, = i, Jikos i, - i, ks i, .
D <Afigu>= Y (A < Gt pir >= D diy < bisopis >

iley iley iley

Therefore, the wavelet coefficients of A f with respect to Riesz basis {¢;,} are given by

Qi = Z dig < Qjp>pin > .

iley
Hence the proof is completed. []
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Abstract

The focus of this article is on automatic detection of fencevise mesh (a form of quasi-periodic texture) in
images through frequency domain analysis. Textures carrdedly classified in to two general classes: quasi-
periodic and random. For example, a fence has a repetitiomgtic pattern, which can be classified as a quasi-
periodic texture. Quasi-periodic textures can be easitgaded in the frequency spectrum of an image as they result
in peaks in the frequency spectrum. This article explores@lhway of de-fencing viewed as a quasi-periodic texture
segmentation by filtering in frequency domain to segredagefénce from the background. A resulting de-fenced
image is followed by support vector machine classificatin. interesting application of the proposed approach is
the removal of occluding structures such as fence or wirehriteanimal enclosure photography.

Keywords: Frequency spectrum, quasi-periodic texture, texture segation
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1. Introduction

This article introduces an algorithm to detect automaiicince or wire mesh structures,
which typically presentin the foreground of the image. Aioegn an image has a constant texture,
provided a set of local statistics or other local properbéshe picture function are constant,
slowly varying, or approximately periodid¢ceryan & Jain1993. A fence can be classified as a
texture in an image. Textures can be broadly classified iwaogeneral classegeriodicor more
generallyquasi-periodic textureandrandom textures
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According to Rangayyan2004), if there is a repetition of a texture element at almost l&agu
or quasi-periodic intervals, such textures can be cladségquasi-periodic or ordered and the
smallest repetitive element is called a texton or a texekamtrast if no such repetitive element
can be identified, those textures can be classified as random.

(Ohm, 2004 classifies textures asgular andirregular textures. Regular textures refer to tex-
tures, which exhibits strong periodic or quasi-periodibdngor. According toQhm, 2004, exact
periodicity is a very rare case mostly found in syntheticges The regular structures in natural
images are often quasi-periodic, which means that perjoaliern can clearly be recognized, but
have slight variations of periods. As it will be shown in sewt2, quasi-periodic textures are a
generalization of periodic textures.

Based on the above classifications, a fence structure, wiasha texture element repeating
at quasi-periodic intervals can be categorized as a quasdic texture. Hence, a fence-like
texture can be modeled as a quasi-periodic signal, whictvsipeaks in its power spectrum. It
is mentioned inChang & Kug 1993 that these kinds of quasi-periodic signals possess darhina
frequencies located in the middle frequency channels.

The perception of texture has numerous dimensions. Thusnéer of diferent texture repre-
sentations were introduced from time to time in order to anomdate a variety of textures. These
representations are categorizedTageryan & Jain1993 as statistical methods, which involves
co-occurrence matrices and autocorrelation featureange@ methods, model based methods
and signal processing methods. Signal processing methedsuadivided into spatial domain
filtering (Malik & Perong 1990 and frequency filtering.

Frequency analysis of the textured image is close to humesepton of texture as human
visual system analyzes the textured image by decomposeigidge into its frequency and orien-
tation componentdampbell & Robsonl1968. (Turner, 1986 and Clark et al., 1987 proposed
to use the Gabor filters in texture analysis. The Gabor fétarfrequency and orientation selective
filter. Another model, which is widely used for texture arsadyis wavelet transformChang &
Kuo, 1992 1993 Wilscy & Sasij 2010.

The focus of this article is on images, which are occludedvignce textures as shown in
figurel. In such cases, itis challenging to segment the fence fremet$t of the image, especially
when the image background is regular. Simple colour segatiens and edge detection does not
work in this case.

The traditional frequency filters used for texture analyS@bor and Wavelet cannot be directly
applied to extract fence texture in our scenario as the &eges correspond to both fence and the
background are present in the spectrum. Thus, we first perfi@gquency domain processing to
isolate fence texture from the background and subsequapylly Wavelet transform.

An interesting application of the proposed algorithm cardegection and removal of fence-
like textures obstructing the images in zoo photographygofding to many web articles on pho-
tography Stalking 201Q Masoney 2013, wire mesh and fences are a major challenge in zoo
photography. The algorithm proposed in this article watetefor fences with dierent shapes,
sizes, colours and orientations.

The rest of the article is organized as follows. Sectomtroduces quasi-periodic signals
and provides the mathematical background to analyze gpegdic signals in images. Secti@n
discusses the implementation of the quasi-periodic texdetection algorithm in three steps: (1)
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frequency domain filtering for quasi-periodic texture détm, (2) multiresolution processing for
fence mask formation and (3) fence segmentation through $\iskification. The experimen-
tal results of the proposed algorithm are given in Sectidar some zoo images as well as for
some challenging images from PSU NRT Databdse, (2007). A comparison of the proposed
method with existing fence detection techniques is giveseirtion followed by future work and
conclusion in section8 and7 respectively.

Figure 1. Images Occluded with Fence Textures.

2. Quasi-periodic Signals

Before going into details of quasi-periodic texture datatin images, understanding the math-
ematical background of quasi-periodic signals is impdrtan

Definition 2.1. Continuous-time Periodic Signak(Proakis & Manolakis2006 §1, p. 13))
By definition, A continuous signal f(t) locally defined on tketL?(9R) of finite energy signals is
fully periodic with period T, when the signal exactly saesfi

f(t) = f(t+T).

Definition 2.2. Continuous-time Quasi-periodic Signal(Martin et al,, 2010)
A signal fyp(t) is quasi-periodic with k periods,, ..., Ty when

fap(t) = g{fa(t), f2(1), ... f(®)},
where the k signal$ (t) are continuous periodic signals with respect to each gério

In the case of continuous functions locally defined on theL$€R) of finite energy signals,
guasi-periodic signals are a generalization of periodjoals. All the periods are required to be
strictly positive and to be rationally linearly indepenti@artin et al,, 2010.

Definition 2.3. Discrete-time Periodic Signgl(Proakis & Manolakis2006 §1, p. 15))
A discrete-time signal f(n) is periodic with period N, if andly if,

f(n) = f(n+ N) for all n.
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Based on the definition of continuous-time quasi-periodjoals, the definition for discrete-
time quasi-periodic signals can be derived.

Definition 2.4. Discrete-time Quasi-periodic Signal
A discrete-time signaf,(n) is quasi-periodic with k periods, ...N, when

fap(n) = g{ f1(n), f2(n), ..., fi(n)},

whereg : ZX — Z and the k signald;(n) are discrete-time periodic signals with respect to each
periodN;.

In the context of this paper, an image is considered as a aaliéstime signal. If we extend
the definition of 1D quasi-periodic signal to 2D quasi-pditosignal;

Definition 2.5. 2D Discrete-time Periodic Signd(Woods 2006 §1, p. 7))
A 2D discrete-time signal f(x,y) is periodic with period (NI, if and only if,

f(xy) = f(x+M,y) = f(x,y+ N),Vn,me Z.

Definition 2.6. 2D Discrete-time Quasi-periodic Signal
A 2D discrete-time signal,y(X, y) is quasi-periodic with k periodsMs, ...My, Ny, ...Nyx) when

fqp(X, y) = g{ fl(X’ y)’ fZ(X’ y)’ ceey fk(X’ y)},

where the k signaldi(x,y) are discrete-time periodic signals with respect to pexrifd;, N;).
Hence, a quasi-periodic signal can be defined as a comhinatiperiodic signals with incom-
mensurate (not rationally related) frequenciBat{ersby & Portal1996. If the frequencies are
commensurate, thefy, becomes a periodic signdkégey 2000.

A discrete-time quasi-periodic signal can be expressed avitourier series as given in defini-
tion 2.8 as a generalization of definitich7. 1D case will be considered for simplicity and it can
be extended to 2D.

Definition 2.7. Fourier Series of a Discrete-time Periodic fgnal ((Proakis & Manolakis2006
§4, p. 242))

N-1 .
2rkn
f(n) = chexp(J N )
k=0

Definition 2.8. Fourier Series of a Discrete-time Quasi-paodic Signal ((Regey 2006 p. 156))
The Fourier series of a r-quasi-periodic signal is givenRgdev 2000:

fapM = D" > Gk K EXP

ki ko ke

+ + ..+
N1 \ \"

j (Zyrkln 2rrkon an,n)]

where k=1,2,...,r and the frequencieg = 27/Ng are incommensurate.
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Theorem 2.1. Let f;p(n) be a discrete-time quasi-periodic signal. Then the fregyespectrum
of fyp(n) consists of a set of peaks determined by the fundamentaieinetes of each discrete
periodic signal component in the signal.

Proof. With w; = 21/N;, fyp(n) in definition2.8 can be re-written as
fae(n) = > cxexpljKQn],
K

whereK = (k, ks, ..., k) andQ = (wj, wo, ..., wy). Thus, the frequency spectrum contains numerous
peaks at all frequencies satisfying

2ny = K- Q| = |kKiw1 + Kows + ... + Kewy|,

for any combination of integets, ko, ..., k;. O

3. Quasi-periodic Texture Detection in Frequency Domain

3.1. Frequency Domain Filtering for Quasi-periodic TexdWetection

As proven by theorer.1, the Fourier spectrum of a quasi-periodic signal consisasiiscrete
set of spikes or peaks at a number of frequencies dependitigearumber of periodic signals it is
comprised of. Hence, based on theor2r the fence-like quasi-periodic structure should result
in peaks in the frequency spectrum of the image. The obgdaivthis section is to filter those
spikes in the frequency spectra relevant to the quasi-ghergignal in order to extract the fence
texture corresponding to the quasi-periodic signal froerdst of the image.

To achieve this, first start with the frequency domain repméstion of the 2D image. We will
be considering the DFT of an image.

M-1 N-1
o (UX vy
F(u,v) = F(x, y)ex [— 27r(— n —)] u=0,1,...M-1, =0,1,...N-1 3.1
();;(Y)DJMN (3.1)
To filter the frequencies showing spikes in the frequencespeit is necessary to perform
thresholding based on the magnitude of each frequency coempoA filter functionH,(u, v) in
frequency domain can be defined for this purpose as givembelo

_J1 if IF(u,v)| > T,
Ha(u,v) = { 0  otherwise,
where T is a threshold to filter spikes in frequency.
Once the thresholding is applied to the frequency companent

(3.2)

F’(u,v) = Hy(u, V)F(u, V)

Although, we filtered the frequency components correspanth peaks in the frequency spec-
tra, it is necessary to filter peaks in frequencies resuljedtber details in the image. For an ex-
ample, the DC component F(0,0), which can be derived by gubsg u=0 and 0 in equation
3.1 |F(0, 0)| typically is the largest component of the spectrum.
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1 M-1 N-1 _
F(0.0)= N Zﬁ VZ; f(x,y) = MNT(x y).

The quasi-periodic signal in our case is the fence. Ferkeetdixtures typically result in gausi-
periodic signals whose dominant frequencies are locatéteimiddle frequency channelSi{ang
& Kuo, 1993. Therefore, by using a bandpass filter in frequency donmth&frequencies corre-
sponding to the fence can be filtered.

1 if D; < D(u,V) < D,
Ha(u,v) = { 0 otherwise

whereD; andD, are constants and D(u,Vv) is the distance between a pointifutkie frequency
domain and the center of the frequency spectrum.
Thus, the final result in frequency domain after applyinggeeond filter would be:

(3.3)

F”(u,v) Ho(u, V)F’(u, v),
H,(u, V)H1(u, V)F(u, v),

H(u, V)F(u, V),

whereH = H,Hj, since the application dfi; andH, can be considered as a cascade system.
WhenF”(u, V) is transferred back into spatial domain, the resultinggens given by:

1 M-1 N-1 ; - UX Vy
g(xy) = N Z Z F"”(u, v)exp[jZn(M + —)] x=0,1,...M-1, y¥+0,1,...N-1

N
u=0 v=0

It is important to note thaitl; andH, are zero phase shift filters, whiclfect the magnitude
of the frequency spectra, but do not alter the phase angleseTfilters fect the real (Re(u,v))
and imaginary (Im(u,v)) parts equally, thus cancels outrwbalculating phase anglgu,v) =
arctanIm(u, v)/R€u, v)].

Figure2(d) illustrates the final result of frequency domain filtgriexplained above. It can be
clearly seen that the fence texture is emphasized and otlagye details have been suppressed.

3.2. Multiresolution Processing for Fence Mask Formation

The human visual system analyzes the textured images bymbasing the image into its fre-
guency and orientation componen@aMmpbell & Robsonl968. Wavelet transformation provides
the ability to analyze images through multiresolution @ssing.

Wavelet transform in two dimension provides the two dimenal scaling functions(x, y)
and three two dimensional directionally sensitive wawajét(x, y), vV (x, y),#P(x,y) as given in
(Gonzalez & Richarg2002.

¢j,mn(X, y) = 2%¢(2jx —m, ij_ n)-

U mn(6Y) = 280421 = m 2ly - n),i = {H,V, D}.



R. Hettiarachchi, et a). Theory and Applications of Mathemati&sComputer Science 4 (2) (2014) 1239 129

(a) Original Image (f(x,y)). (b) Filtered Peak Frequencies (F'(u,v)).

(c) Bandpassed Spectrum (F"(u,v)). (d) Spatial Domain (g(x,y)).

Figure 2. Frequency Domain Filtering for Fence Texture Segregatiomflmage
Background.

These wavelets measure intensity variations for imagesgadifferent directionsy mea-
sures variations along horizontal direction (along colgjnn’ measures variations along vertical
direction (along rows) ang® corresponds to variations along diagonals.

The discrete transform of image f(x,y) is:

M-1N-1
1

Wy(jo,mn) = —== 3" > (X V)¢ jomn(% Y).
MN x=0 y=0

N
. 1 M-1 N-1 '
W mn) = — DU YW a6 W), i = (H,V, D},
x=0 y=0

where jo is an arbitrary starting scale and tiié,(Jo, m, n) codficients define an approximation
of f(x,y) at scalejo. TheWiw(j, m, n) codticients add horizontal, vertical and diagonal details for
scalesj > jo. V\/jp(jo, m, n) codficients are called detail ciecients. Usuallyjg is set to zero.

For each level j, thresholding is performed on the detaiﬁfmbentsWL(j, m, n) to extract the
fence mask$1'(j, m, n) at each level j.

M'(j,m n) = { é gt\r/]\gr(\)\;ig]’en) > T;, whereT; is the threshold for levej,


images/fig1a.eps
images/fig2b.eps
images/fig2c.eps
images/fig2d.eps

130 R. Hettiarachchi, et a). Theory and Applications of Mathemati&sComputer Science 4 (2) (2014) 1239

The final fence mask at level j is obtained by perform@igoperation of the vertical, horizon-
tal and diagonal fence masks at level j.

M(j, m.n) = MY(j,m.n) ® M"(j,m,n) @ M°(j, m,n).
The detected fence masks at 3 consecutive levels are shdigaia 3.

(&) M(1,m,n). . | (b) M(2,m,n). (c) M(3,m,n).

Figure 3. Detected Fence Masks at ThrediBrent Levels.

Next, the fence masks atftkrent levels of wavelet pyramid were combined by using assyar
to finer strategy. The objective is to reduce noise and expigels, which fall exactly on the fence.
In order to make the resultant mask in the same size as thearigage, a mask was created at
the zero level by just thresholding the spatial domain tesfftequency filtering (g(x,y)). Hence,
altogether we have fence masks at #atent levels in the pyramid.

First, the highest level fence mask (level 3) was considaretif a pixel belongs to the mask
then we move to the next lower level (level 2) and check fomtkighbouring children of the orig-
inal pixel. If any of the neighbouring children are mask fgxé¢hen recursively go and check for
their neighbouring children in the subsequent lower levElsally, when the algorithms reaches
the bottom most level (zero level), it marks the mask pixalslagiven that the neighbouring

children in the lowest level are mask pixels as well. The ltastifence mask is shown in Figure
4.

Figure 4. Fence Mask Formed by Combining Wavelet Decomposition lsevel
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3.3. Fence Segmentation through SVM Classification

Although the noise is minimized and the fence is emphasizéida detected fence mask, it is
not perfectly detected yet. However, the detected fencé mlassifies a good number of pixels,
which exactly falls on the fence in the image. This knowledgefence pixels can be used to
segment the fence. Hence, it was decided to pick some sarnpfeshe fence mask and use
the features of those sample pixels to tra@upport Vector Machine (SVM) classifiarorder to
segment the fence texture. A SVM classifier with a linear &eisiused in this case.

In addition to the samples from fence, it is necessary to pakples from background to
train the SVM classifier. For this purpose two root level 'emsasks were generated. One root
level mask was generated by selecting a very high threshaldlze other one is generated by
using a very low threshold. These masks were used as theewstrhask in the process of
combining wavelet decomposition levels as explained iige8.2separately in order to generate
two different final fence masks as shown in Figbre

As it can be clearly seen, the root level mask with high thoésigenerates a very thin final
mask, resulting points, which exactly lie on the fence. Gndther hand the root level mask with
low threshold generates a thick fence mask, which has somesgall on the background as well.

Figure 5. Two Fence Masks used for SVM Classification.

The thin mask was used to pick random samples, which représere class and the negation
of the thick mask (1-thick mask) is used to pick random sas)pldich represent the background
class. The use of negation of thick mask for background sausgiection reduces the chance of
picking fence pixels as background pixels and hence imrthweaccuracy of classification.

The feature vector selected for classification plays a vaportant role in this case as ffacts
the overall performance of the classification. The RGB cothannels and the gradient direction
of the samples were used as the feature set for classificalibe resultant fence mask can be
further improved with the help of morphological operations

The algorithm to achieve fence-like quasi-periodic textdetection in digital images is given
in Algorithm 1.
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Algorithm 1 Algorithm for fence-like quasi-periodic texture detectio images

Read the fenced imade
Convertl into frequency domain using Discrete Fourier Transforrntfie output bd-)
Filter F using the peak frequency filtét; defined in equatioB.2 (let the output beé-1)
Filter F1 using the band pass filtét, defined in equatioB.3(let the output bé-2)
ConvertF2 back into spatial domain (let the output fid )
Perform Wavelet decomposition diitl with three decomposition levels
for each Wavelet decomposition leas
Find vertical (V), horizontal (H) and Diagonal (D) compont&n
Threshold V, H and D with the same threshold
Combine thresholded V, H and D components using logical OfRaijon
. end for
> %comment: Obtain fence mask by combining all three levete®ivavelet pyramid (let
the output be fenceMask)%
12: Start from the highest Wavelet decomposition level (leyel 3
13: for each pixel in level 3lo

=

N aRrODN

el
B o

14: if a pixel belongs to the masken

15: Move to next lower level

16: if current level== lowest levelthen

17: Mark the pixel as mask pixels

18: Mark the neighbouring children as mask pixels
19: else

20: Check neighbouring children

21 if neighbouring children are mask pixéfen
22: Go back to step 14

23: end if

24: end if

25: end if

26: end for

27: Prepare the training data matrix using feature vectors wipéa pixels fall on fence (fence-
Mask==1) and background (fenceMask0).

28: Train the SVM classifier by using training data matrix of s&&p

29: Perform SVM classification by using the trained classifiestep 26 by giving original image
as the input to obtain final fence mask.
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(e) Flower Image. (f) Fence Mask for Flower Image.

Figure 6. Results of Fence-like Texture Detection in Images from PRT Watabase
(Liu, 2007).
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4. Experimental Results

The frequency domain-based fence-like quasi-perioditutexdetection algorithm proposed
in this article was implemented in Matlab R2013a and it waset with a number of images
with fence-like texture. Some test images were obtainet fA&&U Near-regular Texture database
(Liu, 2007. Images with fences of fferent shapes (square and diagonal), sizes, colours and
orientations were used for this experiment. FigbiiBustrates results of some of the challenging
cases encountered during experiments.

For the completion of the sample application chosen in thjgep, once the fence texture was
successfully detected and removed, the region, which gelbto the fence, should be filled with
relevant information in order to obtain the final image. On¢he techniques, which can serve
this purpose isnpainting According to Bertalmioet al., 2000, inpainting is themodification
of images in a way that is non-detectable for an observer wiesaot know the original image
There are numerous inpainting techniques introduced inlipasture.

For examples region filling and object removal by exempksda image inpainting by Crim-
inisi etal. Criminisiet al,, 20049, Fields of experts by Roth et aR6th & Black 2009 and Image
completion with structure propagation by Sun et 8uret al,, 2005. Among these techniques,
the exemplar based image inpainting technigoeninisi et al, 2004 was used to fill the fence
region in this approach. The results are given in figure

Interestingly, some image distortions can be observed pédorming inpainting for some
images. The region belonged to the fence texture is much difiteult to texture fill than large,
circular regions of similar area. The fence texture in tlaisecis usually wide spread in the whole
image. Thus, it requires the inpainting algorithm to calsepropagate and join tlierent types of
structures in order to fill this wide spread fence region. ¢éemistakes in structure propagation
can be quiet frequent in this case. The high ratio of foregdoarea to background area and the
fragmented background source textures may become chiltefag the inpainting technique.

5. Comparison with Existing Fence Detection Techniques

Most of the articles, which investigated the image de-fleggroblem, have used a texture
based approach to detect the fence, based on the assunhtiarfénce is a near regular structure.
(Liuy et al,, 2008 introduced an image de-fencing technique based on |atraeture of regular
textures in their article. The de-fencing algorithm pragobs (Liuy et al, 2008 consists of three
steps.(1) automatically finding the skeleton structure of a patdritontal layer in the form of a
deformed lattice; (2) classifying pixels as foreground ackground using appearance regularity
as the dominant cue, and (3) inpainting the foreground negiosing the background texture which
is typically composed of fragmented source regions to leae@omplete, non-occluded image
(Liuy et al,, 2008.

In the first step, to automatically detect the lattice of teece, Liuy et al, 2008 uses the
iterative algorithm explained irHayset al., 2006, which tries to find the most regular lattice for
a given image by assigning the neighbour relationships thatmeighbors have maximum visual
similarity. Step one results in a mesh of quadratiles, wisizhtains repeated elements or texels.
In the second step standard deviation of each colour chamaethe color features are used for k-
means clustering for background foreground separatioardar to obtain the standard deviation,
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Figure 7. Results of Fence Removal from Zoo Images.
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the texels were aligned and arranged in a stack and standaiatidn is calculated along each
vertical column of pixels. Finally, texture based inpamgtitechnique introduced by Criminisi et
al. (Criminisi et al,, 2004 2003 is used to obtain the final de-fenced image.

Park et al. revisits the image de-fencing problem in thepepaParket al, 2011). They
no longer uses the lattice detection algorithm introduce@Hayset al,, 2009, as they states its
performance is far from practical due to inaccuracy and s&sgs. Rather the implementation of
lattice detection algorithm irRarket al,, 2011) is similar to Parket al, 2009. In their method,
once the type of the repeating pattern is learnt, the ireggids are removed and the learned reg-
ularity is used in evaluating the foreground appearaneiikod during the lattice growth. They
have improved the lattice detection algorithm by introdigcn online learning and classification.

In essence, the de-fencing algorithms introduced in botthede articles uses a lattice de-
tection algorithm in order to find the fence mask. Thus, theesss of both algorithms depends
on finding the repeated element or texel in the fence strectilihe lattice detection algorithm
used by Liuy et al, 2008 has no measures against irregularities in the latticeenthié lattice
detection algorithm used byérket al., 2011) takes some measures to remove irregularities dur-
ing lattice growth. However, both these approaches deperitdeoregularity of the fence as well
as the irregularity of the background of the image. Altho(garket al., 2011) takes measures
against irregularities in the fence, it does not take in twaat the possibility of regularities in the
background. Furthermore, the lattice detection procssf is very complex and time consuming.

In contrast to the two methods discussed above, the methpddiead in this article uses a fre-
guency domain approach to address the fence detectiorepnoBlue to the uncertainty principle,
the global wide spread fence texture in spatial domain besdotal to a set of frequencies in the
frequency domain. So the processing required to extracketihee texture in frequency domain
is simpler and faster compared to spatial domain procesdihgg becomes advantageous in the
proposed method compared to the existing techniques. Mergthe band pass filtering in fre-
guency domain used in the proposed method helps to avoid m¢hedic structures (regularities)
in the background, which is not possible in existing teche&] The proposed method is robust
against deformations and irregularities in the fence textiue to SVM classification used in fence
segmentation phase.

The existing near regular lattice detection approache& wetl for some images and on the
other hand fail for some cases. They have observed that itheefaases are often accompanied
by sudden changes of colors in the background and obscubjegts in front of the fence. For
examples inl(iuy et al, 2008 method, the lattice detection fails for images (a) andridjigure
6 and for image (q) in Figuré. The proposed method is successful in detecting fencereekiu
all those images. A comparison of fence mask detected indflowage by Kiuy et al,, 2008
method and proposed method is given in Fig8ire

However, the proposed method fails to provide satisfactesylts for blurred images, espe-
cially when the fence is very much blurred. In such casesrpogssing to sharpen the fence may
give better results. Furthermore, fence segmentationmbesahallenging when the visual similar-
ity between fence pixels and background pixels becomes Ikigature set used for segmentation
has to be tuned to overcome such problems. Determining tineatdeature set is challenging in
such scenarios.



(a) Flower Image. (b) (Liuy et al, 2008. (c) Proposed Method.

Figure 8. Comparison of Fence Mask Detected for Flower Image.

6. Future Work

Fence texture segmentation becomes challenging, whes déinempixels with features similar
to fence pixels in the background. SVM classification usedfifal segmentation of the fence
texture in this article can be replaced with descriptiveihpattern generation described iRdters
& Hettiarachichj 2013. The accuracy of this phase can be further improved with behear set
theory Peters2013 Peters & Naimpally2012 Peters2014 Peterset al,, 2014).

7. Conclusion

Fence-like texture present in the foreground of the imag#udes the points of interest in
an image and is dlicult to segment by directly applying conventional frequefilters used for
texture analysis. The proposed approach in this articleegeges each fence texture by frequency
domain processing prior to wavelet transformation and #gerentation is achieved through sup-
port vector machine classification.

The proposed method works well for fence texture witfiedent shapes, sizes, colours and
orientations. Fence texture detection was successfulmyptor images having fence in the fore-
ground but also for images having fence in the background.

As a sample application of the proposed approach, removahoks from zoo animal enclo-
sure images is presented. In addition to this, the propgseach to de-fencing can be used for
any application, where the images are occluded with feikeetéxture.
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Abstract

In this paper we present new algorithms for counting the sets of lattice points in the plane whose diameter is a
given value D, under the Manhattan (L) and Chebyshev (L) distances. We consider two versions of the problem:
counting all sets within a given lattice U X V, and counting all sets that are not equivalent under translations.
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1. Introduction

In this paper we present new algorithms for counting the sets of lattice points in the plane
with a given diameter, under the Manhattan (L;) and Chebyshev (L.,) distances. We consider two
versions of the problem. In the first version we assume that a fixed size 2D grid is given and
the sets must be placed inside this grid. Two sets are different if they have a different number of
points or the positions of their points inside the grid are not all identical. In the second version we
assume that two sets are considered identical (and, thus, need to be counted only once) if one can
be obtained from another by translation operations.

The rest of this paper is structured as follows. In Section 2 we present the problems in more
details, together with some preliminaries required by the algorithms presented in the other sections.
In Section 3 we present an algorithm with O(D - log(D)) arithmetic operations for the Chebyshev
(L) distance which can solve both versions of the problem. In Section 4 we present a more
efficient algorithm, with only O(log(D)) arithmetic operations, for the Chebyshev distance, but
only for the second version of the problem. In Sections 5 and 6 we present algorithms with a
similar number of arithmetic operations for the Manhattan distance and for the same versions of
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the problem. In Section 7 we present experimental results regarding the two algorithms for the
Manhattan distance. In Section 8 we discuss related work. In Section 9 we conclude and discuss
future work.

2. Problem Statement and Preliminaries

In this paper we consider sets of lattice points in the plane. A lattice point is a point with
integer coordinates. The diameter of a set of points is the maximum distance between any two
points in the set. In this paper we will consider two distances. The Manhattan distance (also called
the L, distance) between two points (x;,y;) and (x;, y;) is defined as |x; — x| + [y; — y2|. The L,
distance (also called the Chebyshev distance) between two points (x;, y;) and (x,, y,) is defined as
max{|x; — xz|, [y1 — y2|}. When the coordinates of the points are integer (i.e. when we consider only
lattice points) both the L; and the L., distances are integers.

We consider two versions of the problem for counting sets of lattice points having exactly a
given diameter D (under the L; or L, distances). The first version assumes that a 2D grid of
fixed size U x V is given (U is the number of points along the OX axis and V is the number of
points along the OY axis). We may assume that the points of the grid have coordinates (x, y) with
0<x<U-1and0 <y <V -1. In this case two sets of points are considered different if they
consist of a different number of points or if the positions of their points are not all identical. The
dimensions of the grid (U and V) are part of the input of the algorithms presented for this version.

For the second version we assume that two sets A and B are identical if one can be obtained
from another by translation operations. To be more precise, set A is considered identical to B if
there exist the integer numbers 7X and 7Y such that by adding 7X to the x-coordinate of each
point of A and T'Y to the y-coordinate of each point of A we obtain exactly the set B (note that this
automatically implies that A and B have the same number of points). In this case the sets are not
constrained to be located within a fixed size grid, so the parameters U and V from the first version
of the problem do not exist here.

We are interested in computing the number of sets of points with a given value of the diameter
D (D > 1) under both versions of the problem and considering either the L, or the L., distance.
Let’s consider, for instance, the second version of the problem. For D = 1 there are two sets of
lattice points for the Manhattan distance, each consisting of two adjacent lattice points. In the
first set the two points are horizontally adjacent and in the second set the two points are vertically
adjacent. On the other hand, there are 9 sets of lattice points for D = 1 and the Chebyshev distance.

In order for a set of points in the plane to have diameter D under the L, distance all the points
must be located inside a square of side length D and for at least one pair of opposite sides there
must be at least one point from the set located on each of the two sides.

The diameter of a set of points A under the Manhattan distance is equivalent to the diameter
under the L, distance of a modified set of points B (Indyk, 2001). B is obtained by transforming
each point (x,y) of A into the point (x — y, x + y) in B. Thus, the two problems considered in this
paper are strongly connected to each other. The transformed coordinates correspond to diagonal
coordinates.

In a 2D plane we have two types of diagonals: main diagonals (running from north-east to
south-west) and secondary diagonals (running from north-west to south-east). All the points (x, y)
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on the same main diagonal have the same value of x — y and all the points (x,y) on the same
secondary diagonal have the same value of x + y. The index of a main diagonal is the difference
x — y of all the points (x, y) on it. Similarly, the index of a secondary diagonal is the sum x + y of
all the points (x,y) on it. The parity of a diagonal (main or secondary) is defined as the parity of
its index. The distance between two diagonals of the same type (main or secondary) is defined as
the absolute difference of their indices.

After the transformation to diagonal coordinates we can easily see that in order for a set of
points to have exactly diameter D under the Manhattan distance one of the following conditions
must hold:

1. It should have at least two points located on main diagonals at distance D apart, while the
other pairs of main diagonals of all the points are located at distance at most D apart and the
pairs of secondary diagonals of all the points are at distance strictly less than D or

2. It should have at least two points located on secondary diagonals at distance D apart while
the other pairs of secondary diagonals of all the points are located at distance at most D apart
and the pairs of main diagonals of all the points are at distance strictly less than D or

3. It should have at least two points located on main diagonals at distance D apart and at least
two points located on secondary diagonals at distance D apart and all the other pairs of main
and secondary diagonals of the points are at distance at most D apart.

The three cases correspond to different types of sets of points (i.e. each set of points hav-
ing diameter D under the Manhattan distance belongs to exactly one of the three cases). Note
that there is a bijection between the sets of points corresponding to cases 1 and 2. Each set of
points corresponding to case 1 can be transformed into a set of points corresponding to case 2 (by
switching the order of the diagonals). Similarly, each set of points corresponding to case 2 can be
transformed into a set of points corresponding to case 1.

Thus, for the second version of the problem, it will be enough to count the number of sets
of points corresponding to case 1 (C) and the number of sets of points corresponding to case 3
(C3) in order to obtain the total number of sets of points having diameter D under the Manhattan
distance. Then, the total number of sets of lattice points having diameter D (under the Manhattan
distance) is equal to 2 - C; + C3;.

3. Algorithm 1 for Counting Sets of Lattice Points of Diameter D under the Chebyshev (L.,)
Distance

In this section we will present an algorithm which computes the number of sets of lattice points
having diameter D under the Chebyshev distance for both versions of the problem. The algorithm
will make use of a function denoted by CNTS ET S (LX, LY) which will compute the number of
sets of lattice points contained in a rectangle having side length LX along the OX axis and side
length LY along the OY axis and such that each counted set has at least one point on each of the 4
sides of the rectangle. Moreover, the corners of the rectangle are lattice points.

We will start with some simple cases. We have CNTSETS (0,0) = 1 and CNTSETS (P,0) =
CNTSETS(0,P) = 2P~!. When both LX and LY are greater than or equal to 1 we will use the
following approach. We will first identify the 4 corners of the rectangle. We will consider each
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of the 2* binary configurations of 4 bits. Let BC denote the current binary configuration and
BC(i) will denote bit i in the configuration (0 < i < 3). Each bit will correspond to one of the 4
corners. If BC(7) is 1 we will assume that the corresponding corner is selected to be part of the set;
otherwise we will assume that it is not selected. Lets consider now each of the horizontal sides
of the rectangle. If at least one corner located on the considered side was selected, then there are
2LX=1 possibilities left for selecting the remaining points (non-corners) of the horizontal side (note
that the side contains LX + 1 points overall, out of which 2 are corners). If none of the corners
of the side are selected, then there are only 25X~! — 1 possibilites left for selecting the remaining
points of the horizontal side. The situation is similar for the vertical sides: if at least one corner is
selected from a vertical side, there are 2-7~! possibilities of selecting the remaining points of the
vertical side; otherwise the number of possibilities is only 2XY~! — 1. After considering all the 4
sides of the rectangle we need to consider the points located strictly inside the rectangle. There
are NIN = (LX — 1) - (LY — 1) points located strictly inside the rectangle. Each of these inner
points may be selected or not, meaning that there are 2™V possibilities of selecting these points.
For a given binary configuration BC the number of possibilities of selecting points according to it
is equal to the product of five terms: four of which are the number of possibilities corresponding
to each of the 4 sides of the rectangle and the 5" term corresponds to the number of possibilities of
selecting the inner points of the rectangle. The value returned by CNTS ETS (LX, LY) is equal to
the sum of the numbers of possibilities of selecting points corresponding to each of the 2* binary
configurations.

We will use a variable C ranging from 0 to D. For each value of C we will first compute
CNTSETS (D, C). Note that this value corresponds to the number of sets of lattice points having
diameter D and which are contained in a minimum bounding rectangle of side lengths D (along
the OX axis) and C (along the OY axis). For the first version of the problem, each set counted by
CNTS ETS (C, D) may appear multiple times inside the grid - in fact, it may appear (U—-D)-(V—-C)
times (as that’s the number of possibilities of placing a D - C rectangle inside the grid). Thus, we
will add the term CNTSETS(D,C) - (U — D) - (V — C) to the final answer for the first version of
the problem (or 0, if D > U or C > V). In the second version of the problem we simply need to
add CNTS ETS (D, C) to the final answer for the second version of the problem. This is because
all the sets counted by CNTS ETS (D, C) are different under translation operations.

If C < D we will also compute CNTS ETS (C, D) (which is identical in value to CNTS ETS (D,
()). For the first version of the problem we will add to the final answer the value CNT S ET'S (C, D)-
(U-C)-(V-=D)(or0,if C > U or D > V). For the second version of the problem we will add to
the final answer the value CNTS ETS (C, D).

The algorithm presented in this section uses O(D - log(D)) arithmetic operations, because it
considers O(D) cases and for each case it needs to perform a constant number of exponentiations
where the base 2 logarithm of the exponent is of the order O(log(D)). All the exponentiations raise
2 to a given exponent. If D is not very large we may consider precomputing all the powers of 2
from 0 to D (we may achieve this with only O(D) multiplications because we can write 2 = 2°-1.2
for P > 1 and we can consider the values of P in ascending order). However, NIN is of the order
O(D?). If D is sufficiently small then we may precompute powers of 2 up to D* (using O(D?)
multiplications). If, however, D? is too large, then we need to notice that, as C increases from 0 to
D, NIN also increases. We will assume that our algorithm considers the values of C in ascending
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order (note that NIN is the same for both CNTS ETS (D, C) and CNTS ETS (C, D)). Let’s assume
that PREVNIN is equal to the value of NIN for the case C — 1 and RES PREVNIN = 2PREVNIN,
We will initially (for C = 0) have PREVNIN = 0 and RES PREVNIN = 1. When we need to
compute 2VN for a case we will first compute the difference DIFNIN = NIN — PREVNIN. We
will always have DIFNIN = D — 1. Thus, we can compute 2V with only one multiplication, as
RES PREVNIN -2PFNIN (note that 2PFNIV g taken from the table of precomputed powers of two).
After handling the current value of C we will update PREVNIN = NIN and RES PREVNIN =
2NIN (where 2V was just computed by the method we presented). Using this approach we only
need O(D) arithmetic operations instead of O(D - log(D)).

So far we assumed that we want to compute the number of sets of lattice points exactly. In this
case we will need to work with numbers which have O(4 - D) bits. However, there are many situa-
tions when the exact numbers are not required. For instance, if we are only interested in computing
the number of sets modulo a given number M, then we only need numbers having O(2 - log(M))
bits for storing intermediate and final results. If M is sufficiently small (e.g. a 32-bit number)
then we can practically assume that on the current machine architectures the numbers we use have
a constant number of bits. However, the exponents to which 2 is raised can still be pretty large
numbers (having O(log(D)) bits). This may not necessarily be a problem, but we may inadver-
tently face some challenging algorithmic problems. For instance, when multiplying (LX — 1) by
(LY — 1) inthe CNTS ETS function we need to multiply together two numbers having O(log(D))
bits. The naive algorithm would use O(log*(D)) time for computing the result. In order to speed
up the multiplication we may need to use more complicated algorithms (Schonhage & Strassen,
1971), (Furer, 2009) which reduce the time complexity to O(log(D)-log(log(D))-log(log(log(D))))
or slightly better. Nevertheless, there is a simple situation when all these complications are not
needed: when M is an odd prime. In this case we know that A¥~! = 1 (modulo M) for any natural
number I < A < M — 1. Since we only need to raise 2 at some powers (modulo M), we notice
that we only need the remainder of the exponent when divided by M — 1 in order to compute the
required result. Thus, instead of using exact exponents we will only use the exponents modulo
M — 1. This way we can avoid the complicated multiplication of (LX — 1) by (LY — 1) and replace
it with the multiplication of ((LX-1) mod (M-1)) by ((LY-1) mod (M-1)). This way we will need to
spend O(log(D)) time in order to compute the remainders of numbers having O(log(D)) bits when
divided by M — 1, but we do not need to multiply together two large numbers.

4. Algorithm 2 for Counting Sets of Lattice Points of Diameter D under the Chebyshev (L.,)
Distance

The algorithm presented in this section can only solve the second version of the problem (i.e.
when two sets are identical if one can be obtained from another by using translation operations).
We will first define the following function: NS ET'S (LX, LY )=the number of sets of lattice points
contained in a rectangle of horizontal side length LX and vertical side length LY such that at least
one point is located on each of the opposite vertical sides (for this function we will ignore the
fact the two sets are identical if one can be obtained from another by translation operations). We
assume LX > 1 and LY > 0, both numbers are integers and the corners of the rectangle are lattice
points. Such a rectangle contains (LX + 1) - (LY + 1) lattice points inside of it or on its borders. It
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is easy to see that NS ETS (LX, LY) = (2L7+! — 1)? . 2EX+D-(LY+D)=2(LY+D) Thjg formula corresponds
to the following cases. On each of the two opposite vertical sides we must have one selected point.
Thus, there are 2LY*! — 1 possibilities of choosing lattice points on each of these two sides. Each
of the remaining (LX + 1) - (LY + 1) — 2 - (LY + 1) lattice points can be selected or not to be part
of the set. Thus, we have 2UX+D-EY+D=2(LY+1) poggibilities for selecting these points. If LY < 0, by
definition, we will have NS ETS (LX,LY) = 0.

In order for a set of points in the plane to have diameter D under the Chebyshev distance all
the points must be located inside a square of side length D, such that at least one pair of opposite
sides has at least one point from the set on each side from the pair. We will consider three cases:

1. both of the vertical opposite sides of the square contain points from the set on them, but not
both horizontal sides of the square contain points from the set: the number of sets corre-
sponding to this case is NS ETS(D,D—1)- NS ETS (D, D —2) (this forces every set to have
a point selected on the bottom side of the square of side length D)

2. both of the horizontal opposite sides of the square contain points from the set on them,
but not both vertical sides of the square contain points from the set: the number of sets
corresponding to this case is also NSETS(D,D — 1) - NSETS(D,D - 2).

3. both of the horizontal opposite sides and both of the vertical opposite sides of the square
contain points from the set on them: the number of sets corresponding to this case is
NSETS(D,D) —2 - NSETS(D,D — 1) + NSETS(D,D — 2). We actually made use of
the inclusion-exclusion principle here. From all the sets of lattice points with points on both
opposite vertical sides (NS ETS (D, D)) we subtracted the sets of lattice points which do not
have points on the top or bottom horizontal side (2 - NS ETS (D, D — 1)). In doing this we
over-subtracted the sets of lattice points which do not have points on any of the horizontal
sides (NS ETS (D, D — 2)) thus, we need to add this number back.

By adding together the numbers corresponding to the cases 1, 2 and 3, we obtain the total num-
ber of sets of lattice points having diameter D under the Chebyshev distance: 2 - (NS ETS (D, D —
1) -NSETS(D,D -2))+ NSETS(D,D) —2-NSETS(D,D - 1)+ NSETS(D,D - 2), which
simplifies to NS ETS (D,D) — NSETS(D,D - 2).

This method requires O(log(D?)) = O(log(D)) arithmetic operations in order to compute the
answer (this number corresponds to raising 2 to a power whose value is of the order O(D?)). In
case exact results are not needed, the same discussion from the previous section applies to this
case, too, because in the NSETS function we need to multiply two numbers of O(log(D)) bits
each: (LX + 1)and (LY + 1).

5. Algorithm 1 for Counting Sets of Lattice Points of Diameter D under the Manhattan (L,)
Distance

In this section we present an algorithm similar in essence to the one from section 3. The algo-
rithm can compute the number of sets of lattice points having diameter D under the Manhattan dis-
tance for both versions of the problem. The algorithm will make use of a function CNTEQ(C, X)
which computes the number of sets of lattice points such that:

¢ the main diagonals of at least two points are at distance exactly D apart
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e all the other pairs of main diagonals of the points are at distance at most D apart
e the secondary diagonals of at least two points are at distance exactly C apart
e all the other pairs of secondary diagonals of the points are at distance at most C apart

e X = (0 means that the parity of the first secondary diagonal is equal to the parity of the first
main diagonal, while X = 1 means that these parities differ (the first diagonal of each type
is the one with the smallest index)

The algorithm will simply iterate through all the values of C (from O to D), and for each value
of C, through all the values of X (from O to 1).

For the first version of the problem we will need to compute the minimum bounding rectangle
for the sets counted by CNTEQ(C,X) (X = 0,1). Let’s assume that the minimum bounding
rectangle has side length M BRX along the OX axis and M BRY along the OY axis. We will add to
the final answer the value CNTEQ(C, X)-(U-MBRX)-(V-MBRY) (X =0,1),or0if MBRX > U
or MBRY > V. If C < D then we have a set of symmetric sets of lattice points by switching the
role of main and secondary diagonals. These sets have a minimum bounding rectangle with side
length MBRY along the OX axis and M BRX along the OY axis. Thus, we will also add to the final
answer the value CNTEQ(C,X) - (U — MBRY) - (V— MBRX) (X = 0,1), or O if MBRX > V or
MBRY > U.

For the second version of the problem C; will be equal to the sum of the values CNTEQ(C, X)
O0O<C<D-1,0<X<1)and C; will be equal to CNTEQ(D,0) + CNTEQ(D, 1).

When computing CNTEQ(C, ), we need to consider a figure containing lattice points en-
closed by a pair of main diagonals at distance D and a pair of secondary diagonals at distance C.
We will denote the first main diagonal as the /eft diagonal, the second main diagonal as the right
diagonal, the first secondary diagonal as the bottom diagonal and the second secondary diagonal
as the rop diagonal. We will need to compute the following numbers:

e NLEFT=the number of lattice points on the left diagonal of the figure

e NRIGHT=the number of lattice points on the right diagonal of the figure

e NUP=the number of lattice points on the top diagonal of the figure

e NDOWN=the number of lattice points on the bottom diagonal of the figure

e NTOTAL=the total number of lattice points inside the figure and on its borders

Then, we will need to identify the corners of the figure. A corner is a lattice point which
belongs to two adjacent diagonals (a main diagonal and a secondary diagonal). Note that we may
have 0, 2 or 4 corners. Let’s assume that we have NC corners. We will make sure to decrease the
corresponding numbers (NLEFT, NRIGHT, NUP, NDOWN) by the number of corners among
the set of lattice points which were counted (e.g. if the left diagonal has Q corners on it, we will
decrease NLEFT by Q).
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In Fig. 1, 2, 3, 4 we present all the cases which may occur during the computation of the
CNTEQ(C, X) function (the remaining cases are reducible to these 4 cases by symmetry). Lattice
points on the main diagonals are drawn in green, lattice points on the secondary diagonals are
drawn in red, corners are drawn in cyan and inner lattice points are drawn in yellow. In Fig. 1 we
have D = 10, C = 8 and X = 0. Notice that we obtain NC = 4 corners. Note that two adjacent
diagonals form a corner if they have the same parity. In Fig. 2 we have D = 10, C =7 and X = 0.
In this case we obtain only NC = 2 corners. This is because the top diagonal has a different parity
from both the left and the right diagonals, thus forming no corners with them. In Fig. 3 we have
D =9,C =7and X = 0; we obtain NC = 2 corners. In Fig. 4 we have D = 12, C =8 and X = 1;
no corner is formed in this case.

The main algorithm for computing CNT EQ(C, X) is as follows. We will consider each possible
binary configuration of NC bits. If biti (0 < i < NC — 1) is set to 1 we will assume that the
corresponding corner (i) belongs to the set of lattice points; otherwise, it doesn’t belong to the
set. After deciding the states of the corners we will check which of the first and second main
and secondary diagonals have no selected corners on them. For each such diagonal we will have
2NP _ 1 possibilities of choosing lattice points on it (where NP is the number of lattice points on
it, excluding the corners). This equation makes sure that at least one lattice point is selected on
each such diagonal. For each of the other diagonals we will have 2V* possibilities of choosing
lattice points on them (for these diagonals it is possible to not select any of the lattice points on
them, because they already have a selected corner). Then each of the interior lattice points of the
figure can be selected as part of the set or not (there are NIN = NTOTAL — (NUP + NDOWN +
NLEFT + NRIGHT + NC) lattice points inside the figure and, thus, there are 2"V possibilities of
choosing the inner points). The answer for each binary configuration of the corners is the product
between the number of possibilities for each of the 4 diagonals and for the inner points of the
figure. CNT EQ(C, X) is the sum of all the answers for each binary configuration of corners. Note
that this algorithm works even when NC = 0 (there is one binary configuration of 0 bits).
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Figure 1. D=10, C=8, X=0, NC=4. Figure 2. D=10, C=7, X=0, NC=2.
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Figure 3. D=9, C=7, X=0, NC=2. Figure 4. D=12, C=8, X=1, NC=0.

What is left is to identify the values NUP, NDOWN, NLEFT, NRIGHT, NTOTAL and the
corners depending on the values of C, X and the parity of D. We will also define the parameter Y,
which is defined similarly as X, but for the second secondary diagonal (i.e. ¥ = O if the second
secondary diagonal has the same parity as the first main diagonal, and Y = 1 otherwise). Note that
Y=XifCiseven,and Y = 1 — X if C is odd. From now on we will assume that the value of Y is
computed when evaluating the function CNT EQ(C, X).

We will first consider the case when D is even. If C = 0 and X = 0 then CNTEQ(0, 0) = 2P/21,
If C =0and X = 1 then CNTEQ(0,1) = 0. Let’s consider now that C > 1. If X = 0O then
NDOWN = (D/2)+ 1 and if X = 1 then NDOWN = D/2. Note that whenever we use the division
operator ”/” in this paper we refer to integer division. Similarly, if ¥ = 0 then NUP = (D/2) + 1,
and if Y = 1 then NUP = D/2. If X = 0 then we have NLEFT = NRIGHT = (C/2) + 1;
otherwise, if X = 1 then we have NLEFT = NRIGHT = (C + 1)/2. NTOTAL is equal to
NLEFT - ((D/2) + 1)+ (C + 1 = NLEFT) - (D/2).

If D is odd then we have the following values. NUP = NDOWN = (D + 1)/2. If X = 0 then
NLEFT = (C/2)+ 1 and NRIGHT = (C + 1)/2; otherwise, if X = 1 then NLEFT = (C + 1)/2
and NRIGHT = (C/2) + 1. NTOTALisequalto (C+1)-((D+ 1)/2).

The exact formulas we presented for NUP, NDOWN, NLEFT, NRIGHT and NTOTAL can
be easily derived by a careful analysis of all the relevant cases. Let’s consider now the cases from
Fig. 1, 2, 3, 4 and verify the formulas for those cases. In Fig. 1 we have NLEFT = (4/2)+1 =5,
NRIGHT = (4/2)+1 =5, NDOWN = (10/2)+1 =6, NUP = (10/2) + 1 = 6 and NTOTAL =
5:(10/2)+ D+ (8 +1-5)-(10/2) = 50. In Fig. 2 we have NLEFT = (7/2) + 1 = 4,
NRIGHT = (7/2) + 1 = 4, NDOWN = (10/2) + 1 = 6, NUP = 10/2 = 5 and NTOTAL =
4-(10/2)+ 1)+ (7 +1—-4)-(10/2) = 44. In Fig. 3 we have NLEFT = (7/2) +1 = 4,
NRIGHT = (7+1)/2 =4, NDOWN =9+ 1)/2 =5 NUP =9+ 1)/2 =5and NTOTAL =
7+ 1)-(9+1)/2) =40. In Fig. 4 we have NLEFT = (8 +1)/2 =4, NRIGHT = (8 +1)/2 =4,
NDOWN =12/2 =6, NUP =12/2 =6and NTOTAL =4-((12/2)+1)+(8+1-4)-(12/2) = 58.
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We will show now how to compute the sizes MBRX and MBRY of the minimum bounding
rectangle corresponding to the sets counted by CNTEQ(C,X) (X =0,1). MBRX = NLEFT -1+
NUP -1+ Y and MBRY = NLEFT — 1+ NDOWN — 1 + X. Let’s verify now these formulas
for the cases presented in Fig. 1, 2, 3, 4. In Fig. 1 we have MBRX =5-1+6-1+0 =9
and MBRY =5-1+6-1+0=9. InFig. 2 wehave MBRX =4-1+5-1+1=28
and MBRY =4-1+6-1+0 = 8. InFig. 3 we have MBRX =4-1+5-1+1 =38
and MBRY =4-1+5-1+0=7. InFig. 4 we have MBRX =4-14+6-1+1 =9 and
MBRY =4-14+6-1+1=09.

After initializing the NUP, NDOWN, NLEFT, NRIGHT and NTOTAL values, we need to
identify the corners. We will consider each pair of (main diagonal, secondary diagonal) and check
if they have the same parity (note that the parity of each main and secondary diagonal can be
uniquely determined relative to the parity of the first main diagonal from the values X, Y and
D; for instance, if X = 0O the first main diagonal and the first secondary diagonal have the same
parity, if ¥ = O the first main diagonal and the second secondary diagonal have the same parity, if
(X = 0) and (D is even) the second main diagonal and the first secondary diagonal have the same
parity, if (Y = 0) and (D i1s even) the second main diagonal and the second secondary diagonal
have the same parity). Whenever a main diagonal and a secondary diagonal have the same parity,
they form a corner. Whenever a corner is identified, the number of lattice points corresponding
to the two diagonals is decremented by 1. For instance, if the first main diagonal and the first
secondary diagonal form a corner then NLEFT and NDOWN are both decremented by 1. If the
first main diagonal and the second secondary diagonal form a corner then both NLEFT and NUP
are decremented by 1. If the second main diagonal and the first secondary diagonal form a corner
then NRIGHT and NDOWN are both decremented by 1. If the second main diagonal and the
second secondary diagonal form a corner then both NRIGHT and NUP are decremented by 1.
NC is set to the number of identified corners and the corners are placed in an array on positions 0
to NC — 1, so that we know exactly to which diagonals each corner i (0 < i < NC — 1) belongs to.

The algorithm presented in this section uses O(D - log(D)) arithmetic operations, because it
considers O(D) cases and for each case it needs to perform a constant number of exponentiations
where the base 2 logarithm of the exponent is of the order O(log(D)). In order to reduce the
number of arithmetic operations to O(D) we can use the same approach as in section 3. We will
assume that our algorithm considers the values of C in ascending order and for each value of C it
first computes CNT EQ(C, 0) and then CNTEQ(C, 1). Let’s assume that PREVNIN is equal to the
value of NIN for the case C— 1 and X = 1 and RES PREVNIN = 2PREVNIN We will initially have
PREVNIN = 0 and RES PREVNIN = 1. When we need to compute 2VV for a case we will first
compute the difference DIFNIN = NIN — PREVNIN. We will always have 0 < DIFNIN < D.
Thus, we can compute 2"V with only one multiplication, as RES PREVNIN - 2P"FNIN (note that
2PIENIN ig taken from the table of precomputed powers of two). After handling the case (C, X = 1)
we will update PREVNIN = NIN and RES PREVNIN = 2VN (where 2V was just computed by
the method we presented). Using this approach we only need O(D) arithmetic operations instead
of O(D-log(D)). The same discussion as in Section 3, regarding the computation of exact numbers
or of numbers modulo a given number M, applies here, too. In this case NTOTAL is the value of
order O(D?) which is obtained by multiplying together two numbers which are of the order O(D).
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6. Algorithm 2 for Counting Sets of Lattice Points of Diameter D under the Manhattan (L,)
Distance

Our second algorithm for the Manhattan distance (and only for the second version of the prob-
lem) will use a function CNTLEQ(C, X), where C < Dand X = Qor 1. CNTLEQ(C, X) computes
the number of sets of lattice points such that:

e the main diagonals of at least two points are at distance exactly D apart
o all the other pairs of main diagonals of the points are at distance at most D apart
o all the pairs of secondary diagonals of the points are at distance at most C apart

e X = 0 means that the parity of the first secondary diagonal is equal to the parity of the first
main diagonal, while X = 1 means that these parities differ (the first diagonal of each type
is the one with the smallest index)

For C < 0 we have CNTLEQ(C,0) = CNTLEQ(C,1) = 0, by definition. We will present
solutions for C > 0 depending on the parity of D.

We will first consider the case when D is even. In this case we have CNTLEQ(0, 0) = 2P/>"!
and CNTLEQ(0, 1) = 0 (note that every time we use division we consider integer division). Let’s
consider now the case C > 1. All the points must be contained between two main diagonals
located at distance D apart and between two secondary diagonals located at distance C apart.

For X = 0 this figure has P = (C/2) + 1 lattice points on each of the main diagonals and has
R =({C/2)+1)-((D/2)+ 1)+ (C —(C/2)) - (D/2) lattice points in total inside of it and on its
borders. CNTLEQ(C,0) is equal to (2 — 1)? . 28-2F,

For X = 1 the figure has P = (C + 1)/2 lattice points on each of the main diagonals and has
R=((C+1)/2)-(D/2)+ 1)+ (C+1-(C+1)/2)-(D/2) lattice points in total inside of it and
on its borders. CNTLEQ(C, 1) is defined identically as CNTLEQ(C, 0), except that we use these
new values for P and R.

Let’s consider now the case when D is odd. We have CNTLEQ(C,0) = CNTLEQ(C,1).
The figure defined by the main and secondary diagonals has P = (C/2) + 1 lattice points on the
first main diagonal and Q = (C + 1)/2 lattice points on the second main diagonal. In total, the
figure contains R = (C + 1) - (D + 1)/2) lattice points inside of it and on its borders. We have
CNTLEQ(C,0) = CNTLEQ(C,1) = (2F - 1)- (22 — 1) - 28-F-¢,

Note that the CNTLEQ function ignores the fact that two sets are identical if one can be
obtained from another by translation operations. Instead, it considers two sets to be different if
they correspond to different subsets of points belonging to the figure. However, this aspect will
be considered when deriving the final formula for the number of sets of lattice points with a given
diameter, by using the inclusion-exclusion principle.

The total number of sets of lattice points corresponding to case 1 isequal to C; = CNTLEQ(D—-
1,00+ CNTLEQ(D -1,1)-CNTLEQ(D —-2,0)—CNTLEQ(D -2, 1). The total number of sets
of lattice points corresponding to case 3 is equal to C3 = (CNTLEQ(D,0)-CNTLEQ(D —1,0) —
CNTLEQ(D-1,1)+CNTLEQ(D-2,1))+(CNTLEQ(D,1)-CNTLEQ(D—-1,0)-CNTLEQ(D-
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1,1) + CNTLEQ(D - 2,0)). Again we made use of the inclusion-exclusion principle when com-
puting C; and Cj.

It is easy to see that this algorithm uses O(log(D)) arithmetic operations (from a constant
number of exponentiations where the base 2 logarithm of the exponent is of the order O(log(D))).
The same discussion as in Section 3, regarding the computation of exact numbers or of numbers
modulo a given number M, applies to this case, too. In this case R is the value which is obtained
by multiplying together two numbers having O(log(D)) bits each.

7. Experimental Results

We implemented the two algorithms for the Manhattan distance and the second version of the
studied problem, presented in Sections 5 and 6. For the algorithm from Section 5 we used its
O(D) optimized version. We computed the values modulo a prime number M = 10° + 7, in order
to make use of all the computation optimizations possible. We also implemented a backtracking
algorithm which generates every set independently (i.e. it enumerates all the valid sets of lattice
points having diameter D). We used several values of D in order to compare the running times of
the three algorithms. Note that for some values of D some of the algorithms were too slow and we
stopped them after a running time of 5 minutes. The running times are presented in Table 1 (a ”-”
is shown where the running time exceeded the 5 minutes threshold). All the three algorithms were
implemented in C/C++ and the code was compiled using the G++ compiler version 3.3.1. The
tests were run on a machine running Windows 7 with an Intel Atom N450 1.66 GHz CPU and 1
GB RAM.

As expected, the O(log(D)) algorithm is much faster than the other two algorithms. The O(D)
algorithm is faster for odd values of D than for even values. This is because, when D is odd, we
can never obtain a figure with 4 corners (in order to have 4 corners both the main and secondary
diagonals would need to have the same parity, but when D is odd the main diagonals have different
parities).

8. Related Work

There is a large body of work in the scientific literature concerned with counting lattice points
in various multidimensional structures. In (Loera, 2005) the general problem of counting lattice
points in polytopes was considered. The general problem of counting lattice points in a bounded
subset of the Euclidean space was considered in (Widmer, 2012). Harmonic analysis is applied in
(Chamizo, 2008) for counting lattice points in large parts of space.

A problem concerned with counting configurations of lattice points obtained when translating
a convex set in the plane was considered in (Huxley & Zunic, 2009), (Huxley & Zunic, 2013).
Two configurations were considered identical under similar conditions as the ones used in this
paper. Counting arrangements of connected polyominoes (equivalent under translation) and other
figures was considered in (Rechnitzer, 2000). The problem of counting directed lattice walkers
in horizontal strips of finite width was considered in (Chan & Guttman, 2003). Counting lattice
triangulations was studied in (Keibel & Ziegler, 2003).

As far as we are aware, the problems we considered in this paper have not been considered
before in any other publication.
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Table 1. Running time (in sec) of the three algorithms for several values of D.

D Backtracking Algorithm  O(D) Algorithm  O(log(D)) Algorithm

1 0.002 0.002 0.002

2 0.002 0.002 0.002

3 0.004 0.002 0.002

4 0.065 0.002 0.002

5 3.91 0.002 0.002

6 - 0.002 0.002
10 - 0.002 0.002
11 - 0.002 0.002
104 - 0.09 0.003
10* + 1 - 0.08 0.003
10° - 0.81 0.003
10° + 1 - 0.54 0.003
108 - 7.84 0.003
109 + 1 - 52 0.003
107 - 78.3 0.003
107 + 1 - 519 0.003
108 - - 0.003
108 + 1 - - 0.003
10° - - 0.004
10° + 1 - - 0.004

9. Conclusions

In this paper we presented novel, efficient algorithms for computing the number of sets of
lattice points in the plane whose diameter is exactly equal to D, when considering the Manhattan
(L) or the Chebyshev (L.,) distance. We considered two versions for defining the equivalence of
two such sets of lattice points. The first version forces the sets of points to be fully included inside
a given 2D grid. The second version defines two sets of lattice points to be equivalent if one can
be obtained from another by using translation operations. Our algorithms require O(D - log(D))
or O(D) arithmetic operations (additions, multiplications) for the first version of the problem and
only O(log(D)) arithmetic operations for the second version of the problem for both distances. We
also discussed the possibility of computing the results modulo a given number M, as a way of
simplifying some parts of the algorithms (in particular, in order to use numbers with a number of
bits independent of D).

As future work we intend to approach the same problems described in this paper but for a
number of dimensions greater than 2. Note that in the 1D case the two problems are identical and
very simple to solve (for instance, the answer is always 2°~! for the second version of the problem,
because we must have two points in the set at distance D and all the other D — 1 points between
them may be selected or not to be part of the set).
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Abstract

Let0 < p < +o0and Vg = sup{é In|P,4|, P; polynomial of degree < d,||P,llx < 1} the Siciak extremal function
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1. Introduction

The classical growth have been characterized in term of approximation errors for a func-
tion continuous on [—1,1] by A.R. Reddy(see (Reddy, 1972a), and a compact K of positive
capacity by T. Winiarski (see (Winiarski, 1970) with respect to maximum norm. For a noncon-

+00

stant entire function f(z) = E ap.z* and M(f,r) = rlnlax | f (z)|, it is well known that the function
zl=r
k=0
r — log(M(f,r)) is indefinitely increasing convex function of log(r). To estimate the growth of

f precisely, R.P. Boas, (see (Boas, 1954)), has introduced the concept of order, defined by the
number p (0 < p < +o0):
o = Tim sup log log(M(f. 7))
r—+eo log(r)

The concept of type has been introduced to determine the relative growth of two functions of
same nonzero finite order. An entire function, of order p (0 < p < +00), is said to be of type o
(0 <o < +oo)if

*Corresponding author
Email address: mharfaoui04@yahoo.fr (Mohammed Harfaoui )
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_ log(M(f, 1))
o = lim sup——.
r—+o00 rp

If f is an entire function of infinite or zero order, the definition of type is not valid and the
growth of such function cannot be precisely measured by the above concept. However S.K. Bajpai,
O.P. Juneja and G.P. Kapoor (see (Bajpai et al., 1976)) have introduced the concept of index-pair
of an entire function. Thus, for p > g > 1, they defined also the number

. log”'(M(f, r))
,q) = limsuyp————
Pp-4) r—>+oop log'¥(r)

b<p(p,q) <+cowhereb=0ifp>gandb=1ifp=gq.

The function f is said to be of index-pair (p, q) if p(p — 1, g — 1) is nonzero finite number. The
number p(p, q) is called the (p, g)-order of f.

S.K. Bajpai, O.P. Juneja and G.P. Kapoor defined also the concept of the (p, g)-type o(p, q),
for b < p(p, q) < +o0, by
log” "\ (M(f, 1))
)p(p,q)

o(p,q) = limsup
F—+400 (log[q—l](r)

In their works, the authors established the relationship of (p, g)-growth of f in term of the
coefficients a; in the Maclaurin series of f.

We have also many results in terms of polynomial approximation in classical case. Let K be
a compact subset of the complex plane C, of positive logarithmic capacity and f be a complex
function defined and bounded on K. For k € N put

ExK. f)=||f - T,

where the norm |||| « 1s the maximum on K and T} is the k — th Chebytchev polynomial of the best
approximation to f on K.
S.N. Bernstein showed (see (Bernstein, 1926), p. 14), for K = [—1, 1], that there exists a

constant p > 0 such that
Jlim K'PIK (K, f)
— 400

is finite, if and only if, f is the restriction to K of an entire function of order p and some finite type.
This result has been generalized by A.R. Reddy (see (Reddy, 1972a) and (Reddy, 1972b)) as
follows:

klir+n VEW(K, ) = (p.e.c)27

if and only if f is the restriction to K of an entire function g of order p and type o for K = [—1, 1].
In the same way T. Winiarski (see (Winiarski, 1970)) generalized this result for a compact K
of the complex plane C, of positive logarithmic capacity noted ¢ = cap(K) as follows:
If K be a compact subset of the complex plane C, of positive logarithmic capacity then

1
Jim ki JE((K, f) = c(epa)P
—400
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if and only if f is the restriction to K of an entire function of order p (0 < p < +00) and type o.

1
Recall that the capacity of [-1,1] is cap([-1,1]) = 3 and the capacity of a unit disc is
cap(D(O, 1)) = 1.
The authors considered respectively the Taylor development of f with respect to the sequence
(z)n and the development of f with respect to the sequence (W,,), defined by

j=n
W.(z) = H(Z —Mj), n=1,2,..
=1
where 1% = (1,0, 1Tp1» ---» Tnn) 1S the n — th extremal points system of K (see (Winiarski, 1970), p.
260). We remark that the above results suggest that rate at which the sequence ( VK(K, f ))k tends
to zero depends on the growth of the entire function (order and type). For a compact K the Siciak’s
extremal function of K (see (Siciak, 1962) and (Siciak, 1981)) is defined by:

1
Vi = sup {E log|P,4|, P; polynomial of degree < d, ||P,||x < 1}.

It is known that the regularity of a compact K (we say K is L-regular) is equivalent to the continuity
of Vg in C".

Let K be a compact L-regular of C". For an entire function f in C" developed according
an extremal polynomial basis (Ay); (see (Zeriahi, 1983)), M. Harfaoui (see (Harfaoui, 2010) and
(Harfaoui, 2011)) generalized growth in term of coefficients with respect the sequence (Ay)r. The
growth used by M. Harfoui was defined according to the functions « and g (see (Harfaoui, 2010),
pp- 5, eq. (2.14)), with respect to the set:

Q, = {z e C", exp(V)(2) < r}.

M. Harfaoui (see (Harfaoui, 2010) and (Harfaoui, 2011)) obtained a result of generalized order
and generalized type ((a,f)-order and (a,5)-type) in term of approximation in L”-norm for a
compact of C". Later M. Harfaoui an M. El Kadiri (see (Kadiri & Harfaoui, 2013)) obtained the
results in term of (p, g)-order and (p, g)-type for the entire functions .

These results will bee used to establish the generalized growth in terms of best approximation
in L,-norm for p > 1.

Let f be a function defined and bounded on K. For k € N put

(K, f) = inf (|| - P”mm’ P e PL(CH),

where P (C") is the family of all polynomials of degree < k and u the well-selected measure (The
equilibrium measure u = (dd“V)" associated to a L-regular compact K) (see (Zeriahi, 1987)) and
LP(K, ), p > 1, is the class of all functions such that:

”fHLP(K,,,) - (ﬂ | f 1P dﬂ)l/p < 00,

For an entire function f € C", M. Harfaoui and M. El Kadiri established a precise relation-
ship between the (p, g)-growth and the general growth ((a, a)-growth) with respect to the set (see
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((Harfaoui, 2010), (Harfaoui, 2011), (Kadiri & Harfaoui, 2013) and (Harfaoui & Kumar, 2014))
and the coefficients of the development of f with respect to the sequence (Ax),. He used these
results to give the relationship between the generalized growth of f and the sequence (1} (K, f))x.

To our knowledge no work is discussed in term of best approximation in L,-norm with respect
to the proximate growth.

The aim of this paper is to give the proximate growth and the (m, 1)- proximate growth of entire
functions in C" (m € N*) by means of the best polynomial approximation in term of L”-norm, with
respect to the set

Q, = {z € C"; exp Vk(z) < r}.
In the paper of A. R. Reddy and T. Winiarski (see (Reddy, 1972a), (Reddy, 1972b) and
(Winiarski, 1970)) the authors use the development of f in the basis (z,), and (W,), and used
the Cauchy inequality.

In our work we use a new basis of extremal polynomial and we replace the the Cauchy in-
equality by an inequality given by A. Zeriahi (see (Zeriahi, 1983)).

. . . . 17k .
So we establish relationship between the rate at which (ﬂf (K, f )) , for k € N, tends to zero in
terms of best approximation in L”-norm, and the proximate growth growth of entire functions of
several complex variables for a L-regular compact K of C".

2. Notations aned auxiliary results

Before we give some definitions and results which will be frequently used.
For p € Z put

P
log”!(x) = log(log” (x)); log"”'(x) = x; Ay = ]_[ log(x).
k=1

P
exp”!(x) = exp(exp” (x)); exp”(x) = x and Ep(x) = 1—[ exp*(x).
k=0

Lemma 2.1. (see (Bajpai et al., 1976))
With the above notations we have the following results

x X
RR)) Ep(x) = -———— and " Epn)
(RR1) E—p(x) App-11(%) and \-p () Eppn(x)
d Ep(x) 1
- [p] = =
(RR) —exp!”l(x) Ap1(0)
d Ei_ (%) 1
RR _1 (p] — [-p] —
(RR3) e 08 (x) Aip-11(%)

ifp=0

— _ 'x’
(RR4) E[pll(x) - { log'” Y{log(x) - log'?!(x) + o(logiy (X}, if p=1,2,...°
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. _ e €fp = 2
(RRs) lim exp (E[p—z](x)) - { 1 ifp>3

) _ _ E e ifp=2
(RRs) xEer[exp[p ! (E[pl—zl(x))]' :{ 1 lji i >3
It is known that if K is a compact L-regular of C", there exists a measure u, called extremal
measure, having interesting properties (see (Siciak, 1962) and (Siciak, 1981)), in particular, we
have:
(P;) Bernstein-Markov inequality:
Ye > 0, there exists C = C, is a constant such that

(BM) : ||P4||,, = C(1 + &)*||P4 P’ 2.1
for every polynomial of n complex variables of degree at most d.
(P,) Bernstein-Waish (B.W) inequality:
For every set L-regular K and every real r > 1 we have:
: 1/p
1]l < Mres( fK | £ 17 dy) (2.2)

Note that the regularity is equivalent to the Bernstein-Markov inequality.

For s : N — N" k — s(k) = (s1(k), ...., s,(k)) be a bijection such that
|s(k + 1)| > |s(k)] where |s(k)] = s1(k) + .... + 5,(k),

A. Zeriahi (see (Zeriahi, 1983)) constructed according to the Hilbert Schmidt method a sequence
of monic orthogonal polynomials according to a extremal measure (see (Siciak, 1962)), (A,
called extremal polynomial, defined by

k—1
AR =2+ ) a? (2.3)

J=1

such that

1/sk
2 s(ap,ap,....a,) € C”} .
(E.p)

k-1

ol =l + S0
LP(E.p) )
J:

We need the following notations which will be used in the sequel:
(M) v = n(K) = |4

L2(Kp)

1/sk
(N2) ar = ar(K) = HAkHK = max |Ak(Z)| and 7 = (Clk) ,
where s, = deg(Ay).
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With that notations and (B.W) inequality we have
Al < awr™ (2.4)
where s, = deg(Ay).

Lemma 2.2. (see (Zeriahi, 1983))
Let K be a compact L-regular subset of C". Then

1/sk
A
lim [' k(Z)'] = exp(Vk(2)), (2.5)
k—+o00 Vk
for every z € C"\ K the connected component of C" \ K,
1/sk
A
lim [” k”"] = 1. (2.6)
k—+o0 Vk

3. Growth with respect to the proximate order and coefficient with respect to extremal
polynomial.

Before we give some definitions and results which will be frequently used in this paper.

Definition 3.1.
Let p be a positive real such that 0 < p < +oco. A proximate order for p is a function p(r)
defined in R* and verified:

1. lim p(r) = p;
r—+00

2. lim rp"log(r) = 0.
r—+co

Example 3.1. The function p(r) defined by
0 = P (In(r))?.(In?'(7))...(In"
is a proximate order for p, where log"™") is defined by:
log'(r) = r, 10g"™ = In* (log" "(r)) and In*(£) = 11400 In()
Theorem 3.1. If h(r) is a positive function for r > 0 such that

log(h
F—+00 log(r)

then the proximate order p(r) maybe chosen such that for every r > 0:  h(r) < ), and for some
sequence ™, h(r,) < 2", for n sufficiently large.

For an entire function in C" we define the K-type for the proximate order as follows:
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Definition 3.2.
Let K be a L-regular of C”. If for an entire function in C"

lOg (MK(f’ r))

rl’(”)

lim sup 3.1

r—+00

is finite not zero then the function p(r) is called proximate order

L In(Mk(f 1)
ox = lim ——==

r—+oo rp(’ )

(3.2)

is called K-type of f with respect to the proximate order p(r), where

Mx(f,r) = sup|f(2)|.

ZEQr

+00

Let K be a compact L-regular and f an entire function of several variables and f(z) = Z JeAx
k=0
the development of f with respect to the sequence of extremal polynomials.

2.1. K-type of f with respect to the proximate order

Theorem 3.2.
If p(r) is a proximate order for p then the K-type of f with respect to the proximate order is

given by the formula:
o/ sk

1
k= timsup (p(sori) A", (3.3)

k—+00
where ¢ is the inverse function of the function r — ") = y(r).
We have so y(r) =y © ¢(y) =r.
Lemma 3.1. /7, p.42(1.58)]
For every k > 0 we have

k.t
lim sup plk.1) = k'
t—+00 QD(t)

Proof of t{leorem 3.2.

Put 0 = — lim sup (go(sk)rk)p.| fk|p/sk and show that o = ok.
€.0 k—otoo

Show that o < og.

In (Mg(f, ro6
We have for every 6 > 1 o = lim w

, then for every £ > 0 there exists r(g) such
r—+0co pP(rd)

that for every r > r(e)

log (Ilfllg,) < (r®) (o (K, f) + &). (3.4)
But (r + DM||fllg, < exp (o, + £)(r0)"), where Ny € N such that
, 1)Ne
i < Cor s LD (3.5)

(I’ — 1)2n—1
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then
[filvi < Co.r™ exp ((0(K, f) + £)(r0)"),

for r > r(e) and k > k(g) or

log (|fivi) < 1og(Ce) — s log(r) + ((7(K. f) + &)(r0)"), (3.6)

for r > r(e) and k > k(e).
Chose r such that s, = [(o(K, f) + &)(r8)".], where [x] means the integer part of x. Then
sp < (0(K, f) + &))" < s, + 1. Replacing in the relation (3.6) we get

sp+ 1
log ([fi[v) < 10g(Cy) — s log(r) + s; log(6) + "p . (3.7)

Since ) < ()", then ¢( ) < r0, thus
£

Sk I
p(o(K, f) + plo(K, f) + &)

1
log [(ree(sO)Y (| < sﬁklog(ce) +p10g( ¢(§l;) ) +1+—.

Sk
oK o)

After passing to the upper limit and applying the lemma 2.1, the relation (2.6) of the lemma 2.2
and the lemma 3.1 we get

lim sup log [(¢(s0))’ (V| ilY*] < log (p.0(K. f)) + 1 = log (e.p-(o(K, £))). (3.8)

k—+o0

which gives the result
lim sup (7. (s)) (|i])"™ < e.p.(o(K. ). (3.9)

r—+00

Show that o > og. If o < ok let oy and o, such that o= < 0 < 0, < 0. There exists k;such that
for every k > ky:

l/p
s e.p.(o
(Il < 2T (3.10)
@(sk)
_Sk_
as we have also for k sufficiently large (k > ¢»), (o71.p)"" .%, then for ky = max (qi, g2) we
P8k
have
ko +o00
My(fr) < ) 1flAdlg, + Y filIAddlg, (3.11)
=0 k=ko+1

According to the Bernstein-Walsh inequality we have
1Allg, < an(K).r*,
and according to the Bernstein-Markov inequality we have

a(K) < Ac.(1 + ) ar(K).T}}.
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Thus
el/p

Mg(f,r) < Co.r™ + A.. —_—
K1) = Co Z o)

If we put 6 = Al (6 < 1) then
()

1 + S
Mg(f,r) < Co.r’* + A.. Z € k. sup e %)

6 k>k
k=ko+1 0

where B

¥(x) = xlog(r) - . xlog (@(x/02.p)).
1-¢6 o(l +

If we choose € such that 0 < € < then ( ©) < 1 and thus

1+6 1-¢€

Mg(f,r) < Co.r'* + C.sup e’
k>kq

We note that W(x) = 0 is equivalent to

log(r)+ 1 x ¢i/oap)

po2p p(x/2p) ~ log (¢(x/02.p)) = 0,

then the solution x, of the equation (3.13) verify
log(r) — Lo (,o(i) < log(r) + L forr> r
€ 0.0 €

and thus

Y(x) < *r + x,( log(r) — r ) <1+ E)&
P P P

=L < (0.0 where 0 = ¢/°
g2

Since for every 6 > 1 we have (0.r)"? < (6.r)"*<.r"") then
e < o1+ o) PO for r > 1y
and consequently, for r > ry,
My(f,r) < Co.r' + A.F .07,
whence

log (MK(f’ r))

<
o0 <o+ 0(1),

) (A + o)™

(3.12)

(3.13)

passing to the upper limit we get o(K, f) < o;. Which leads a contradiction and this shows the

result.



Mohammed Harfaoui / Theory and Applications of Mathematics & Computer Science 4 (2) (2014) 154—-168 163

2.2.(K, m)-type of f with respect to the proximate order

For the entire functions infinite order we introduce the notion of m-order defined by:

. log"! (Mk(f. 1))
Pm = limsup

) 3.14
r—+00 log(r) ( )

for m > 2. The function f is said to be of index-pair (m, 1) if p,,.; = +oo0 and p,, < +oco. The
number p,, is called the m-order of f.

Definition 3.3.
If p(r) is a proximate order associated to the m-order p,,, the (K, m)-type with respect to the
proximate order p(r) is defined by:

log" (Mk(f, )
rp(”)

(K, ) =limsup (3.15)

r—+00

+00
Let f = Z fi(f).Ay the development of f with respect to the sequence of extremal polynomi-

k=0
als.

Theorem 3.3.
The (K, m)-type of f with respect to the proximate order is given by the formula:

Pl (3.16)

: m— P
(K, f) = limsup (¢(log" (s))7e) | fi
k—+00
form > 2.

Proof of theorem 3.3. )
Put p,, = p and o = lim sup (go( log[m](sk))rk) | fi

k—+00

Show that 0,(K, f) < 0.
We have for every € > 0 there exists &y such that for every k > ky

o/ sk

m— /s
e(log" s fi] ™ < o' + e, (3.17)
thus
My(f.r) < C s"“+i|flllA I, + i( AR ) (3.18)
k(1) = Cor™ k- 1Aklg ) T .
k=0 > k=ko+1 ()D(log[ 2](Sk))

For -y > o we have

1/p 1/p )
ag + € Sk Sk o + €\ W(sy)
< — k
( ). ——) .supe™™,

@(log" () B o/ +e kk

where
Y(x) = xlog(r) + xlog (0'1/p + €) + xlog (¢( 10g[m_2](x))-
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The solution x, of the equation ¥’ (x) = 0 verify, for r sufficiently large (r > r;)
P(x,) < e.exp™ (1 + €).6°*.r"""), where § = (0'* + €).e°

therefore
My(f,r) < Cor’*® + A.e?™) where A is a constant.

log"™! (Mk(f,7)
rP(F)

This gives lim sup < 0 and since this is true for every o; > o then

r—+o0o

1Og[m] (MK(f, r) <o

lim su <
7P(r)

r—+00

Show now that o, (K, f) > 0.
By definition of 0,(K, f) we have for every € > 0 there exists ry(€) such that for every r > ry(€)

M(f.7) < exp™ |(ou(K. ) + €)(r0)], and 0 > 1,

thus

|fk|.7zk < C).supexp’ ¥,
k>k0

where -
W(x) = —selog (;—) + exp” I [(ou(K, f) + €)(r0)7].

For r sufficiently large the solution of the equation ¥’ (x) = 0 verify
_ 1 . _ 1
15[,,1_2](sk(/B - 1)) < (ow(K, f) + €)™’ < E[ml_zl(sk(/—) +1)). (3.19)
Using the relation (3.19) an elementary calculus gives

1 1
Ifkl.r,ik.so(E[;;_z](m; = 1) < (Gu(K. f) + &) exp™ ] [E;;_Z](su; + D)) (3.20)

Therefore passing to the upper limit and using the propriety of the function x — Ej,_»(x) we
obtain the result.

4. Best polynomial approximation in terms of L”-norm.

The object of this section is to study the relationship of the rate of the best polynomial approx-
imation of f in L”-norm with the -growth with respect to the proximate order of an entire function
g such that g/x = f.

More precisely we show the following theorem:
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Theorem 4.1.

If p(r) is a proximate order for pand f and let f € LP(K,u) for p > 0. Then f is u-almost-
surely the restriction to K of an entire function in C", fi, of finite nonzero order p and K-type
o(K, f1) €]0, +005 with respect to the proximate order p(r) for p if and only if

o(K, fi) = % lim sup (@(k)Y’ (&), 4.1)

k—+00

where ¢ is the inverse function of the function r — " = y(r).
We have so y(r) =y © ¢(y) =r.

Proof of theorem 4.1.

Suppose that f is u-almost-surely the restriction to K of an entire function in C”", fi, of finite
nonzero order p and K-type o (K, fi) €]0, +005 with respect to the proximate order p(r) for p. We
have f; € L*(K, ) and

fl = +Zookak
k=0

Putc = —— lim sup (()D(Sk)Tk)p.| s
€.0 fotoo

By the relation (92) for p > 2 and the relation (96) for p € [1,2[ of the paper of M. El Kadiri
and M. Harfaoui (see (Kadiri & Harfaoui, 2013))

(eCs0)) Ol Y™ < A ™ (e(s0)) (1 + ey (&Y™ (4.2)
then .
(etome) WD < (o) Whry ™ () 43)

By the relation 3.6 we have

()" < @ Iyt + 077 4 ] -

But ’ . O 0/ Sk
o’ = lim sup (go(sk)) .(vk.|fk| = e.p.0.

k—+o00

Thus, for k sufficiently large

"\1/p Sk
QO(Sk)-(Vk-|fk|)I/Sk < (0_,)1/,0 +eo Vk.|fk| < [%]

Hence for every j € N;
(0")1/‘0 + G]Sk+_/

Vk+j-|fk+j| = [ O(Sk+j)
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Then, if we put S = (1 + e)sk.vk.|fk + (1 + €)%+ .vk+1.|fk+1...., we have

o +e
S < 3k+/ k+j
Z ) 90(5k+j) ]

which is equivalent to

< [(O’)l/p + E]Sk i(l + 6)5k+j [(0")]//’ + E]Sk+j [Qp(sk)]Sk ]skﬂ-

©(Sk+ ) j=0 [(0) Ve + €] ™ [Sp(sk+j)]s“j
or i
J Sk
e 4 s @)+ el [etso)
S P CelaX i L
QD(Sk) (O') lo + 6] [go(sk + J)] +
Since M < 1 we get also
@(sk + )
(O_/)l/p + € Sk +00 N1/p "
s<a +e)‘”‘.¥. 1 +e).(”)—.6]1
o(si) ‘= e())
) (0P + € .. . .
As for k sufficiently large o) < 1 the series is convergent to a finite sum L and we will get
Pkt J
finally

(aHVP + e]p

1/sk S s
(&) < +er@) .Lrrv| o

which equivalent to
'Y V4 1 s 0 olsk pls \1/p
(s (&) <A +ef Ay LI (o) + &).

Passing to the upper limit get

oK, fi) = Lp lim sup (¢(k))".(E))° * < o

k—+00

Conversely, suppose now that f satisfies the relation 4.6. We show the result by three steps.
If f € LP(K,u) with p > 2 then f € L*(K,u) and we have Z frAr with convergence in

=0
L*(K, i), where

1 _
ﬁcz—szAk (kZO)
Vk K

We verify easily by the relations 3.3, 3.6 and the inequality (B.M):

. /s .
h/fn sup (go(sk)Tk)p.| fk|p e h/fn sup (p(k))°.(E) . 4.5)
—+00 —+00
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By this inequality the series fiAi considered in C" converges normally on every compact
of C”" to a function denoted f; by the inequality (B.M) and the inequality of the coefficient of |f;|.
We have obviously f; = f u-a.s on K and the proof is completed by the theorem3.1.

1
If p € [0, 2[ we take p” such that — + — =1, then p” > 2. Applying the previous arguments of

the first step to p” and Holder and Bernstein inequality we obtain the result.

If 0 < p < 1, of course, for 0 < p < 1 the L,-norm does not satisfy the triangle inequality.
But our relations (4.2) and (4.3) are also satisfied for 0 < p < 1 (see (Harfaoui & Kumar, 2014)),
because using Holder’s inequality we have, for some M > 0 and all » > p (p fixed)

I f ek < Mol f g -

Using the inequality

p-r r
lefldeSIlfllK .fK|f| di

we get

1-(r/p) /
I e <IN W -

We deduce that (K, u) satisfies the Bernstein-Markov inequality. For € > 0 there is a constant
C = C(e, p) > 0 such that, for all (analytic) polynomials P we have

| Pllx< C(A + €aegry- | Pllirkp -

Thus if (K, u) satisfies the Bernstein-Markov inequality for one p > 0 then (4.2) and (4.3) are
satisfied for allp > 0.
The rest of proof is easily deduced using the same reasoning as in step.1 and step.2

Theorem 4.2.

If p(r) is a proximate order for p,, €0, +oo[ (m > 2), and f and let f € LP(K, i) for p > 0. Then
[ is p-almost-surely (u-a.s) the restriction to K of an entire function in C", fi, of finite nonzero
m-order p,, and (K, m)-type o,,(K, f1) €]0,+005 with respect to the proximate order p(r) for p if
and only if

(K. f) = lim sup (@((log" k) " (&)Y, (4.6)

k—+00

where @ is the inverse function of the function r — ) = y(r).
We have so y(r) =y & ¢(y) =r.

Proof of theorem 4.2.
The theorem can be proved on similar lines as those of the proof of the theorem 4.1 because
the relations (4.2) and (4.3) are still valid by iteration of logarithm . Hence we omit the proof.
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Abstract

A single valued function of one complex variable which is analytic in the finite complex plane is called an entire
function. In this paper we would like to establish the bounds for the moduli of zeros of entire functions on the basis
of slowly changing functions.
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1. Introduction, Definitions and Notations.

Let
P(2) = ap+ a12+ ar2* + G320 + oo + Ay 27+ a2 lan] # 0

be a polynomial of degree n. Datt and Govil (Datt & Govil, 1978); Govil and Rahaman(Govil &
Rahaman, 1968); Marden (Marden, 1966); Mohammad (Mohammad, 1967); Chattopadhyay, Das,
Jain and Konwer (Chattopadhyay, 2005); Joyal, Labelle and Rahaman (Joyal, Labelle & Rahaman
1967) Jain (Jain, 1976), (Jain, 2006) Sun and Hsieh (Sun & Hsie, 1996); Zilovic, Roytman, Com-
bettes and Swamy (Zilovic, Roytman); Das and Datta (Das & Datta, 2008) etc. worked in the
theory of the distribution of the zeros of polynomials and obtained some newly developed results.

In this paper we intend to establish some sharper results concerning the theory of distribution
of zeros of entire functions on the basis of slowly changing functions.

The following definitions are well known :

*Corresponding author
Email addresses: sanjib_kr datta@yahoo.co.in (Sanjib Kumar Datta), dcpramanik@gmail . com (Dilip
Chandra Pramanik)
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Definition 1.1. (Valiron, 1949)The order p and lower order A of an entire function f are defined

as

2l m 2l m
o = lim supogl—(r’f) and 1 = limin fgl—(”f)’
oo ogr r—co ogr

where log[k] X = log(log["_“ x) for k=1,2,3,... and log[o] X=X

Let L = L(r) be a positive continuous function increasing slowly i.e., L(ar) ~ L(r) asr — oo
for every positive constant a. Singh and Barker (Singh & Barker, 1977) defined it in the following
way:

Definition 1.2. (Singh & Barker, 1977) A positive continuous function L(r) is called a slowly
changing function if for £ (> 0),

1 L
S L((kr};) <k® forr>r(e) and

uniformly for k(> 1).

If further, L(r) is differentiable, the above condition is equivalent to lim ’i(g) =0.
r—o0

Somasundaram and Thamizharasi (Somasundaram & Thamizharasi, 1988) introduced the no-
tions of L-order and L-lower order for entire functions defined in the open complex plane C as
follows:

Definition 1.3. (Somasundaram & Thamizharasi, 1988) The L-order p* and the L-lower order A*
of an entire function f are defined as

[2] M 21 pg
" = lim sup—(rf) and A" =liminf g—(rf)
roe log[rL(r)] roc  log[rL(r)]

The more generalised concept for L-order and L-lower order are L*-order and L*-lower order
respectively. Their definitions are as follows:

Definition 1.4. The L*-order p* and the L*-lower order A*" of an entire function f are defined as

(2] [2]
L og ™ M(r, f) og ™ M(r, f)
e e

2. Lemmas
In this section we present some lemmas which will be needed in the sequel.
Lemma 2.1. If f (2) is an entire function of L-order p*, then for every & > 0 the inequality
N(r) < [rL(r)]pL+8

holds for all sufficiently large r where N (r) is the number of zeros of f (z) in |z| < [rL(r)].
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Proof. Let us suppose that f(0) = 1. This supposition can be made without loss of generality
because if f (z) has a zero of order ‘m’ at the origin then we may consider g (z) = c- f (Z) where c is
so chosen that g (0) = 1. Since the function g (z) and f (z) have the same order therefore it will be
unimportant for our investigations that the number of zeros of g (z) and f (z) differ by m.

We further assume that f (z) has no zeros on |z| = 2[rL(r)] and the zeros z;’s of f(z) in |z <
[rL(r)] are in non decreasing order of their moduli so that |z;| < |z;41]. Also let p’ suppose to be
finite.

Now we shall make use of Jenson’s formula as state below

2n

log|f (0)] = Z log ot —ﬂ log ‘ (R e*f’)' de. 2.1
0

Let us replace R by 2r and n by N (2r) in (2.1).

NQr) 2

~ log | (0)] = Zlog—+—ﬂ log‘f(2rei¢)'d¢.

Since f(0) = 1,.. log|f (0)] =log1 = 0.

2 1 ,
" Z log i —flog 'f(2r e‘¢)‘d¢. (2.2)
Ll 2
0
N(Q2r) N(r)
LHS. = lo > Y log L > N (r)log?2 (2.3)
Z g Z | Z g g
because for large values of 7, log > log2.
2m 2n
1 ; 1
RHS = — f log|f (2r ¢*)|d < = f log M (2r)d¢ = log M (2r). 2.4)
2n 2n
0 0

Again by definition of order p* of f (z) we have fore every & > 0, and as L (2r) ~ L(r),
log M (2r) < [2rL2A)F "> log M (2r) < [2rL(r) /. (2.5)
Hence from (2.2) by the help of (2.3), (2.4) and (2.5) we have
N (r)log2 < [2rL(r) "

2p +a/2 [I’L(I’)]p +& +£
N(n) < log2  [rL(n¥? = <lrLor

This proves the lemma. O]
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In the line of Lemma 2.1, we may state the following lemma:

Lemma 2.2. If f (2) is an entire function of L*-order p* , then for every & > 0 the inequality
N(r) < [reL(’)]pL*“;
holds for all sufficiently large r where N (r) is the number of zeros of f (z) in |z < [re™"].

Proof. With the initial assumptions as laid down in Lemma 1, let us suppose that f(z) has no
zeros on |z] = 2[re’”] and the zeros z;’s of f(z) in |z] < [re””] are in non decreasing order of their
moduli so that |z;] < |zi+1]. Also let p~” supposed to be finite.

In view of (2.1), (2.2), (2.3) and (2.4), by definition of pl and as L(2r) ~ L(r), we get for
every € > 0 that

L*+g/2

log M (2r) < [2re"®Y" +2 ie. log M(2r) < [2re 7Y
Hence by the help of (2.3), (2.4) and (2) we obtain from (2.2) that

2p1‘* +g/2 [reL(r)]pL* +e
log2  [rL(r)]¢?

N (r)log2 < [2re"" P 2 N () < < [re " .

Thus the lemma is established. OJ

3. Theorems
In this section we present the main results of the paper.

Theorem 3.1. Let P(z) be an entire function defined by

P =ap+aiz+amz> + ...+ a7 + ...

with L-order pt. Also for all sufficiently large r in the disc |z| < [rL(r)], |aN(,) # 0, lag| # 0. and

also a, — 0 as n > N(r). Then all the zeros of P(z) lie in the ring shaped region

where t, is the greatest positive root of

g(1) = |ane| VO - (|aN(r)| + M) NO LM =0

and 1}, is the greatest positive root of

f@) = laol " = (jagl + M) + M" = 0

where M = max{laol Saal, ... |aN(r),1|}

b

and M’ = max{|a1| Jasl s ... |aN(r)
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Proof. Now

P(D)~ay+az+ a2z2 + ...+ aN(r)ZN(r)

because N(r) exists for |z| < [rL(r)]; r is sufficiently large and a, — 0 as n > N(r). Then all the
zeros of P(z) lie in the ring shaped region given in Theorem 3.1 which we are to prove.
Now

|P(2)| ~ |a0 + a1z + a7+ .+ aye”

|N(r) _

N(r)—l| )

2
2 |aN(r) |Z |a0 +a1z+a7 + ...+ an-12

Also

a0 + @12+ @27 + o+ a1 Y < gl + o fangr| IO < M (14 ]+ 1Y)

"

Therefore using (3.1) we obtain that

N(r)
N 2 N(r)-1 N |2 -1
IP@)| 2 anm| "7 = |ao + a1z + @2 + ... + an-12V77Y > |an| 11V - M—|Z| 1
Hence
|Z|N(r) -1
IP@)| > Oif |ane| 1" - M—| T 0
Z —
N(@)
. Z -1
1.€., if |ClN(r) |Z|N(r) > Mllll—1
Z —

i.e., if |61N(r) |Z|N(r)+1 — |aN(r) |Z|N(r) >M (lle(r) _ 1)

Le., if |ane| 12V = |aye| 1IN = M 12V + M >0
iie..if Jane| 1" = (Jae| + M) 1" + M > 0.
Th i N(r)+1 N() .
erefore on |z] # 1, |P(2)| > 0 if |aN(,) |Z] - |aN(,) + M) |z|"" + M > 0. Now let us consider
_ 1 N
8(t) = lane| 7" = (Jan| + M) + M = 0. (3.2)

Clearly the maximum number of changes in sign in (3.2) is two. So the maximum number of
positive roots of g(t) = 0 1s two and by Descartes’ rule of sign if it is less, less by two. Clearly
t = 1 is one positive root of (3.2). So g(t) = 0 must have another positive root #;(say).

Let us take ty = max{1,t,}. Clearly for ¢t > #y, g(t) > 0. If not, for some ¢ = t, > 1y, g(t,) < 0.

Now g(t;) < 0 and g(co) > 0 imply that g(¢) = 0 has another positive root in (#,, o) which gives a
contradiction.

Therefore for ¢ > 1y, g(t) > 0 and so fp > 1.

Hence |P(z)| > O for |z| > 1.

Therefore all the zeros of P(z) lie in the disc |z] < 1. 3.3)
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Again let us consider

1 ai ane -
0(z) = szP( ) ~ {ao I _r} = apz"” + "7+ L+ g

Z Z cose ZN(V)
Le., 10@)] > laol [z = |@i2" ™" + ... + awgy| for Izl # L.
Now
|l 2O + o+ ane| < lanl 12V + L+ ay, | < M (|z|N(’)‘1 ot 1)
/ |Z|N(r) -1
=M ||—1 for |Z| # 1. (34)
|-

Using (3.4) we get that

. 1N -1
0@ = lagl " — a2 + .. + awg| = laol 12 — M (—_1 for 2| # 1.

Therefore for |z| # 1,

NGO _
10@)| > 0if lagl lzI"" — M’ (klm—_l) >0

|Z|N(r) -1
ie., if |aol |z > M’ | —+—
lz| - 1

ie., if laol |z = aol 121N — M |2V + M’ > 0

i.e., if laol |z = (laol + M") |21V + M’ > 0.
So for |z] # 1, |Q(2)] > 0 if |aol |2V = (lag) + M?) |7V + M’ > 0. Let us consider
@ = laol " = (laol + M) " + M’ = 0.

Since the maximum number of changes of sign in f(¢) is two, the maximum number of positive
roots of f(¢) = 01is two and by Descartes’ rule of sign if it is less, less by two. Clearly # = 1 is one
positive root of f(¢) = 0. So f(#) = 0 must have another positive root #, (say).
Let us take #), = max{l1,1,}. Clearly for ¢ > 1, f(¢) > 0. If not, for some 13 > £, f(z3) < 0. Now
f(t;3) < 0 and f(c0) > O implies that f(#) = 0 have another positive root in the interval (z3, o)
which is a contradiction.
Therefore for 7 > 1, f(z) > 0.
Also 7y > 1. So |Q(z)| > O for 2] > 1.
Therefore Q(z) does not vanish in [z| > #.

Hence all the zeros of Q(z) lie in |z| < ;.
Let z = zg be a zero of P(z). Therefore P(zy) = 0. Clearly zo # 0 as ay # O.

Putting z = % in Q(z) we get thatQ (%) = (ZLO)NU) P(zp) = (%)Nm .0 = 0. Therefore Q( ) = 0. So

L
20
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z= % is a root of Q(z) = 0. Hence ‘%‘ < 1 implies that |zo| > .
0
As 7y is an arbitrary root of P(z) = 0.

Therefore all the zeros of P(z) lie in |z| > 3.5

X =~

From (3.3) and (3.5) we get that all the zeros of P(z) lie in the proper ring shaped region tl <
0

lzl < f where #, and ) are the greatest positive roots of the equations g(r) = |aN(,> NO+L
(|aN(,)| + M) N+ M = 0and £(t) = |aol N7 = (lagl + M) N + M’ = 0 where M and M’ are
given in the statement of Theorem 3.1. This proves the theorem. U

In the line of Theorem 3.1, we may state the following theorem in view of Lemma 2.2:

Theorem 3.2. Let P(z) be an entire function defined by

PR =ag+ a1z + az> + ... + ayz" + ...

with L*-order p* . Also for all sufficiently large r in the disc |z] < [re*™], |aN(r)
also a, — 0 as n > N(r). Then all the zeros of P(z) lie in the ring shaped region

# 0, |ag| # 0. and

- < |Z| <0
0
where t is the greatest positive root of
_ 1
g(l) = |aN(r)| IN(r)+ - (|CZN(r)| + M) IN(r) +M=0
and 1, is the greatest positive root of
f@ = laol ! = (aol + M) " + M =0

where M = max{laol Sail, ... |aN(,)_1|}

.

and M’ = max{la1| Saol, ... |aN(,)
The proof is omitted.
Theorem 3.3. Let P(z) be an entire function defined by
PR =ap+aiz+ amz* + ..+ a7 + ...

with L-order p*, anyy # 0, ap # 0 and also a, — 0 for n > N(r) for the disc |z| < [rL(r)] when r is
sufficiently large. Further, for p* > 0,

L\N LAN(r)-1 L
laol (") = Jay| (VO = L > |aN(r)—1|p > |aN(r)

Then all the zeros of P(z) lie in the ring shaped region

1 1
—) <l < p (1 LS (pL)N(’)).

|aN<r>
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Proof. For the given entire function
P(2) = aop+ ajz+ arz> + .. + a2 + ...

with @, — 0 as n > N(r), where r is sufficiently large, N(r) exists and N(r) < [rL(r)]pL“.
Therefore

P(z) ~ ag + a1z + > + ... + ayp2 "

asap # 0,ay.) # 0 and a, — 0 forn > N(r).
Let us consider

R(z) = (PL)N(r)P(i) (PN (a + ali +a,—— z +ay L(r))
P pt Tl T T NN
= (ao(pL)Mr) +ay (PO 4+ aN(r)ZN(r)).
Therefore
IR@)| 2 |ane| 1217 = |ao(@N? + a1 (0O 2+ .. + angy-1p"2¥ 07| (3.6)

Now by the given condition |ag| (0X)N" > |a;| (pP)NP~! > ... provided |z| # 0,we obtain that
L\N L\N(9-1 L_N()-1 L\N Ly N1
|Cl0(p ) ") + al(p ) ") Z+ ...+t anp-102 ® | < |(10| (p ) ) + ...+ |aN(r)_1|p |Z| )

o[ 1 1
< laol ")V Iz |N<)(| R Ile(’))'

Therefore on |z] # O,

1 1
L\N L\N(r)-1 L_N()-1 L\N() [N
= |as@ N + a (@ 'z + .+ ano1p" N7 = = laol (@)Y 12N (E oot | |N(r))’ (3.7)
z

Therefore using (3.7) we get from (3.6) that

1 1
N(r) _ L\N(r) N | —
12M — Jaol (o) k|(m+m+mWJ

1 1
N I\N N
|a®—mmn“mﬂﬂ—+m+ Wy + )

|z] ||

IR2)| > |an)

> |ClN(r)

o 1
N L\N
= 12" |anc| = laol (@"** Z—k ]
k=1 |zl

1

Clearly Z o is a geometric series which is convergent for < 1l i.e., for |z] > 1 and converges

tol 1o = . Therefore Z i

e |z if |z] > 1. Hence we get from above that for |z| > 1|R(z)| >

IZI 1
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1
>0
Izl—l)

1
=P aol g 2 0

|610|
|z| -

a
le lf |Z|_1>(p )N(r) | 0|
an)

a
ie.,if |7 > 1+ ()Y = laol oy
ane)

N(r) (

12" (lanes| = 0¥ lag| L) - Now for || > 1,

— ("N |ay|

IR > O if [z (Iam

Le., if |ay

ie., if |aN()| > (oMM ——

Therefore |R(z)| > 0if |z] > 1 + (pL)le laol mt So all the zeros of R(z) liein |z] < 1 + l'“O' (LN D,

aAN(r)
Let zo be an arbitrary zero of P(z). Therefore P(zp) = 0. Clearly zy # 0 as ag # 0. Putting z = p*z,
in R(z) we have R(p%z) = (0X)N.P(zp) = (oH)NV.0 = 0.

Hence z = plz is a zero of R(2). Therefore|p z0| < 1+ '“0' (pL)N Mie., |zl < # ( a'i?')| eHY (’)).
Since zj is any zero of P(z) therefore all the zeros of P(z) he 1n
1 a
2l < — ool eyn] (3.8)
P |CZN(r)
Again let us consider F(z) = (pf)NOV (’)P( ) Now F(z) = (pH)NO N0 p (p%z)
~ (pL)N(r>ZN(r) {ao + /;lle S T + (pc:g’;,m} = ao(pL)N(’)ZN(’)+a1(pL)N(’)_1ZN(r)_1+...+aN(r)- There-

N — _
fore [F(@)] > laol (0" 2 — |ar (0D OO 4+ a,

. Again

L\N(r)-1_N(r)—-1 L\N(r)—1 N(r)—-1
|ar (VOO v | < lanl NN YO + L+ Jawe

L -1 N(r)-1
<larl PO (1N L+ e+ 1)

provided |z] # 0. So |al(pL)N(r)‘l NO-T 4+ aney
l2l # 0.JF(2)| = laol (0™ 12" ~ lay| (pL)N“) el (et i)

Izl

= (LN |7V [|a0|pL — |ay| (|Z| ot o |N<’))] . Therefore for |z] # 0,

NI
< larl YO YO (& + . + s - So for

(o)

1
laol o = lar] ) e
<

k=1

IF@)I > ("N 2" (3.9)

The geometric series Z o is convergent for i < li.e., for |z] > 1 and converges to
k=1

I 1 1

Izll—ﬁ N
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Therefore

S 1
Z_k = if [zl > 1. (3.10)
el <

Using (3.9) and (3.10) we have for |z| > 1, [F(z)] > (LN~ [z7V" [|a0|pL - ll‘l‘—_‘ll] Hence for
Izl > 1,

i 12V (ol |

ie., if |ao| p* >
lz| -1

la|

lao| p*

re,if |z > 1+ > 1.

Therefore |F(z)] > 0 for |z > 1 + 24 So F(z) does not vanish in |z] > 1 +

lail
laolo® laglo™
lail

the zeros of F(z) liein |z] < 1 + Tl Let z = 7y be any zero of P(z). Therefore P(zy) = 0. Clearly
ag # 0and zy # 0.
N(r)

. N(r)
Now let us put z = ,£>+Z() in F(z). So we have F(p%zo) = (pkV® (p%zo) P(z9) = (1) .0=0.

20

. Equivalently all

Therefore z = ;)L%o is a root of F(2).

Hence
1

przo

. 1 L( |a1| )
e, —<p |1+
|zl lao| o~
ie., |zo| > ———.
L a1
P (1 + Iaol,UL)

As 79 is an arbitrary zero of P(z), all the zeros of P(z) lie on

|ai]

lao| ot

2| > (3.11)

pH(1+ o)

From (3.8) and (3.11) we get that all the zeros of P(z) lie on the proper ring shaped region

W < |Z| < l% (1 + %@L)N(r)) where |a()| (pL)N(r) > |a1| (pL)N(r)_l > .= |aN(r) for pL > 0.
P\ "

laole

This proves the theorem. []

In the line of Theorem 3.3, we may state the following theorem in view of Lemma 2.2 :
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Theorem 3.4. Let P(z) be an entire function defined by
PR =ap+aiz+ amz> + ..+ a7 + ...

with L*-order p*, anyy # 0, ap # 0 and also a, — 0 for n > N(r) for the disc |z| < [re "] when r
is sufficiently large. Further, for p* > 0,

* * -1 *
laol (0" )V = lay | (" VO > 2 |awer- | 0" 2 |awe

Then all the zeros of P(z) lie in the ring shaped region

1 .
<zl < - (1 n laol (pL )N(r)].
P

|aN(r)

L* lai]
P (1+ o)
The proof is omitted.

Corollary 3.1. From Theorem 3.3 we can easily conclude that all the zeros of
P2 =ap+aiz+..+a,7"

of degree n, |a,| # 0 with the property |ag| > |a;| > ... > |a,| lie in the proper ring shaped region

1
—— <7< (1 + |a0|)
(1 + M) |a

just on putting p- = 1.
Corollary 3.2. From Theorem 3.4 we can easily conclude that all the zeros of
P)=ay+aiz+..+ a,z"

of degree n, |a,| # 0 with the property |ay| > |a| > ... > |a,| lie in the proper ring shaped region

just on putting p* = 1.

Theorem 3.5. Let P(z) be an entire function with L-order p*. For sufficiently large values of r in
the disk |z| < [rL(r)], the Taylor’s series expansion of P(z)

P(R) = ay + a,, 2" + a,z’” + ...+ a,, 7" + anp ", ao # 0
be such that 1 < py < p,... < pm < N(r) = 1, p;’s are integers and for p* > 0,

laol @V > |ay, | @Y > . = [a,, | (0EVO
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Then all the zeros of P(z) lie in the proper ring shaped region

1
< |Z| < —1y
Py p*

where ty and t; are the unique positive roots of the equations

g = |aN(r)| NP |aN(r)| NPl _ lao| (pL)N(r) =0and
£@) = laol (H) 1 — laol (1) ™' ~|a,, | = 0

respectively.

Proof. Let

P(z) =ap+ ap 7" + ...+ a,,2" + anin?" ", lane| # 0. (3.12)

Also for pt > 0, |ag| (o")N?) > |a,,1| (EHNOPr > > |aN(,) . Let us consider

R(z) = (L0 P 2 = (pLyV® b zPm N0
(2) = (p) oL =(p") Qo+ ap oy o D

T ane T
by NGO
— ao(pL)N(r) + apl(pL)N(r)—Plzpl + .+ apm(pL)N(F)—PmZPm + aN(r)ZN(r)'

Therefore
IR@)| = |anya" | = |ao@" ) + ap, (0772 + L+ @y, (NP (3.13)
Now for |z] # 0,

|a0(pL)N(r) + apl(pL)N(r)—Plzpl + .+ apm(pL)N(r)—PmZPm|
L N L N — L N ~Fm m
< laol (@ + |ap, | @O 2P+ L+ ay, | (0O (2

L N m
< laol (@) (1 + 12 + ... + I2")

1 1 1 1

_ L\N(r) | |pm+1
= |a Z — 4.+ + + . 3.14

| Ol (p ) | | (lzl |Z|Pm+1—l’2 |Z|I7m+1—l71 |Z|pm+1 ) ( )

Using (3.13) and (3.14), we have for |z] # 0
R 2 Janeo] 127~ laol (@1 24t b
= N(r) 0 |Z| |Z|Pm+1—Pl |Z|pm+1
> |ango| 1IN = laol (0")N 21! Ly oL L.
N(r) 0 |Z| |Z|Pm+1—171 |Z|Pm+1
1

= |aneo 12" = laol (017" > (3.15)

—.
k=1 Iz]
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The geometric series Z o is convergent for < li.e.for |z| > 1 and converges to l;—ll% = |z|+l
TH

Therefore Z lk = Izl_—l for |zl > 1.Soon |z > 1,

mt1
|Z|N(r) _ |Cl()| (pL)N(r) |Z|p "

IR(2)| > Oif |awg) A= >0
|Cl()| (pL)N(r) |Z|Pm+1

ie., if |aym|lzV >

| ( )| |Z| -1
. . N 1 N LN\NN m+1
ie., if |aN(,) |V — |a1v(r) 1™ > |aol (") |2
: : m+1 N(r)—pm N(r)=pm—1 LN
ie., if |zP* (|aN(r) |z NP — |aN(r) 2N O7Pn = — | (o) (r)) 2 0.

Let us consider g(f) = |aN(,) [¢|N =P — |aN<,)| eVt gl (BN = 0. Clearly g(f) = 0 has one
positive root because the maximum number of changes in sign in g(¢) is one and g(0) = — |ao| PV
1s —ve, g(o0) is +ve.
Let 1y be the positive root of g(t) = 0 and #, > 1. Clearly for t > #,, g(t) > 0. If not for some #; > 1o,
g(r) <0.
Then g(#;) < 0 and g(co) > 0. Therefore g(#) = 0 must have another positive root in (¢, co) which
gives a contradiction .
Hence for ¢ > 1y, g(t) > 0 and 7y > 1. So |[R(z)| > O for |z| > t,.
Thus R(z) does not vanish in |z| > 1.

Hence all the zeros of R(z) lie in |z| < 1.

Let z = 7o be any zero of P(z). So P(z) = 0. Clearly z5 # 0 as ay # 0. Putting z = p’z, in R(z)
we have R(p*zy) = (01N . P(zp) = (01)N".0 = 0. Therefore R(pLzO) = 0 and so z = ptzy is a zero
of R(z) and consequently |p zO| < to which implies |zo| < I . As z¢ is an arbitrary zero of P(z),

1
all the zeros of P(z) lie in |7| < —i. (3.16)
0

Again let us consider F(z) = (pf)NOV (’)P( ) Now

1 1 1
— (pLyN() NG _ - _
F(z)=(")""z .{ao +ap, PO + ot ap, Do + ay (pL)N(r)ZN(r)}

= ao(pL)N(V)ZN(r) + am(pL)N(r)—mZN(r)—m + .+ apm(pL)N(r)—meN(r)—pm + ane.-
Also

|ap (pL)N(r)—plzN(r)—pl +..+a, (pL)N(r)—meN(r)—pm + aye
. .

L N - N - L N —Fm N “Fm
< |Clp1|(,0 ) (N-p1 Izl M-pr 4 4 ap,,,|(p ) (N-p, I2 r)=pm 4 |aN(r)|

< |Clp1| (pL)N(r)—Pl (|Z|N(r)—171 + |Z|N(r)—172 + o+ |Z|N(r)—p,,, + 1).
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So for |z] # 0,
IF(2)| > |aol (pL)N(r) |Z|N(r) _ |apl(pL)N(r)—P1ZN(r)—P1 + .+ apm(pL)N(r)—PmZN(r)—Pm + ang

L\N N INN(r)— N()- N(r)— N)=pm
> lag| () () Izl (r)_|ap1|(P) (N-p1 (lzl (N-p1 + Iz] (N=p2 + ..+ =pm 4 1)

1 1 1
N(r) |, |N(r) N(r)=p1 | N(r)—p1+1 I -
= laol 0" 2" = |a [ (0" I (|z| e ot |Z|N<r>_m+l)

i.e.,onlzl #0, |[F(2) > lag| (0H)V oM - |ap1| (PN O=Pr | N=pi+] (kzl Izl") The geometric series

Z o is convergent for = < lie., for |zl > 1 and converges to —

IZI—1

|| . Therefore Z Lk =

@
for |z] > 1. Therefore for |z > 1

IZI

1
L\N() 1N EYNO=pr Nt
F@L > laol 0V V) — [ay, | (oM Ve (Izl—l)

| |z]

N(r)—-p1+1
2] -1 )

L\N(r)- L N
= (" ((p Y laol 2 = fay,

_ _ i _ |ap1|
= (o1 ! (|ao|(PL) o - —]

lz| =1
For |z] > 1,
ie., if |Clo|(p el 1 |||a%|1
ie. if laol (01 [zl = laol (01" 127 = || = 0. (3.17)

Therefore on |z| > 1,|F(z)| > 0if (3.17) holds. Let us consider £() = |ao| (0%)"' "' —|ag| (o*)P' 7~ -
|ap]| = 0. Clearly f(z) = 0 has exactly one positive root and is greater than one. Let 7 be the
positive root of f(z) = 0. Therefore 7, > 1. Obviously if # > 7 then f(¢) > 0. So for |F(z)| > O,
|z| > 1;,. Therefore F(z) does not vanish in |z| > .

Hence all the zeros of F(z) lie in [z] < £,.
Let z = zg be any zero of P(z). Therefore P(zy) = 0. Clearly zo # 0 as ay # 0.

Now putting z = % in F(z) we obtain that F (%) = (pHN» ()LLZO)N(” P(z) = (i)N(r) P (zo)

N(r)
= (ZO) "0 = 0. Therefore z = - 1s a zero of F(z). Now |pL ‘ <tie., ‘ ‘ < plf ice.,| zol > 7
As z¢ 1s an arbitrary zero of P(z) therefore we obtain that

1
all the zeros of P(z) lie in |z| > (3.18)
P

l./

0
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Using (3.16) and (3.18) we get that all the zeros of P(z) lie in the ring shaped region p%t, < |zl < [%
0

where 1, 1, are the unique positive roots of the equations g(7) = 0 and f(¢) = 0 respectively whose

forms are given in the statement of Theorem 3.3. This proves the theorem. [

In the line of Theorem 3.5, we may state the following theorem in view of Lemma 2.2 :

Theorem 3.6. Let P(z) be an entire function with L*-order p* . For sufficiently large values of r in
the disk |z| < [re""], the Taylor’s series expansion of P(z)

P(z) = ap + ap, 2" + ap,z” + ... + a,, 2" + anep?* ", ao # 0

be such that 1 < py < p,... < pm < N(r) — 1, p;’s are integers and for p© > 0,
L*\N L*\N(r)— L\NN(r)=pm
laol (0" > |ay, | (0" > > ay, | 5V,

Then all the zeros of P(z) lie in the proper ring shaped region
1

P L

1
<lzl < —to
P

where ty and 1) are the unique positive roots of the equations

8(0) = ane| 7P~ aye | MO~ Jaol (o) = 0 and
F® = lagl (@) 7" = lagl (") 7" = |a,, | = 0

respectively.
The proof is omitted.

Corollary 3.3. In view of Theorem 3.5 we may state that all the zeros of the polynomial P(z) =
ap + ap 2’ + ... +a,, 2’ + a," of degree n with 1 < py < p, < ... < p, <n—1,p;’s are integers
such that

lagl > |a,| > ........ > |ayl
lie in ring shaped region

1
t_’<|zl<t0
0

where 1y, 1, are the unique positive roots of the equations
= “FPm - m_l —
8(0) = lay| """ = la,| """~ = |ag| = O

and
_ -1
f@®) = laol ' = laol "' = |a,,| = 0

respectively just substituting p* = 1.
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Corollary 3.4. In view of Theorem 3.6 we may state that all the zeros of the polynomial P(z) =
ap + ap 2’ + ... +ap,, ' + a," of degree n with 1 < py < p, < ... < p,, < n—1,p;’s are integers
such that

laol > |a,| > ........ > |ayl
lie in ring shaped region
1
t_’ < |Z| < t()
0

where 1y, t, are the unique positive roots of the equations
= “FPm - m_l —
g(0) = lay| """ = la,| """~ = |ag| = O

and
_ -1
f@) = lagl " — lao "'~ — |ap1| =0

respectively just substituting p* = 1.
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Transform of a Correlation Function Generated from the Riemann
Zeta Function
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Abstract

In this article, the author tries to make primarity testing and factorization of integers by using Fourier transform
of a correlation function generated from the Riemann zeta function.

Keywords: Primarity testing, factorization, Fourier transform, Riemann zeta function.
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1. Introduction

In number theory, integer factorization or prime factorization is the decomposition of a com-
posite number into smaller non-trivial divisors, which when multiplied together equal the original
integer. When the numbers are very large, no efficient, non-quantum integer factorization algo-
rithm is known; an effort by several researchers concluded in 2009, factoring a 232-digit number
(RSA-768), utilizing hundreds of machines over a span of 2 years. The presumed difficulty of
this problem is at the heart of widely used algorithms in cryptography such as RSA (Rivest et
al., 1978). Many areas of mathematics and computer science have been brought to bear on the
problem, including elliptic curves, algebraic number theory, and quantum computing.

In this article, the author tries to make primarity testing and factorization of integers by using
Fourier transform of a correlation function generated from the Riemann zeta function.
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2. Frequency Spectrum of a Correlation Function generated from the Riemann Zeta Func-
tion

Riemann zeta function is an analytic function defined by {(s) = Z n~*, which can also be

n=1
given by (Hardy & Riesz, 2005).
= [ g Rels]> ) @1
= e[s , .
YTTe Jy e 1™
where I'(s) is a Gamma function.
We define the Fourier transform of z,(¢, 7) shown as
+7 )
Z,(t,w) = Tlim 7o (t, T)e " dT, (2.2)
—oo J 1

where z,(¢, 7) is a time-dependent autocorrelation function (Yen, 1987) defined by
ot 1) ={(oc—-it+7/2)-{ (0 —it—7/2)).
In this formula, *(s) is a conjugate of £(s) .

[ .t 1
From the infinite sum of the Riemann zeta function given by {(o — it) = Z explitlogn) ,

n=1 ne
have
+T > 0 1
Z,(t,) = Jim Z —expli(t+7/2)logk]- ) e - exp[~i(t=1/2)logl]e " dr
—eJ-r D I=1
+T © _
= lim exp [ ilog(k/Dt | exp [ ilog(kl)r/2]e " dr.
T—co J_p & (kl)o'
For the integer n , put n = kl , then we can write
00 1 +T .
Z,(t,w) = lim Z —exp|ilog(k/D)t] f exp (itrlogn/2)e " dr,
Toeo o 17 -T
+T , 2T sin (w -5 log n)
where f exp (itlogn/2)e™"“"dr = .
-7 (w— E logn)
When we let a(n, 1) = Z exp [ilog (k/I)t], Eq.(2) can be rewritten as
n=kl
a(n 7) 2T sin (w -3 log n) > a(n, 1)
Z,(t,w) = hm = 210 a)——logn

% log I’l) n=1 ne
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where a(n, t) is a real valued function given by

a(n, t) = % > {explilog (kD] + exp [ilog (1/k) ] } = > cos [log (k/D)¢]

n=kl n=kl
and 6(w) is a Dirac’s delta function.

Lemma 2.1. a(n, t) is a multiplicative on n .

Proof. As we can write a(n, t) = Z explilog(k/Dt] , the multiplicative property of which can be

n=kl
shown from 1
a(n.) =Y exp (it log(kz/n)) = >
kln kln

where the subscript k|n indicates integers k which divide n .
If f(n) is multiplicative, then F'(n) = Z f(d) is multiplicative. From which, we have a(mn, t) =
din
a(m, t)a(n, t) for the case when satisfying (m,n) = 1 , because k*' is multiplicative. O

From the definition of a(n,t) , we can obtain the following recurrence formula given by
(Musha, 2012).

a(p’,t) = a(p”™', ) cos(tlog p) + cos(rtlogp) (r=1,2,3,---). (2.3)
i + )l
From which, it can be proved that a(p’, f) = Sm[(,r )ilog p] 2.4)
sin(t log p)
276(0
From Eq.(3), we have Z, (t, 1log n) = n—()a(n, f).
n(T
For the integer n given by n = p%qg’r--- , we have

_ 276(0) sin[(a + 1)tlog p] sin[(b + 1)tlog ] sin[(c + 1)t log r]
e sin(t log p) sin(z log g) sin(tlog )

9

Z, (t, 1log n)

from Lemma.1 and Eq.(5).

+00

From the Fourier transform of Z, (t, 1log n) given by F,(w) = f Zy (t, 1log n) e"dt , we

can obtain the following Lemma.

Lemma 2.2. Ifn = ppaps - - pr, where py, pa, p3,- -+ , P are different primes, F,(w) is consisted
of 21 discrete spectrum.

Proof. From Eq. (4), we have

a(n,t) = 2cos(tlog py) - 2cos(tlog p,) - 2 cos(tlog p3) - - - 2 cos(tlog py).
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By the trigonometrical formula shown as cos « - cos 8 :%{cos(oz —B) + cos(a + B)} , we have

1
a(n,t) = 2> x 3 {cos[t(log pi - log py)] + cos[t(log p; + log p2)1} - 2 cos(tlog p3) - - - 2 cos(t log pr)
=2? {cos[t(log p1 — log py)] cos(tlog p3) + cos[t(log py + log p»)] cos(t log p3)} -+-2cos(tlog px)
1
= 2" x > {COS[l(log p1 —log p» —log p3)] + cos[t(log p; — log p, + log p3)]
+ cos[t(log p; + log p, — log p3)] + cos[t(log p; + log p, + log p3)] } 2 cos(tlog py) - - -2 cos(tlog pi)

By repeating the above computations, we have

2k— 1

a(n,t) =2 Z cos[ #(A;; log p1 + Aplog pyr + -+ - + Ay log pi)l,
i=1

where 4;; = +1 and 4;; = +1 or —1 for j > 1.
As log py, log p,, log p3, - -+, log p; are linearly independent over Z (Kac, 1959), thus F,(w)
is consisted of 2¢~! different spectrum. O]

Then we obtain following Theorems.
Theorem 2.1. If and only F,(w) is consisted of a single spectra for w > 0, then n is a prime.

Proof. The Fourier transform of cos(flog p) can be given by n[é(w — log p) + 6(w + log p)] , and
thus it is clear from Lemma 2.2. L

Theorem 2.2. If and only F,(w) is consisted of two spectrum for w > 0, then n has either form of

n=p-q(p#q,n=p’orn=p*.

Proof. From Theorem I, there is only a case for the integer n = p;p>--:- pr , when F,(w) is
consisted of two spectrum, thatisn=p-q (p #q) .
From Eq.(4), we have following equations for a(p’, f) ;

r=1,a(p,t) =2cos(tlogp)

r=2,a(p*,1) =1+ 2cos(2tlog p)

r=3, a(p®,1) = 2cos(tlog p) + 2 cos(3tlog p)

r=4, a(p*,1) = 1 +2cos(2tlog p) + 2 cos(4tlog p)

r=>5, a(ps, 1) = 2 cos(tlog p) + 2 cos(3tlog p) + 2 cos(5tlog p)

r==0, a(p6, 1) = 1+ 2cos(2tlog p) + 2 cos(4tlog p) + 2 cos(6¢log p)
r=17,a(p’,1) = 2cos(t log p) + 2 cos(3tlog p) + 2 cos(5tlog p) + 2 cos(7tlog p)

Including the spectra at w = 0, there are cases for r = 2 and r = 3 when a(n, f) has two
spectrum. O]
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Theorem 2.3. If F,(w) is consisted of two spectrums at frequencies w, and w, andn = p - q, we
. . . _ Wy — W _ w1 + wy
can obtain factors of an integer n given by p = exp( ) and g = exp (T) .

Proof. If n = p-q , then we obtain Z, (t,%log n) = 4"5(0)

27r5(0)

x cos(tlog p) - cos(tlogq) =

{cos[(log q — log p)t] + cos[(log g + log p)t]}.

When we letw; = logg—logp, w, =logg+log p, wehave p = exp(wz au) g = exp(w1+wz)_
O

3. Primarity Testing and Factorization from Fourier spectrum

From Theorems 2.1, 2.2 and 2.3, we can make primality testing and factorization of the integer
n consisted of two primes from the Fourier spectrum F,(w) (w > 0) by following procedures;
+00

At first, compute the Fourier transform Z,(z, ) = 2 (t, De”“dr, where 7,(t,7) = {(0 -
i(t +7/2) - (0 —i(t — 7/2)) , from which we can o_bozain the Fourier spectrum by F,(w) =
+00
fZU (t, % log n) e”™dt. Then we can make primality testing and integer factorization of an integer

n, the process of which is shown in Figure 1.

- )| F e
: ourier ourier |
Zeta function— z_{£, 1 > —(O— Ly
(1) Transform Transform i '|
|
Correlation function Frequency
2,0 = Lo —ift+2i2)-& (o-i(t-1/2) spectrum
H » = <logn

Figure 1. Process to conduct primality testing for the integer n.

From this process, we can recognize the prime as a single spectra from the frequency analysis

result. If there are two spectrum observed from the calculation result, # has either form of n = p-¢q

(p#q,n=p*orn=p’.

In this case, we can obtain factors of an integer n from Theorem 2.3.

+00

As the Fourier transform Z,(t, w) = 7o(t,7)e7dr can be computed by using discrete

FFT (fast Fourier transform) algorithm for théo calculation of Wigner distribution function (Boashash
& Black, 1987), (Dellomo & Jacyna, 1991) because Z, (¢, w) can be regarded as a Wigner distribu-
tion of the Riemann’s zeta function, we can obtain the Fourier spectrum of F,(w) by conducting
FFT calculations.
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By using this method, we can propose some possible applications which use the theory pre-
sented in this paper.

e Primary testing of large numbers such as Mersenne numbers 2" — 1 can be conducted by
using the algorithm shown in Figure 1 from the approximation, w = % log(2"-1) = 7 log2—
1/2m+] _ 1/22m+2 .

e Factorization of an integer n consisted of two primes can be conducted by using this method.
By using FFT algorithm, there is a possibility to complete the computation within a poly-
nomial time, whereas there is no known efficient algorithm that runs in polynomial time
(Ribenboim, 1991).

e Breaking the public-key crypto system, which is considered to be hard by using the conven-
tional computer systems, because the RSA crypto-system depends on the factorization of an
integer composed of two large primes.

It is also known that Fourier transform can be conducted by the quantum computer, the schematic
diagram for the quantum Fourier transform is shown in Figure 2 (Nielsen & Chuang, 2000).

i) —EHR}F —{R:HR| o)+ et
—t iy oo
i) ‘ J cered B H Ry —[0)+ 2201
‘fn} ¢ O i :_ ‘D *t,ffn'ﬂ._."” 1::

Figure 2. Schematic diagram for the quantum Fourier transform.

In this figure, H is a Hadamard gate and R; is a unitary transformation given by

1 0
Ry = [ 0 il ]

Hence it can be seen that primality testing and integer factorization of an integer n consisted
of two primes can be conducted efficiently by using quantum computation besides the notably
Shor’s integer factorization algorithm (Yang, 2002), which gives us the possibility to break the
RSA cryptosystem.
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4. Conclusion

From the spectrum obtained by the Fourier transform of a correlation function generated from
+00

the Riemann zeta function given by F,(w) = f Zy (t, 1log n) e~ “'dt, we can see the primarity of

an integer n if and only the F,(w) has a single_ spectra. Moreover we can factorize the integer n
consisted of two primes by using this method.
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Abstract

We present a new method using multiple coarse grid computsgthnique to solve one dimensional (1D) partial
differential equation (PDE). Our method is based on a fourthradideretization scheme on two scale grids and
the Richardson extrapolation. For a particular implemonawe use multiple coarse grid computation to compute
the fourth order solutions on the fine grid and all the coarg#sg Since every fine grid point has a corresponding
coarse grid point with fourth order solution, the Richamsxtrapolation procedure is applied for every fine grid
point to increase the order of solution accuracy from foorther to sixth order. We compare the maximum absolute
error and the order of solution accuracy for our new methloel standard fourth order compact (FOC) scheme and
Wang-Zhang’s sixth order multiscale multigrid method. Teamvection-difusion problems are solved numerically
to validate our proposed method.

Keywords: partial diferential equation, multiple coarse grid computation, igtitl method.
2010 MSC65N06, 65N55, 65F10.

1. Introduction

Numerical solutions of partial dfierential equations (PDES) play a crucial role in many simula
tion and engineering modeling applications, such as aigpfaanufacturinggametet al,, 1999,
auto manufacturingGerlingeret al., 1998, medical imagingKanget al., 2004, oil exploration
and productionl(i et al., 2005, semiconductorGareyet al., 1996, communicationsKim &
Kim, 2004, etc. Over the past several decades, computational mattoeams and engineers have
developed manyficient fast algorithms to reduce the computation time. Hexehe increasing
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demand for higher resolution simulations in less compuiee thas continuously challenged the
computational scientists to come up with mofgogent, scalable numerical algorithms to solve
PDEs.

In many scientific and engineering applications, such aglbieal ocean modeling and wide
area weather forecasting, the computational domains @e &d the grid spaces are not small. In
the context of the finite dierence methods, the standard second order discretizahem or the
first order upwind diference scheme yield unsatisfactory results because thepeed fine mesh
griddings to compute approximate solutions of acceptatteracy. In addition, the second order
scheme may also produce numerical solutions with nonpalsegcillations for the convection
dominated problemsSpotz 1995.

Higher order (more than two) discretization methods aresictamed to be useful to reduce
computational cost in very large scale modelings and sitiamsg, which use relatively coarser
mesh griddings to yield approximate solutions of comparalbturacy, compared with lower order
discretization. Generally, higher order discretizatiohesmes need more complicated procedures
and more preprocessing costs to construct théficent matrix. However, they usually yield
linear systems of much smaller size, compared with those the lower order methods.

For the development of fourth order compacffelience schemes, Gupth al. proposed a
fourth order nine-point compact (FOC) scheme to discretizéwo dimensional (2D) convection-
diffusion equation with variable ciients Guptaet al., 1984). There are also some other similar
fourth order compact schemes that have been developeddamotivection-dfusion equations.
Readers are referred thi(et al, 1995 Spotz 1995 Spotz & Carey 1995 and the references
therein for more details.

For the sixth order schemes, Chu and Fa&hy & Fan 1998 1999 proposed a three point
combined compact tference (CCD) scheme for solving 2D Stommel Ocean model,inikia
convection-difusion equation. Their scheme can achieve sixth order acgtioa the inner grid
points and fifth order accuracy for the boundary grid poir@CD scheme is considered as an
implicit scheme because it does not compute the solution of the iesiabinterest directly. It
also has a stability problem that for certain problems, ifrgé meshsize is used, the computed
solution may be oscillatoryZhang & Zhag 20095.

In contrary, theexplicit compact schemes compute the solutions of the variablestlgirén
addition, the explicit schemes have an additional advantiagt they can avoid the oscillations in
computed solutions. However, the higher order explicit paot schemes are more complicated
to develop in higher dimensions, compared with the impsiciiemes. As far as we know, there is
no existing explicit compact scheme on a single scale gatlighhigher than the fourth order.

By using the idea of multiscale computation, Sun and Zh&wu (& Zhang 2004 first pro-
posed a sixth order explicit finite fiierence discretization strategy, which is based on the Rieha
son extrapolation technique and an operator interpolada®eme. Recently, Wang and Zhang
developed anfécient and scalable sixth order explicit compact scheme BBR Poisson and
convection-difusion equations by using multiscale mutigrid method andperator based inter-
polation combined with extrapolation techniqu#’ang & Zhang 2009 2011, 2010. The How-
ever, for the operator based interpolation, if theffioent matrixA is not diagonally dominant
like the convection-dfusion equation with very large cell Reynolds number, it melyeta large
number of iterations to converge. In this paper, we preseother technique called the multiple
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coarse grid computation technique. This approach can lktassompute the fourth order solu-
tions on the fine grid and every coarse grid, which means tleatam directly apply Richardson
extrapolation for every grid point on the find grid and no @per based interpolation is needed.

An outline of the paper is as follows. In Section 2, we illast¢r our sixth order strategy by
using multiple coarse grid computation technique. Nunatresults will be provided in Section
3. Section 4 contains the concluding remarks.

2. Sixth Order Multiple Coarse Grid Computation

Our motivation s to build anfécient and scalable method for solving PDEs like the conaeeti
diffusion equations with high order of solution accuracy. Initold, we want the new method to
have good potential to be modified to work on parallel computén Wang & Zhang 2009,
Wang and Zhang successfully increase the order of solutioaracy from fourth order to sixth
order by using multiscale multigrid method, Richardsorraptlation and an operator based in-
terpolation. Important properties of the Richardson edlation has been studied by Zlatet
al. Readers are referred tdlatevet al., 2010 and the references therein for more details. The
interpolation strategy is an mesh-refinement type of itezanethod and it is veryficient for
some PDEs like the Poisson equation. Since their disctetizacheme is based on the standard
explicit fourth order compact scheme, so their is no nonjgaysscillation in the computed solu-
tions. The proof and numerical analysis of this property lwafiound in Spotz 1995. However,
it is not dficient and scalable for some problems like the convectidliuglon equation with high
Reynolds numberd){ang & Zhang2011). For some cases, the interpolation procedure may take
thousands of iterations to converge. In addition, this mettioes not have a good potential for
parallel implementation.

The idea of using multiple coarse grid computation is fromghrallel superconvergent multi-
grid method. In addition to splitting the original grid antldring residual vector to exploit paral-
lelism, one can use the concurrent relaxation method onprautirids €hu, 1993. The multigrid
superconvergent method uses multiple coarse grids to gtenieetter correction for the fine grid
solution than that from a single coarse grid. The reasonaisftr standard multigrid method of
1D problem as in figurd, the residual of the fine grid is projected to omlyencoarse grid. But
we can also project the residualadd coarse grids. Therefore, a combination of error correction
from all the coarse grids may make the fine grid convergerféism that from a single coarse grid.
In general, for al dimensional problem, the fine grid can be easily coarsertedircoarse grids.

If the computation work for each coarse grid can be loadedsteparate processor and computed
simultaneously, we can develop an parallel solver for sg\#DES.

2.1. 1D multiple coarse grid computation

Let’s consider the multiple coarse grid computation teghaifor the one dimensional (1D)
convection difusion equation, which can be written as

Uy + b(X)uy + c(X)u = f(x), 0O0<x<I, (2.1)

where the known function¥(x), c(x) and f (x) are assumed to have the necessary derivatives up to
certain orders. EQ.2(1) can be discretized by some finitefdrence scheme to result in a system
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of linear equations

A = £ (2.2)
whereh is the uniform grid spacing of the discretized dom@ih
even @ @ L @ ® 2h
-4 -2 0 2 4
odd @ @ @ L 2h
-3 -1 1 3
fine e—90 0o 0o 0 0o 0o 0 9 |

-4 -3 -2 -1 0 1 2 3 4
Figure 1. lllustration of the multiple coarse grid for 1D problem.

In order to achieve sixth order solution accuracy, we neecdotapute the fourth order so-
lutions for the fine grid and two coarse grids like figure Then we can apply the Richardson
extrapolation. The fourth order compact (FOC) scheme weasusem (Wang & Zhang2017).

From figurel, we can find out that two coarse grids are generated in suctyahagall the
even-numbered grid points froM;, belong to coarse grife.e, and all the odd-numbered grid
points belong to coarse grid,qq. So we have

Qeven= {Xj|X; € Qn and(j = even},
Qodd = {leXj € Oy and(j = Odd)}

We note that the even indexed coarse grid is easy to be solveduble the mesh size from
to 2h. However, the coarse grid,qq only contains thdlack color grid points from fine grid but
no red color boundary grid points. It is very fiicult to develop the finite dierence schemes for
coarse grid,qq if we only have the inner grid points. One possible approadb add these red
color boundaries t@,q4 and develop special computational stencil for grid peintanduz as
shown in figure2. For the 1D problem in figur@, the computational stencil for the grid points
near the boundaries ardl@irent with other inner grid points. For the inner grid poiiks u_; and
u,, their finite diference schemes are based omishsize. However, if we take grid point;

in Qoqq @S an example, its compact finitéfdrence scheme needs the boundary grid poipand
inner grid pointu_;. The meshsize between, andu_; areh and 2h.

odd ée—o @ @ ®—® 2h
-4 -3 -1 1 3 4
fine ¢e—0 0 o0 0 o o ¢ ® h

-4 -3 -2 -1 O 1 2 3 4
Figure 2. Qyqq With two added red color boundary grid points.
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odd -— o & @ *—O 0 9 nh
-4 -3 -2 -1 1 2 3 4
fine e—O0 0 0 0 0 o0 0 9 |

-4 -3 -2 -1 O 1 2 3 4
Figure 3. Quqq With two red color boundary and two blue color inner grid psin

Lemma 2.1. For coarse grid as shown in figu the solution accuracy for the centralfiirence
operator becomes first order.

Proof. It can be easily verified by using Taylor series expansion.
(]

Since the second order centraffdrence operator is degraded to the first order, the FOC
scheme which is based on the approximation for the secoret tedns will be degraded to the
second order for these near boundary grid points. In ordeomnopute fourth order solution for
every coarse grid point, we add two more grid points to®Qg like the blue color grid points in
figure 3.

By adding these four grid points, now we can discretize egeiy point in Qqqq With fourth
order accuracy using FOC scheme. Let's assum@thgcontainsN x grid points

Uodd(0), Uodd(1), .. , Uodd(N'X)

as in figured. Then theQg,enWill containsNx — 3 grid points and fine grid will containd\ex — 7
grid points. The grid points of2,4q are approximated as follows:

e Forje{1,2,Nx—2 Nx—1}, Uyq(]) is approximated by three-point computational stencil
from FOC scheme using grid poinigq(j—1) anduygq( j+1) with meshsizé. The truncation
error isO(h%).

e Forj = 3, Uyd(]) is approximated by three-point computational stencitrfleOC scheme
using grid pointslygg(j—2) anduegqe(j+1) with meshsize 2 The truncation error i©((2h)*).

e Forj e [4,Nx— 4], uwq(]j) is approximated by three-point computational stencitfieOC
scheme using grid pointgqq(j — 1) anduggg(] + 1) with meshsize R The truncation error
is O((2h)*4).

e For j = NX— 3, Uyq(]) is approximated by three-point computational stenciifrBOC
scheme using grid pointgqq(j — 1) anduggg(] + 2) with meshsize R The truncation error
is O((2h)4).
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h h h 2h 2h 2h 2h h h h
o o o o ® ® o ® e o o o
0 1 2 3 4 Nx—4 Nx-3 Nx-2 Nx-1 Nx

Figure 4. Representation of modified,qgq for 1D problem.

By using above discretization strategy, we can approxiretdéourth order solution for every
grid point onQ,qq. After we get fourth order solutions for the fine grid and tvoarcse grids, each
grid point on the fine grid will have a corresponding grid gan eitherQeyen0r Qoqq. Then we
apply Richardson extrapolatio€lieney & Kincard1999 for every fine grid point to approximate

the sixth order solution like
16u*j1 - uj2h
~h
n_ 1 2.3
u 15 (2:3)

whereu*j1 is jth grid point from fine grid an(mj2h is the corresponding coarse grid point.

3. Numerical Results

Two 1D convection-dtusion equations are solved using the multiple coarse grigpctation
strategy discussed in the previous sections. We compaeettuhcated error and the order of
accuracy by using our multiple coarse grid computationnepie (MCG), standard fourth order
scheme (FOC), and the sixth order operator based inteipoktheme (SOC) infang & Zhang
2011.

The codes are written in Fortran 77 programming languageraman one node of the Lip-
scomb HPC Cluster at the University of Kentucky. Each node3&GB of local memory and
runs at 2.66GHz. The initial guess for our test cases is the&ztor. The stopping criteria for
the iterative methods we tested and the operator basegataéion procedure is 1. The errors
reported are the maximum absolute errors over the discret@fthe finest level.

For the order of solution accuracy, we dené&h) and E(H) to be the solution error with
meshsizér andH, respectively. The order of accuraeyis calculated from the formula

E(h) h"
E(H) H"

The order of accuracy is formally defined when the meshsipecaighes zero. Therefore, when
the meshsize is relatively large, the discretization sehemay not achieve its formal order of
accuracy.

Problem 1. Let’s consider the examples from Sun’s previous w@ur( & Zhang 2004, which

is a 1D convection-diusion equation like

Pu_du_

X% Ox
Eg. 3.1 has the Dirichlet boundary conditions &®) = u(r) = 0. The analytic solution for this
problem isu(x) = sinx.

u=-cosx—2sinx, 0<x<m. (3.2)
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—*—FOC
—&—S0C
.l —=— MCG

Maximum error

107

0 20 40 60 80 100 120 140
Number of intervals

Figure 5. Comparison of maximum errors of FOC, SOC and MCG methodBfob-
lem 1.

The computational results are listed in Tattland figure5. From Tablel, we can see that
the multiple coarse grid method (MCG) is more accurate thanfourth order scheme (FOC).
Although the MCG method is not as accurate as the SOC but aclaieve the sixth order solution
accuracy when the number of intervals is bigger than 8. Tasorewhy MCG is less accurate than
SOC is that there are two near boundary grid point using neshs$o approximate instead oh2
in Qoda-

Table 1. Comparison of maximum errors and the order of accuracy bygusOC,
SOC, and MCG methods for EcB.().

FOC SOC MCG
h Error | Order| Error | Order| Error | Order
/8 | 5.02e-5| 4.0 | 1.30e-5| 59 | 2.08e-5| 5.7
/16 | 3.18e-6| 4.0 | 2.10e-7| 6.0 | 3.94e-7| 6.1
7/32 | 2.00e-7| 4.0 | 3.32e-9| 6.0 | 5.81e-9| 5.8
n/64 | 1.25e-8| 4.1 | 5.20e-11] 6.0 | 1.06e-10| 6.0
/128 | 7.83e-10 4.1 | 8.73e-13| 6.0 | 1.71e-12| 6.0

Problem 2. We solve another classical 1D convectioff@lion equation

o’u  du

W_G_X_O, O0<x< 1l (32)
The boundary condition for Eq.3(2) is Uy = 0 andu; = 1. The analytic solution isi(X) =
(e=1)/(e-1).
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Figure 6. Comparison of maximum errors of FOC, SOC and MCG methodsrfaiy-P
lem 2.

The numerical results of Problem 2 are listed in Tablend figure6. We note that when
n > 32, the order of solution accuracy is not high enough as we hdge reason is that the
computed solutions with = 1/64 andh = 1/128 are not as accurate as they should be, due to the
stopping criteria we set. Once again, the solutions fromM@G method are more accurate than
the FOC method and can achieve the sixth order wher64.

Table 2. Comparison of maximum errors and the order of accuracy hygusiOC,
SOC, and MCG methods for Ed3.0).

FOC SOC MCG

h Error | Order| Error | Order| Error | Order
1/8 | 7.76e-5| 3.9 | 2.24e-9| 59 | 2.789 | 57
1/16 | 5.12e-6| 4.0 | 4.0le-11| 6.0 | 5.29-11| 6.0
1/32 | 3.27e-7| 4.0 |5.91e-13| 6.0 | 8.27-13| 5.9
1/64 | 1.91e-8| 4.0 | 2.34e-14| 4.9 | 3.21-14| 4.8
1/128 | 1.19e-9| 4.0 | 7.93e-15] 1.6 | 1.02-14| 1.6

We want to mention here that the SOC method for both test easkghtly more accurate than
the MCG method, but the MCG method has a very good potentigkfallel implementation. The
computing tasks for MCG procedure can be divided to threepeddent processors (one for find
grid and two for coarse grids). In addition, since the MCG hodtdoes not need the operator
based interpolation procedure to approximate the sixtbrdide grid solution, it will save a large
amount of CPU costs for some high Reynolds number problgvasg & Zhang20117).
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4. Concluding Remarksand Future Work

We presented a new sixth order solution method based on tinéhforder discretization and
multiple coarse grid computation for solving 1D convectitiffusion equation. Our numerical
experiments show that the new sixth order strategy is margrate than the standard fourth order
scheme and can achieve the sixth order solution accuracy.

It is worth pointing out that our solution strategy can beleggpto solve many other types of
PDEs, because it does not require the additional work tosrigdehe discretization schemes. The
advantage of using multiple coarse grids is that we can useiiicrease the order of accuracy
without using operator based interpolation scheme. Howévere is still a lot of work that needs
to be done to develop a useful multiple coarse grid compmrtatiethod that can be applied to
real-world problems. In this paper, we just use the stan@adss-Seidel iterative method for
MCG strategy, because our goal is to test whether the MCGadeathn achieve the sixth order
accuracy or not. For some real applications, we should usegmd method and implement the
multiple coarse grid computation in the multigrid cycle.

For the future research work, we will extend our 1D multipbarse grid computation method
to higher dimensional problems. For 2D problems, we willgyate four course grids by the index
of x andy direction as ¢venever), (evenodd), (odd ever and ©dd odd). Here, evenever) is
the course grid in standard multigrid method. Like 1D stggi®nly the évenever) course grid
has the full boundary conditions. We need to find a way to atficzal boundary grid points for
other three course grids. Another possible solution is éoalgebraic multigrid method instead of
geometric multigrid method, this is also one of our reseamntdrest in the future.

For the parallelization, the parallel multiscale multth(MCG) method has been discussed in
(Xiao, 1994 Zhu, 1993. However, these parallel MCG methods are only used to sppdtie
convergence. As we mentioned in previous section, the ctatipo of each course grid and the
fine grid is independent. If we want to solve a 3D problem, weltse nine processors to solve the
fourth order solutions on the fine grid and eight coarse gridsen an Richardson extrapolation,
which can also been parallelized, can increase the ordexcofacy to sixth order.
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Abstract

The main aim of this paper is to study a concept of nonuniform polynomial stability for evolution operators on
the half-line. The obtained results are variants for nonuniform polynomial stability of some well-known theorems due
to Barbashin, Datko, Rolewicz and Zabczyk in the case of uniform exponential stability. This paper generalizes well-
known results for the nonuniform exponential stability (Lupa & Megan, 2012) and the uniform polynomial stability
(Megan & Ceausu, 2012).
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1. Introduction and preliminaries

The notion of exponential stability plays an important role in the theory of differential equa-
tions in Banach spaces, particularly in the study of asymptotical behaviors. It has gained promi-
nence since appearance of two fundamental monographs of J. L. Massera, J. J. Schaffer (Massera
& Schiffer, 1966) and J. L. Daleckii, M. G. Krein (Daleckii & Krein, 1974). These were followed
by the important books of C. Chicone and Yu. Latushkin (Chicone & Latushkin, 1999) and L.
Barreira and C. Valls (Barreira & Valls, 2008).

The most important stability concept used in the qualitative theory of differential equations is
the uniform exponential stability. In some situations, particulary in the nonautonomous setting,
the concept of uniform exponential stability is too restrictive and it is important to look for a more
general behavior.

*Corresponding author
Email addresses: megan@math.uvt.ro (Mihail Megan), ceausu@math.uvt.ro (Traian Ceausu),
lmramneantu@gmail.com (Magda Luminita Rdmneantu)
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Two different perspectives can be identified to generalize the concept of uniform exponential
stability, on the one hand one can define exponential stabilities that depends on the initial time
(and therefore are nonuniform) and, on the other hand, one can consider grow rates that are not
necessarily exponential.

The first approach leads to the concepts of nonuniform exponential stabilities and can be found
in the works (Barreira & Valls, 2008), (Lupa & Megan, 2012), (Megan, 1995), (Minda & Megan,
2011), (Pinto, 1988) and the second approach is presented in the papers (Barreira & Valls, 2009),
(Bento & Silva, 2009), (Bento & Silva, 2012), (Megan & Ramneantu, 2011), (Megan & Minda,
2011).

A natural generalization is to consider stability concepts that are both nonuniform and not
necessarily exponential. This was the approach followed by Barreira and Valls in (Barreira &
Valls, 2009) and A. Bento and C. Silva in (Bento & Silva, 2009), (Bento & Silva, 2012), who
studied a nonuniform polynomial dichotomy concept. A principal motivation for weakening the
assumption of uniform exponential behavior is that from the point of view of ergodic theory, almost
all variational equations in a finite dimensional space admit a nonuniform exponential dichotomy.

In this paper we consider a concept of nonuniform polynomial stability for evolution operators
in Banach spaces. This concept has been considered in the case of invertible evolution operators
in the papers (Barreira & Valls, 2009) due to L. Barreira and C. Valls, respectively in (Bento &
Silva, 2009), (Bento & Silva, 2012) due to A. Bento and C. Silva.

Some results concerning polynomial stability for evolution operators were published in our
papers (Megan & Ramneantu, 2011), (Megan & Ceausu, 2012), (Megan & Minda, 2011). We
remark that the results obtained in (Megan & Ramneantu, 2011) are for the case of evolution op-
erators with uniform exponential growth. In this paper we consider the case of evolution operators
with nonuniform polynomial growth.

The obtained results in this paper can be considered as variants for nonuniform polynomial sta-
bility of some well-known theorems due to Barbashin ((Barbashin, 1967)), Datko ((Datko, 1972))
and Rolewicz ((Rolewicz, 1986)) in the case of uniform exponential stability. We remark that our
proofs are not adaptations for polynomial stability of the proofs presented in (Barbashin, 1967),
(Datko, 1972) and (Rolewicz, 1986). The case of nonuniform exponential stability has been stud-
ied in (Lupa & Megan, 2012), (Minda & Megan, 2011), respectively (Megan & Ramneantu, 2011),
(Megan & Ceausu, 2012).

Moreover, we note that we consider evolution operators which are not supposed to be invertible
and the polynomial stability concept studied in this paper uses the evolution operators in forward
time. Thus the stability results obtained in this paper hold for a much larger class of differential
equations than in the classical theory of uniform exponential stability.

Let X be a real or complex Banach space and let I be the identity operator on X. The norm on
X and on B(X), the algebra of all bounded linear operators acting on X, will be denoted by || - ||.

Let

A={ts)eR>: t>s).

We recall that a mapping @ : A — B(X) is called an evolution operator on X if

(e1) ©(t,1)=1,forallt > 0;
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(e2) D(t, s)D(s,r) = O(t,r), for all (¢, 5),(s,r) € A.
Definition 1.1. An evolution operator @ : A — B(X) is said to be
(i) with polynomial growth (and denote p.g) if there exist M > 1, w > 0 and & > 0 such that

(s+ DY D, 5) |I< M@+ D?s+ 1)°, for all (t,s) €A,

(i) polynomially stable (and denote p.s) if there exist N > 1, @ > 0 and 8 > 0 such that

(t+ D¥ || D@, 5) |I< N(s+ D, for all (t,s) € A;

(iii) exponentially stable (and denote e.s) if there exist Ny > 1, @; > 0 and 3 > 0 such that

e || d(t, 5) |I< N1 Y5 for all (t,s) € A.

Definition 1.2. An evolution operator @ : A — B(X) is said to be

(i) measurable, if for all (s, x) € R, X X the mapping t —|| O(¢, s)x || is measurable on [s, o).

(i) =-measurable, if for all (s, x*) € R, X X* the mapping s || O(z, s)*x" || is measurable on
[0, 1].
2. Results

Theorem 2.1. Let ® : A — B(X) be a measurable evolution operator. If @ is p.s then there exist
D>1,d>0andc >0 such that

f OO(T + DY D(r, $)xlldT < D(s + 1)7|«]], 2.1

forall s > 0and x € X.

Proof. If @ is p.s, then according to Definition 1.1 (ii) there exist the constants N > 1, @ > 0 and
B > 0 such that, for all d € (0, @) and ¢ = S we have

f ( + D Y|D(1, $)x|ldT < N(s + D)2 |x|| f (r+ D dr < D(s + D ¥,

for all (s, x) € R, X X, where D = N@%";d.

]

Theorem 2.2. Let ® : A — B(X) be a measurable evolution operator with p.g and with the
property that there exist D > 1, ¢ > 0 and d > &€ such that (2.1) holds, where & is given by
Definition 1.1(i). Then @ is p.s.
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Proof. Letx € Xandt > 2s + 1. Because

d 24 — 1
f (t+ D Ydr=@+1)"
—1

a2s ’

2

forall + > 0 and a > 0 we have

t
(t + DD, s)xll = N f [+ DTN, s)xdidr
2

! t+1\°
=N f (T+l)d_8_1||(1)(T,s)x||M(—) (t+ 1)°dr
= T+ 1

<2°NM f (t + DTYD(x, s)xlldT < 2°NMD(s + D)@ |x].
Hence, we have that

(t + DTE)|D(1, )x|| < 2°NMD(s + 1?75+ x|,

d—e
forall t > 25 + 1 and x € X, where N = (‘12;'22_1 _

Fort € [s,2s5 + 1) we have

(t + D D(t, 5)x|| < 27 M (s + 1)) |x]|

and hence,
(t + 1D, s)xll < K(s + 1D x]],

for all (¢, s, x) € A x X, where K = max{2*NMD, 2¢-+“ M).
Finally, we obtain that @ is p.s.

A discrete variant of the Theorem 2.2 is

Theorem 2.3. Let @ : A — B(X) be an evolution operator with p.g and with the property that
there exist the constants D > 1, d > 0 and ¢ > 0 such that

Z(k + DOk, n)xll < D(n + 1)l

k=n
foralln € Nand x € X. Then ® is p.s.

Proof. According the hypothesis, if we consider kK = m then we have
(m + 1)@, m)xl| < D(n + 1)1,

for all m,n € N, m > n and x € X, which proves that ® is p.s. OJ
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Remark. Theorem 2.3 can be considered a Zabczyk’s (Zabczyk, 1974) type theorem for polyno-
mial stability.

Theorem 2.4. Let @ : A — B(X) be an evolution operator. Then @ is p.s if and only if there exist
the constants B > 1 and b > ¢ > 0 such that

Z(k + D7D, kx| < B(n + D),

k=0

foralln e Nand x € X.

N+a+B-b

aph We have

Proof. Necessity. If we consider b € (8,a + ),c =B and B =

Dk D70 Rl < NG+ Dl )k + 170!
k=0 e

< N+ 1)7™x]] (1 + f (T + 1)“+ﬁ-b-1dr) < B(n + D7 Ix,
0

foralln € Nand x € X.
Sufficiency. Let n > k > 0 with n, k € N. According to the hypothesis we have that

(k + 1) ®d(n, k)x|| < B(n + 1) |x]|

which implies
( + 1IN0, k)xll < Bk + 1) ),

for all x € X. Hence, @ is p.s. ]

Remark. Theorem 2.4 can be considered a Barbashin’s type theorem for polynomial stability (see
(Barbashin, 1967)).

We consider the set
R ={R: R, — R,|R nondecreasing, R(t)>0, ¥V t> 0}.

Theorem 2.5. Let ® : A — B(X) be a x-measurable evolution operator with p.g. Then ® is p.s
if and only if there exist B > 1, b > ¢ > 0 and a function R € R such that

' —-b—1 * ok c=by,*
fOR((Hl) 1o, 7)"x*l[) dr < BR((t + D IIx°ll).

forall (t,s,x*) € Ax X"

Proof. Necessity. Let us consider R(t) = ¢, ¢t > 0. If @ is p.s, then there exist N > 1, @ > 0 and
B > 0 such that for all b € (B, @ + B) and ¢ = S we have

! !
f(T + D7PNO@, 1) x|ldT < N+ D7 x| f (t+ D ar = Bt + D7) |x"],
0 0
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Ne+a+B—b
where B = YretB-b
a+B-b

Sufficiency. Let x € X with ||x|| < 1 anda -1 > B. Fort > as + a — 1 we have

(a—DR(M™'a™7 (s + 1) 'x", (1, 5)x)))

s+a—1
= f R(M™'a™ (s + T I(O( 7)x, D7, 5)x)]) de

as+a—1 +1 b+w+1
< f R[(T+1)-”-1||c1>(r,T)*x*||a—”—w-1 (—T ) )dT

s+ 1

< fOIR (@ + Do, 7 x"ll) dr < (@ = DR((t + D |lx"]])

Since R is nondecreasing, we obtain that
M@ (s + 1), O, )] < (0 + DTl
By taking supremum relative to ||x*|| < 1, we have that
(t + DN, )| < Ma"" ! (s + 1P,
Ift €[s,as + a— 1) we have
b—ct+w

1+ 1)l )] < M(;:—ll) (s + 1) < Md"™*\(s + 1),

and, further,

(t+ l)b—c”q)(l’ S)” < Mab+w+1(s+ 1)b+c+1’

for all (z, s) € A, which proves that @ is p.s.
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Remark. Theorem 2.5 can be considered a Rolewicz’s type theorem for polynomial stability (see

(Rolewicz, 1986)).

Corollary 2.6. Let ® : A — B(X) be a *-measurable evolution operator with p.g. Then @ is p.s

if and only if there exist B > 1 and b > ¢ > 0 such that
!
f(T + DO, 7 X ldT < Bt + D)),
0

for all (z, s, x*) € A X X*.
Proof. It follows from Theorem 2.5 for R(¢) = t.

Remark. A similar result was obtained by N. Lupa and M. Megan in (Lupa & Megan, 2012) for

the case of nonuniform exponential stability.
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3. Examples

In this section we will give some examples that illustrate the connection between the exponen-
tial stability and the polynomial stability, as well as the connection between polynomial growth
and polynomial stability. Furthermore, we will present some examples of evolution operators
which are not p.s and the integral from (2.1) is convergent, respectively divergent.

In contrast with uniform case (where uniform exponential stability implies uniform polynomial
stability, see (Megan & Ramneantu, 2011)) in the nonuniform case there is no connection between
the concepts of exponential stability and polynomial stability, as shown in the following examples.

Example 3.1. We consider the function
w:l,00) — RL, u(@®)=@+1)7° +1
and the evolution operator

(s + D%u(s)

D:A— BX), O@,s) = D) -

We have that
(t+ D2, )| < 2(s + 1)°, for all (1,5) € A.

It results that @ is p.s. If we suppose that @ is e.s, then there exist Ny > 1, @; > 0 and 8; > 0 such
that
(s + D(s+ 1) + 11 < N e Pt + 1)[(t + 1)° + 11, for all (¢,5) € A.

For s = 0 and t — oo, we obtain a contradiction and hence ® is not e.s.

Example 3.2. The evolution operator

(2—cos s)s

®:A— B(X), O(,9) = e(2—cos )t

satisfies the condition
e, o)l < €, for all (t,s) € A.

Hence @ is e.s. If we suppose that @ is p.s then there exist N > 1, @ > 0 and S > 0 such that
(t+ 1)%e@709 < N(s + 1)7PeC=S0 - for all (t,s) € A.
From here, for t = 2(n + 1)m and s = (2n + 1) we obtain
Qnr + 21 + 1)* "™ < N Qnn + n)***,

which for n — oo yields a contradiction.

It is obvious that if an evolution operator is p.s then it has p.g. The next example presents an
evolution operator with p.g, which is not p.s and the integral from (2.1) is divergent.
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Example 3.3. The evolution operator

(S + 1)1—cos(s+1)
O:A— BX), O(t,5) = (7 + 1)l=cost+D)

satisfies the relation
(s + D?ND, )| < (t+ D(s+ 1)°, for all (t,s) € A.

It results that ®@ has p.g forall w > 0 and € = 2.
If we suppose that @ is p.s then there exist N > 1, @ > 0 and 8 > 0 such that
a/(s + 1)1—cos(s+1) wip

(t + 1)1—00s(t+1) = N(S + 1) ’
for all (¢, s) € A. For s = g —land ¢t =27+ 2nm — 1, we obtain

t+1)

T T a+f
2+ 2 "—SN(—) ,
2m + 2nm) > >

which if n — oo, leads to a contradiction. We obtain thus that ® is not p.s.
Letd > 2 and s > 0. Then we have

f (7 + D@, $)alldT = (s + 1) D) ) f (r+ D" dr = 0.

The next evolution operator does is not p.s and the integral from (2.1) is divergent.

Example 3.4. We consider the set

A={n+

1
N : neN}
and a function u : [0, c0) — [1, o0)

el+]’ t¢ A
) = { et, teA.

and the evolution operator

d:A— B(X), O(t,s) = LS)I

u(r)
Letd > 0 and s > 0. Then we have

f (T + DT (7, s)xlldT = u(s)”x”f (r+ ) le ™D

< u(s)l| f Ve dy = (o)) < oo,
If we suppose that @ has p.g then ther:el:xist M > 1, w > 0and ¢ > 0 such that
(s + D)%u(s) < M(t + 1)°(s + 1)°u(t), for all (t,s) € A.
For s = nand r = n + - we obtain

i+ D* < Mé*(n+ 1)°(n® + 2n + 2)°,

which for n — oo yields a contradiction. Hence, ® does not have p.g and so @ is not p.s.

209
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4. Open Problem

Finally, we put the following open problems:

1 There exist evolution operators which are not p.s and the relation (2.1) is satisfied?

2 There are evolution operators with p.g with &€ > 0, which are not p.s and the relation (2.1) is
satisfied for d € (0, £)?
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Abstract

In this article we introduce the sequence spaces Z'(F), Z{)(F ) and Z! (F) for a sequence of moduli F = (f;) and
study some of the topological and algebraic properties on these spaces.
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1. Introduction

Let R, and C be the sets of all real and complex numbers respectively. We write
w={x=0):xx€RorC}

the space of all real or complex sequences. Let ., ¢ and ¢( denote the Banach spaces of bounded,
convergent and null sequences respectively normed by ||x||. = sup |xi|. Each linear subspace of w,
k

for example A, u C w is called a sequence space. A sequence space A with linear topology is called
a K-space provided each of maps p; — C defined by p;(x) = x; is continuous for all i € N. A
K-space A is called an FK-space provided A is a complete linear metric space. An FK-space whose
topology is normable is called a BK-space. Let A and u be two sequence spaces and A = (a,;)
is an infinite matrix of real or complex numbers a,;, where n,k € N. Then we say that A defines
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a matrix mapping from A to 4 and we denote it by writing A : 1 — u. If for every sequence
x = (x;) € A the sequence Ax = {(Ax),}, the A transform of x is in u, where

(Ax), = Z anxi, (neN). (1.1)

k

By (1 : w), we denote the class of matrices A such that A : 4 — u. Thus, A € (4 : p) if and
only if series on the right side of (1) converges for each n € N and every x € A. The approach
of constructing the new sequence spaces by means of the matrix domain of a particular limitation
method have been recently employed by Altay, Basar and Mursaleen (Altay et al., 2006), Basar
and Altay (Altay & Basar, 2003), Malkowsky (Malkowsky, 1997), Ng and Lee (Ng & Lee, 1978)
and Wang (Wang, 1978). Sengoniil (Sengoniil, 2007) defined the sequence y = (y;) which is
frequently used as the Z” transform of the sequence x = (x;) i.e, y; = px; + (1 — p)x;,_; where
x.1=0,p#0,1 < p < ocoand Z” denotes the matrix Z” = (z;) defined by

p,(i = k),
Zik = 1_p7(i_1:k);(i,k€N)’
0, otherwise.

Following Basar and Altay (Altay & Basar, 2003), Sengoniil (Sengoniil, 2007) introduced the
Zweier sequence spaces Z and Zp as follows Z ={x=(x) ew:Z’xec}, Zo={x=(x) € w:
ZPx € cy}. Here we quote below some of the results due to Sengoniil (Sengoniil, 2007) which we
will need in order to establish the results of this article.

Theorem 1.1 ((Sengoniil, 2007), Theorem 2.1). The sets Z and Zy are the linear spaces with the
co-ordinate wise addition and scalar multiplication which are the BK-spaces with the norm

Ixllz = lixllz, = 1127 x]l..

Theorem 1.2 ((Sengoniil, 2007), Theorem 2.2). The sequence spaces Z and Z, are linearly
isomorphic to the spaces c and c respectively, i.e Z = c and Z = cy.

Theorem 1.3 ((Sengoniil, 2007), Theorem 2.3). The inclusions Zy C Z strictly hold for p # 1.
Theorem 1.4 ((Sengoniil, 2007), Theorem 2.6). Z is solid.
Theorem 1.5 ((Sengoniil, 2007), Theorem 3.6). Z is not a solid sequence space.

The concept of statistical convergence was first introduced by Fast (Fast, 1951) and also in-
dependently by Buck (Buck, 1953) and Schoenberg (Schoenberg, 1959) for real and complex
sequences. Further this concept was studied by Connor (Connor, 1988, 1989; Connor & Kline,
1996), Connor, Fridy and Kline (Fridy & Kline, 1994) and many others. Statistical convergence is
a generalization of the usual notion of convergence that parallels the usual theory of convergence.
A sequence x = (xy) 1s said to be Statistically convergent to L if for a given € > 0

1
h;fn ;l{i =Ll > €,i <k} =0.



Vakeel A. Khan et al. | Theory and Applications of Mathematics & Computer Science 4 (2) (2014) 211-220 213

Later on it was studied by Fridy (Fridy, 1985, 1993) from the sequence space point of view and
linked it with the summability theory. The notion of I-convergence is a generalization of the
statistical convergence. At the initial stage it was studied by Kostyrko, Salat, Wilczyfiski (Kostyrko
et al., 2000). Later on it was studied by Salt, Tripathy, Ziman (§alét et al., 2004; Salat et al.,
2005) and Demirci (Connor et al., 2001). Here we give some preliminaries about the notion of
I-convergence.

Let X be a non empty set. A set IC 2% (2% denoting the power set of X) is said to be an ideal if
I'is additivei.e A,B€ I = AUB € [ and hereditaryi.e A € [, BC A = B € [. A non empty family
of sets £(I) C 2% is said to be filter on X if and only if ¢ ¢ £(1), for A, B € £(I) we have AN B € £(I)
and for each A € £(1) and A C B implies B € £(I). An Ideal I C 2% is called non-trivial if I # 2%,
A non-trivial ideal I C 2¥ is called admissible if {{x} : x € X} C I. A non-trivial ideal I is maximal
if there cannot exist any non-trivial ideal J # I containing I as a subset. For each ideal I, there is a
filter £(1) corresponding to I. i.e £(/) = {K C N : K¢ € I}, where K = N - K.

Definition 1.1. A sequence space E is said to be solid or normal if (x;) € E implies (a;x;) € E for
all sequence of scalars (@) with |ai| < 1 forall k € N.

Definition 1.2. A sequence space E is said to be monotone if it contains the canonical preimages
of all its stepspaces.

Definition 1.3. A sequence space E is said to be convergence free if (y;) € E whenever (x;) € E
and x; = 0 implies y;, = 0.

Definition 1.4. A sequence space E is said to be a sequence algebra if (x;y;) € E whenever

(), () € E.

Definition 1.5. A sequence space E is said to be symmetric if (x;)) € E whenever (x;) € E where
n(k) is a permutation on N.

Definition 1.6. A sequence (x;) € w is said to be I-convergent to a number L if for every € > 0.
{k € N:|x; — L| > €} € I. In this case we write I-lim x; = L.
The space ¢! of all I-convergent sequences to L is given by

' ={(x)€ew:{keN:|x—L| > e} el for some Le C}.
Definition 1.7. A sequence (x;) € w is said to be I-null if L = 0. In this case we write I-lim x; = 0.

Definition 1.8. A sequence (x;) € w is said to be I-cauchy if for every € > 0 there exists a number
m = m(e)suchthat {k e N : |x; — x,,| > €} € L.

Definition 1.9. A sequence (x;) € w is said to be I-bounded if there exists M > 0 such that
(ke N:|x|>M}el

Definition 1.10. A modulus function f is said to satisfy A,-condition if for all values of u there
exists a constant K > 0 such that f(Lu) < KLf(u) for all values of L > 1.
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Definition 1.11. Take for I the class /7 of all finite subsets of N. Then I is a non-trivial admissible
ideal and I convergence coincides with the usual convergence with respect to the metric in X (see
(Khan & Ebadullah, 2011; Kostyrko et al., 2000)).

Definition 1.12. For I= I; and A ¢ N with 6(A) = 0 respectively. Is is a non-trivial admissible
ideal, Is;-convergence is said to be logarithmic statistical covergence (see (Khan & Ebadullah,
2011; Kostyrko et al., 2000)).

Definition 1.13. A map h defined on a domain D ¢ Xie h : D ¢ X — R is said to satisfy

Lipschitz condition if |A(x) — A(y)| < K|x—y| where Kis known as the Lipschitz constant. The class
of K-Lipschitz functions defined on D is denoted by A € (D, K) (see (Khan & Ebadullah, 2011)).

Definition 1.14. A convergence field of I-covergence is a set
F(I) ={x = (x) € { : there exists I — lim x € R}.

The convergence field F(I) is a closed linear subspace of ¢, with respect to the supremum
norm, F(I) = £,, N ¢! (see (Khan & Ebadullah, 2011; Tripathy & Hazarika, 2011)).

Define a function & : F(I) — R such that A(x) = I — lim x, for all x € F(I), then the function
h : F(I) — R is a Lipschitz function (see (Khan & Ebadullah, 2011)). The following Lemmas
will be used for establishing some results of this article.

Lemma 1.1. Let E be a sequence space. If E is solid then E is monotone (see (Kamthan & Gupta,
1981), page 53).

Lemma 1.2. Let Ke £(1) and MCN. If M¢l, then MNN ¢l (see (Tripathy & Hazarika, 2009, 2011)).
Lemma 1.3. If I c 2" and MCN. If M ¢I, then MNN ¢I (see (Tripathy & Hazarika, 2009, 2011)).

The idea of modulus was structured in 1953 by Nakano (See (Nakano, 1953)). A function
f :[0,00) — [0, 00) is called a modulus if (1) f(#r) = 0 if and only if # = 0,
2) f(t+u) < f(&)+ f(u) forall t,u >0,
(3) f is nondecreasing, and
(4) f is continuous from the right at zero.

Ruckle (Ruckle, 1968, 1967, 1973) used the idea of a modulus function f to construct the
sequence space

X(f) = {x =) : ). flud) < o).
k=1

This space is an FK space, and Ruckle (Ruckle, 1973) proved that the intersection of all such X(f)
spaces is ¢, the space of all finite sequences. The space X(f) is closely related to the space ¢; which
is an X(f) space with f(x) = x for all real x > 0. Thus Ruckle (Ruckle, 1968, 1967, 1973) proved

that, for any modulus f, X(f) C €; and X(f)* = €w, Where X(f)* ={y = () € w : Y, f(lyxil) <
k=1

oo}. The space X(f) is a Banach space with respect to the norm ||x]| = ), f(|x]) < co.(See[31]).
k=1
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Spaces of the type X(f) are a special case of the spaces structured by Gramsch in (Gramsch, 1971).
From the point of view of local convexity, spaces of the type X(f) are quite pathological. Therefore
symmetric sequence spaces, which are locally convex have been frequently studied by Garling
(Garling, 1966, 1968), Kothe (Kothe, 1970) and Ruckle (Ruckle, 1968, 1967, 1973). After then
Kolk (Kolk, 1993, 1994) gave an extension of X(f) by considering a sequence of modulii F' = (f;)
and defined the sequence space X(F) = {x = (x¢) : (fi(Ixc])) € X}.(See[22-23]).

(c.f (Dems, 2005; Gurdal, 2004; Khan et al., 2012b,a, 2013; §ala’1t, 1980; Tripathy & Hazarika,
2009, 2011)).

Recently Khan and Ebadullah in (Khan et al., 2013) introduced the following classes of se-
quences Z'(f) = {(x) € w : {k e N : f(lxx — L|) > &, forsome Le C } € I}, Z{(f) = {(x) € w :
keN: f(x) =&l el}, ZL(f) = {(x) € w: {k € N: f(Ix]) > M, for each fixed M>0} € I}.

We also denote by m’(f) = ZL(f) N Z'(f) and m%o(f) =ZL(HNZy).

In this article we introduce the following class of sequence spaces:

ZI(F)={(xx) ew: {ke N: fi(lxy = L) > &, for some Le C } € I},
ZHF) ={(x) € w: ke N: fillxl) > &} € 1,
ZI(F) ={(x) € w: (ke N: fi(Ix]) > M, for each fixed M>0} € I}.
We also denote by m.(F) = ZL(F) N Z'(F) and m’ZO(F) = ZL(F) N Z{(F).

2. Main Results

Theorem 2.1. For a sequence of modulii F = (f,), the classes of sequences Z'(F), Z(’)(F ), m’Z(F )
and m’ZO(F ) are linear spaces.

Proof. We shall prove the result for the space Z/(F). The proof for the other spaces will follow
similarly.
Let (x), (yx) € Z'(F) and let a, B be scalars. Then

I —lim fi(|x; — Ly|) = 0, for someL; € C;
I —lim fi(lyx — L,|) = 0, for somel, € C;

That is for a given € > 0, we have

Ay ={keN: fill - Lil) > g} el @.1)

€
A2 = {k eEN: ﬁc(lyk - Lzl) > E} el (22)
Since f; is a modulus function, we have

Sellaxy + Byy) — (aLy + BLy) < fillallxi — Li]) + fi(Bllyx — Lal) < fillxx — Lil) + fillyx — Lal).

Now, by (2.1) and (2.2), {k € N: fi(|(ax; + Byr) — (aLy + BL,)|) > €} C A; U A,. Therefore
(ax; + Byr) € Z'(F) Hence Z!(F) is a linear space.
O
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We state the following result without proof in view of Theorem 2.1.

Theorem 2.2. The spaces m’Z(F ) and m’ZO(F ) are normed linear spaces, normed by

llxell. = Sup Jiellxil). (2.3)

Theorem 2.3. A sequence x = (x;) € mIZ(F ) I-converges if and only if for every € > 0 there exists
N, € N such that
{k e N: fillxe — xy.|) < €} € my(F) (2.4)

Proof. Suppose that L = [ —limx. Then B, = {k e N : |5 - L| < §} € m’Z(F). For all € > 0. Fix
an N, € B..Then we have |xy_ — x| < |xn, — LI + |L — x| < g + % = € which holds for all £ € B..
Hence {k € N : fi(lx — xy.|) < €} € mL(F).

Conversely, suppose that {k € N : fi(|xx — xn.|) < €} € mIZ(F). Thatis {k € N : (|x; — xn|) <
e} € mL(F) forall € > 0. Then the set C. = {k € N : x; € [xy, — €, xy, + €]} € m5(F) forall € > 0.
Let J. = [xy, — €, xy, + €]. If we fix an € > 0 then we have C. € m>(F) as well as C< € m>(F).

Hence C.NC: € m’Z(F). This implies that J. N Js # ¢ thatis{k e N: x; € J} € m’Z(F) that is
diamJ < diamJ. where the diam of J denotes the length of interval J.
In this way, by induction we get the sequence of closed intervals J. = Ip 2 I, 2 ... 2 [; 2 ...
with the property that diaml;, < %diamlk_l for (k=2,34.....) and {k €e N : x, € I} € m’Z(F)

for (k = 1,2,3,...). Then there exists a & € NI; where k € N such that £ = I — limx. So that
fi(é) =1 —1lim fi(x), thatis L = I — lim fi(x). O]

Theorem 2.4. Let (f;) and (gi) be modulus functions for some fixed k that satisfy the A,-condition.
If X is any of the spaces Z', Z{,, m’, and m’, etc, then the following assertions hold.

(a) X(g1) < X(fr-8k)
(b) X(fi) N X(gr) € X(fx + &)

Proof. (a) Let (x,) € Z{(gx). Then
I —1lim g (|x,]) = 0. 2.5)

Let € > 0 and choose ¢ with 0 < ¢ < 1 such that fi(#) < e for 0 <t < 6.
Write y, = gx(|x,]) and consider lim fi(y,) = lim fi(y,)y,<s + lim fi(y,)y,>s. We have

lim fi(yn) < fi(2) im(y,,). (2.6)

Fory, > 6, wehave y, < % < 1+2£. Since f; is non-decreasing, it follows that fi(y,) < fi(1+3%) <
1@ +1 fk(z%) Since f; satisfies the A,-condition, we have fi(y,) < K% fi(2) + 1K%2 fi(2) =

K fi(2).
Hence

lim £:(y,) < max(1,K)6"" £u(2) lim(y,). Q2.7)
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From (2.5), (2.6) and (2.7), we have (x,) € Z}(fi-gx)- Thus Z}(gx) € Z{(fi-g1)- The other
cases can be proved similarly.

(b) Let (x,) € Z{(fi) N Zi(go)- Then I —lim fi(|x,|) = 0 and 7 — lim g, (|x,[) = O.
The rest of the proof follows from the following equality lim(f; + gx)(|x,) = lim fi(|x,]) +
lim g(lx. 0

Corollary 2.1. X C X(f;) for some fixed k and X =Z', Z], m’Z and m’z0 .
Theorem 2.5. The spaces Zé(F ) and mé_,o(F ) are solid and monotone.
Proof. We shall prove the result for Z{)(F ). Let (x) € Zé(F ). Then

I- li]{nfk(lxkl) =0. (2.8)

Let (o) be a sequence of scalars with |a;| < 1 for all k € N.

Then the result follows from [9] and the following inequality fi(laixi]) < lalfi(lxkl) < fi(|xx]) for
all k£ € N. That the space Zé(F ) is monotone follows from the Lemma 1.20. For mIZO(F ) the result
can be proved similarly. O]

Theorem 2.6. The spaces Z'(F) and mIZ(F ) are neither solid nor monotone in general.

Proof. Here we give a counter example. Let I = I; and fi(x) = x> for some fixed k and for
all x € [0, c0). Consider the K-step space Xk (f;) of X defined as follows. Let (x,) € X and let
(v,) € Xk be such that
| (xp),1f nis even,
On) = { 0, otherwise.

Consider the sequence (x,) defined by (x,) = 1 for all n € N. Then (x,) € Z'(F) but its K-
stepspace preimage does not belong to Z/(F). Thus Z/(F) is not monotone. Hence Z!(F) is not
solid. [

Theorem 2.7. The spaces Z'(F) and Z(I)(F ) are sequence algebras.

Proof. We prove that Zé(F ) is a sequence algebra. Let (x;), () € Zé(F ). Then I —1lim fi(|x;]) = 0
and I — lim f;(|yx]) = 0. Then we have I — lim f;(|(x¢.yo)]) = 0. Thus (xg.yx) € Zé(F) is a sequence
algebra. For the space Z/(F), the result can be proved similarly. ]

Theorem 2.8. The spaces Z'(F) and Zé(F ) are not convergence free in general.

Proof. Here we give a counter example. Let I = I; and fi(x) = x* for some fixed k and for all
x € [0, 0). Consider the sequence (x,) and (y,) defined by x, = % and y, = n foralln e N.
Then (x,) € Z'(F) and Z{(F), but (y,) ¢ Z'(F) and Z}(F). Hence the spaces Z|(F) and Z}(F)

are not convergence free. ]

Theorem 2.9. If ] is not maximal and I # Iy, then the spaces Z'(F)and Z{)(F ) are not symmetric.
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Proof. Let A € I be infinite and f;(x) = x for some fixed k and for all x € [0, 00). If
| 1,forn €A,
"1 0,otherwise,

then by lemma 1.22 (x,,) € Z\(F) c Z'(F).
Let K c Nbesuchthat K ¢ Jland N-K ¢ [. Let¢p : K - Aand ¢ : N— K — N — A be bijections,
then the map 7 : N — N defined by

(1) = { ¢(n),forn € K,

Ww(n), otherwise,
is a permutation on N, but x,,, ¢ Z'(F) and X, ¢ Z,(F). Hence Z'(F) and Z{(F) are not
symmetric. O]
Theorem 2.10. Z/(F) c Z'(F) c ZL(F).
Proof. Let (x;) € Z!(F). Then there exists L € C such that I — lim fi(Jx; — L|) = 0. We have

Fe(xe]) < %fk(lxk - L)+ fk%(lLl). Taking the supremum over k on both sides we get (x;) € ZL (F).
The inclusion Z{(F) c Z'(F) is obvious. O

Theorem 2.11. The function h : mIZ(F ) — R is the Lipschitz function, where mIZ(F y=ZL(F)n
Z!(F), and hence uniformly continuous.

Proof. Let x,y € m,(F), x # y. Then the sets
Ay =f{keN:|x—hx)l=llx-yll.} el
Ay, ={keN:|y—hl > Illx-yll.} €l

Thus the sets,
B, ={k e N:|x, — h(x)| < |lx - yll.} € my(F),

By = {k € N: |y, — h(y)| < llx = yll.} € m%(F).
Hence also B = B, N B, € m%(F), so that B # ¢. Now taking k in B,
[7(x) = R < 1A(x) = Xl + x5 = yiel + lye — AO)I < 3llx — ..

Thus 7 is a Lipschitz function. For the space mIZO(F ) the result can be proved similarity. ]
Theorem 2.12. If x,y € mIZ(F ), then (x.y) € mIZ(F ) and h(xy) = h(x)h(y).
Proof. For e >0

B, ={k e N: |x, — h(x)| < €} € my(F),

B, = {k € N: |y, — h(y)| < €} € m,(F).

Now,

Xy = RCORW| = Xy — xch(y) + xih(y) — ROOROD)| < [xillye = A1 + [hD)llxe — A(0l. - (2.9)
As m%(F) € ZL(F), there exists an M € R such that |x;| < M and |h(y)| < M.

Using eqn[10] we get |xxyx — I(x)(y)| < Me + Me = 2Me For all k € B, N B, € m'(F). Hence

(x.y) € m’Z(F ) and A(xy) = h(x)h(y). For the space m’ZO(F ) the result can be proved similarity. [

Acknowledgments: The authors would like to record their gratitude to the reviewer for his
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Abstract

As the dynamical systems that model processes issued from engineering, economics or physics are extremely complex, of
great interest is to study the solutions of differential equations by means of associated evolution families. In this paper we em-
phasize some notions of asymptotic stability for skew-evolution semiflows on Banach spaces, such as exponential and polynomial
stability, in a nonuniform setting. Examples for every concept and connections between them are also presented, as well as some
characterizations.

Keywords: Skew-evolution semiflow, exponential stability, Barreira-Valls exponential stability, polynomial stability.
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1. Preliminaries

The theory of asymptotic properties for evolution equations has witnessed lately an explosive develop-
ment. We intend to emphasize in our paper a framework which enables us to obtain characterizations in
a unitary approach for the asymptotic stability on Banach spaces. The notion of skew-evolution semiflow,
introduced in (Megan & Stoica, 2008), is more appropriate for the study in the nonuniform case. They de-
pend on three variables, making thus possible the generalization for skew-product semiflows and evolution
operators, which depend only on two. Hence, the study of asymptotic behaviors for skew-evolution semi-
flows in the nonuniform setting arises as natural, relative to the third variable. The notion has proved itself
of interest in the development of the stability theory, in a uniform as well as in a nonuniform setting, being
already adopted by some researchers, as, for example, A.J.G. Bento and C.M. Silva (see (Bento & Silva,
2012)), P. Viet Hai (see (Hai, 2010) and (Hai, 2011)) and T. Yue, X.Q. Song and D.Q. Li (see (Yue et al.,
2014)), which have contributed to the expansion of the concept of skew-evolution semiflows and deepened
the study of their asymptotic behaviors and applications. Some properties for skew-evolution semiflows are
defined and characterized in (Stoica, 2010).

*Corresponding author
Email addresses: codruta.stoica@uav.ro (Codruta Stoica), dianab268@yahoo . com (Diana Borlea)
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The definitions of various types of stability are illustrated by examples and the connections between
them are emphasized. Our aim is also to give some integral characterizations for them. We present a
concept of nonuniform exponential stability, given and studied by L. Barreira and C. Valls in (Barreira &
Valls, 2008), which we call ”Barreira-Valls exponential stability”. In this paper, some generalizations for
the results obtained in the uniform setting in (Stoica & Megan, 2010) are proved in the nonuniform case.

2. Skew-evolution semiflows

This section gives the notion of skew-evolution semiflow on a Banach space, defined by means of an
evolution semiflow and of an evolution cocycle.

Let (X, d) be a metric space, V a Banach space and V* its topological dual. Let B(V) be the space of all
V-valued bounded operators defined on V. The norm of vectors on V and on V* and of operators on B(V)
is denoted by ||-||. / is the identity operator. Letus denote Y = X x Vand T = {(t, ty) € Ri > to}.

Definition 2.1. A mapping ¢ : T X X — X is said to be evolution semiflow on X if following properties are
satisfied:

(esy) o(t, t,x) = x, Y(t,x) e Ry X X;

(es2) @(t, s, (s, tg, X)) = @(t, tg, x), Y(t,5),(s,t9) € T, Vx € X.

Definition 2.2. A mapping ® : T x X — B(V) is called evolution cocycle over an evolution semiflow ¢ if
it satisfies following properties:

(ec)) D(t,t,x) =1, Yt >0, Vx € X;

(ecp) D(t, s, (s, tg, X)D(s, ty, x) = D(¢, 19, ), V(t, ), (s, t0) € T,Vx € X.

Let @ be an evolution cocycle over an evolution semiflow ¢. The mapping
C:TxXY =Y, C@,s,x,v) = (ot,s,x), D, s, x)v) 2.1
is called skew-evolution semiflow on Y.

Example 2.1. Let us denote C = C(R, R) the set of all continuous functions x : R — R, endowed with the
topology of uniform convergence on compact subsets of R. For every x,y € C, we define

dy(x,y) = sup |x(r) — y(?)|.

te[—n,n]

The set C is metrizable with respect to the metric

3 dn(x,y)
(%) = Zzn1+d(xy)

We consider for every n € N* a decreasing function

1 1 . . 1
X, Ry — (2n n lﬂ) with the property tlir?oxn(t) = Tl

We denote
x(f) = xp(t + 5), Yt,5 > 0.
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Let X be the closure in C of the set {x;,n € N*, s € R,}. The mapping
p: TxX - X, o,s,x) = x5, where x,_s(7) = x(t — s + 1), YT > 0,

is an evolution semiflow on X. Let us consider the Banach space V = RP, p > 1, with the norm
“(vl, ...,vp)” = |vi| + ... + [v,|. Then the mapping

O:TxX— B(V), (D(f, s, )C)V — (eal fs’x(T—S)dTvl’ ...,eal’ fS’x(T—S)dTvp),

where (ay, ...,@)) € RP is fixed, is an evolution cocycle over the evolution semiflow ¢ and C = (¢, ®) is a
skew-evolution semiflow on Y.

Example 2.2. For X = R, the mapping ¢ : T X R, — R, ¢(t, s,x) = x is an evolution semiflow. For
every evolution cocycle ® over ¢, we obtain that the mapping E¢ : T — B(V), Eo(t,s) = O(¢,5,0) is an
evolution operator on V.

Example 2.3. If C = (¢, ®) denotes a skew-evolution semiflow and @ € R a parameter, then C, = (¢, D),
where
Dy i T XX — B(V), Dylt, 19, x) = *0VD(1, 19, x), (2.2)

is also a skew-evolution semiflow, called the a-shifted skew-evolution semiflow.

3. Exponential stability

In this section we consider several concepts of exponential stability for skew-evolution semiflows. Some
connections between these concepts are established. We will emphasize that they are not equivalent.
The nonuniform exponential stability is given by

Definition 3.1. A skew-evolution semiflow C = (¢, @) is exponentially stable (e.s.) if there exist a mapping
N :R; — [1,00) and a constant & > 0 such that, for all (¢, s) € T, following relation takes place:

(2, to, )Vl < N(s)e™ ™ [|@(s, t0, x)Vl, V(x,v) € Y. (3.1)

A concept of nonuniform exponential stability, which we will name ”Barreira-Valls exponential stabil-
ity”, is given by L. Barreira and C. Valls in (Barreira & Valls, 2008) for evolution equations.

Definition 3.2. A skew-evolution semiflow C = (¢, @) is Barreira-Valls exponentially stable (BV.e.s.) if
there exist some constants N > 1, @ > 0 and 8 such that, for all (z, s), (s, ft9) € T, the relation holds:

102, 19, x)VI| < Ne™ e ||0(s, tg, x|, ¥ (x,v) € Y. (3.2)
The asymptotic property of nonuniform stability is considered in

Definition 3.3. A skew-evolution semiflow C = (¢, @) is stable (s.) if there exists a mapping N : R, —
[1, 00) such that, for all (z, s), (s, fy) € T, the relation is true:

[|®(2, 1y, X)V|| £ N(5) ||D(s, tg, X)V||, ¥ (x,v) € Y. 3.3)

Let us remind the property of exponential growth for skew-evolution semiflows, given by
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Definition 3.4. A skew-evolution semiflow C = (¢, ®) has exponential growth (e.g.) if there exist two
mappings M, w : Ry — [1, 00), w nondecreasing, such that, for all (¢, s), (s,#y) € T, we have:

D1, 1o, x)VI| < M(s5)e“ = ||d(s, 1, x)V|, ¥ (x,v) € Y. (3.4)

Remark. The relations concerning the previously defined asymptotic properties for skew-evolution semi-
flows are given by
(BV.e.s.) = (e.s.) = (s.) = (e.g.) 3.5

The reciprocal statements are not true, as shown in what follows.

The following example presents a skew-evolution semiflow which is exponentially stable but not Barreira-
Valls exponentially stable.

Example 3.1. Let X = R,. The mapping ¢ : T X R, — R, ¢(¢, s, x) = x is an evolution semiflow on R, .
Let us consider a continuous function u : R, — [1, c0) with

n 1
u(n) = "2 and u (n + ﬁ) = ¢

We define
u(s)e’
u(r)e’

D,(t, 5, x)v = v, where (¢t,5) € T, (x,v) €Y.

As following relation
@2, 5, VI < u(s)e’e™ V]

holds for all (¢,s,x,v) € T X Y, it results that the skew-evolution semiflow C, = (¢, ®,) is exponentially
stable.

Let us now suppose that the skew-evolution semiflow C, = (¢, ®,) is Barreira-Valls exponentially
stable. Then, according to Definition 3.2, there exist N > 1, @ > 0, 8 > 0 and #; > 0 such that

u(s)e’ .
(5) < Ne ™ @PS Vi>s>1.
u(t)e’

Fort=n+ ﬁ and s = n it follows that

en(22n+1) S Nen+2ﬁ+4e—[l(n+ﬁ)eﬁn’

which is equivalent with
en(Zz”—,B) < N€2%+4_a(n+ﬁ),
For n — o0, a contradiction is obtained, which proves that C, is not Barreira-Valls exponentially stable.

There exist skew-evolution semiflows that are stable but not exponentially stable, as results from the
following

Example 3.2. Let us consider X =R, V =R and

t
u: Ry — [1, 00) with the property tlimﬂt) =0.
—00 e
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The mapping
u(s)
O, : T xRy = B(R), O, s, x)y = —v
u(t)
is an evolution cocycle. As |®,(t, s, x)v| < u(s)|v|, Y(¢, s, x,v) € T X Y, it follows that C,, = (¢, ®,) is a stable
skew-evolution semiflow, for every evolution semiflow ¢.
On the other hand, if we suppose that C,, is exponentially stable, according to Definition 3.1, there exist

amapping N : Ry — [1, 00) and a constant @ > 0 such that, for all (z, s), (s, o) € T, we have
19,2, 10, X)VI| < N($)e™ " |Dy(s, 10, X)VII, ¥ (x,v) € Y.
It follows that

N(s) = e’

For t — oo we obtain a contradiction, and, hence, C, is not exponentially stable.
Following example gives a skew-evolution semiflow that has exponential growth but is not stable.

Example 3.3. We consider X = R,, V = R and

t
u : R,y — [1, co) with the property lim —— = co.
t—00 M(t)
The mapping t
D, : T xR, - BR), ®,,s, x)v = u(s)e v
u(t)e’

is an evolution cocycle. We have |O(t, s, x)v| < u(s)e'*|v|, Y(t,s,x,v) € T x Y. Hence, C, = (¢, ®,) is a
skew-evolution semiflow, over every evolution semiflow ¢, and has exponential growth.

Let us suppose that C, is stable. According to Definition 3.3, there exists a mapping N : Ry — [1, o)
such that u(s)e’ < N(s)u(t)e®, for all (¢, s) € T. If t — oo, a contradiction is obtained. Hence, C, is not
stable.

4. Polynomial stability

In this section, we introduce a new concept of nonuniform stability for skew-evolution semiflows, given
by the next

Definition 4.1. A skew-evolution semiflow C = (¢, @) is called polynomially stable (p.s.) if there exist a
mapping N : Ry — [1, o) and a constant y > 0 such that:

lD(z, s, x)v||ds < N(s)(t — )77 |Vl 4.1
forallz > s> 0andall (x,v) €Y.
Remark. 1f a skew-evolution semiflow C is exponentially stable, then it is polynomially stable.
(e.s.) = (p.s.)

The reciprocal statement is not true, as shown in
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Example 4.1. Let X = R;, V = R and the mapping u : Ry — R given by u(r) = ¢ + 1. The mapping
¢: T xR, — Ry, where (2, s, x) = x is an evolution semiflow on R. We consider

O,: TxXR, - BMR), ®,t,s,x)v = @v.

u(r)

Then, as we have
2

s s
|D,(2, s, x)V| < 7|v| = s;lvl, Vizs>1=1, V(x,v) €Y,

it follows that C = (¢, @) is a Barreira-Valls polynomially stable skew-evolution semiflow.
If we suppose that C is exponentially stable, according to Definition 3.1, there exist N : Ry — [1, )

and a > 0 such that
s+ 1

r+1

< N(s)e ™™, YVt > s > 1,

which is equivalent with

and which, for t — oo, leads to a contradiction. Hence, C is not exponentially stable.

Remark. For @ > B in Definition 3.2, a Barreira-Valls exponentially stable skew-evolution semiflow C is
polynomially stable.
(B.V.e.s.) = (p.s.)

Example 4.2. Let us consider X = R,, V = R and the mapping « : R, — R given by u(f) = 1> + 1. The
mapping ¢ : T X Ry — R, where ¢(t, 5, x) = t — s + x is an evolution semiflow on R,. We define

O,: TxXR, - BR), ®,t,s,x)v= @v.

u(t)
Then, as the relation
1D, (2, 5, )| < (5% + D)t = )2, Vr> s> 0, V(x,v) €Y

holds, it follows that C = (¢, @) is a polynomially stable skew-evolution semiflow. On the other hand, C is
not Barreira-Valls exponentially stable.

A similar concept to the nonuniform exponential growth can be considered the following nonuniform
asymptotic property, given by

Definition 4.2. A skew-evolution semiflow C = (¢, ®) has polynomial growth (p.g.) if there exist two
mappings M,y : Ry — R such that:

D, 5, X)vIl < M(s)(t — )" V], 4.2)
forallz > s> 0andall (x,v) €Y.

Remark. If a skew-evolution semiflow C has polynomial growth, then it has exponential growth.

(p.g) = (e.g)



C. Stoica and D. Borlea / Theory and Applications of Mathematics & Computer Science 4 (2) (2014) 221-229 227

In order to obtain an integral characterization for the property of nonuniform polynomial stability for
skew-evolution semiflows, we introduce the following concept, given by

Definition 4.3. A skew-evolution semiflow C = (g, ®) is said to be =-strongly measurable (x — s.m.) if for
every (t, o, x,v*) € T X X X V* the mapping defined by s — [|D(¢, s, ¢(s, tg, x))*V*|| is measurable on [y, 7].

A particular class of #-strongly measurable skew-evolution semiflows is given by the next
Definition 4.4. A *-strongly measurable skew-evolution semiflow C = (¢, @) is called *-integrally stable

(* — i.s.) if there exists a nondecreasing mapping B : R, — [1, o) such that:

*
1%

t
f |, 7, ¢, 5, )" v*|| dr < B(s) |v*]|. (4.3)

forall (z,s) € T, all x € X and all v* € V* with |v*|| < 1.

Theorem 4.3. Let C = (¢, @) be a *-strongly measurable skew-evolution semiflow with polynomial growth.
If C is =-integrally stable, then C is stable.

Proof. Let us consider the function

'R R =
')’1 + + Vl(t) 1 +’y(t)’

where the mapping vy is given by Definition 4.2. We remark that for > s + 1 we have

t =S 1
f (r—5)"Wdr = f udu > f udu = y1(s).
s 0 0

yi(s)| < v, D(t, 5, x)v > | <

Hence, it follows that

t
< f (- 57" ||(D(t, 7,0(1, 5, X)) V"
A

lD(T, s, vl dT <

*
1%

dt < M(s)B(s) ||

!
< M) [ ot 5.0 ,
N
where the existence of function M is assured by Definition 4.2. We obtain
[|D, s, x)v|| < Mi(s) V||, V> s+1>5>0, Y(x,v) €Y,

where we have denoted MB
My(s) = 25 s

> 0.
y(s)

On the other hand, for 7 € [s, s + 1), we have
DG, 5, VIl < M(s)(t = ) [Ivll < M(s) V],
and, hence, it follows that
DG, s, VIl < [M(s) + Mi()] VI, Yz, 8) €T, Y(x,v) €Y,

which proves that the skew-evolution semiflow C is stable. O
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The main result of this section is the following

Theorem 4.4. Let C = (¢, ®) be a *-strongly measurable skew-evolution semiflow with polynomial growth.
If C is =-integrally stable, then C is polynomially stable.

Proof. As the skew-evolution semiflow C = (¢, ®) is *-integrally stable, according to Theorem 4.3, it
follows that there exists a mapping M> : R, — R, such that

| <V, ®(, s, x)v > | =| < OE,T, (1, 5, X))V, O(1, 5, x)v > | <

< |0, 5, Il | @t 7, (1, 5, )" V"

< Ma(s) VIl

DO, T, 0(1, 5, )V .

By integrating on [s, f] we obtain for (x,v) € Y and v* € V* with |v*|| < 1

!
(t = 5)| < V", 0t 5,x)v > | < My(s) V| f @, 7, @(x, 5, )" V| dr <
N

< My(s)B(s) [Vl ||v*

’

which implies
(t = 9) |D(z, 5, x)v[| < Mo($)B(s) |Iv]|.

Hence, following relation
102, 5, )]l < Ma(s)B(s)(t = )" |IV]

holds for all (¢, s) € T and all (x,v) € Y.
Finally, it results that the skew-evolution semiflow C = (¢, ®@) is polynomially stable. O

Remark. In (Stoica & Megan, 2010), a variant of Theorem 4.4 for the case of uniform exponential stability
is proved, as a generalization of a well known theorem of E.A. Barbashin, given in (Barbashin, 1967) for
differential systems and of a result obtained in (Buse et al., 2007) by C. Buse, M. Megan, M. Prajea and P.
Preda for evolution operators. We remark that, in the nonuniform setting, the property of *-integral stability
only implies the polynomial stability.

Remark. The reciprocal of Theorem 4.4 is not true. The skew-evolution semiflow given in Example 4.2 is
polynomially stable but not *-strongly measurable. If we suppose that C is *-strongly measurable, we have

t 2 1 t— tZ t 2
fT * o dr s(1+$)SN(s).
S

2+1 =t2+1 3

For t — o0, a contradiction is obtained.
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Abstract

In this paper, we prove common fixed point theorems for fuzzy mappings satisfying a new inequality initiated by Constantin
(1991) in complete quasi-pseudo metric space and we also obtain some new common fixed point theorems for a pair of fuzzy
mappings on complete quasi-metric space under a generalized contractive condition. Our results generalized many recent fixed
point theorems.

Keywords: fuzzy sets, fuzzy mappings, common fixed points, quasi-pseudo metric space, quasi-metric space, fuzzy
contraction mappings.
2010 MSC: 4TH10, 54H25, 54A40.

1. Introduction

It is a well known fact that the results of fixed points are very useful for determining the existence and
uniqueness of solutions to various mathematical models. Over the period of last forty years the theory of
fixed points has been developed regarding the results which are related to finding the fixed points of self
and non-self nonlinear mappings. In 1922, Banach proved a contraction principle which states that for a
complete metric space (X, d), the mapping T : X — X satisfying the following contraction condition

d(Tx,Ty) < ad(x,y) forall x,yeX, where O<a<1

has a unique fixed point in X. Banach contraction principle plays a fundamental role in the emergence of
modern fixed point theory and it gains more attention because it is based on iteration, so it can be easily
applied using computer. Initially Zadeh (1965) introduced the concept of Fuzzy Sets in 1965, has been an
attempt to develop a mathematical framework in which two system or phenomena which due to intrinsic
indefiniteness-as distinguished from mere statistical variation can’t themselves be characterized precisely.
The classical work of Zadeh (1965) stimulated a great interest among mathematicians, engineers, biologists,
economists, psychologists and experts in other areas who use mathematical method in their research.

*Corresponding author
Email addresses: vhbadshah@gmail.com (V. H. Badshah), cp_wadhwani@yahoo.co.in (Chandraprakash Wadhwani)
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The notion of fixed points for fuzzy mappings was introduced by Weiss (1975) and Butnariu (1982).
Fixed point theorems for fuzzy set valued mappings have been studied by Heilpern (1981) who introduced
the concept of fuzzy contraction mappings and established Banach contraction principle for fuzzy mappings
in complete metric linear spaces which is a fuzzy extension of Banach fixed point theorem and Nadler (1969)
theorem for multi-valued mappings. Park & Jeong (1997) proved some common fixed point theorems for
fuzzy mappings satisfying in complete metric space which are fuzzy extensions of some theorems in Beg
& A. (1992); Park & Jeong (1997).

Motivated and inspired by the works of Arora & V. (2000), Constantin (1991) and Park & Jeong (1997)
the purpose of this paper is to prove some common fixed point theorems for fuzzy mappings satisfying new
contractive-type condition of Constantin (1991) in complete quasi-pseudo metric space. Our results are
the fuzzy extensions of some theorems in Beg & A. (1992); Iseki (1995); Popa (1985); Singh & Whitfield
(1982) . Also, our results generalize the results of Arora & V. (2000), Heilpern (1981), and Park & Jeong
(1997).

Recently Chen (2011, 2012) considered a new type contraction ¢ contractive mapping in complete quasi
metric space. The aim of this paper is to introduced a new class of fuzzy contraction mappings, which will
be call fuzzy ¢ contractive mappings in complete quasi metric space and to prove the existence of common
fixed point for these contractions.

2. Basic concepts

For this purpose we need the following definitions and Lemmas.

Definition 2.1. Sahin ez al. (2005) A quasi-pseudo metric on a non-empty set X is a non-negative real
valued function d on X X X such that, for all x,y,z € X:

(1) d(x,x) =0, and

(i) d(x,y) <d(x,2) +d(z,y).

A pair (X, d) is called a quasi-pseudo metric space, if d is a quasi-pseudo metric on X. A quasi-pseudo
metric d such that x = y whenever d(x,y) = 0 is a quasi metric so that a quasi pseudo metric space we do
not assume that d(x, y) = d(y, x) for every x and y. Each quasi-pseudo metric d on X induces a topology 7(d)
which has base the family of all d balls B.(x), where B.(x) = {y € X : d(x,y) < &} If d is a quasi-pseudo

metric on X, then the function d~! defined on X x X by d~'(x,y) = d(y, x) is also quasi-pseudo metric on X.
By d Ad~' and d v d~! we denote min{d, d~'} and max{d, d~'} respectively.

Definition 2.2. Gregori. & Pastor (1999) Let (X, d) be a quasi-pseudo metric space and let A and B be
non-empty subsets of X. Then the Hausdroff distance between subsets of A and B is defined by

H(A, B) = max{supaead(a, B), suppepd(b, A)}
where d(a, B) = inf{d(a, x) : x € B}.

Note that: H(A, B) > 0 with H(A, B) = 0 if and only if closure of A is equal to closure of B, H(A, B) =
H(B,A) and H(A,B) < H(A,C) + H(C, B) for any non-empty subset A, B and C of X when d is a metric on
X, clearly H is the usual Hausdroff distance.

Definition 2.3. Gregori. & Pastor (1999) Let (X, d) be a quasi-pseudo metric space. The families W*(X)
and W’ (X) of fuzzy sets on (X, d) are defined by

W*(X)=1{A in XA s non-empty, d - closed and d_l—compact},
W'(X) ={A in IX : A; is non-empty, d - closed and d-compact}.
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As per Heilpern (1981), the family W(X) of fuzzy sets on metric linear space (X, d) is defined as follows:
A € W(X) if and only if A, is compact and convex in X for each a € [0, 1] and supA(x) = 1 for x € X.
If (X, d) is a metric linear space, then we have

W(X) c W*(X) = W (X) ={A € IX : A| is non-empty and d-compact } c I*.

Definition 2.4. Gregori. & Pastor (1999) Let (X, d) be a quasi-pseudo metric space and let A, B € W*(X) or
A,Be W (X)and a € [0, 1]. Then we define

Pa(A, B) = Infld(x,y) : x € Aa,y € Bo},

0a(A, B) = sup{d(x,y) : x € Ag,y € By},
Da/(A, B) = H(Am Ba),

where H is the Hausdroff distance deduced from the quasi-pseudo metric d on X, p(A, B) = Sup{p.(A, B) :
€ [0,11}, 6(A, B) = Sup{d,(A,B) : a € [0, 1]}, D(A, B) = Sup{ Dy(A, B) : a € [0, 1]}. It is noted that p,
is non-decreasing function of a.

Definition 2.5. Gregori. & Pastor (1999) Let X be an arbitrary set and Y be any quasi-pseudo metric space.
G is said to be a fuzzy mapping if G is a mapping from the set X into W*(Y) or W’(Y). This definition is
more general than the one given in Heilpern (1981). A fuzzy mapping G is a fuzzy subset on X X Y with
membership function G(x)(y). The function G(x)(y) is the grade of membership of y in G(x).

Definition 2.6. Sahin ez al. (2005) A point x is a fixed point of the mapping G : X — I, if {x} € G(x).

Note that : If A, B € IX, then A ¢ B means A(x) < B(x) for each x € X.
The following Lemmas were proved by Gregori. & Pastor (1999).

Lemma 2.1. Let (X, d) be a quasi-pseudo metric space and let x € X and A € W*(X) and {x} be a fuzzy set
with membership function equal to a characteristic function of the set {x}. Then {x} C A iff po(x,A) = 0, for
each a € [0, 1].

Lemma 2.2. Let (X, d) be a quasi-pseudo metric space and let A € W*(X). Then po(x,A) < d(x,y)+po(y,A)
forany x,y € X and a € [0, 1].

Lemma 2.3. Let (X,d) be a quasi-pseudo metric space and let {xo} C A. Then po(x9, B) < Dy(A, B) for
each A, B € W*(X) and a € [0, 1].

Above Lemmas were proved by Heilpern (1981) for the family W(X) in a metric linear space.

Proposition 1. Let (X, d) be a complete quasi-pseudo metric space and G : X — W*(X) be a fuzzy mapping
and xo € X. Then there exists x1 € X such that {x1} C F(xgp).

Proposition 2. Let (X,d) be a quasi-pseudo metric space and A, B € CP(X) and a € A, then there exists
b € B such that d(a,b) < H(A, B).

Now we shall use the notations as in Isufati & Hoxha (2010).
In the following, the letter I denotes the set of positive integers.
If A is a subset of a topological space (X, 7), we will denote by cl-A the closure of A in (X, 7).
A quasi-metric on a non-empty set X is a non-negative real-valued function d on X X X such that for all
xX,y,2€X:
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(1) dx,y)=d(y,x) =0 x=y,
(i) d(x,y) <d(x,2) +d(z, ).

A pair (X,d) is called a quasi-metric space, if d is a quasi-metric on X.
Each quasi-metric d on X induces a T topology 7 (d) on X, which has a base, the family of all d— balls
{Bay(x,r) : x € X,r > 0}, where, By(x,r) ={y e X : d(x,y) <r}.

If d is a quasi-metric on X, then the function d~! defined on X x X by d~'(x,y) = d(y, x) is also quasi
metric on X. By d A d~! we denote min {d,d"'} and also we denote d* the metric on X by d°(x,y) =
max{d(x,y),d(y, x)} for all x,y € X.

A sequence (x,)er in a quasi metric space (X, d) is called left k— Cauchy Reilly et al. (1982) if for
each ¢ > O there is a ng € I such that d(x,, x,,) < & for alln,m € I with m > n > n,. Let (X,d) be

a quasi-metric space and let K;(X) be the collection of all non-empty compact subset of the metric space
(X, d*). Then the Hausdroff distance H,; on K;j(X) is defined by

H;(A,B) =max{ supd(a,B):a€ A, supd(A,D):b e B} whenever A, B € (KS(X).

A fuzzy set on X is an element of IX where I = [0,1]. If Ais a fuzzy set in X, then the number A(x) is
called the grade of membership of x in A. The - level set of A, denoted by A,, and defined by A, = {x €
X : A(x) > a} foreach @ € (0,1] and Ay = {x : A(x) > 0} where the closure is taken in (X, d°).

Definition 2.7. Gregori & Romaguera (2000) Let (X, d) be a quasi-metric space. A fuzzy set A in quasi-
metric space (X, d) will be called an approximate quantity. The family A(X) of all fuzzy sets on (X, d) is
defined by AX) = {A € IX : A, is d* -compact for each « € [0, 1] and supA(x) =1 : x € X}.

Definition 2.8. Gregori & Romaguera (2000) Let A, B € A(X) then A is said to be more accurate than B,
denoted by A C B if and only if A(x) < B(x) for all x € X.

Definition 2.9. Gregori & Romaguera (2000) Let (X, d) be a quasi-metric space and let A, B € A(X) and
a in [0, 1]. Then we define p,(A, B) = Inf{d(x,y) : x € Ay,y € By} = d(Aqy, By), Do(A, B) = Hy(Ay, By),
P(A,B) = sup{P,(A,B) : a € [0,1]}, D(A, B) = sup{D,(A,B) : a € [0, 1]}, for x € X, we write p,(x,A)
instead of p,({x}, A). We denote that p, is a non-decreasing function of @ and D is metric on A(x).

Definition 2.10. Gregori & Romaguera (2000) A fuzzy mapping on a quasi-metric space (X, d) is a function
F defined on X, which satisfies the following two conditions

(1) F(x) e AX) forall x € X,

(ii) If a,z € X such that (F(2))(a) = 1 and p(a, F(a)) = 0 then (F(a))(a) = 1.

We need the following lemmas for our main result which was given by Gregori & Romaguera (2000).

Lemma 2.4. Gregori & Romaguera (2000) Let (X, d) be a quasi-metric space and let A, B € A(X) and
x € Ay. There exist y € By such that d(x,y) < Di(A, B).

Lemma 2.5. Gregori & Romaguera (2000) Let (X, d) be a quasi-metric space and let A € A(X) and y € A,
Then p(x,A) < d(x,y) for each x € X.

Lemma 2.6. Gregori & Romaguera (2000) Let x € X, A € A(X) and {x} be a fuzzy set with membership
function equal to a characteristic function of the set {x}, then {x} C A if and only if po(x,A) = 0 for each
a€[0,1].
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Lemma 2.7. Gregori & Romaguera (2000) Let (X,d) be a quasi-metric space and A € A(X). Then
Pa(x,A) < d(x,y) + pa(y, A).

Lemma 2.8. Gregori & Romaguera (2000) Let (X, d) be a quasi-metric space and let A € A(X) and x € A.
Then po(x, B) < Dy(A, B) for each B € A(X) and each a € [0, 1].

Lemma 2.9. Gregori & Romaguera (2000) Let A and B be non-empty compact subset of a quasi-metric
space (X,d) if a € A, then there exists b € B, such that d(a,b) < H(A, B).

Lemma 2.10. Gregori & Romaguera (2000) Let (X,d) be a complete quasi metric space and let F be a
Jfuzzy mapping from X into A(X) and xo € X. Then there exists x| € X such that {x1} C F(xp).

We consider the set of function ¥ = {: R*> — R*} satisfying the following conditions

(1) ¢ strictly increasing, continuous function in each coordinate and
(i) forallg € R* such thaty(g, g,8,0,2¢) < g,¥(8.8.8.28.0) < 8,4(0,0,¢,8,0) < gand ¢(g,0,0,8, ) <
g.
Example 2.11. Let : R*> — R* denote by y(g1, g2, 83,84, 85) = k max(g1, g2, 3, £.2) fork € (0,1)
then  satisfies above conditions (i) and (ii).

3. Main Result

Following Constantin (1991) we consider the set G of all continuous functions g: [0, 00)> — [0, o) with
the following properties:
(1) g is non-decreasing in the 2", 3" 4" and 5" variable,
(2) ifu,v € [0, 00) are such that u < g(v,v,u,u+v,0)oru < g(v,u,v,0,u +v) then u < gv where 0 < g < 1
is a given constant,
(3) ifu € [0, 00) is such that u < g(u, 0,0, u, u) then u = 0.

Now we are ready to prove our main theorems.

Theorem 3.1. Let X be a complete quasi-pseudo metric space and let G| and G be fuzzy mappings from
X into W*(X). If there is a g € G such that for x,y € X

D(G1(x), G2(y)) < g(d(x,y), p(x, G1(x)), p(y, G2()), p(x, G2(¥)), p(y, G1(x)))
then there exists z € X such that {z} C F1(z) and {z} C F»(2).

Proof. Let xo € X. Then by Proposition 2.1 there exists an x; € X such that {x;} € G(Xp). From
Proposition 2.1 there exists x, € (Gz(x1))1. Since (G1(xp))1, (G2(x1))1 € CP(X) then by Proposition 2.2 we
obtain,

d(x1,x) < Di(Gi(x0),G2(x1)) < D(G1(x0), G2(x1)) < g(d(x0, x1), p(x0, G1(x0)), p(x1, G2(x1)),
p(x0, G2(x1)), p(x1,G1(x0))) < g(d(x0, x1), d(x0, X1), d(x1, x2), d(x0, X1) + d(x1, x2),0)

therefore, d(x1, x2) < gd(xp, x1). Following similar process we obtain, d(x,, x3) < gd(x1, x2). By induction,
we produce a sequence (x,) of points of X such that for each &k > 0 {xpx+1} € Gi(x2k), and {xpr42} C
Go(x2p+1)s d(Xny Xpt1) < qd(Xy-1, Xp) < - -+ < ¢"d(x9, x1). Furthermore, for m > n,

d(xm xm) < d(xn’ xn+1) + d(xn+1a xn+2) +eeet d(xm—la xm)

q
(I-¢q)

< {qn + ql’H’l e+ qm_l}d(XO, xp) <

d(xo, x1).
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It follows that (x,) is a Cauchy sequence in X. Since X is complete, there exists z € X such that lim x, = z.

n—oo

Next, we show that {z} C G;(z),i = 1,2. Now by Lemma 2.2 py(z, G2(2)) < d(z, X2n+1) + po(Xan+1, G2(2)).
Then by Lemma 2.3,

P(z,G2(2)) < d(z,x041) + D(G1(x2,), G2(2)) < d(2, Xon41) + f(d(X24,2), p(X20, G1(X20)),
p(Z’ GZ(Z))9 p(x2n7 G2(Z))’ p(Z’ Gl (x2n)))
< d(z, xon41) + g(d(X2, 2), d(X20, X2041), P(2, G2(2)), p(X20, G2(2)), d(2, X2041)).

As n — oo, we obtain from above inequality that p(z, G2(z)) < g(0,0, p(z, G2(2)), p(z, G2(2)), 0), so by
properties of g we have p(z, G»(z)) = 0. by (2). So by Lemma 2.1, we get {z} C G»(z). Similarly, it can be
shown that {z} € G(2). O

As corollaries of Theorem 3.1, we have the following:

Corollary 3.2 (Park & Jeong (1997); Theorem 3.1 ). Let X be a complete quasi-pseudo metric space and
let Gy and Gy be fuzzy mappings from X into W*(X). If there exists a constant a,0 < a < 1, such that
for each x,y € X, D(G1(x), G2(y)) < @ - max{d(x, y), p(x, G1(x)), p(y, Ga(y)), LELPOGCN 1oy tere
exists 7 € X such that {z} C G1(z) and {z} € G2(2).

Proof. We consider the function g : [0, 00)> — [0, o) defined by g(x1, x2, X3, X4, X5) = @-max{xy, xp, X3, (x“—;xS)}.

Since g € G we can apply Theorem 3.1 and obtain Corollary 3.1. O

Corollary 3.3 (Park & Jeong (1997); Theorem 3.2). Let X be a complete quasi-pseudo metric space and let

1
G and G be fuzzy mappings from X into W*(X). satisfying D(G1(x), G2(y)) < k[p(x,G1(x))- p(y, G2(y))] 2,
forall x,y € X and 0 < k < 1. Then there exists z € X such that {z} C G1(2) and {7} C G2().

Proof. We consider the function g : [0, )’ — [0, o) defined by g(x1, x2, X3, X4, X5) = k[xp - X3]%. Since
g € G we can apply Theorem 3.1 and obtain Corollary 3.2. U

Corollary 3.4 (Park & Jeong (1997); Theorem 3.4). Let X be a complete quasi-pseudo metric space and
let G| and G be fuzzy mappings from X into W*(X), such that

PO, GIOIL + p(x, G2(x))]
1+d(x,y)

D(G1(x), G2(y) < a +Bd(x,y)

forall x # y,a,B > 0and a + B < 1. Then there exists z € X such that {z} C G1(z) and {z} C G2(2).

X3(1+xz)

Proof. We consider the function g : [0, 00)’ — [0, 00) defined by g(x1, x2, X3, X4, X5) = - rx) + Bx;.

Since g € G we can apply Theorem 3.1 and obtain Corollary 3.3.

Corollary 3.5 (Arora & V. (2000); Theorem 3.2). Let X be a complete quasi-pseudo metric space and let
G and G be fuzzy mappings from X into W*(X). If there exists a constant r,0 < r < 1, such that for each

x,y € X, D(G1(x),G2(y)) < r-max{d(x, y), p(x,G1(x)), p(y, G2(y)), p(x, G2(y)), p(y, G1(x))} then there exists
z € X such that {z} € G1(z) and {z} C G2(2).

Proof. We consider the function g : [0, 00)> — [0, o) defined by g(x1, X2, X3, X4, X5) = r-max{xy, xXa, X3, X4, Xs}.
Since g € G we can apply Theorem 3.1 and obtain corollary 3.4. O

The following Corollary is a fuzzy version of the fixed point theorem for multi-valued mappings of Iseki
(1995).



236 V. H. Badshah, C. Wadhwani/  Theory and Applications of Mathematics & Computer Science 4 (2) (2014) 230-239

Corollary 3.6. Let X be a complete quasi-pseudo metric space and let G| and G, be fuzzy mappings from X
into W*(X). If for each x,y € X, such that D(G1(x), G2(y)) < al[p(x,G1(x)) + p(y, G2(y)] + Bl p(x, G2(y)) +
PO, G1(x))] +vd(x,y) where a, B,y are non-negative and 2a + 23 +y < 1. Then there exists z € X such that
{z} € G1(2) and {z} C G2(2).

Proof. We consider the function g : [0, o)’ — [0, o) defined by g(x1, x2, X3, X4, X5) = a[xy + x3] + B[x4 +
xs5] + yx1. Since g € G we can apply Theorem 3.1 and obtain corollary 3.5. O

The following Corollary is a fuzzy version of the fixed point theorem for multi-valued mappings of
Singh & Whitfield (1982).

Corollary 3.7. Let X be a complete quasi-pseudo metric space and let G| and G, be fuzzy mappings from
X into W*(X). If there exists a constant a,0 < a < 1, such that for each x,y € X, D(G1(x),G2(y)) <
a - max{d(x,y), Lp (X’G](x));p 0:G2ON1  [p (X’GZ(y));p (y’G'(x))]} then there exists z € X such that {z} C G1(z) and
{z} € G2(2).

Proof. We consider the function g : [0, ) — [0, co) defined by g(x1, x2, X3, X4, X5) = @-max{xj, @, M}

Since g € G we can apply Theorem 3.1 and obtain Corollary 3.6. 0

Remark. If there exists a function g € G such that for all x,y € X

0(G1(x), Ga(y)) < g(d(x,y), p(x, G1(x)), p(y, G2()), p(x, G2()), p(y, G1(X))),

then the conclusion of Theorem 3.1 remains valid. This result is considered as special case of Theorem 3.1
because ( see, Hicks (1997); page 414) D(G1(x), G2(y)) < 6(G1(x), G2(y)). Moreover, this result generalize
Theorem 3.3 of Park & Jeong (1997).

The following theorem extends Theorem 3.1 to a sequence of fuzzy mappings:

Theorem 3.8. Let X be a complete quasi-pseudo metric space and let {G, : n € Z*} be fuzzy mappings
from X into W*(X). If there is a g € G such that for all x,y € X

D(Go(x), Gu(y)) < gd(x,y), p(x,Go(x)), p(y, Gu(y)), p(x, Gu (), p(y, Go(x)))

then there exists a common fixed point of the family {G, : n € Z*}.

Proof. From Theorem 3.1, we get a common fixed point x;,i = 1,2, ..., for each pair (Gg, G;),i = 1,2,....
Applying Lemma 2.2, one can have that p,(x;, Gox;) = Po(x;, Gi(x;)) = 0, foralli = 1,2,.... Thus one can
deduce form Lemma 2.3, for i # j, that

d(xi,xj)) = pa(xi,Gj(x)) < Do(Gi(x:), G j(x))) < D(Gi(x;), G j(x}))
< gld(xi, xj), p(xi, Gi(x), p(xj, G j(x))), p(xi, G j(x))), p(x), Gi(x;)))
= g(d(x;,x;),0,0,d(x;, x;),d(x;, x;)).
Therefore d(x;, x;) = 0, i.e., x; = x;j forall i, j € N. ]

Corollary 3.9. (Arora & V. (2000);Theorem (3.4)) Let X be a complete quasi-pseudo metric space and let
{G,, : n € N*} be fuzzy mappings from X into W*(X). If for each x,y € X, and r € (0, %),n =1,2,,..,
such that D(Go(x), G;(y)) < rmax{d(x,y), p(x, G,(x)), p(y, G;(¥)), p(x, Gi(¥)), p(y, Go(x))}. Then there exists
a common fixed point of the family {G, : n € N*}.
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Theorem 3.10. Let (X, d) be a complete quasi-metric space, let T\, T>: X — A(X) be fuzzy W contractive
mappings satisfies D(T1x, Toy) < y{(d(x,y), p(x, T1x), p(y, T2y), p(x, T2y), p(y, T1x)} then there exists z € X
such that {z} C T1(z) and {z} C T(2).

Proof. Let xp € X then by Lemma 2.10 there exists an element x; € X such that {x;} C T (xp) for x| €
T>(x1)) is non-empty compact subset of X. Since (7'1(xp))1, (T2(x1))1 € CP(X) and x; € (T((xp)1), then by
lemma 2.9 asserts that there exists x, € (T2(x1)); such that d(x1, x2) < D1(T1(xg), T2(x1)) so, from Lemma
2.6 and properties of i function, we have

d(x1,x2)

IA

D1(T1(x0), T2(x1)) < D(T1(x0), T2(x1))
Y(d(xo, x1), p(x0, T1x0), p(x1, T2x1), p(x0, T2x1), p(x1, T1X0))
Y(d(xo, x1), d(x0, x1),d(x1, x2), d(x0, x1) + d(x1, x2),0)

IA

IA

and

d(x, x1)

IA

D1 (T>(x1), T1(x0)) < D(T2(x1), T1(x0))
Y(d(x1, x0), p(x1, T2x1), p(x0, T1x0), p(x1, T1X0), p(x0, T2X1))
Y(d(x1, x0),d(x1, x2), d(x0, x1), 0, d(x0, x1) + d(x1, x2))

IA

IA

by induction, we have a sequence (x;) of points such that for all n € R* U {0} we have {x2,+1} C T1(x2,) and
{x2n+2} C T2(x2441) then

d(xn’ xn+1) < w(d(xn—l P xn)’ d(xn—l 5 xn)’ d(xn’ xn+1)’ d(xn—l 5 xn) + d(xn’ Xn+1 )’ 0) (31)
and
d(Xpe1, Xn) < Y(d(xn, Xp-1), d(Xn, Xna1), d(Xn=1, Xn), 0, d(Xp—1, X) + d( X1, Xp11)) (3.2)

so, by the properties of the ¢ function we have that for each n € R d(x,, x,+1) < d(x,-1,x,) and
d(xp+1, Xn) < d(xpn, xp—1). The sequence (b,,)mer+, such that b, = d(x,,, X,,+1) 1S a non-increasing sequence
and bounded below. Thus it must converges to some b > 0. By the inequality 3.1 and 3.2 we have

b < bm < ¢(bm—1,br11—l, bma bm—l + bm, O) <b (33)

passing to the limit, as m — oo, and by properties of the ¢ function we have b < b < (b, b,b,2b,0) < b
which is contradiction. Hence b = 0. Thus, the sequence (x;),cg+ must be a Cauchy sequence.

Similarly, the sequence (c;,),eg+ such that ¢, = d(x,+1,x,) is a non-increasing sequence and bounded
below. Thus, it must converges to some ¢ > 0.
By the inequality 3.1 and 3.2 we have

¢ < ¢y SY(ep-1,Cn-1,Cps Cn—1 + €, 0) < b (3.4)

passing to the limit, as n — oo, and by properties of the ¢ function we have ¢ < ¢ < ¥(c,c,c,2¢,0) < ¢
which is possible if and only if ¢ = 0.
We next claim that to prove that for each & > 0, there exists ng(g) € R*, such that for all m > n > ny(g)

d(x;,, x,) < €. 3.5)
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Suppose that 3.5 is false then, there exists some & > 0 such that for all k € R*, there exists the smallest
number my, such that my, ny € R with my > ny < k satisfying d(x,, , x,,) > € so,

g < d(xmk9 xnk) < D(Txmk—l’ Txnk—l)
l/’(d(xmk—l, xnk—l)7 P(ka—l, Txmk—l), p(xnk—l’ Txnk—l)’ P(ka—l, Txnk—l)a p(xnk—h Txmk—l)
lvl’(d(xmk—l, xnk—l)’ d(xmk—ly xmk)’ d(xnk—l s xnk)’ d(xmk—l s xnk)e d(xnk—l s xmk)

l//(ka—l + d(xmka xnk) + Cng—15 Cry—15 Cy—15 Cryy—1 + d(xmka xnk)a d(xmk, xnk) + an—l)'

IN A

IA

Letting k — oo we have € < Y¥(g,0,0, &, ) < € which is a contradiction. It follows from 3.5 that (x,) is a
Cauchy sequence since (X, d) is a complete quasi-metric space,then there exists z € X such that lim,_,cox;, =
.

Next we show that {z} C T»(z2).

By Lemmas 2.7 and 2.8 we get po(z, T22) < d(z, X2n+1) + Pa(X2n+1, T22) < d(Z, Xop11) + Do(T1 Xy, Toz) for
each a € [0, 1]. Taking supremum on « in the last inequality, we obtain from the properties of ¢ that

P2, T22) < d(z,Xop41) + pa(Xon+1, T22) < d(2, X2p41) + Do(T1 X2, T22)

d(Z’ x2n+l) + w(d(XZn, Z)7 p(le’h Tl x2n), p(Z’ T2Z)7 p(x2n7 TZZ)a d(zv x2n+l))
d(Za x2n+l) + l//(d(XZna Z)7 d(x2n, x2n+l)’ p(za TZZ)’ P(x2n, TZZ)’ d(Z7 X2n+1 ))

IA

IA

As n — oo, we have p(z, T2z) < ¥(0,0, p(z, T22), p(z, T22),0) < p(z, T>z). It yields that p(z, T2z) = 0. So,
we get from Lemma 2.10 that {z} € T»z. Similarly we prove that {z} C Tz. ]

Corollary 3.11. Let (X, d) be a complete quasi metric space and let T : X — A(X) be a fuzzy W contraction
mapping then there exists z € X such that {z} C T(z).

Proof. If put Ty = T = T in theorem 3.3 we get the conclusion of corollary 3.8. O
Corollary 3.12. Let (X, d) be a complete quasi metric space and let T : X — A(X) be a fuzzy W contraction

mapping, such that for all x,y € X D(T1x,T»y) < ¢(d(x,y), p(x, T1x), p(y, T2Y), w w) then there
exists 7 € X such that {z} € Tz and {z} C T»z.

Proof. We consider the function y: R*> — R*3 denoted by (11,1, 13, 14, t5) = kmax{t|, 2,13, %‘, ’75} for
k € (0, 1). Since ¢ € ¥ we can apply theorem 3.3 and obtain Corollary 3.9. O
Remark. As examples of the main results we can taking theorems in which the contractions conditions are
compatible with the condition (i) and (i7).
Remark. If there is a y € ¥ such that for all x,y € X

6(T1x, T2y) < Y(d(x,y), p(x, T1x), p(y, T2y), p(x, T2y), p(y, T1x))

then the conclusion of Theorem 3.3 remains valid. This result is considered as a special case of Theorem
3.3 because D (T1x,T2y) < 6(T1x,Ty) for all x,y € X. The following theorem generalizes Theorem 3.3 to
a sequence of fuzzy contractive mappings.

Theorem 3.13. Let (T, : n € (0, 00) U {0}) be a sequence of fuzzy mappings from a complete quasi metric
space X into A(X) . If there is a w € Y such that for all x,y € X

D(Tox, Tny) < Y(d(x,y), p(x, Tox), p(y, Tuy), p(x, Tyy), p(y, Tox))
for all n € (0, 00) U {0}, then there exists a common fixed point of the family (T, : n € (0, c0) U {0}).

Proof. Putting T1 = To and T, = T, for all n € N in Theorem 3.3 then there exists a common fixed point of
the family (T}, : n € (0, c0) U {0}). O
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4. Conclusion and future work

Fuzzy sets and mappings play an important role in the fuzzification of systems. In particular, in the
recent years the fixed point theory for fuzzy mappings has been developed largely. We generalize, extend
and unify several known results of metric spaces, into a weaker and generalize setting of quasi-pseudo
metric space and quasi metric space for fuzzy mappings. We use a more generalize contractive condition
than the existing ones, also we prove our results in quasi-pseudo metric space, quasi metric space and so
as to obtain better results under weaker conditions. We conclude this paper with an open problem: Is it
possible to prove the results of this paper in the setting of b-metric and partial metric spaces?
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