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Abstract
In this paper we present practical algorithmic optimizations addressing two problems. The first one is concerned

with computing a maximal matching in an induced subgraph of agrid graph. For this problem we present a faster
sequential algorithm using bit operations and a way of implementing it in a parallel environment. The second problem
is concerned with computing minimum cost perfect matchingsin bipartite graphs. For this problem we extend the
idea behind the Hopcroft-Karp maximum matching algorithm and then we consider a more general situation in which
multiple minimum cost perfect matchings need to be computedin the same graph, under certain cost restrictions. We
present experimental results for all the proposed optimizations.
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1. Introduction

The problem of computing maximum or maximal matchings in bipartite graphs has been con-
sidered many times in the scientific literature. Many of the proposed algorithms use the fact that
computing a maximum matching in a bipartite graph is equivalent to computing a maximum flow
in a slightly modified graph. Thus, results from the theory ofnetwork flows can be used for com-
puting maximum matchings. If only a maximal matching is needed, then simpler greedy-type
algorithms can be employed. In this paper we present severalpractical algorithmic improvements
for some of the algorithms used for computing maximal matchings in grid graphs and minimum
cost perfect matchings in bipartite graphs.

The rest of this paper is structured as follows. In Section2 we define the main terms and
techniques used in this paper. In Section3 we discuss related work. In Section4 we present
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faster algorithms for computing maximal matchings in induced subgraphs of grid graphs based on
algorithms which use bit operations. In Section5 we extend an idea used for computing maxi-
mum matchings in bipartite graphs to the computation of minimum cost perfect matchings. The
idea consists of using multiple edge-disjoint augmenting paths per iteration in order to reduce the
number of iterations of the algorithm. In Section6 we consider another perfect matching problem.
In this problem we are interested in computing a minimum costperfect matching in a complete
bipartite graph under certain restrictions regarding the cost computation. The cost of the matching
is considered to be equal to the sum of the costs of the edges from the matchingexceptfor the
cost of the minimum cost edge from the matching (i.e. the minimum cost edge of the matching
is considered to have cost 0 when computing the cost of the matching). In Section7 we present
experimental evaluations of all the algorithms discussed in this paper. Finally, in Section8 we
conclude.

2. Terms and Definitions

A bipartite graph is a graph whose vertices can be split into two setsL (left) andR (right).
We consider the vertices to be numbered from 1 to|L| in the left set and from 1 to|R| in the
right set (it is acceptable to have vertices with the same number in the graph, because they will
be differentiated based on the setL or R to which they belong). Every edge (x, y) of the graph is
between a nodex ∈ L and a nodey ∈ R. A matching in a bipartite graph is a set of edges such that
no two edges in the set have a common vertex. A maximum matching is a matching of maximum
cardinality. A maximal matching is a matching to which no more edges can be added (i.e. all the
edges outside of the matching have a common vertex with at least one edge from the matching).
A perfect matching is a matching in which every node of the graph is an endpoint of an edge from
the matching (such a matching may exist only when|L| = |R|).

In order to reduce the maximum matching problem to a maximum flow problem we need to
construct a directed graph as follows. We will have a specialnodeS called thesourceand another
special nodeT called thesink. We will also keep all the nodes from the given bipartite graph.
Each edge (x, y) of the original bipartite graph will be replaced by a directed arc fromx to y
having capacity 1. We will also add capacity 1 arcs fromS to every nodex ∈ L and from every
nodey ∈ R to T. In case the edges of the bipartite graph have costs these costs are maintained on
the directed arcs from the nodesx ∈ L to the nodesy ∈ R (we will denote byc(x, y) the cost of the
edge betweenx ∈ L andy ∈ R). All the arcs havingS or T as an endpoint will have cost 0.

One of the best known maximum flow algorithms is the Edmonds-Karp algorithm (Edmonds
& Karp, 1972). This algorithm can be summarized as follows: As long as possible find a shortest
path fromS to T in the residual graph and augment the flow along that path. When arc costs
are involved the algorithm can be adjusted in order to find a minimum cost path fromS to T in
the residual graph. Note that the residual graph may containnegative costs. This version of the
Edmonds-Karp algorithm is known as thesuccessive shortest pathalgorithm (Todinov, 2013). A
simple breadth-first search algorithm is used for finding a shortest path in the first case (i.e. when
edge costs are not involved), while a minimum cost path algorithm needs to be used in the second
case (i.e. when edge costs are involved), for instance, Bellman-Ford-Moore (Papaefthymiou &
Rodrigue, 1997) or even Dijkstra’s algorithm (Todinov, 2013) after modifying the graph’s arc
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costs in order to remove negative costs. Thus, the algorithmconsists of multiple iterations, in each
of which the flow is increased along a single path. The most time consuming part in each iteration
is the traversal of the graph in order to find an augmenting path. In a graph withV vertices and
E arcs finding the shortest augmenting path takesO(V + E) time when no costs are involved and
O(V · E) time when costs are involved (orO(V + E · log(V)) or O(E + V · log(V)) time when
Dijkstra’s algorithm is used on the modified residual graph costs). Then, augmenting the flow
along the found path is easy (it takes onlyO(V) time). In the case of bipartite graphs it is sufficient
to find a path fromS to an unmatched vertex inR (because this vertex is directly connected toT
through an existing arc in the residual graph).

3. Related Work

The best algorithm for computing a maximum matching in sparse bipartite graphs is the
Hopcroft-Karp algorithm (Hopcroft & Karp, 1973), which has a time complexity ofO(E ·

√
V)

whereV is the number of vertices andE is the number of edges of the graph. For dense bipar-
tite graphs the algorithm proposed in (Alt et al., 1991) has a slightly better time complexity of

O(V1.5
√

E
log(V) ). Both of these algorithms have a better time complexity than the Edmonds-Karp

algorithm for finding a maximum flow presented in the previoussection. However, due to its
simplicity, the Edmonds-Karp algorithm is used in many practical implementations. Moreover,
experimental evaluations showed that for some types of bipartite graphs some modified versions
of the Edmonds-Karp algorithm (which use breadth-first search from all the source’s neighbors
for finding augmenting paths) are faster than the Hopcroft-Karp algorithm, despite having a worse
theoretical time complexity (Cherkasskyet al., 1998).

Edmonds-Karp is not the only algorithm for computing maximum flows in graphs. In fact,
many such algorithms were proposed in the scientific literature. Some of the most popular ones
are Dinic’s algorithm (Dinic, 1970), Karzanov’s algorithm (Karzanov, 1974) and the push-relabel
maximum flow algorithm (Goldberg & Tarjan, 1986).

A minimum cost perfect bipartite matching can be computed inO(V3) time using the Hungar-
ian algoritm (Munkres, 1957). Thesuccessive shortest pathalgorithm for minimum cost maximum
flows can be implemented inO(V · (E + V · log(V))) time in order to compute a minimum cost
maximum matching by using Fibonacci heaps (Fredman & Tarjan, 1987). The algorithm consists
of O(V) iterations and each iteration runs inO(E + V · log(V)) time. Dynamic versions of the
minimum cost perfect bipartite matching problem, in which edge costs can be changed, have also
been considered (Mills-Tetteyet al., 2007).

Maximum matchings can also be computed in general graphs, not just bipartite graphs (see,
for instance, Gabow’s algorithm (Gabow, 1976), having anO(V3) time complexity). Minimum
cost perfect matchings have also been considered in some special classes of graphs, e.g. graphs
induced by points in the plane (Varadarajan, 1998). Greedy algorithms for maximal matchings,
including parallel versions, were presented in (Blelloch et al., 2012). The problem of maintaining
maximal matchings in dynamic graphs has been addressed in (Neiman & Solomon, 2013).
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4. Faster Algorithm for Maximal Matchings in Induced Subgraphs of Grid Graphs using
Bit Operations

We consider anM · N grid graph in which every node has a coordinate (x, y) (0 ≤ x ≤ N − 1,
0 ≤ y ≤ M − 1) and some nodes are missing. The graph is defined by the implicit adjacency
structure of the existing nodes (i.e. two nodes at distance 1in the grid are neighbors). We are
interested in computing a maximal matching in this graph. Note that a maximal matching simply
implies that no other edge of the graph can be added to the matching and not that the matching has
maximum cardinality. Computing a maximum cardinality matching can be done easily, because
the graph is bipartite (we can separate the nodes into two groups based on the parity of their sum
of x andy coordinates) and there are many polynomial-time maximum matching algorithms in
such graphs (see Section3).

Computing a maximal matching can be achieved faster, in onlyO(M · N) time. Let’s consider
the following Greedy algorithm (Algorithm1) which traverses the grid graph in increasing order
of they-coordinate and for eachy in inceasing order of thex-coordinate.

Algorithm 1 GreedyO(M ·N) Algorithm for Finding a Maximal Matching in an Induced Subgraph
of a Grid Graph

C = 0 {At the end of the algorithmC will be the size of the maximal matching.}
for y = 0 to M − 1 do

for x = 0 to N − 1 do
if node (x, y) exists in the graphthen

if y > 0 and node (x, y− 1) exists in the graphand node (x, y− 1) is not matchedthen
Match the nodes (x, y) and (x, y− 1)
C = C + 1

else if x > 0 and node (x − 1, y) exists in the graphand node (x − 1, y) is not matched
then

Match the nodes (x, y) and (x− 1, y)
C = C + 1

end if
end if

end for
end for

We can implement a faster version of the Algorithm1 by using bit operations. Note that the
presented algorithm will only compute the size of the maximal matching and not the matching
itself. The speed increase is due to using bit operations andhandling multiple nodes at the same
time. We will split each row of the grid graph (correspondingto ay-coordinate) into blocks ofB
bits. Blocki of each row contains bits referring to the coordinatesi · B, . . . , (i + 1) · B− 1. We will
denote byblock(y, i) the blocki of the row corresponding to the coordinatey. We will have bit j of
block(y, i) set to 1 if the node (i ·B+ j, y) exists in the graph, and set to 0 otherwise (0≤ j ≤ B−1).
We will traverse the graph fromy = 0 to y = M − 1 as in Algorithm1. During the traversal we
will maintain a row of blocks corresponding to the previous row in which 1 bits will correspond
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to existing unmatched nodes. When considering a new rowy, the first step is to perform anAND
between the current row and the previous row of unmatched nodes. All the 1 bits in the result
of this operation will represent nodes from the current row which are matched to nodes from the
previous row. After performing this match we will clear the matched 1 bits from the current row.
The next step is to match nodes from the current row which are adjacent to each other faster than
O(N) time. In order to achieve this we will need to use a preprocessing step. For each sequence
S of B bits we will computeMCnt(S) that is the number of pairs of adjacent bits matched inS
andMRes(S) the B-bit sequence containing the remaining unmatched 1 bits ofS. We will start
with MCnt(S) = 0 andMRes(S) = S. Then we will traverse all the bitsj of S from 1 to B− 1.
If MRes(S)( j) = 1 andMres(S)( j − 1) = 1 then we increaseMCnt(S) by 1 and we clear the bits
j and j − 1 in MRes(S). Thus, we can computeMCnt(S) andMRes(S) in O(B) time, obtaining a
preprocessing time ofO(2B · B). Within the same time complexity we will also compute for each
B-bit sequenceS the number of 1 bits inS, BCnt(S).

With these values we can perfom the matching on the current row y. We will consider each
block i from 0 to (N − 1)/B and we will maintain the state of the current row as a sequenceof
blockscrow. First we copyblock(y, i) to crow(i). Then, if i > 0 and bitB − 1 of crow(i − 1) is
1 and bit 0 ofcrow(i) is 1 we match these two bits and then we set them to zero. Afterwards we
replacecrow(i) by MRes(crow(i)). The detailed algorithm is presented in Algorithm2.

The time complexity of Algorithm2 is O(2B · B + M · N/B). TheO(2B · B) term is the time
complexity of the preprocessing stage and theO(M · N/B) is the time complexity of the actual
algorithm. The presented algorithm can even be implementedin a parallel manner. First of all the
preprocessing stage is obviously parallelizable: each of the 2B values of the tablesMRes, MCnt
andBCntca be computed independently. In order to parallelize the actual algorithm we will need
to refactor it first. We will first perform all the horizontal matchings on each of theM rows. We can
first perform the matching within each block of each row independently in parallel and store the
result in a variable specific to each (row, block) pair (this means that we would have such a variable
for each block of each row). Then we can handle the matching between bit 0 of odd-numbered
blocks and bitB− 1 of the preceding even-numbered block in parallel, followed by another stage
in which we handle the matching between bit 0 of even-numbered blocks and bitB − 1 of the
preceding odd-numbered block in parallel. Then we can handle matchings between nodes on
different rows. In order to parallelize this stage we will first consider all the rows corresponding
to oddy coordinates being matched to the adjacent row with a smallerand eveny coordinate.
Obviously, each block of all of theseM/2 (we consider integer division) rows can be handled
independently in parallel. Then we will consider all the rows corresponding to eveny coordinates
being matched to the adjacent row with a smaller and oddy coordinate. Each block of these
M − M/2 rows can also be handled independently, in parallel. The parallel algorithm presented
here can use up to 2B processors in the preprocessing stage and up toM · N/B processors in the
maximal matching computation stage. Note that the result ofthe parallel version may differ from
the result of the sequential algorithm (Algorithm2) because a different maximal matching will be
computed (due to the different order of performing the vertical and horizontal matches).
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Algorithm 2 GreedyO(2B ·B+M ·N/B) Algorithm for Finding a Maximal Matching in an Induced
Subgraph of a Grid Graph

Compute the tablesMRes, MCnt andBCnt.
C = 0
prow(i) = 0 (0≤ i ≤ (N − 1)/B)
for y = 0 to M − 1 do

crow(i)← block(y, i) (0 ≤ i ≤ (N − 1)/B)
for i = 0 to (N − 1)/B do

vmatch(i) = crow(i) AND prow(i)
C = C + BCnt(vmatch(i)))
crow(i) = crow(i) XOR vmatch(i)

end for
C = C + MCnt(crow(0))
crow(0) = MRes(crow(0))
for i = 1 to (N − 1)/B do

if bit B− 1 of crow(i − 1) is 1and bit 0 of crow(i) is 1 then
C = C + 1
Clear bitB− 1 of crow(i − 1) and bit 0 ofcrow(i).

end if
C = C + MCnt(crow(i))
crow(i) = MRes(crow(i))

end for
prow(i) = crow(i) (0 ≤ i ≤ (N − 1)/B)

end for

5. Using a Maximal Set of Edge-Disjoint Paths for Reducing the Number of Iterations of
Minimum Cost Perfect Matching Algorithms

The best algorithm for computing a maximum matching in a sparse bipartite graph is the
Hopcroft-Karp algorithm (Hopcroft & Karp, 1973) which has a time complexity ofO(E·

√
V). The

main idea behind that algorithm is to enhance a standard augmenting path algorithm as follows.
After each BFS traversal of the graph in order to find an augmenting path, the matching will not
be increased only along one path, but rather along a maximal set of edge-disjoint shortest paths
(note that in this case edge-disjoint paths are also vertex-disjoint paths, because they are paths in
a shortest path tree; the only common vertex is the sourceS).

The same idea can be used when computing a minimum cost perfect matching. At each iter-
ation of thesuccessive shortest pathalgorithm (Todinov, 2013) we need to find a minimum cost
path in the residual graph. Note that the residual graph may have arcs with negative costs, but
does not have negative cycles. Thus, we either need to use a shortest path algorithm which sup-
ports negative costs (e.g. Bellman-Ford-Moore (Papaefthymiou & Rodrigue, 1997)) or we need
to modify the costs in order to obtain non-negative costs only and, thus, use Dijkstra’s algorithm
(Todinov, 2013).
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No matter what shortest path algorithm we use, at the end of the algorithm we have the min-
imum cost of a path starting at the source and ending at each node x ∈ R. We can sort all these
nodes in ascending order of the cost of the minimum cost path to reach them (ignoring the un-
reachable nodes, if any). Then, rather than only increasingthe matching along the minimum cost
augmenting path, we can consider these nodes in sorted order. For each nodex we trace back its
shortest path to the source. If the matching was already augmented at the current iteration along
at least one edge of the path, then we ignore nodex and we move on to the next one. If the cur-
rent path does not intersect with any of the paths along whichthe matching was augmented at the
current iteration then we can augment the matching along this path and mark its edges in order to
know that no other shortest path containing (some of) these edges can be used for augmenting the
matching at the current iteration.

A direct implementation of this modified matching augmentation algorithm takesO(V2) time
per iteration, because there may beO(V) verified paths and each verification may takeO(V) time.
On the other hand, we cannot guarantee that the matching willbe augmented along more than one
path. A scenario in which all the paths have the first edge in common (from the source to a vertex
x ∈ L) and the minimum cost path has only this edge in common with the other paths is quite
possible. SinceO(V2) may be a higher time complexity than that of computing the minimum cost
paths, we may end up increasing the running time of the algorithm instead of decreasing it. Thus,
we need to reduce the time complexity of the matching augmentation part. This can be achieved
as follows. Let’s remember that the minimum cost paths are paths in a shortest path tree (where
the length of a path is its cost). We will consider the paths inthe same order as before and we
will consider all the edges to be initially unmarked. If the last edge of the current path is not
marked then we will be able to augment the matching along the current path. After augmenting
the matching along the current path, letx ∈ L be the first vertex on the path (after the source). We
will traverse the whole subtree of the shortest path tree rooted atx and we will mark all the edges
of this subtree. Augmenting the matching along all the possible paths takes at mostO(V) time
overall (because the paths are edge-disjoint). Marking theedges of the shortest path tree also takes
at mostO(V) time overall, because there areO(V) edges in the shortest path tree and each edge is
marked at most once. Thus, the matching augmentation algorithm takes onlyO(V) time plus the
time needed for sorting the paths in increasing order of their costs (e.g.O(V · log(V)) time).

The first version of the algorithm proposed in this section isdescribed in pseudocode in Algo-
rithm 3. The input to the algorithm consists of two maps:dist, containing the cost of the shortest
path fromS to every vertexx ∈ R (we considerdist(x) = +∞ if the vertexx is not reachable
from S), andparent, containing theparent in the shortest path tree for each vertex of the graph.
Left-set verticesx are denoted as (x, L) in the algorithm and right-set verticesy are denoted as
(y,R). In order to maintain the pseudocode simpler, we will mark the graph vertices instead of the
edges (because, as mentioned earlier, in this case the edge-disjoint paths are also vertex-disjoint).
The second version of the algorithm is described in pseudocode in Algorithm4. The input to
the Algorithm4 also consists of the same two mapsdist andparent, together with an extra map,
children, which contains the children in the shortest path tree of each vertex of the graph.

This algorithm basically augments the matching along a maximal set of edge-disjoint paths (in
fact, because they are paths of a shortest path tree, the paths are also vertex-disjoint except for the
source vertex). It is important. however, to consider thesepaths in increasing order of their costs,
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Algorithm 3 Increasing the Matching Along a Maximal Set of Edge-Disjoint Paths - TheO(V2)
Algorithm
Input: dist, parent.

Set all the vertices of the graph as unmarked.
Sort the verticesx ∈ R in increasing order ofdist(x).
for x ∈ R in increasing order ofdist(x) such thatdist(x) < +∞ do

y = (x,R), OK = true
while y , S and OK = truedo

if vertexy is markedthen
OK = f alse

else
y = parent(y)

end if
end while
if OK = true then

Increase the matching along the shortest path fromS to (x,R) (the reverse of the path can
be found by following the parent pointers starting from (x,R)).
y = (x,R)
while y , S do

Mark vertexy as marked.
y = parent(y)

end while
end if

end for

Algorithm 4 Increasing the Matching Along a Maximal Set of Edge-Disjoint Paths - TheO(V)
Algorithm
Input: dist, parent, children.

Set all the vertices of the graph as unmarked.
Sort the verticesx ∈ R in increasing order ofdist(x).
for x ∈ R in increasing order ofdist(x) such thatdist(x) < +∞ do

if (x,R) is not markedthen
Increase the matching along the shortest path fromS to (x,R) (the reverse of the path can
be found by following the parent pointers starting from (x,R)).
Let (y, L) be the first node on the path fromS to (x,R) after S. Recursively mark all the
vertices located in vertex (y, L)’s subtree of the shortest path tree. Thechildrenmap will
be used for retrieving for each vertexv the setchildren(v) that is the set of the shortest path
tree children of the vertexv.

end if
end for
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in order to make sure that the residual graph at the next iteration does not contain negative cycles.
The reason for which this optimization works is as follows. In a perfect mtaching every vertex has
to be matched. When augmenting the matching along a shortestpath to a nodex, even ifx is not
the right-side node with the minimum cost path, the point is that any future minimum cost path to
nodex (in any future residual graph) will not have a lower cost thanthe current shortest path tox.
So there is no reason for us not to augment the matching along that path, as long as this does not
block paths with lower costs along which the matching could have been augmented.

Note that this optimization is not correct in a maximum matching algorithm. It is not correct to
augment the matching along a path which does not have the globally minimum cost, because we
are not sure if the right side vertexx needs to be in the optimal matching or not. And since vertices
added to the matching are never removed by this algorithm, itis possible to make a mistake in this
case.

This optimization does not change the theoretical time complexity of the minimum cost perfect
matching algorithm, because we cannot provide any extra guarantees regarding the number of
augmenting paths per iteration (and, thus, we cannot provide guarantees regarding the reduction
in the number of iterations).

6. Minimum Cost Perfect Matching With the Minimum Cost Edge Ignored

In this section we consider the following problem. Given a complete bipartite graph withn
nodes on the left side andn nodes on the right side and costs on its edges, we want to find a
minimum cost perfect matching in which the cost is defined as the sum of the costs of all the edges
in the matching except for the cost of the edge with the smallest cost.

A simple method for solving this problem is to iterate over all the edges (i, j) and fix them as
the smallest edge in the matching. Then we would compute a (usual) minimum cost maximum
matching in the bipartite graph from which left nodei, right node j and all the edges (i′, j′) with
c(i′, j′) < c(i, j) (or c(i′, j′) = c(i, j) and the edge (i′, j′) was considered before the edge (i, j)) are
removed. If the maximum matchingM has sizen−1 then we found a potential solution, as follows.
The potential solution consists of then − 1 edges of the found matching plus the edge (i, j). The
cost of the matching (according to the definition used in thissection) is equal to the sum of the
costs of then − 1 edges ofM. Note that the fixed edge (i, j) is the edge with the minimum cost
in the perfect matching (the one whose cost is not consideredtowards the cost of the matching).
Once the edge (i, j) was fixed we needed to minimize the total cost of the othern− 1 edges of the
perfect matching. Moreover, the other edges of the perfect matching needed to have costs which
were larger than or equal toc(i, j). The minimum cost maximum matchingM contains then− 1
edges we were looking for, in case its cardinality isn− 1. If its cardinality is less thann− 1 then
we can conclude that there is no perfect matching containingthe edge (i, j) as the minimum cost
edge.

This solution requires the computation ofO(n2) independent minimum cost maximum match-
ings. The key to obtain a better solution is to notice that theO(n2) matchings that we need to
compute are not totally independent. We will sort all then2 edges first in ascending cost order and
then we will consider them in this order. For the first edge we will compute the minimum cost
maximum matching from scratch. Let’s assume that we reachedthe edge (i, j). This time we will
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not compute the new matching from scratch. Instead, let’s consider the matchingM obtained for
the previous edge in the sorted order. We will remove fromM any edge with an endpoint at the
left nodei or the right nodej (if any). Then we will remove fromM all the edges with a cost
smaller thanc(i, j) (or equal toc(i, j) but for which the corresponding edge was considered before
the current edge (i, j) in the sorted order). All the other edges ofM will be maintained. We will
start the (usual) minimum cost maximum matching for the edge(i, j) with all the remaining edges
from M as part of the matching. Note that the algorithm may replace some of these edges by other
edges. This can happen if the reverse of an edge (x, y) (x ∈ L andy ∈ R) from M is, at some point,
part of the shortest path fromS to T in the (new) residual graph. When considering the maximum
matching problem as a maximum flow problem, the fact that an edge (x, y) is removed from the
matching means that the flow is pushed back along that edge (inorder to be redirected somewhere
else).

By applying the optimizations from the previous paragraph we expect that the number of iter-
ations required for computing each new minimum cost maximummatching will be significantly
reduced.

This problem can also be viewed as a dynamic minimum cost perfect matching problem, in
which the edge costs can be modified (for instance, instead ofremoving edges from the graph we
can consider that their cost increased to+∞).

7. Experimental Results

We implemented the three optimizations presented in this paper and compared them against
their unoptimized versions. All the tests were run on a machine running Windows 7 with an Intel
Atom N450 1.66 GHz CPU and 1 GB RAM. All the algorithms were implemented in the C++
programming language and the code was compiled using the G++ compiler version 3.3.1.

First we tested our new algorithm for computing a maximal matching in an induced subgraph
of a grid graph. We choseM = N = 2048 and we randomly generated the induced subgraph -
each point (x, y) (0 ≤ x ≤ N − 1, 0 ≤ y ≤ M − 1) had an equal probability of being part of the
subgraph or not. Thus, each of the tested subgraphs had approximately 50% of the nodes of the
full grid graph. We generated 100 subgraphs and ran Algorithm 1 (the unoptimized version) and
Algorithm 2 (the optimized version) on each of them. We computed the total running time for
all the graphs. Algorithm1 took 5.3 seconds. For Algorithm2 we considered two values forB:
B = 16 andB = 8. ForB = 16 the running time was 2.74 sec and forB = 8 it was 1.13 sec. Note
that in this case we computed the tablesMCnt, Mres andBCnt each time (i.e. for each of the
100 tests). However, when running the algorithm on multipletests with the same value ofB, these
tables only need to be computed once, in the beginning. Thus,we changed the algorithm in order
to compute these tables only once in the very beginning and not for each of the 100 tests. The
new running times were 0.92 sec forB = 16 and 1.13 sec forB = 8. Note that the running time
is unchanged forB = 8 because the sizes of the tables are small and the time neededto compute
them is negligible compared to the time needed to compute thematching. However, forB = 16,
when the sizes of the tables increase significantly, it is much better to compute the tables in the
beginning and reuse them for each test.
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Then we repeated the tests for induced subgraphs of grid graphs containing 75% and 100%
of the nodes of a full grid graph. For graphs with 75% of the nodes of a full grid graph the
running times of our optimized algorithm were: 1.21 sec forB = 8 and 0.93 sec forB = 16 (note
that we only considered the case when the tables are computedjust once). The running time of the
unoptimized version was 4.69 sec. When considering the full grid graph we obtained the following
running times: 0.90 sec forB = 8 and 0.55 sec forB = 16 for the optimized version and 3.40 sec
for the unoptimized version.

We did not test other values ofB because the implementation would become less feasible. For
B > 16 the sizes of the precomputed tables would become too large. For B = 8 andB = 16 we
were able to make use of existing C/C++ data types (unsigned charandunsigned short int) in
order to store a block. ForB , 8 andB , 16 (andB ≤ 16) we cannot exactly fit a block into an
existing C/C++ data type.

Second we tested the improvement brought by the use of multiple edge-disjoint paths for aug-
menting the matching in a minimum cost bipartite perfect matching algorithm. The expected
improvement consisted in a reduction of the number of iterations. The standard algorithm would
usen iterations where|L| = |R| = n. We chosen = 256 and we generated 100 complete bipartite
graphs. The cost of each edge was chosen to be a random integerbetween 1 and 10000 (inclusive).
The unoptimized algorithm we used was the standardsuccessive shortest pathalgorithm with the
Bellman-Ford-Moore algorithm for computing minimum cost paths at each iteration. The opti-
mized algorithm simply included theO(n2) matching augmentation along multiple edge-disjoint
minimum paths described in Section5. We measured both the total running time and the total
number of iterations. The total running time (for all the 100graphs) and the total number of iter-
ations of the standard algorithm were: 23.17 sec and 25600 iterations. With our optimization the
total running time was 2.3 sec and the total number of iterations was 1022. We notice that, even
with the most basic implementation of our optimization, therunning time was reduced 10 times
and the number of iterations was reduced 25 times. Although the running time improvements
may not translate directly when other minimum cost path computation algorithms are used (e.g.
Dijkstra’s algorithm) or when theO(V + V · log(V)) matching augmentation optimization is used
(instead of theO(V2) version), the improvement in the number of iterations doesnot depend on
these algorithms and, thus, it is applicable to any implementation of thesuccessive shortest path
minimum cost bipartite perfect matching algorithm.

Then we considered the same testing scenario, except that the edge costs were chosen as ran-
dom integers between 1 and 2 (inclusive). The total running time of our optimized algorithm was
2.98 sec and the total number of iterations was 5100. The numberof iterations of the standard
algorithm remained the same (as expected), but its running time dropped to 13.83 sec.

We also considered the complete bipartite graph with the following costsc(x, y) = min(x, y)
(1 ≤ x, y ≤ n) andn = 256. In this case our optimization did not reduce the number of iterations
at all (due to the special structure of the bipartite graph itwas never able to augment the matching
along more than one path per iteration). However, the running time with our optimization enabled
was almost identical to the unoptimized version. We conclude that our optimization has a great
potential for reducing the number of iterations of thesuccessive shortest pathminimum cost per-
fect matching algorithm and even in the pathological cases when it cannot reduce the number of
iterations, it doesn’t cause any significant overhead.
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Although there is a large difference between the number of iterations obtained by our opti-
mization in the cases of random complete bipartite graphs and in the case of the specific bipartite
graph from the previous paragraph, we did not consider othertypes of bipartite graphs for testing.
Understanding the correlation between the performance of our optimization and the specific prop-
erties of the costs of the edges of the bipartite graph is an interesting topic, but we defer its study to
a later date, because we feel that this topic is more appropriate for a separate, more experimentally
focused, paper.

For the problem presented in Section6 we tested our optimization of not recomputing the
perfect matching from scratch each time. The first minimum cost perfect matching algorithm
that we used was the one which contained our matching augmentation optimization presented
in Section5 and tested earlier. We generated 10 bipartite graphs withn = 128 and edge costs
randomly selected between 1 and 10000 (inclusive). We computed the total execution time and
the total number of iterations of thesuccessive shortest pathalgorithm. When the matching was
computed from scratch each time (O(n2) times) the total running time was 805 sec and the total
number of iterations was 1305200. When we applied our optimization from Section6, the total
running time was 221 sec and the total number of iterations was 244886. When using the standard
successive shortest pathalgorithm in order to compute a minimum cost perfect matching (and
not using our optimization of not recomputing the matching from scratch each time), the total
running time was 5798 sec and the total number of iterations was 20610157. When we applied our
optimization from Section6 and also used the standard minimum cost perfect matching algorithm
the total running time was 232 sec and the total number of iterations was 251789. We can see
that our optimization of not recomputing each minimum cost perfect matching from scratch is
very effective. When combined with the optimization presented in Section 5, of augmenting the
matching along multiple paths at each iteration, we obtained the best results. However, even when
just the standardsuccessive shortest pathminimum cost perfect matching algorithm is used in
conjunction with our optimization from Section6 the improvements over the naive unoptimized
version are significant. Nevertheless, more tests may need to be performed in the future in order
to understand sufficiently well how good our proposed optimization really is.

8. Conclusions

In this paper we presented three practical algorithmic optimizations addressing problems like
computing maximal matchings in induced subgraphs of grid graphs or computing minimum cost
perfect matchings in bipartite graphs (under certain restrictions). The proposed optimizations
were evaluated experimentally and compared against the unoptimized algorithms. The execution
time was significantly reduced in each case, thus proving thevalidity and effectiveness of our
optimizations.
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In this paper we prove some fixed point theorems for Reich type contractions on cone rectangular metric spaces
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1. Introduction

In 1906, the French mathematician M. Fréchet Fréchet (1906) introduced the concept of met-
ric spaces. After the work of Fréchet several authors generalized the concept of metric space by
applying the conditions on metric function. In this sequel, Branciari Branciari (2000) introduced a
class of generalized (rectangular) metric spaces by replacing triangular inequality of metric spaces
by similar one which involves four or more points instead of three and improved Banach contrac-
tion principle Banach (1922) in such spaces. The result of Branciari is generalized and extended
by several authors (see, for example, Flora et al. (2009); Bari & Vetro (2012); Chen (2012); Işik
& Turkoglu (2013); Lakzian & Samet (2012); Arshad et al. (2013); Malhotra et al. (2013a,b) and
the references therein).

Let (X, d) be a metric space and T : X → X be a mapping. Then T is called a Banach contrac-
tion if there exists λ ∈ [0, 1) such that

d(T x,Ty) ≤ λd(x, y) for all x, y ∈ X. (1.1)

Email address: satishmathematics@yahoo.co.in (Satish Shukla)
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Banach contraction principle ensures the existence of a unique fixed point of a Banach contraction
on a complete metric space.

Kannan Kannan (1968) introduced the following contractive condition: there exists λ ∈ [0, 1/2)
such that

d(T x,Ty) ≤ λ[d(x,T x) + d(y,Ty)] for all x, y ∈ X. (1.2)

Reich Reich (1971) introduced the following contractive condition: there exist nonnegative con-
stants λ, µ, δ such that λ + µ + δ < 1 and

d(T x,Ty) ≤ λd(x, y) + µd(x,T x) + δd(y,Ty) for all x, y ∈ X. (1.3)

Examples show that (see Kannan (1968); Reich (1971)) the conditions of Banach and Kannan are
independent of each other while the condition of Reich is a proper generalization of conditions of
Banach and Kannan.

On the other hand, the study of abstract spaces and the vector-valued spaces can be seen in
Kurepa (1934, 1987); Rzepecki (1980); Lin (1987); Zabreǐko (1997). L.G. Huang and X. Zhang
Huang & Zhang (2007) reintroduced such spaces under the name of cone metric spaces and gen-
eralized the concept of a metric space, replacing the set of real numbers, by an ordered Banach
space. After the work of Huang and Zhang Huang & Zhang (2007), Azam et al. Azam et al. (2009)
introduced the notion of cone rectangular metric spaces and proved fixed point result for Banach
type contraction in cone rectangular space. Malhotra et al. Malhotra et al. (2013b) generalized
the result of Azam et al. Azam et al. (2009) in ordered cone rectangular metric spaces and proved
some fixed point results for ordered Reich type contractions.

Recently, Jachymski Jachymski (2007) improved the Banach contraction principle for map-
pings on a metric space endowed with a graph. Jachymski Jachymski (2007) showed that the
results of Ran and Reurings Ran & Reurings (2004) and Edelstein Edelstein (1961) can be derived
by the results of Jachymski (2007). The results of Jachymski Jachymski (2007) was generalized
by several authors (see, for example, Bojor (2012); Chifu & Petrusel (2012); Samreen & Kamran
(2013); Asl et al. (2013); Abbas & Nazir (2013) and the references therein).

The fixed point results in cone rectangular metric spaces (also in rectangular metric spaces)
endowed with a graph are not considered yet. In this paper, we prove some fixed point theorems
for Reich type contractions on the cone rectangular metric spaces endowed with a graph. Our
results extend the result of Jachymski Jachymski (2007) and the result of Malhotra et al. Malhotra
et al. (2013b) into the cone rectangular metric spaces endowed with a graph. Some examples are
provided which illustrate the results.

2. Preliminaries

First we recall some definitions about the cone rectangular metric spaces and graphs.

Definition 2.1. Huang & Zhang (2007) Let E be a real Banach space and P be a subset of E. The
set P is called a cone if:
(i) P is closed, nonempty and P , {θ}, here θ is the zero vector of E;
(ii) a, b ∈ R, a, b ≥ 0, x, y ∈ P⇒ ax + by ∈ P;
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(iii) x ∈ P and −x ∈ P⇒ x = θ.
Given a cone P ⊂ E, we define a partial ordering “ � ” with respect to P by x � y if and only if
y − x ∈ P. We write x ≺ y to indicate that x � y but x , y. While x � y if and only if y − x ∈ P0,
where P0 denotes the interior of P.
Let P be a cone in a real Banach space E, then P is called normal, if there exist a constant K > 0
such that for all x, y ∈ E,

θ � x � y implies ‖x‖ ≤ K‖y‖.
The least positive number K satisfying the above inequality is called the normal constant of P.

Definition 2.2. Huang & Zhang (2007) Let X be a nonempty set, E be a real Banach space.
Suppose that the mapping d : X × X → E satisfies:

(i) θ � d(x, y), for all x, y ∈ X and d(x, y) = θ if and only if x = y;
(ii) d(x, y) = d(y, x) for all x, y ∈ X;

(iii) d(x, y) � d(x, z) + d(y, z), for all x, y, z ∈ X.

Then d is called a cone metric on X, and (X, d) is called a cone metric space. In the following we
always suppose that E is a real Banach space, P is a solid cone in E, i.e., P0 , φ and “ � ” is
partial ordering with respect to P.

For examples and basic properties of normal and non-normal cones and cone metric spaces we
refer Huang & Zhang (2007) and Rzepecki (1980).
The following remark will be useful in sequel.
Remark. Jungck et al. (2009) Let P be a cone in a real Banach space E, and a, b, c ∈ P, then:

(a) If a � b and b � c then a � c.
(b) If a � b and b � c then a � c.
(c) If θ � u � c for each c ∈ P0 then u = θ.

(d) If c ∈ P0 and an → θ then there exist n0 ∈ N such that, for all n > n0 we have an � c.
(e) If θ � an � bn for each n and an → a, bn → b then a � b.
(f) If a � λa where 0 ≤ λ < 1 then a = θ.

Definition 2.3. Azam et al. (2009) Let X be a nonempty set. Suppose the mapping d : X×X → E,
satisfies:

(i) θ � d(x, y), for all x, y ∈ X and d(x, y) = θ if and only if x = y;
(ii) d(x, y) = d(y, x) for all x, y ∈ X;

(iii) d(x, y) � d(x,w) + d(w, z) + d(z, y) for all x, y ∈ X and for all distinct points w, z ∈ X − {x, y}
[rectangular property].

Then d is called a cone rectangular metric on X, and (X, d) is called a cone rectangular metric
space. Let {xn} be a sequence in (X, d) and x ∈ (X, d). If for every c ∈ E, with θ � c there is n0 ∈ N
such that for all n > n0, d(xn, x) � c, then {xn} is said to be convergent, {xn} converges to x and x
is the limit of {xn}. We denote this by limn xn = x or xn → x, as n → ∞. If for every c ∈ E with
θ � c there is n0 ∈ N such that for all n > n0 and m ∈ N we have d(xn, xn+m) � c, then {xn} is
called a Cauchy sequence in (X, d). If every Cauchy sequence is convergent in (X, d), then (X, d)
is called a complete cone rectangular metric space. If the underlying cone is normal then (X, d) is
called normal cone rectangular metric space.
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The concept of cone metric space is more general than that of a metric space, because each
metric space is a cone metric space with E = R and P = [0,+∞).

Example 2.1. Let X = N, E = R2, α, β > 0 and P = {(x, y) : x, y ≥ 0}.
Define d : X × X → E as follows:

d(x, y) =


(0, 0) if x = y,
3(α, β) if x and y are in {1, 2}, x , y,
(α, β) otherwise.

Now (X, d) is a cone rectangular metric space but (X, d) is not a cone metric space because it lacks
the triangular property:

3(α, β) = d(1, 2) � d(1, 3) + d(3, 2) = (α, β) + (α, β) = 2(α, β),

as 3(α, β) − 2(α, β) = (α, β) ∈ P.

Note that in above example (X, d) is a normal cone rectangular metric space. Following is an
example of non-normal cone rectangular metric space.

Example 2.2. Let X = N, E = C1
R[0, 1] with ‖x‖ = ‖x‖∞ + ‖x′‖∞ and P = {x ∈ E : x(t) ≥ 0 for t ∈

[0, 1]}. Then this cone is not normal (see Rezapour & Hamlbarani (2008)).
Define d : X × X → E as follows:

d(x, y) =


θ if x = y,
3et if x, y ∈ {1, 2}, x , y,
et otherwise.

Then (X, d) is non-normal cone rectangular metric space but (X, d) is not a cone metric space
because it lacks the triangular property.

Now we recall some basic notions from graph theory which we need subsequently (see also
Jachymski (2007)).

Let X be a nonempty set and ∆ denote the diagonal of the cartesian product X × X. Consider
a directed graph G such that the set V(G) of its vertices coincides with X, and the set E(G) of its
edges contains all loops, that is, E(G) ⊇ ∆. We assume G has no parallel edges, so we can identify
G with the pair (V(G), E(G)). Moreover, we may treat G as a weighted graph by assigning to each
edge the rectangular distance between its vertices.

By G−1 we denote the conversion of a graph G, that is, the graph obtained from G by reversing
the direction of edges. Thus we have

E(G−1) = {(x, y) ∈ X × X : (y, x) ∈ E(G)}.

The letter G̃ denotes the undirected graph obtained from G by ignoring the direction of edges.
Actually, it will be more convenient for us to treat G̃ as a directed graph for which the set of its
edges is symmetric. Under this convention,

E(G̃) = E(G) ∪ E(G−1). (2.1)
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If x and y are vertices in a graph G, then a path in G from x to y of length l is a sequence (xi)l
i=0

of l + 1 vertices such that x0 = x, xl = y and (xi−1, xi) ∈ E(G) for i = 1, . . . , l. A graph G is
called connected if there is a path between any two vertices of G. G is weakly connected if G̃ is
connected.

Throughout this paper we assume that X is nonempty set, G is a directed graph such that
V(G) = X and E(G) ⊇ ∆.

Now we define the G-Reich contractions in a cone rectangular metric space.

Definition 2.4. Let (X, d) be a cone rectangular metric space endowed with a graph G. A mapping
T : X → X is said to be a G-Reich contraction if:

(GR1) T is edge preserving, that is, (x, y) ∈ E(G) implies (T x,Ty) ∈ E(G) for all x, y ∈ X;
(GR2) there exist nonnegative constants λ, µ, δ such that λ + µ + δ < 1 and

d(T x,Ty) � λd(x, y) + µd(x,T x) + δd(y,Ty) (2.2)

for all x, y ∈ X with (x, y) ∈ E(G).

An obvious consequence of symmetry of d(·, ·) and (2.1) is the following remark.

Remark. If T is a G-Reich contraction then it is both a G−1-Reich contraction and a G̃-Reich
contraction.

Example 2.3. Any constant function T : X → X defined by T x = c, where c ∈ X is fixed, is a
G-Reich contraction since E(G) contains all the loops.

Example 2.4. Any Reich contraction on a X is a G0-Reich contraction, where E(G0) = X × X.

Example 2.5. Let (X, d) be a cone rectangular metric space, v a partial order on X and T : X → X
be an ordered Reich contraction (see Malhotra et al. (2013b)), that is, there exist nonnegative
constants λ, µ, δ such that λ + µ + δ < 1 and

d(T x,Ty) � λd(x, y) + µd(x,T x) + δd(y,Ty)

for all x, y ∈ X with x v y,. Then T is a G1-Reich contraction, where E(G1) = {(x, y) ∈ X×X : x v
y}.

Definition 2.5. Let (X, d) be a cone rectangular metric space and T : X → X be a mapping. Then
for x0 ∈ X, a Picard sequence with initial value x0 is defined by {xn}, where xn = T xn−1 for all
n ∈ N. The mapping T is called a Picard operator on X if T has a unique fixed point in X and
for all x0 ∈ X the Picard sequence {xn} with initial value x0 converges to the fixed point of T. The
mapping T is called weakly Picard operator, if for any x0 ∈ X, the limit of Picard sequence {xn}

with initial value x0, that is, lim
n→∞

xn exits (it may depend on x0) and it is a fixed point of T.

Now we can state our main results.
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3. Main results

Let (X, d) be a cone rectangular metric space, and G be a directed graph such that V(G) = X
and E(G) ⊇ ∆. The set of all fixed points of a self mapping T of X is denoted by FixT, that is,
FixT = {x ∈ X : T x = x} and the set of all periodic points of T is denoted by P(T ), that is, P(T ) =

{x ∈ X : T nx = x, for some n ∈ N}. Also we use the notation XT = {x ∈ X : (x,T x), (x,T 2x) ∈
E(G)}. (X, d) is said to have the property (P) if:

whenever a sequence {xn} in X converges to x with (xn, xn+1) ∈ E(G) for all n ∈ N,
then there is a subsequence {xkn} with (xkn , x) ∈ E(G) for all n ∈ N. (P)

Proposition 3.1. Let (X, d) be a cone rectangular metric space endowed with a graph G and
T : X → X be a G-Reich contraction. Then, if x, y ∈ FixT are such (x, y) ∈ E(G) then x = y.

Proof. Let x, y ∈ FixT and (x, y) ∈ E(G), then by (GR2) we have

d(x, y) = d(T x,Ty)
� λd(x, y) + µd(x,T x) + δd(y,Ty)
= λd(x, y) + µd(x, x) + δd(y, y) = λd(x, y).

As λ < 1, by (f) of Remark 2, we have d(x, y) = θ, that is, x = y.

Theorem 3.1. Let (X, d) be a cone rectangular metric space endowed with a graph G. Let T : X →
X be a G-Reich contraction. Then for every x0 ∈ XT the Picard sequence {xn}, is a Cauchy
sequence.

Proof. Let x0 ∈ XT and define the iterative sequence {xn} by xn+1 = T xn for all n ≥ 0. Since
x0 ∈ XT we have (x0,T x0) ∈ E(G) and T is a G-Reich contraction, by (GR1) we have (T x0,T 2x0) =

(x1, x2) ∈ E(G). By induction we obtain (xn, xn+1) ∈ E(G) for all n ≥ 0.
Now since (xn, xn+1) ∈ E(G) for all n ≥ 0 by (GR2) we have

d(xn, xn+1) = d(T xn−1,T xn)
� λd(xn−1, xn) + µd(xn−1,T xn−1) + δd(xn,T xn)
= λd(xn−1, xn) + µd(xn−1, xn) + δd(xn, xn+1),

that is,

d(xn, xn+1) �
λ + µ

1 − δ
d(xn−1, xn) = αd(xn−1, xn),

where α =
λ + µ

1 − δ
< 1 (as λ + µ + δ < 1). Setting dn = d(xn, xn+1) for all n ≥ 0, we obtain by

induction that
dn � α

nd0 for all n ∈ N. (3.1)

Note that, if x0 ∈ P(T ) then there exists k ∈ N such that T kx0 = xk = x0 and by (3.1) we have

d0 = d(x0, x1) = d(x0,T x0) = d(xk,T xk) = d(xk, xk+1) � αkd(x0, x1) = αkd0.
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Since λ ∈ [0, 1) the above inequality yields a contradiction. Thus, we can assume that xn , xm for
all distinct n,m ∈ N.
As x0 ∈ XT we have (x0,T 2x0) = (x0, x2) ∈ E(G) and by (GR1) we obtain (T x0,T x2) = (x1, x3) ∈
E(G). By induction we obtain (xn, xn+2) ∈ E(G) for all n ≥ 0. Therefore it follows from (GR2) that

d(xn, xn+2) � d(T xn−1,T xn+1)
� λd(xn−1, xn+1) + µd(xn−1,T xn−1) + δd(xn+1,T xn+1)
� λ[d(xn−1, xn) + d(xn, xn+2) + d(xn+2, xn+1)] + µd(xn−1, xn)

+δd(xn+1, xn+2),

that is,

d(xn, xn+2) �
λ + µ

1 − λ
dn−1 +

λ + δ

1 − λ
dn+1

which together with (3.1) yields

d(xn, xn+2) �
λ + µ + [λ + δ]α2

1 − λ
αn−1d0

�
2λ + µ + δ

1 − λ
αn−1d0,

that is,
d(xn, xn+2) � βαn−1d0, (3.2)

where β =
2λ+µ+δ

1−λ ≥ 0. We shall show that the sequence {xn} is a Cauchy sequence.
We consider the value of d(xn, xn+p) in two cases.
If p is odd, say 2m + 1, then using rectangular inequality and (3.1) we obtain

d(xn, xn+2m+1) � d(xn+2m, xn+2m+1) + d(xn+2m−1, xn+2m) + d(xn, xn+2m−1)
= dn+2m + dn+2m−1 + d(xn, xn+2m−1)
� dn+2m + dn+2m−1 + dn+2m−2 + dn+2m−3 + · · · + dn

� αn+2md0 + αn+2m−1d0 + αn+2m−2d0 + · · · + αnd0,

that is,

d(xn, xn+2m+1) �
αn

1 − α
d0. (3.3)

If p is even, say 2m, then using rectangular inequality, (3.1) and (3.2) we obtain

d(xn, xn+2m) � d(xn+2m−1, xn+2m) + d(xn+2m−1, xn+2m−2) + d(xn, xn+2m−2)
= dn+2m−1 + dn+2m−2 + d(xn, xn+2m−2)
� dn+2m−1 + dn+2m−2 + dn+2m−3 + · · · + dn+2 + d(xn, xn+2)
� αn+2m−1d0 + αn+2m−2d0 + αn+2m−3d0 + · · · + αn+2d0 + βαn−1d0,

that is,

d(xn, xn+2m) �
αn

1 − α
d0 + βαn−1d0. (3.4)
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Since β ≥ 0 and α < 1, we have αn

1−αd0, βα
n−1d0 → θ as n → ∞ so it follows from (3.3), (3.4) and

(a), (d) of Remark 2 that: for every c ∈ E with θ � c, there exists n0 ∈ N such that

d(xn, xn+p) � c for all p ∈ N.

Therefore, {xn} is a Cauchy sequence.

Theorem 3.2. Let (X, d) be a complete cone rectangular metric space endowed with a graph G
and has the property (P). Let T : X → X be a G-Reich contraction such that XT , ∅, then T is a
weakly Picard operator.

Proof. If XT , ∅ then let x0 ∈ XT . By Theorem 3.1, the Picard sequence {xn}, where xn = T n−1x0

for all n ∈ N, is a Cauchy sequence in X. Since X is complete, there exists u ∈ X such that

xn → u as n→ ∞. (3.5)

We shall show that u is a fixed point of T. By Theorem 3.1 we have (xn, xn+1) ∈ E(G) for all n ≥ 0,
dn � d(xn, xn+1) � αnd0, where α =

λ+µ

1−δ < 1 and by the property (P) there exists a subsequence
{xkn} such that (xkn , u) ∈ E(G) for all n ∈ N. Also, we can assume that xn , xn−1 for all n ∈ N. So,
using (2.2) we have

d(u,Tu) � d(u, xkn) + d(xkn , xkn+1) + d(xkn+1,Tu)
= d(u, xkn) + dkn + d(T xkn ,Tu)
� d(u, xkn) + αknd0 + λd(xkn , u) + µd(xkn ,T xkn) + δd(u,Tu)
� (1 + λ)d(u, xkn) + (1 + µ)αknd0 + δd(u,Tu),

that is,

d(u,Tu) �
1 + λ

1 − δ
d(xkn , u) +

1 + µ

1 − δ
αknd0 (3.6)

Since αknd0 → θ, xn → u as n → ∞ we can choose n0 ∈ N such that, for every c ∈ E with θ � c

we have d(xkn , u) �
1 − δ

2(1 + λ)
c and αknd0 �

1 − δ
2(1 + µ)

c for all n > n0. Therefore, it follows from

(3.6) that: for every c ∈ E with θ � c we have

d(u,Tu) � c for all n > n0.

So, by (c) of Remark 2, we have d(u,Tu) = θ, that is, Tu = u theerefore u ∈ FixT. Thus T is a
weakly Picard operator.

In the above theorem the mapping T is not necessarily a Picard operator. Indeed, such mapping
T may has infinitely many fixed points. Following example verifies this fact.

Example 3.1. Let X = N =
⋃
k∈N0

Nk, where N0 = N ∪ {0} and Nk =
{
2k(2n − 1) : n ∈ N

}
for all

k ∈ N0. Let E = C1
R[0, 1] with ‖x‖ = ‖x‖∞ + ‖x′‖∞ and P = {x ∈ E : x(t) ≥ 0 for t ∈ [0, 1]}. Let

d : X × X → E be defined by

d(x, y) =


θ if x = y,
3et if x, y ∈ {1, 2}, x , y,
et otherwise.
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Then (X, d) is a cone rectangular metric space endowed with graph G, where

E(G) = ∆
⋃

k∈N0\{1}

(Nk × Nk)
⋃
{(1, x) : x ∈ N1}.

Note that (X, d) is not a cone metric space. Define a mapping T : X → X by

T x =


2k, if x ∈ Nk, k ∈ N0 \ {1};
6, if x = 2;
1, if x ∈ N1 \ {2}.

Then it is easy to see that T is a G-Reich contraction with λ ∈ [1/3, 1), µ = δ = 0. All the
conditions of Theorem 3.2 are satisfied and T has infinitely many fixed points, precisely FixT ={
2k : k ∈ N0 \ {1}

}
, therefore T is not a Picard operator but weakly Picard operator. Note that, if a

Reich contraction on a cone rectangular metric space has a fixed point then it is unique therefore
T is not a Reich contraction in (X, d) since FixT is not singleton.

Remark. Unlike from Reich contraction, the above example shows that there may be more than one
fixed points of a G-Reich contraction in a cone rectangular metric space and therefore a G-Reich
contraction in a cone rectangular space need not be a Picard operator.

In following theorem we give a necessary and sufficient condition for T to be a Picard operator.

Theorem 3.3. Let (X, d) be a complete cone rectangular metric space endowed with a graph G
and has the property (P). Let T : X → X be a G-Reich contraction such that XT , ∅, then T is
a weakly Picard operator. Furthermore, the subgraph GFix defined by V(GFix) = FixT is weakly
connected if and only if T is a Picard operator.

Proof. The existence of fixed point follows from Theorem 3.2. Let u, v ∈ FixT, then since GFix

is weakly connected there exists a path (xi)l
i=0 in GFix from u to v, that is, x0 = u, xl = v and

(xi−1, xi) ∈ E(GFix) for i = 1, 2, . . . , l. Therefore by Proposition 3.1 and Remark 2 we obtain u = v.
Thus, fixed point is unique and T is a Picard operator.

Remark. In Jachymski (2007), for T to be a Picard operator Jachymski assumed that G must be
weakly connected. From the above theorem it is clear that for T to be a Picard operator it is
sufficient to take that FixT is weakly connected. Next example will illustrate this fact.

Example 3.2. Let X =

{
1,

1
2
,

1
3
,

1
4
,

1
5

}
, E = C1

R[0, 1] with ‖x‖ = ‖x‖∞ + ‖x′‖∞ and P = {x ∈ E :

x(t) ≥ 0 for t ∈ [0, 1]}. Let d : X × X → E be defined by

d
(
1
2
,

1
3

)
= d

(
1
4
,

1
5

)
=

3
10

et, d
(
1
2
,

1
5

)
= d

(
1
3
,

1
4

)
=

1
5

et,

d
(
1
2
,

1
4

)
= d

(
1
5
,

1
3

)
=

3
5

et, d(x, x) = θ = 0 for all x ∈ X,

d
(
1,

1
n

)
=

n − 1
n

et for n = 2, 3, 4, 5, d(x, y) = d(y, x) for all x, y ∈ X,
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Then (X, d) is a cone rectangular metric space endowed with graph G, where

E(G) = ∆ ∪

{(
1
2
,

1
3

)
,

(
1
3
,

1
2

)
,

(
1
2
,

1
5

)
,

(
1
5
,

1
2

)
,

(
1
3
,

1
5

)
,

(
1
5
,

1
3

)}
.

Note that (X, d) is not a cone metric space. Define T : X → X by

T x =



1
2
, if x =

1
2
,

1
5

;

1
5
, if x =

1
3

;

1, if x =
1
4

;
1
4
, if x = 1.

Then T is a G-Reich contraction with λ ∈
[
2
3
, 1

)
, µ = δ = 0. All the conditions of Theorem 3.3

are satisfied and T is a Picard operator and FixT =

{
1
2

}
. Note that the graph G is not weakly

connected. Indeed, there is no path from 1 to
1
n

or form
1
n

to 1 for all n = 2, 3, 4, 5. Also, one
can see that T is neither a Reich contraction in cone rectangular metric space (X, d) nor a G-Reich
contraction with respect to the usual metric.

With suitable values of constants λ, µ and δ we obtain the following corollaries.

Corollary 3.1. Let (X, d) be a complete cone rectangular metric space endowed with a graph G
and has the property (P). Let T : X → X be a G-contraction, that is,

(G1) T is edge preserving, that is, (x, y) ∈ E(G) implies (T x,Ty) ∈ E(G) for all x, y ∈ X;
(G2) there exists λ ∈ [0, 1) such that

d(T x,Ty) � λd(x, y) for all x, y ∈ X with (x, y) ∈ E(G).

Then, if XT , ∅ then T is a weakly Picard operator. Furthermore, the subgraph GFix defined by
V(GFix) = FixT is weakly connected if and only if T is a Picard operator.

Corollary 3.2. Let (X, d) be a complete cone rectangular metric space endowed with a graph G
and has the property (P). Let T : X → X be a G-Kannan contraction, that is,

(GK1) T is edge preserving, that is, (x, y) ∈ E(G) implies (T x,Ty) ∈ E(G) for all x, y ∈ X;
(GK2) there exists λ ∈ [0, 1/2) such that

d(T x,Ty) � λ[d(x,T x) + d(y,Ty)] for all x, y ∈ X with (x, y) ∈ E(G).

Then, if XT , ∅ then T is a weakly Picard operator. Furthermore, the subgraph GFix defined by
V(GFix) = FixT is weakly connected if and only if T is a Picard operator.
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Following corollary is a fixed point result for an ordered Reich contraction (see Malhotra et
al. (2013b)) and a generalization of result of Ran and Reurings Ran & Reurings (2004) in cone
rectangular metric spaces.

Corollary 3.3. Let (X, d) be a complete cone rectangular metric space endowed with a partial
order v and T : X → X be a mapping. Suppose the following conditions hold:

(A) T is an ordered Reich contraction;
(B) there exists x0 ∈ X such that x0 v T x0;
(C) T is nondecreasing with respect to v;
(D) if {xn} is a nondecreasing sequence in X and converging to some z, then xn v z.

Then T is a weakly Picard operator. Furthermore, FixT is well ordered (that is, all the elements
of FixT are comparable) if and only if T is a Picard operator.

Proof. Let G be a graph defined by V(G) = X and E(G) = {(x, y) ∈ X × X : x v y}. Then by
conditions (A) and (C), T is a G-Reich contraction and by condition (B) we have XT , ∅. Also by
condition (D) we see that property (P) is satisfied. Now proof follows from Theorem 3.3.

Conclusion. In the present paper we have proved the existence and uniqueness of fixed point
theorems for a G-Reich contraction in cone rectangular metric spaces endowed with a graph. We
note that the results of this paper generalize the ordered version of theorem of Reich (see Reich
(1971) and Malhotra et al. (2013b)). Note that, in usual metric spaces the fixed point theorem for
G-contractions generalizes and unifies the ordered version as well as the cyclic version of corre-
sponding fixed point theorems (see Kirk et al. (2003) and Kamran et al. (2013)). We conclude
with an open problem that: is it possible to prove the cyclic version of the result of Reich in cone
rectangular metric spaces or rectangular metric spaces?

Acknowledgments. I would like to express my gratitude to the referees and Professor Stojan
Radenović for the valuable successions on this paper.
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damenta Mathematicae 3(1), 133–181.

Bari, C.D. and P. Vetro (2012). Common fixed points in generalized metric spaces. Applied Mathematics and Compu-
tation 218(13), 7322–7325.



Satish Shukla / Theory and Applications of Mathematics & Computer Science 4 (1) (2013) 14–25 25

Bojor, F. (2012). Fixed point theorems for reich type contractions on metric spaces with a graph. Nonlinear Anal.
75(9), 3895–3901.

Branciari, A. (2000). A fixed point theorem of banachcaccioppoli type on a class of generalized metric spaces. Publ.
Math. Debrecen 57(1-2), 31–37.

Chen, C-M. (2012). Common fixed-point theorems in complete generalized metric spaces. Journal of Applied Math-
ematics.

Chifu, C.I. and G.R. Petrusel (2012). Generalized contractions in metric spaces endowed with a graph. Fixed Point
Theory and Applications 2012(1), 1–9.

Edelstein, M. (1961). An extension of banach’s contraction principle. Proc. Amer. Math. Soc. 12(1), 7–10.
Flora, A., A. Bellour and A. Al-Bsoul (2009). Some results in fixed point theory concerning generalized metric spaces.
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In this paper we give some convergence properties of Hadamard product set of polynomials defined by several

simple monic sets of several complex variables in complete Reinhardt domains and in hyperelliptical regions too.
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1. Introduction

In 1933, Whittaker (Whittaker, 1933), (Whittaker, 1949) introduced the subject of basic sets
of polynomials of a single complex variable. This subject is developed by several authors using
one and several complex variables. It is of fundamental importance in the theory of basic sets of
polynomials of several complex variables to define some kinds of basic sets of polynomials in Cn.
This is the main aim of this paper. We will define and study Hadamard products of basic sets of
polynomials in complete Reinhardt domains and in hyperelliptical regions.

We start with basic concepts, notations and terminology on this paper.
Let C represent the field of complex variables. In the space C2 of the two complex variables z

and w, the successive monomial 1, z, w, z2, zw, w2, ... are arranged so that the enumeration number
of the monomial z jwk in the above sequence is

1
2

( j + k)( j + k) + k; j, k ≥ 0.

The enumeration number of the last monomial of a polynomial P(z,w) in two complex vari-
ables is called the degree of the polynomial. A sequence {Pi(z; w)}∞0 of polynomials in two com-
plex variables in which the order of each polynomial is equal to its degree is called a simple set

Email address: ahsayed80@hotmail.com (A. El-Sayed Ahmed)
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( see (Kishka, 1993), (Kumuyi & Nassif, 1986) and (Sayyed & Metwally, 1998)). Such a set is
conveniently denoted by {Pi(z; w)}, where the last monomial in Pm,n(z,w) is zmwn.

If further, the coefficient of this last monomial is 1, the simple set is termed monic. Thus, in
the simple monic set {Pm,n(z; w)} the polynomial Pm,n(z,w) is represented as follows.

Pm,n(z,w) =

m+n∑
k=0

k∑
j=0

Pm,n
k− j, jz

k− jw j (Pm,n
m,n = 1; Pm,n

m+n− j, j = 0, j > n).

Let z = (z1, z2, ..., zn) be an element of Cn; the space of several complex variables. The following
definition is introduced in (Mursi & Makar, 1955a,b).

Definition 1.1. A set of polynomials {Pm[z]} =
{
P0, P1, P2, ..., Pn, ...

}
is said to be basic when every

polynomial in the complex variables zs; s ∈ I = {1, 2, 3, ..., n
}

can be uniquely expressed as a finite
linear combination of the elements of the basic set {Pm[z]}.

Thus according to (Mursi & Makar, 1955b), the set {Pm[z]} will be basic if and only if there
exists a unique row-finite matrix P such that PP = PP = I, where P =

[
Pm,h

]
is the matrix of

coefficients, P is the matrix of operators of the set {Pm[z]} and I is the infinite unit matrix.
Similar definition for a simple monic set can be extended to the case of several complex vari-

ables by replacing m, n by (m) = (m1,m2,m3, ...,mn) , j, k by (h) = (h1, h2, h3, ..., hn) and z,w by z,
where each of (m) and (h) be multi-indices of non-negative integers.

The fact that the simple monic set {Pm[z]} of several complex variables is necessarily basic
follows from the observation that the matrix

[
Pm,h

]
of coefficients of the polynomials of the set is

a lower triangular matrix with non-zero diagonal elements. (These elements are each equal to 1
for monic sets).

Definition 1.2. The basic set {Pm[z]} is said to be algebraic of degree ` when its matrix of coeffi-
cients P satisfies the usual identity

α0P` + α1P`−1 + ... + α`I = 0.

Thus, we have a relation of the form

Pm,h = δm,hγ0 +

`−1∑
s1=1

γs1 P(s1)
m,h,

where P(s1)
m,h are the elements of the power matrix Ps1 and γs1 , s1 = 0, 1, 2, ..., ` − 1 are constant

numbers. In the space of several complex variables Cn. Let z = (z1, z2, ..., zn) be an element of
Cn; the space of several complex variables, a closed complete Reinhardt domain of radii αsr(> 0);
s ∈ I = {1, 2, 3, ..., n} is here denoted by Γ̄[αr] and is given by

Γ̄[αr] = Γ̄[
α1r,α2r,...,αnr

] =
{
z ∈ Cn : |zs| ≤ αsr ; s ∈ I

}
, where αs are positive numbers. The open

complete Reinhardt domain is here denoted by Γ[αr] and is given by
Γ[αr] = Γ[

α1r,α2r,...,αnr
] =

{
z ∈ Cn : |zs| < αsr ; s ∈ I

}
.
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Consider unspecified domain containing the closed complete Reinhardt domain Γ̄[αr]. This
domain will be of radii αsr1; r1 > r, then making a contraction to this domain, we will get the
domain D̄([αr+]) = D̄([α1r+, α2r+, ..., αnr+]), where r+ stands for the right-limit of r1 at r.

Now let m = (m1,m2, ...,mn) be multi-indices of non-negative integers. The entire function
f (z) of several complex variables has the following representation:

f (z) =

∞∑
m=0

amzm.

Suppose now that the function f (z), is given by

f (z) =

∞∑
m=0

amzm

is regular in Γ̄[αr] and
M

[
f ;αsr

]
= sup
Γ[αr]

∣∣∣ f (z)
∣∣∣.

For the basic set {Pm[z]} and its inverse
{
Pm[z]

}
, we have

Pm[z] =
∑

h

Pm,hzh,

Pm[z] =
∑

h

Pm,hzh,

zm =
∑

h

Pm,hPh[z] =
∑

h

Pm,hPh[z].

Let Nm = Nm1,m2,...,mn be the number of non-zero coefficients Pm,h in the last equality.
A basic set satisfying the condition

lim
〈m〉→∞

{Nm}
1
〈m〉 = 1, (1.1)

is called, as in (Mursi & Makar, 1955a,b) and (Kishka & El-Sayed Ahmed, 2003) a Cannon set.
Let {Pm[z]} be a basic set of polynomials of the several complex variables zs; s ∈ I, then the

Cannon sum for this set in the complete Reinhardt domains is given as follows:

Ω
(
Pm, [αr]

)
=

n∏
s=1

(αsr)<m>−ms
∑

h

∣∣∣P̄m,h
∣∣∣M(

Pm, [αr]
)
,

where
M

(
Pm, [αr]

)
= max

Γ̄[αr]

∣∣∣Pm[z]
∣∣∣.

The Cannon function is defined by:

Ω
(
P, [αr]

)
= lim
〈m〉→∞

{
Ω
(
Pm, [αr]

)} 1
〈m〉
.
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When this associated series converges uniformly to f (z) in some domain it is said to represent f (z)
in that domain; in other words, as in the classical terminology of Whittaker for a single complex
variable (see (Whittaker, 1949)), the basic set Pm[z] will be effective in that domain. For more
information about basic sets of polynomials we refer to ((Abul-Ez, 2000)-(Whittaker, 1949)).

The convergence properties of basic sets of polynomials are classified according to the classes
of functions represented by their associated basic series and also to the domain in which are rep-
resented.

Concerning the effectiveness of the basic set of polynomials of several complex variables in
complete Reinhardt domains, we have the following results from (Mursi & Makar, 1955a,b).

Theorem 1.1. (Mursi & Makar, 1955a,b) The necessary and sufficient condition for the basic
set {Pm[z]} of polynomials of several complex variables to be effective in the closed complete
Reinhardt Γ[αsr] is that

Ω
(
P; rs

)
=

n∏
s=1

αsr. (1.2)

In the space of several complex variables Cn, an open elliptical region
∑n

s=1
|zs |

2

rs2 < 1 is here

denoted by Ers and its closure
∑n

s=1
|zs |

2

rs2 ≤ 1; is denoted by Ers , where rs; s ∈ I are positive
numbers. In terms of the introduced notations these regions satisfy the following inequalities:

Ers = {w : |w| < 1}

Ers = {w : |w| ≤ 1},

where w = (w1,w2,w3, ...,wn) , ws = zs
rs

; s ∈ I. Suppose now that the function f (z), is given by

f (z) =

∞∑
m=0

amzm

is regular in Ers and
M

[
f ; rs

]
= sup

Ers

∣∣∣ f (z)
∣∣∣.

Then it follows that
{
|zs| ≤ rsts; |ts| = 1

}
⊂ Ers; hence

|am| ≤
M

[
f ; ρs

]
ρmtm =

M
[
f ; ρs

]
n∏

s=1
ρms

s tms
s

≤ inf
|t|=1

M
[
f ; ρs

]
n∏

s=1

(
ρsts

)ms

= σm
M

[
f ; ρs

]
n∏

s=1
ρms

s

for all 0 < ρs < rs; s ∈ I, where

σm = inf
|t|=1

1
tm =

{
〈m〉

} 〈m〉
2

n∏
s=1

m
ms
2

s
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and 1 ≤ σm ≤ (
√

n)〈m〉 on the assumption that m
ms
2

s = 1, whenever ms = 0; s ∈ I. Thus, it follows
that

lim
〈m〉→∞

sup
{

|am|

σm
n∏

s=1

(
rs
)〈m〉−ms

} 1
〈m〉
≤

1
n∏

s=1
ρs

; ρs < rs; s ∈ I

and since ρs can be chosen arbitrary near to rs; s ∈ I, we conclude that

lim
〈m〉→∞

sup
{

|am|

σm
n∏

s=1

(
rs
)〈m〉−ms

} 1
〈m〉
≤

1
n∏

s=1
rs

.

Now, write

G
(
Pm; rs

)
= max

µ,ν
sup
Ers

∣∣∣∣∣ ν∑
j=µ

Pm;jPj[z]
∣∣∣∣∣,

where, rs; s ∈ I are positive numbers.
The Cannon sum of the set {Pm[z]} for Ers will be

Ω
(
Pm; rs

)
= σm

n∏
s=1

{
rs
}〈m〉−msG

(
Pm; rs

)
and the Cannon function for the same set is

Ω
(
P; rs

)
= lim
〈m〉→∞

{
Ω
(
Pm; rs

)} 1
〈m〉 .

Concerning the effectiveness of the basic set of polynomials of several complex variables in hy-
perellipse, we have the following results from (El-Sayed Ahmed & Kishka, 2003).

Theorem 1.2. (El-Sayed Ahmed & Kishka, 2003) The necessary and sufficient condition for the
basic set {Pm[z]} of polynomials of several complex variables to be effective in the closed hyperel-
lipse Ers is that

Ω
(
P; rs

)
=

n∏
s=1

rs.

Convergence properties (effectiveness) for Hadamard product set simple monic sets of poly-
nomials of a single complex variable is introduced by Melek and El-Said in (Melek & El-Said,
1985). In (Nassif & Rizk, 1988) Nassif and Rizk introduced an extension of this product in the
case of two complex variables using spherical regions. In (El-Sayed Ahmed, 2006), the same
author has studied this problem in Cn using hepespherical regions. It should be mentioned here
the study of this problem in Clifford analysis (see (Abul-Ez, 2000)). For more details on basic
sets of polynomials in Clifford setting, we refer to (Abul-Ez, 2000; Abul-Ez & De Almeida, 2013;
Abul-Ez & Constales, 2003; Aloui et al., 2010; Aloui & Hassan, 2010; Hassan, 2012; Saleem et
al., 2012) and others. In the present paper, we aim to investigate the extent of a generalization of
this Hadamard product set in Cn using hyperspherical regions.

In (Nassif & Rizk, 1988), Nassif and Rizk introduced the following definition.
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Definition 1.3. Let {Pm,n(z,w)} and {qm,n(z,w)} be two simple monic sets of polynomials, where

Pm,n(z,w) =

(m,n)∑
(i, j)=0

Pm,n
i, j ziw j,

qm,n(z,w) =

(m,n)∑
(i, j)=0

qm,n
i, j ziw j.

Then the Hadamard product of the sets {Pm,n(z,w)} and {qm,n(z,w)} is the simple monic set {Um,n(z,w)}
given by

Um,n(z,w) =

(m,n)∑
(i, j)=0

Um,n
i, j ziw j,

where
Um,n

i, j =
σm,n

σi, j
Pm,n

i, j qm,n
i, j ; ((i, j) ≤ (m, n)),

and

σm,n = inf
|t|=1

1
tm+n =

{
m + n

}m+n
2

m
m
2 n

n
2

.

In this paper, we give an inevitable modification in the definition of Hadamard product of basic
sets of polynomials of two complex variables as to yield favorable results in the case of several
complex variables in complete Reinhardt domains in Cn, by using k basic sets of polynomials
instead of two sets.

Now, we are in a position to extend the above product by using k basic sets of polynomials of
several complex variables in complete Reinhardt domains, so we will denote these polynomials by
{P1,m[z]}, {P2,m[z]}, ..., {Pk,m[z]} and in general write {Ps2,m[z]}; s2 = 1, 2, 3, ..., k.

Definition 1.4. Let {Ps2,m[z]}; s2 = 1, 2, 3, ..., k be simple monic sets of polynomials of several
complex variables, where

Ps2,m[z] =

(m)∑
(h)=0

Ps2,m,hzh. (1.3)

Then the Hadamard product of the sets {Ps2,m[z]} is the simple monic set {Hm[z]} given by

Hm[z] =

(m)∑
(h)=0

Hm,hzh, (1.4)

where

Hm,h =

( k∏
s2=1

Ps2,m,h

)
. (1.5)

If we substitute by k = 2 and consider polynomials of two complex variables instead of several
complex variables, then we will obtain Definition 1.3. It should be remarked here that Definition
1.4 is different from that used in (Metwally, 2002).
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2. Effectiveness in complete Reinhardt domains

In this section, we will study the effectiveness of the extended Hadamard product of simple
monic sets of polynomials of several complex variables defined by (1.4) and (1.5) in closed com-
plete Reinhardt domains and at the origin.

Let {Ps2,m[z]} be simple monic sets of polynomials of several complex variables zs; s ∈ I, so
that we can write

Ps2,m[z] =

(m)∑
(h)=0

Ps2,m,hzh, (2.1)

where
Pm1,m2,...,mn

s2,m1,m2,...,mn
= 1; s2 = 1, 2, ..., k .

The normalizing functions of the sets {Ps2,m[z]} are defined by (see (Nassif & Rizk, 1988))

µ
(
Ps2;αsr

)
= lim
〈m〉→∞

sup
{
M

[
Ps2,m;αsr

]} 1
〈m〉
, (2.2)

where M
[
Ps2,m;αsr

]
are defined as follows:

M
[
Ps2,m;αsr

]
= sup

Γ̄[αr]

∣∣∣Ps2,m[z]
∣∣∣.

Notice that the sets {Ps2,m[z]} are monic. By applying Cauchy’s inequality in (2.2), we have

|Ps2,m,h| ≤
1

n∏
s=1

(αsr)〈m〉
sup
Γ̄[αr]

∣∣∣Ps2,m[z]
∣∣∣,

which implies that

M
[
Ps2,m;αsr

]
≥

n∏
s=1

(αsr)〈m〉.

It follows from (2.2) that

µ
(
Ps2;αsr

)
≥

n∏
s=1

αsr. (2.3)

Next, we show if ρ is positive number greater than r, then

µ
(
Ps2;αsρ

)
≤

n∏
s=1
αsρ

n∏
s=1
αsr

µ
(
Ps2;αsr

)
, αsρ > αsr. (2.4)

In fact, this relation follows by applying (2.2) to the inequality

M
[
Ps2,m;αsr

]
≤ K

( n∏
s=1
αsρ

n∏
s=1
αsr

)〈m〉
M

[
Ps2,m;αsr

]
,
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which in its turn, is derivable from (2.2), Cauchy’s inequality and the supremum of zm, where
K = O(〈m〉 + 1).

Now, let {Ps2,m[z]}; s2 = 1, 2, 3, ..., k be simple monic sets of polynomials of several complex
variables, and that {H∗m[z]} is the set defined as follows

H∗m[z] =

k∏
s2=1

Ps2,m[z]. (2.5)

The following fundamental result is proved.

Theorem 2.1. If, for any αsr > 0

µ
(
Ps2;αsr

)
=

n∏
s=1

αsr, (2.6)

then

µ
(
H∗;αsr

)
=

n∏
s=1

αsr. (2.7)

Proof. We first observe that, if ρ be any finite number greater than r , then by (2.1), (2.2) and (2.9),
we obtain that

µ
(
Ps2;αsρ

)
=

n∏
s=1

αsρ. (2.8)

Now, given r∗ > r, we choose finite number r′ such that

αsr < αsr′ < αsr∗. (2.9)

Then by (2.1) and (2.6), we obtain that

M
(
Ps2,h;αsr

)
< η

n∏
s=1

αs(r′)〈h〉 where η > 1, (2.10)

where 〈h〉 = h1 + h2 + h3 + . . . hn. Also from (2.4), we can write

H∗m[z] =

(m)∑
(h)=0

k∏
s2=1

Ps2,m,hPs2,h[z].

Hence (2.9) and (2.10) lead to

M
[
H∗m;αsr

]
≤ ηK

(
1 −

( n∏
s=1
αsr′

n∏
s=1
αsr∗

)n)−n

M
[
Ps2,m;αsr∗

]
,
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Making 〈m〉 → ∞ and applying (2.7), we get

µ
(
H∗;αsr

)
= lim
〈m〉→∞

sup
{
σmM

[
H∗m;αsr

]} 1
〈m〉
≤ µ

(
Ps2;αsr∗

)
=

n∏
s=1

αsr∗,

which leads to the equality (2.6), by the choice of r∗ near to r, and our theorem is therefore
proved.

Remark. From Theorem 2.1, if we consider the simple monic sets {Ps2,m[z]} accord to condition
(2.6), then it is not hard to prove by induction for the j-power sets {P( j)

s2,m[z]} that

µ
(
P( j)

s2
;αsr

)
=

n∏
s=1

αsr. (2.11)

Now, we give the following result.

Theorem 2.2. Let {Ps2,m[z]}; s2 = 1, 2, 3, ..., k be simple monic algebraic sets of polynomials of
several complex variables, which accord to condition (10). Then the set will be effective in the
closed complete Reinhardt domain Γ̄[αr].

Proof. Suppose that the monomial zm admit the representation

zm =
∑

h

Pm,hPh[z].

Since the set {P1,m[z]} is algebraic, we find there exists a relation of the form

P1,m,h =

k∑
j=1

a jP
( j)
1,m,h;

(
(h) ≤ (m)

)
, (2.12)

where k is a finite positive integer which together with the coefficients (a j)k
j=1, is independent of

the indices (m), (h). The coefficients P( j)
1,m,h are defined by

P( j)
1,m[z] =

(m)∑
(h)=1

P( j)
1,m,hzh; 1 ≤ j ≤ k.

It follows that ∣∣∣P( j)
1,m,h

∣∣∣(αsr)〈m〉 ≤ σhM
[
P( j)

1,m;αsr
]
. (2.13)

According to (2.11) for given r∗ > r and from the definition corresponding to µ
(
P( j)

1 ;αsr
)
, we

deduce that
M

[
P( j)

1,h;αsr
]
< K(αsr∗)

〈h〉. (2.14)

Applying (2.13) and (2.14) in (2.12), we obtain that

∣∣∣P( j)
1,m,h

∣∣∣ < ζβK

n∏
s=1

(αsr∗)〈m〉

n∏
s=1

(αsr)〈m〉
, (2.15)
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where
β = max

{
|a j|; 0 ≤ j ≤ k

}
and ζ is a constant. (2.16)

In view of the representation
zm =

∑
h

Pm,hPh[z],

the Cannon sum of the set {P( j)
1,m[z]} will be

Ω
(
P( j)

1,m;αsr
)

=

(m)∑
(h)=0

|P
( j)
m,h|M

[
P( j)

1,h;αsr
]
, (2.17)

where,
M

[
P( j)

1,h;αsr
]

= sup
Γ̄[αr]

|P( j)
1,m[z]|. (2.18)

Therefore (2.14), (2.15) and (2.17) (for r∗ > r) give

Ω
(
P( j)

1,m;αsr
)
< ζKβ

n∏
s=1

(αsr∗)〈m〉. (2.19)

Hence the Cannon function of the set {P( j)
1,m[z]} turns out to be

Ω
(
P( j)

1 ;αsr
)

= lim
〈m〉→∞

{
Ω
(
P( j)

1,m;αsr
)} 1
〈m〉

=

n∏
s=1

αsr∗,

which, by the choice of r∗, implies that

Ω
(
P( j)

1 ;αsr
)

=

n∏
s=1

αsr.

As very similar, we can obtain that the sets {P( j)
ν,m[z]}; ν = 2, 3, 4, ..., k will be effective in the losed

complete Reinhardt domain Γ̄[αr]. Our theorem is therefore proved.

3. Effectiveness in hyperelliptical regions

Now, we are in a position to extend the above product by using k basic sets of polynomials of
several complex variables, so we will denote these polynomials by {P1,m[z]}, {P2,m[z]}, ..., {Pk,m[z]}
and in general write {Ps2,m[z]}; s2 = 1, 2, 3, ..., k.

Definition 3.1. Let {Ps2,m[z]}; s2 = 1, 2, 3, ..., k be simple monic sets of polynomials of several
complex variables, where

Ps2,m[z] =

(m)∑
(h)=0

Ps2,m,hzh. (3.1)
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Then the Hadamard product of the sets {Ps2,m[z]} is the simple monic set {Hm[z]} given by

Hm[z] =

(m)∑
(h)=0

Hm,hzh, (3.2)

where

Hm,h =

(
σm

σh

)k−1( k∏
s2=1

Ps2,m,h

)
. (3.3)

If we substitute by k = 2 and consider polynomials of two complex variables instead of several
complex variables, then we will obtain Definition 1.3. It should be remarked here that Definition
1.4 is different from that used in (Metwally, 2002).

Let {Ps2,m[z]} be simple monic sets of polynomials of several complex variables zs; s ∈ I, so
that we can write

Ps2,m[z] =

(m)∑
(h)=0

Ps2,m,hzh, (3.4)

where
Pm1,m2,...,mn

s2,m1,m2,...,mn
= 1; s2 = 1, 2, ..., k .

The normalizing functions of the sets {Ps2,m[z]} are defined by (see (Nassif & Rizk, 1988))

µ
(
Ps2; rs

)
= lim
〈m〉→∞

sup
{
σmM

[
Ps2,m; rs

]} 1
〈m〉
, (3.5)

where M
[
Ps2,m; rs

]
are defined as follows:

M
[
Ps2,m; rs

]
= sup

Ers

∣∣∣Ps2,m[z]
∣∣∣.

Notice that the sets {Ps2,m[z]} are monic. By applying Cauchy’s inequality, we deduce

|Ps2,m,h| ≤
σm[ n∏

s=1
rs
]〈m〉 sup

Ers

∣∣∣Ps2,m[z]
∣∣∣,

which implies that

M
[
Ps2,m; rs

]
≥

[ n∏
s=1

rs
]〈m〉

σm
.

It follows from (3.4) that
µ
(
Ps2; rs

)
≥ rs. (3.6)

Next, we show if ρs are positive numbers greater than rs, then

µ
(
Ps2; ρs

)
≤

n∏
s=1
ρs

n∏
s=1

rs

µ
(
Ps2; rs

)
, ρs > rs. (3.7)
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In fact, this relation follows by applying (3.4) to the inequality

M
[
Ps2,m; ρs

]
≤ K

( n∏
s=1
ρs

n∏
s=1

rs

)〈m〉
M

[
Ps2,m; rs

]
,

which in its turn, is derivable from (3.4), Cauchy’s inequality and the supremum of zm, where
K = O(〈m〉 + 1).

Now, let {Ps2,m[z]}; s2 = 1, 2, 3, ..., k be simple monic sets of polynomials of several complex
variables, and that {H∗m[z]} is the set defined as follows

H∗m[z] =

k∏
s2=1

Ps2,m[z]. (3.8)

The following fundamental result is proved.

Theorem 3.1. If, for any rs > 0

µ
(
Ps2; rs

)
=

n∏
s=1

rs, (3.9)

then

µ
(
H∗; rs

)
=

n∏
s=1

rs. (3.10)

Proof. We first observe that, if ρ be any finite number greater than r , then by (3.4), (3.5) and (3.7),
we obtain that

µ
(
Ps2; ρs

)
=

n∏
s=1

ρs. (3.11)

Now, given r∗s > rs, we choose finite number r′s such that

rs < r′s < r∗. (3.12)

Then by (3.4) and (3.8), we obtain that

M
(
Ps2,h; rs

)
<

η

σh

[ n∏
s=1

r′s
]〈h〉 where η > 1, (3.13)

where 〈h〉 = h1 + h2 + h3 + . . . hn. Also from (3.7), we can write

H∗m[z] =

(m)∑
(h)=0

k∏
s2=1

Ps2,m,hPs2,h[z].

Hence (3.9) and (3.10) lead to



38 A. El-Sayed Ahmed / Theory and Applications of Mathematics & Computer Science 4 (1) (2013) 26–39

µ
(
H∗; rs

)
= lim
〈m〉→∞

sup
{
σmM

[
H∗m; rs

]} 1
〈m〉
≤ µ

(
Ps2; r∗s

)
=

n∏
s=1

r∗s ,

which leads to the equality (3.8), by the choice of r∗s near to rs, and our theorem is therefore
proved.

Remark. From Theorem 3.1 if we consider the simple monic sets {Ps2,m[z]} accord to condition
(3.8), then it is not hard to prove by induction for the j-power sets {P( j)

s2,m[z]} that

µ
(
P( j)

s2
; rs

)
=

n∏
s=1

rs. (3.14)

Remark. It should be remarked that the results of this paper improve some results in (El-Sayed
Ahmed, 2006, 2013).

4. Conclusion

We have obtained some essential and important results for the effectiveness of the Hadamard
product set of polynomials in complete Reinhardt domains and in heperelliptical regions. From the
established theorems, representations and convergence of power set of the the Hadamard product
set are introduced in complete Reinhardt domains and in heperelliptical regions too. Various
problems relating to the properties of the Hadamard set of simple basic sets of polynomials are
treated with particular emphasis on distinction between the single and several complex variables
cases. An important result is established for the relationship between the Cannon functions of
simple sets of polynomials in several complex variables and those of the directly Hadamard sets.
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Abstract
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existence and uniqueness of solutions for some Caputo fractional differential equations. Some examples are also
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1. Introduction

The theory of fractional differential equations has excited in recent years a considerable interest
both in mathematics and in applications, (see (Bengrine & Dahmani, 2012; Delbosco & Rodino,
1996; Diethelm & Walz, 1998; El-Sayed, 1998)). In particular, existence and uniqueness of so-
lutions for fractional differential equations have attracted the attention of many mathematicians
(Diethelm & Ford, 2002; Houas & Dahmani, 2013; Zhang, 2011; Ntouyas, 2012; Su, 2009; Yang,
2012; Zhang, 2011).
This paper deals with the existence and uniqueness of solutions to the following problem

Dαx (t) + f
(
t, y (t) ,Dδy (t)

)
= 0, t ∈ J, (1.1)

Dβy (t) + g
(
t, x (t) ,Dσx (t)

)
= 0, t ∈ J,

x (0) = y (0) = 0, x (1) − λ1x (η) = 0, y (1) − λ1y (η) = 0,

x
′′

(0) = y
′′

(0) = 0, x
′′

(1) − λ2x
′′

(ξ) = 0, y
′′

(1) − λ2y
′′

(ξ) = 0,
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where Dα,Dβ,Dδ and Dσ, are the Caputo fractional derivatives, 3 < α, β ≤ 4, δ ≤ α − 1, σ ≤
β − 1, 0 < ξ, η < 1, J = [0, 1] , λ1, λ2 are real constants satisfying λ1η , 1, λ2ξ , 1 and f , g are
two functions which will be specified later.
This paper is organized as follows: In section 2, we present some preliminaries and lemmas. In
section 3, we present our main results for the existence and uniqueness of solutions of (1.1). In
section 4, some examples are treated to illustrate our results.

2. Preliminaries

To present our main results, we need the the following two definitions:

Definition 2.1. The Riemann-Liouville fractional integral operator of order α ≥ 0, for a continu-
ous function f on [0,∞[ is defined as:

Jα f (t) =
1

Γ (α)

∫ t

0
(t − τ)α−1 f (τ) dτ, α > 0, (2.1)

J0 f (t) = f (t) ,

where Γ (α) :=
∫ ∞
0 e−uuα−1du.

Definition 2.2. The fractional derivative of f ∈ Cn ([0,∞[) in the Caputo’s sense is defined as:

Dα f (t) =
1

Γ (n − α)

∫ t

0
(t − τ)n−α−1 f (n) (τ) dτ, n − 1 < α, n ∈ N∗. (2.2)

More details about fractional calculus can be found in (Mainardi, 1997; Podlubny et al., 2002).
We need also to introduce the spaces:
X = {x : x ∈ C ([0, 1]) ,Dσx ∈ C ([0, 1])} and Y = {y : y ∈ C ([0, 1]) ,Dδy ∈ C ([0, 1])}. For these
spaces, we associate respectively the norms ‖ x ‖X=‖ x ‖ + ‖ Dσx ‖; ‖ x ‖= sup

t∈J
|x (t)| , ‖ Dσx ‖=

sup
t∈J

∣∣∣Dσx (t)
∣∣∣ and ‖ y ‖Y=‖ y ‖ + ‖ Dδy ‖; ‖ y ‖= sup

t∈J
|y (t)| , ‖ Dδy ‖= sup

t∈J

∣∣∣Dδy (t)
∣∣∣ . It is clear that,

(X, ‖ . ‖X) and (Y, ‖ . ‖Y ) , are two Banach spaces.
Also,

(
X × Y, ‖(x, y)‖X×Y

)
is a Banach space. Its norm is given by ‖(x, y)‖X×Y = ‖x‖X + ‖y‖Y .

The following lemmas are crucial for our main results (Kilbas & Marzan, 2005; Lakshmikan-
tham & Vatsala, 2008):

Lemma 2.1. For α > 0, the general solution of the equation Dαx (t) = 0 is given by

x (t) = c0 + c1t + c2t2 + ... + cn−1tn−1, (2.3)

where ci ∈ R, i = 0, 1, 2, .., n − 1, n = [α] + 1.

Lemma 2.2.
JαDαx (t) = x (t) + c0 + c1t + c2t2 + ... + cn−1tn−1, (2.4)

for some ci ∈ R, i = 0, 1, 2, ..., n − 1, n = [α] + 1.
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We prove also the following lemma which is needed to present the integral solution for the
problem (1.1):

Lemma 2.3. Let h ∈ C ([0, 1]) , t ∈ J, 3 < α ≤ 4. Then the solution of the equation

Dαx (t) + h (t) = 0, (2.5)

where,

x (0) = 0, x (1) − λ1x (η) = 0, (2.6)

x
′′

(0) = 0, x
′′

(1) − λ2x
′′

(ξ) = 0

is given by the following expression

x (t) = −
1

Γ (α)

∫ t

0
(t − s)α−1 h

(
s, y (s) ,Dδy (s)

)
ds (2.7)

+
λ1t

(λ1η − 1) Γ (α)

∫ η

0
(η − s)α−1 h

(
s, y (s) ,Dδy (s)

)
ds

−
1

(λ1η − 1) Γ (α)

∫ 1

0
(1 − s)α−1 h

(
s, y (s) ,Dδy (s)

)
ds

+

(
λ2 − λ2λ1η

3
)

t + (λ2λ1η − λ2) t3

6 (λ1η − 1) (λ2ξ − 1) Γ (α − 2)

∫ ξ

0
(ξ − s)α−3 h

(
s, y (s) ,Dδy (s)

)
ds

−

(
1 − λ1η

3
)

t + (λ1η − 1) t3

6 (λ1η − 1) (λ2ξ − 1) Γ (α − 2)

∫ 1

0
(1 − s)α−3 h

(
s, y (s) ,Dδy (s)

)
ds.

Proof: Let ci ∈ R, i = 0, 1, 2, 3. Then by lemmas 2.1, 2.2, the general solution of (2.5) can be
written as:

x (t) = −
1

Γ (α)

∫ t

0
(t − s)α−1 h (s) ds − c0 − c1t − c2t2 − c3t3. (2.8)

Using (2.6), we immediately get c0 = c2 = 0. On the other hand, we have

c1 = −
λ1

(λ1η − 1) Γ (α)

∫ η

0
(η − s)α−1 h (s) ds +

1
(λ1η − 1) Γ (α)

∫ 1

0
(1 − s)α−1 h (s) ds(2.9)

−
λ2

(
1 − λ1η

3
)

6 (λ1η − 1) (λ2ξ − 1) Γ (α − 2)

∫ ξ

0
(ξ − s)α−3 h (s) ds

+
(1 − λ1η)

6 (λ1η − 1) (λ2ξ − 1) Γ (α − 2)

∫ 1

0
(1 − s)α−3 h (s) ds.

To obtain the value of c3, we remarque that

c3 = −
λ2

6 (λ2ξ − 1) Γ (α − 2)

∫ ξ

0
(ξ − s)α−3 h (s) ds +

1
6 (λ2ξ − 1) Γ (α − 2)

∫ 1

0
(1 − s)α−3 g (s) ds.

(2.10)
Finally, substituting the values of c1 and c3 in (2.8), we obtain (2.7).
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3. Main results

We begin by introducing the quantities:

N1 =
|λ1η−1|+|λ1|η

α+1
|λ1η−1|Γ(α+1) +

(∣∣∣λ2−λ2λ1η
3
∣∣∣+|λ2λ1η−λ2|

)
ξα−2+

∣∣∣1−λ1η
3
∣∣∣+|λ1η−1|

6|λ1η−1||λ2ξ−1|Γ(α−1) ,

N2 = 1
Γ(α−σ+1) +

|λ1|η
α+1

|λ1η−1|Γ(α+1)Γ(2−σ) +

∣∣∣λ2−λ2λ1η
3
∣∣∣ξα−2+

∣∣∣1−λ1η
3
∣∣∣

6|λ1η−1||λ2ξ−1|Γ(α−1)Γ(2−σ)

+
|λ2λ1η−λ2|ξ

α−2+|λ1η−1|
|λ1η−1||λ2ξ−1|Γ(α−1)Γ(4−σ) ,

N3 =
|λ1η−1|+|λ1|η

β+1
|λ1η−1|Γ(β+1) +

(∣∣∣λ2−λ2λ1η
3
∣∣∣+|λ2λ1η−λ2|

)
ξβ−2+

∣∣∣1−λ1η
3
∣∣∣+|λ1η−1|

6|λ1η−1||λ2ξ−1|Γ(β−1) ,

N4 = 1
Γ(β−δ+1) +

|λ1|η
β+1

|λ1η−1|Γ(β+1)Γ(2−δ) +

∣∣∣λ2−λ2λ1η
3
∣∣∣ξβ−2+

∣∣∣1−λ1η
3
∣∣∣

6|λ1η−1||λ2ξ−1|Γ(β−1)Γ(2−δ)

+
|λ2λ1η−λ2|ξ

β−2+|λ1η−1|
|λ1η−1||λ2ξ−1|Γ(β−1)Γ(4−δ) .

We impose also the hypotheses:
(H1) : The functions f , g : [0, 1] × R2 → R are continuous.
(H2) : There exist non negative functions ai, bi ∈ C ([0, 1]) , i = 1, 2 such that for all t ∈ [0, 1]

and (x1, y1) , (x2, y2) ∈ R2, the inequalities

| f (t, x1, y1) − f (t, x2, y2)| ≤ a1 (t) |x1 − x2| + b1 (t) |y1 − y2| , (3.1)
|g (t, x1, y1) − g (t, x2, y2)| ≤ a2 (t) |x1 − x2| + b2 (t) |y1 − y2| ,

are valid, and

ω1 = sup
t∈J

a1 (t) , ω2 = sup
t∈J

b1 (t) , $1 = sup
t∈J

a2 (t) , $2 = sup
t∈J

b2 (t) .

(H3) : There exist positive constants L1 and L2 such that

| f (t, x, y)| ≤ L1, |g (t, x, y)| ≤ L2 for each t ∈ J and all x, y ∈ R.

Our first main result is given by the following theorem:

Theorem 3.1. Assume that (H2) holds and suppose that

(N1 + N2) (ω1 + ω2) +
(
N3 + N4

)
($1 +$2) < 1. (3.2)

Then the problem (1.1) has a unique solution on J.

Proof: We apply Banach fixed point theorem. So, we consider the operator φ : X ×Y → X ×Y
defined by:

φ (x, y) (t) := (φ1y (t) , φ2x (t)) , (3.3)



44 Zoubir Dahmani et al. / Theory and Applications of Mathematics & Computer Science 4 (1) (2013) 40–55

where

φ1y (t) : = −
1

Γ (α)

∫ t

0
(t − s)α−1 f

(
s, y (s) ,Dδy (s)

)
ds (3.4)

+
λ1t

(λ1η − 1) Γ (α)

∫ η

0
(η − s)α−1 f

(
s, y (s) ,Dδy (s)

)
ds

−
1

(λ1η − 1) Γ (α)

∫ 1

0
(1 − s)α−1 f

(
s, y (s) ,Dδy (s)

)
ds

+

(
λ2 − λ2λ1η

3
)

t + (λ2λ1η − λ2) t3

6 (λ1η − 1) (λ2ξ − 1) Γ (α − 2)

∫ ξ

0
(ξ − s)α−3 f

(
s, y (s) ,Dδy (s)

)
ds

−

(
1 − λ1η

3
)

t + (λ1η − 1) t3

6 (λ1η − 1) (λ2ξ − 1) Γ (α − 2)

∫ 1

0
(1 − s)α−3 f

(
s, y (s) ,Dδy (s)

)
ds,

and

φ2x (t) : = −
1

Γ (β)

∫ t

0
(t − s)β−1 g

(
s, x (s) ,Dσx (s)

)
ds (3.5)

+
λ1t

(λ1η − 1) Γ (β)

∫ η

0
(η − s)α−1 g

(
s, x (s) ,Dσx (s)

)
ds

−
1

(λ1η − 1) Γ (β)

∫ 1

0
(1 − s)α−1 g

(
s, x (s) ,Dσx (s)

)
ds

+

(
λ2 − λ2λ1η

3
)

t + (λ2λ1η − λ2) t3

6 (λ1η − 1) (λ2ξ − 1) Γ (β − 2)

∫ ξ

0
(ξ − s)α−3 g

(
s, x (s) ,Dσx (s)

)
ds

−

(
1 − λ1η

3
)

t + (λ1η − 1) t3

6 (λ1η − 1) (λ2ξ − 1) Γ (β − 2)

∫ 1

0
(1 − s)α−3 g

(
s, x (s) ,Dσx (s)

)
ds.

And we shall prove that φ is a contraction mapping.
Let (x, y) , (x1, y1) ∈ X × Y. Then, for each t ∈ J, we have:

|φ1y (t) − φ1y1 (t)| ≤ 1
Γ(α)

∫ t

0
(t − s)α−1

∣∣∣∣ f (
s, y (s) ,Dδy (s)

)
− f

(
s, y1 (s) ,Dδy1 (s)

)∣∣∣∣ ds

+
|λ1|t

|λ1η−1|Γ(α)

∫ η

0
(η − s)α−1

∣∣∣∣ f (
s, y (s) ,Dδy (s)

)
− f

(
s, y1 (s) ,Dδy1 (s)

)∣∣∣∣ ds

+ t
|λ1η−1|Γ(α)

∫ 1

0
(1 − s)α−1

∣∣∣∣ f (
s, y (s) ,Dδy (s)

)
− f

(
s, y1 (s) ,Dδy1 (s)

)∣∣∣∣ ds

+

∣∣∣λ2−λ2λ1η
3
∣∣∣t+|λ2λ1η−λ2|t3

6|λ1η−1||λ2ξ−1|Γ(α−2)

∫ ξ

0
(ξ − s)α−3

∣∣∣∣ f (
s, y (s) ,Dδy (s)

)
− f

(
s, y1 (s) ,Dδy1 (s)

)∣∣∣∣ ds

+

∣∣∣1−λ1η
3
∣∣∣t+|λ1η−1|t3

6|λ1η−1||λ2ξ−1|Γ(α−2)

∫ 1

0
(1 − s)α−3

∣∣∣∣ f (
s, y (s) ,Dδy (s)

)
− f

(
s, y1 (s) ,Dδy1 (s)

)∣∣∣∣ ds.

(3.6)

Thanks to (H2) , we obtain
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|φ1y (t) − φ1y1 (t)| ≤
(|λ1η−1|+|λ1|η

α+1)
(
ω1‖y−y1‖+ω2

∥∥∥Dδy−Dδy1
∥∥∥)

|λ1η−1|Γ(α+1) (3.7)

+

[(∣∣∣λ2−λ2λ1η
3
∣∣∣+|λ2λ1η−λ2|

)
ξα−2+

∣∣∣1−λ1η
3
∣∣∣+|λ1η−1|

](
ω1‖y−y1‖+ω2

∥∥∥Dδy−Dδy1
∥∥∥)

6|λ1η−1||λ2ξ−1|Γ(α−1) .

Consequently,

|φ1y (t) − φ1y1 (t)| ≤ N1 (ω1 + ω2)
(
‖y − y1‖ +

∥∥∥∥Dδy − Dδy1

∥∥∥∥) , (3.8)

Hence,
‖φ1 (y) − φ1 (y1)‖ ≤ N1 (ω1 + ω2)

(
‖y − y1‖ +

∥∥∥∥Dδy − Dδy1

∥∥∥∥) . (3.9)

We have also,∣∣∣Dσφ1y (t) − Dσφ1y1 (t)
∣∣∣ ≤ 1

Γ(α−σ)

∫ t

0
(t − s)α−σ−1

∣∣∣∣ f (
s, y (s) ,Dδy (s)

)
− f

(
s, y1 (s) ,Dδy1 (s)

)∣∣∣∣ ds

+
|λ1|t1−σ

|λ1η−1|Γ(α)Γ(2−σ)

∫ η

0
(η − s)α−1

∣∣∣∣ f (
s, y (s) ,Dδy (s)

)
− f

(
s, y1 (s) ,Dδy1 (s)

)∣∣∣∣ ds

+ t1−σ
|(λ1η−1)|Γ(α)Γ(2−σ)

∫ 1

0
(1 − s)α−1

∣∣∣∣ f (
s, y (s) ,Dδy (s)

)
− f

(
s, y1 (s) ,Dδy1 (s)

)∣∣∣∣ ds

+


∣∣∣λ2−λ2λ1η

3
∣∣∣t1−σ

6|λ1η−1||λ2ξ−1|Γ(α−2)Γ(2−σ)

+
|λ2λ1η−λ2|t3−σ

|λ1η−1||λ2ξ−1|Γ(α−2)Γ(4−σ)


∫ ξ

0
(ξ − s)α−3

∣∣∣∣ f (
s, y (s) ,Dδy (s)

)
− f

(
s, y1 (s) ,Dδy1 (s)

)∣∣∣∣ ds

+


∣∣∣1−λ1η

3
∣∣∣t1−σ

6|λ1η−1||λ2ξ−1|Γ(α−2)Γ(2−σ)

+
|λ1η−1|t3−σ

|λ1η−1||λ2ξ−1|Γ(α−2)Γ(4−σ)


∫ 1

0
(1 − s)α−3

∣∣∣∣ f (
s, y (s) ,Dδy (s)

)
− f

(
s, y1 (s) ,Dδy1 (s)

)∣∣∣∣ ds.

(3.10)

By (H2), yields ∣∣∣Dσφ1y (t) − Dσφ1y1 (t)
∣∣∣ ≤ (ω1+ω2)

(
‖y−y1‖+

∥∥∥Dδy−Dδy1
∥∥∥)

Γ(α−σ+1)

+
(ω1+ω2)[|λ1|η

α+1]
(
‖y−y1‖+

∥∥∥Dδy−Dδy1
∥∥∥)

|λ1η−1|Γ(α+1)Γ(2−σ)

+
(ω1+ω2)

[∣∣∣λ2−λ2λ1η
3
∣∣∣ξα−2+

∣∣∣1−λ1η
3
∣∣∣](‖y−y1‖+

∥∥∥Dδy−Dδy1
∥∥∥)

6|λ1η−1||λ2ξ−1|Γ(α−1)Γ(2−σ)

+
(ω1+ω2)

[
|λ2λ1η−λ2|ξ

α−2+|λ1η−1|
](
‖y−y1‖+

∥∥∥Dδy−Dδy1
∥∥∥)

|λ1η−1||λ2ξ−1|Γ(α−1)Γ(4−σ) .

(3.11)

This implies that,∣∣∣Dσφ1y (t) − Dσφ1y1 (t)
∣∣∣ ≤ [

(ω1+ω2)
Γ(α−σ+1) +

%(ω1+ω2)[|λ1|η
α+1]

|λ1η−1|Γ(α+1)Γ(2−σ)

] (
‖y − y1‖ +

∥∥∥∥Dδy − Dδy1

∥∥∥∥) (3.12)

+


(ω1+ω2)

[∣∣∣λ2−λ2λ1η
3
∣∣∣ξα−2+

∣∣∣1−λ1η
3
∣∣∣]

6|λ1η−1||λ2ξ−1|Γ(α−1)Γ(2−σ)

+
(ω1+ω2)

[
|λ2λ1η−λ2|ξ

α−2+|λ1η−1|
]

|λ1η−1||λ2ξ−1|Γ(α−1)Γ(4−σ)


(
‖y − y1‖ +

∥∥∥∥Dδy − Dδy1

∥∥∥∥) .
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Therefore,∣∣∣Dσφ1y (t) − Dσφ1y1 (t)
∣∣∣ ≤ N2 (ω1 + ω2)

(
‖y − y1‖ +

∥∥∥∥Dδy − Dδy1

∥∥∥∥) . (3.13)

Consequently,∥∥∥Dσφ1 (y) − Dσφ1 (y1)
∥∥∥ ≤ N2 (ω1 + ω2)

(
‖y − y1‖ +

∥∥∥∥Dδy − Dδy1

∥∥∥∥) . (3.14)

By (3.9) and (3.14), we can write

‖φ1 (y) − φ1 (y1)‖X ≤ (N1 + N2) (ω1 + ω2)
(
‖y − y1‖ +

∥∥∥∥Dδy − Dδy1

∥∥∥∥) . (3.15)

With the same arguments as before, we have

‖φ2 (x) − φ2 (x1)‖Y ≤
(
N3 + N4

)
($1 +$2)

(
‖x − x1‖ +

∥∥∥Dσx − Dσx1
∥∥∥) . (3.16)

Using (3.15) and (3.16), we can state that

‖φ (x, y) − φ (x1, y1)‖X×Y ≤

[
(N1 + N2) (ω1 + ω2)

+
(
N3 + N4

)
($1 +$2)

]
(‖(x − x1, y − y1)‖X×Y ). (3.17)

Thanks to (3.2) , we conclude that φ is contraction. As a consequence of Banach fixed point
theorem, we deduce that φ has a unique fixed point which is a solution of (1.1) .

The second main result is based on Schaefer theorem. We have:

Theorem 3.2. Suppose that (H1) and (H3) are satisfied. Then, the problem (1.1) has at least one
solution on J.

Proof: A: Thanks to (H1), we can state that the operator φ is continuous on X × Y.
B: We will prove that φ maps bounded sets into bounded sets in X × Y.
So, taking ρ > 0, and (x, y) ∈ Bρ := {(x, y) ∈ X × Y; ‖(x, y)‖X×Y ≤ ρ}, then for each t ∈ J, we

have:

|φ1y (t)| ≤ 1
Γ(α)

∫ t

0
(t − s)α−1

∣∣∣∣ f (
s, y (s) ,Dδy (s)

)∣∣∣∣ ds (3.18)

+
|λ1|t

|λ1η−1|Γ(α)

∫ η

0
(η − s)α−1

∣∣∣∣ f (
s, y (s) ,Dδy (s)

)∣∣∣∣ ds

+ t
|λ1η−1|Γ(α)

∫ η

0
(η − s)α−1

∣∣∣∣ f (
s, y (s) ,Dδy (s)

)∣∣∣∣ ds

+

∣∣∣λ2−λ2λ1η
3
∣∣∣t+|λ2λ1η−λ2|t3

6|λ1η−1||λ2ξ−1|Γ(α−2)

∫ ξ

0
(ξ − s)α−3

∣∣∣∣ f (
s, y (s) ,Dδy (s)

)∣∣∣∣ ds

+

∣∣∣1−λ1η
3
∣∣∣t+|λ1η−1|t3

6|λ1η−1||λ2ξ−1|Γ(α−2)%
∫ 1

0
(1 − s)α−3

∣∣∣∣ f (
s, y (s) ,Dδy (s)

)∣∣∣∣ ds.
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The condition (H3) implies that

|φ1y (t)| ≤ L1(|λ1η−1||λ1|η
α+1)

|λ1η−1|Γ(α+1) +
L1

[(∣∣∣λ2−λ2λ1η
3
∣∣∣+|λ2λ1η−λ2|

)
ξα−2+

(∣∣∣1−λ1η
3
∣∣∣+|λ1η−1|

)]
6|λ1η−1||λ2ξ−1|Γ(α−1) (3.19)

≤ L1


|λ1η−1||λ1|η

α+1
|λ1η−1|Γ(α+1)

+

(∣∣∣λ2−λ2λ1η
3
∣∣∣+|λ2λ1η−λ2|

)
ξα−2+

∣∣∣1−λ1η
3
∣∣∣+|λ1η−1|

6|λ1η−1||λ2ξ−1|Γ(α−1)

 .
Then,

‖φ1 (y)‖ ≤ L1N1. (3.20)

For Dσ, we have the following inequalities

∣∣∣Dσφ1y (t)
∣∣∣ ≤ 1

Γ(α−σ)

∫ t

0
(t − s)α−σ−1

∣∣∣∣ f (
s, y (s) ,Dδy (s)

)∣∣∣∣ ds

+
|λ1|t1−σ

|λ1η−1|Γ(α)Γ(2−σ)

∫ η

0
(η − s)α−1

∣∣∣∣ f (
s, y (s) ,Dδy (s)

)∣∣∣∣ ds

+ t1−σ
|(λ1η−1)|Γ(α)Γ(2−σ)

∫ 1

0
(1 − s)α−1

∣∣∣∣ f (
s, y (s) ,Dδy (s)

)∣∣∣∣ ds

+ 1
Γ(α−2)


∣∣∣λ2−λ2λ1η

3
∣∣∣t1−σ

6|λ1η−1||λ2ξ−1|Γ(2−σ)

+
|λ2λ1η−λ2|t3−σ

|λ1η−1||λ2ξ−1|Γ(4−σ)


∫ ξ

0
(ξ − s)α−3

∣∣∣∣ f (
s, y (s) ,Dδy (s)

)∣∣∣∣ ds

+ 1
Γ(α−2)


∣∣∣1−λ1η

3
∣∣∣t1−σ

%6|λ1η−1||λ2ξ−1|Γ(2−σ)

+
|λ1η−1|t3−σ

|λ1η−1||λ2ξ−1|Γ(4−σ)


∫ 1

0
(1 − s)α−3

∣∣∣∣ f (
s, y (s) ,Dδy (s)

)∣∣∣∣ ds.

(3.21)

By (H3) again, yields the following formula

∣∣∣Dσφ1y (t)
∣∣∣ ≤ L1

[
1

Γ(α−σ+1) +
|λ1|η

α+1
|λ1η−1|Γ(α+1)Γ(2−σ)

]
(3.22)

+L1


∣∣∣λ2−λ2λ1η

3
∣∣∣ξα−2+

∣∣∣1−λ1η
3
∣∣∣

6|λ1η−1||λ2ξ−1|Γ(α−1)Γ(2−σ)

+
|λ2λ1η−λ2|ξ

α−2+|λ1η−1|
|λ1η−1||λ2ξ−1|Γ(α−1)Γ(4−σ)


≤ L1


1

Γ(α−σ+1) +
|λ1|η

α+1
|λ1η−1|Γ(α+1)Γ(2−σ)

+

∣∣∣λ2−λ2λ1η
3
∣∣∣ξα−2+

∣∣∣1−λ1η
3
∣∣∣

6|λ1η−1||λ2ξ−1|Γ(α−1)Γ(2−σ) +
%|λ2λ1η−λ2|ξ

α−2+|λ1η−1|
|λ1η−1||λ2ξ−1|Γ(α−1)Γ(4−σ)

 .
Hence, we can write ∥∥∥Dσφ1 (y)

∥∥∥ ≤ L1N2. (3.23)

Using (3.20) and (3.23), we obtain

‖φ1 (y)‖X ≤ L1 (N1 + N2) . (3.24)
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As before, we obtain
‖φ2 (x)‖Y ≤ L2

(
N3 + N4

)
. (3.25)

By (3.24) and (3.25), we get

‖φ (x, y)‖X×Y ≤ L1 (N1 + N2) + L2
(
N3 + N4

)
. (3.26)

Therefore,
‖φ (x, y)‖X×Y < ∞. (3.27)

C: Now, we prove the equi-continuity of φ.
Let us take (x, y) ∈ Bρ, and t1, t2 ∈ J, with t1 < t2. We have:

|φ1y (t2) − φ1y (t1)| ≤ 1
Γ(α)

∫ t1

0

(
(t1 − s)α−1 − (t2 − s)α−1

) ∣∣∣∣ f (
s, y (s) ,Dδy (s)

)∣∣∣∣ ds (3.28)

+ 1
Γ(α)

∫ t2

t1
(t2 − s)α−1

∣∣∣∣ f (
s, y (s) ,Dδy (s)

)∣∣∣∣ ds

+
|λ1|(t2−t1)
|λ1η−1|Γ(α)

∫ η

0
(η − s)α−1

∣∣∣∣ f (
s, y (s) ,Dδy (s)

)∣∣∣∣ ds

+
(t1−t2)

|λ1η−1|Γ(α)

∫ 1

0
(1 − s)α−1

∣∣∣∣ f (
s, y (s) ,Dδy (s)

)∣∣∣∣ ds

+

∣∣∣λ2−λ2λ1η
3
∣∣∣(t2−t1)+|λ2λ1η−λ2|

(
t32−t31

)
6|λ1η−1||λ2ξ−1|Γ(α−2)

∫ ξ

0
(ξ − s)α−3

∣∣∣∣ f (
s, y (s) ,Dδy (s)

)∣∣∣∣ ds

+

∣∣∣1−λ1η
3
∣∣∣(t1−t2)+|λ1η−1|

(
t31−t32

)
6|λ1η−1||λ2ξ−1|Γ(α−2)

∫ 1

0
(1 − s)α−3

∣∣∣∣ f (
s, y (s) ,Dδy (s)

)∣∣∣∣ ds

≤
L1

(
tα1−tα2 +2

(
tα2−tα1

))
Γ(α+1) +

L1|λ1|η
α(t2−t1)

|λ1η−1|Γ(α+1) +
L1(t1−t2)

|λ1η−1|Γ(α+1)

+
L1

∣∣∣λ2−λ2λ1η
3
∣∣∣ξα−2(t2−t1)+L1|λ2λ1η−λ2|ξ

α−2
(
t32−t31

)
6|λ1η−1||λ2ξ−1|Γ(α−1)

+
L1

∣∣∣1−λ1η
3
∣∣∣(t1−t2)+L1|λ1η−1|

(
t31−t32

)
6|λ1η−1||λ2ξ−1|Γ(α−1) .

Therefore,

|φ1y (t2) − φ1y (t1)| ≤ L1

[
|λ1η−1|+|λ1|η

α

|λ1η−1|Γ(α+1) +

∣∣∣λ2−λ2λ1η
3
∣∣∣ξα−2

6|λ1η−1||λ2ξ−1|Γ(α−1)

]
(t2 − t1) (3.29)

+L1

[
1

|λ1η−1|Γ(α+1) +

∣∣∣1−λ1η
3
∣∣∣

6|λ1η−1||λ2ξ−1|Γ(α−1)

]
(t1 − t2)

+L1

[
|λ2λ1η−λ2|ξ

α−2

6|λ1η−1||λ2ξ−1|Γ(α−1)

] (
t32 − t31

)
+

L1|λ1η−1|
6|λ1η−1||λ2ξ−1|Γ(α−1)

(
t31 − t32

)
+

L1
Γ(α+1)

(
tα1 − tα2

)
+

2L1
Γ(α+1) (t2 − t1)α .
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We have also∣∣∣Dσφ1y (t2) − Dσφ1y (t1)
∣∣∣ ≤ 1

Γ(α−σ)

∫ t1

0

(
(t1 − s)α−σ−1 − (t2 − s)α−σ−1

) ∣∣∣∣ f (
s, y (s) ,Dδy (s)

)∣∣∣∣ ds

+ 1
Γ(α−σ)

∫ t2

t1
(t2 − s)α−σ−1

∣∣∣∣ f (
s, y (s) ,Dδy (s)

)∣∣∣∣ ds

+
|λ1|

(
t1−σ2 −t1−σ1

)
|λ1η−1|Γ(α)Γ(2−σ)

∫ η

0
(η − s)α−1

∣∣∣∣ f (
s, y (s) ,Dδy (s)

)∣∣∣∣ ds

+

(
t1−σ1 −t1−σ2

)
|λ1η−1|Γ(α)Γ(2−σ)

∫ 1

0
(1 − s)α−1

∣∣∣∣ f (
s, y (s) ,Dδy (s)

)∣∣∣∣ ds

+


∣∣∣λ2−λ2λ1η

3
∣∣∣(t1−σ2 −t1−σ1

)
6|λ1η−1||λ2ξ−1|Γ(α−2)Γ(2−σ)

+
|λ2λ1η−λ2|

(
t3−σ2 −t3−σ1

)
|λ1η−1||λ2ξ−1|Γ(α−2)Γ(4−σ)


∫ ξ

0
(ξ − s)α−3

∣∣∣∣ f (
s, y (s) ,Dδy (s)

)∣∣∣∣ ds

+


∣∣∣1−λ1η

3
∣∣∣(t1−σ1 −t1−σ2

)
6|λ1η−1||λ2ξ−1|Γ(α−2)Γ(2−σ)

+
|λ1η−1|

(
t3−σ1 −t3−σ2

)
|λ1η−1||λ2ξ−1|Γ(α−2)Γ(2−σ)


∫ 1

0
(1 − s)α−3

∣∣∣∣ f (
s, y (s) ,Dδy (s)

)∣∣∣∣ ds.

(3.30)

The condition (H3) implies that∣∣∣Dσφ1y (t2) − Dσφ1y (t1)
∣∣∣ ≤ L1

Γ(α−σ+1)

(
tα−σ1 − tα−σ2 + 2 (t2 − t1)α−σ

)
+L1


|λ1|η

α+1
|λ1η−1|Γ(α+1)Γ(2−σ)

+

∣∣∣λ2−λ2λ1η
3
∣∣∣ξα−2

6|λ1η−1||λ2ξ−1|Γ(α−1)Γ(2−σ)

 (t1−σ2 − t1−σ1

)
+ L1


1

|λ1η−1|Γ(α+1)Γ(2−σ)

+

∣∣∣1−λ1η
3
∣∣∣

6|λ1η−1||λ2ξ−1|Γ(α−1)Γ(2−σ)

 (t1−σ1 − t1−σ2

)
+

L1|λ2λ1η−λ2|ξ
α−2

|λ1η−1||λ2ξ−1|Γ(α−1)Γ(4−σ)

(
t3−σ2 − t3−σ1

)
+

L1|λ1η−1|
|λ1η−1||λ2ξ−1|Γ(α−1)Γ(4−σ)

(
t3−σ1 − t3−σ2

)
.

(3.31)
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The inequalities (3.29) and (3.31) imply that:

‖φ1y (t2) − φ1y (t1)‖X ≤ L1

[
|λ1η−1|+|λ1|η

α

|λ1η−1|Γ(α+1) +

∣∣∣λ2−λ2λ1η
3
∣∣∣ξα−2

6|λ1η−1||λ2ξ−1|Γ(α−1)

]
(t2 − t1)

+L1

[
1

|λ1η−1|Γ(α+1) +

∣∣∣1−λ1η
3
∣∣∣

6|λ1η−1||λ2ξ−1|Γ(α−1)

]
(t1 − t2) + L1

[
|λ2λ1η−λ2|ξ

α−2

6|λ1η−1||λ2ξ−1|Γ(α−1)

] (
t32 − t31

)
+

L1|λ1η−1|
6|λ1η−1||λ2ξ−1|Γ(α−1)

(
t31 − t32

)
+

L1
Γ(α+1)

(
tα1 − tα2 + 2 (t2 − t1)α

)
+

L1
Γ(α−σ+1)

(
tα−σ1 − tα−σ2 + 2 (t2 − t1)α−σ

)
+ L1


|λ1|η

α+1
|λ1η−1|Γ(α+1)Γ(2−σ)

+

∣∣∣λ2−λ2λ1η
3
∣∣∣ξα−2

6|λ1η−1||λ2ξ−1|Γ(α−1)Γ(2−σ)

 (t1−σ2 − t1−σ1

)
+L1

[
1

|λ1η−1|Γ(α+1)Γ(2−σ) +

∣∣∣1−λ1η
3
∣∣∣

6|λ1η−1||λ2ξ−1|Γ(α−1)Γ(2−σ)

] (
t1−σ1 − t1−σ2

)
+

L1|λ2λ1η−λ2|ξ
α−2

|λ1η−1||λ2ξ−1|Γ(α−1)Γ(4−σ)

(
t3−σ2 − t3−σ1

)
+

L1|λ1η−1|
|λ1η−1||λ2ξ−1|Γ(α−1)Γ(4−σ)

(
t3−σ1 − t3−σ2

)
.

(3.32)

With the same arguments as before, we can write

‖φ2x (t2) − φ2x (t1)‖Y ≤ L2

[
|λ1η−1|+|λ1|η

β

|λ1η−1|Γ(β+1) +

∣∣∣λ2−λ2λ1η
3
∣∣∣ξβ−2

6|λ1η−1||λ2ξ−1|Γ(β−1)

]
(t2 − t1)(3.33)

+L2

[
1

|λ1η−1|Γ(β+1) +

∣∣∣1−λ1η
3
∣∣∣

6|λ1η−1||λ2ξ−1|Γ(β−1)

]
(t1 − t2) + L2

[
|λ2λ1η−λ2|ξ

β−2

6|λ1η−1||λ2ξ−1|Γ(β−1)

] (
t32 − t31

)
+

L2|λ1η−1|
6|λ1η−1||λ2ξ−1|Γ(β−1)

(
t31 − t32

)
+

L2
Γ(β+1)

(
tβ1 − tβ2 + 2 (t2 − t1)β

)
+

L2
Γ(α−β+1)

(
tβ−δ1 − tβ−δ2 + 2 (t2 − t1)β−δ

)
+ L2


|λ1|η

β+1
|λ1η−1|Γ(β+1)Γ(2−δ)

+

∣∣∣λ2−λ2λ1η
3
∣∣∣ξβ−2

6|λ1η−1||λ2ξ−1|Γ(β−1)Γ(2−δ)

 (t1−δ2 − t1−δ1

)
+L2

[
1

|λ1η−1|Γ(β+1)Γ(2−δ) +

∣∣∣1−λ1η
3
∣∣∣

6|λ1η−1||λ2ξ−1|Γ(β−1)Γ(2−δ)

] (
t1−δ1 − t1−δ2

)
+

L2|λ2λ1η−λ2|ξ
β−2

|λ1η−1||λ2ξ−1|Γ(β−1)Γ(4−δ)

(
t3−δ2 − t3−δ1

)
+

L2|λ1η−1|
|λ1η−1||λ2ξ−1|Γ(β−1)Γ(4−δ)

(
t3−δ1 − t3−δ2

)
.

Thanks to (3.32) and (3.33), we can state that ‖φ (x, y) (t2) − φ (x, y) (t1)‖X×Y → 0 as t2 → t1.
Combining A, B, C and using Arzela-Ascoli theorem, we conclude that φ is completely continuous
operator.
D: We shall show that

Ω := {(x, y) ∈ X × Y, (x, y) = µφ (x, y) , 0 < µ < 1}, (3.34)

is a bounded set.
Let (x, y) ∈ Ω, then (x, y) = µφ (x, y) , for some 0 < µ < 1. Thus, for each t ∈ J, we have:

y (t) = µφ1y (t) , x (t) = µφ2x (t) .
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Therefore,

1
µ
|y (t)| ≤ 1

Γ(α)

∫ t

0
(t − s)α−1

∣∣∣∣ f (
s, y (s) ,Dδ (s)

)∣∣∣∣ ds (3.35)

+
|λ1|t

|λ1η−1|Γ(α)

∫ η

0
(η − s)α−1

∣∣∣∣ f (
s, y (s) ,Dδ (s)

)∣∣∣∣ ds

+ t
|λ1η−1|Γ(α)

∫ η

0
(η − s)α−1

∣∣∣∣ f (
s, y (s) ,Dδ (s)

)∣∣∣∣ ds

+

∣∣∣λ2−λ2λ1η
3
∣∣∣t+|λ2λ1η−λ2|t3

6|λ1η−1||λ2ξ−1|Γ(α−2)

∫ ξ

0
(ξ − s)α−3

∣∣∣∣ f (
s, y (s) ,Dδ (s)

)∣∣∣∣ ds

+

∣∣∣1−λ1η
3
∣∣∣t+|λ1η−1|t3

6|λ1η−1||λ2ξ−1|Γ(α−2)

∫ 1

0
(1 − s)α−3

∣∣∣∣ f (
s, y (s) ,Dδ (s)

)∣∣∣∣ ds.

Thanks to (H3), we can write

1
µ
|y (t)| ≤ L1(|λ1η−1|+|λ1|η

α+1)
|λ1η−1|Γ(α+1) (3.36)

+
L1

(∣∣∣λ2−λ2λ1η
3
∣∣∣+|λ2λ1η−λ2|

)
ξα−2+

∣∣∣1−λ1η
3
∣∣∣+|λ1η−1|

6|λ1η−1||λ2ξ−1|Γ(α−1) .

Thus,

|y (t)| ≤ µL1


(|λ1η−1|+|λ1|η

α+1)
|λ1η−1|Γ(α+1)

+

(∣∣∣λ2−λ2λ1η
3
∣∣∣+|λ2λ1η−λ2|

)
ξα−2+

∣∣∣1−λ1η
3
∣∣∣+|λ1η−1|

6|λ1η−1||λ2ξ−1|Γ(α−1)

 . (3.37)

Hence,
|y (t)| ≤ µN1L1, t ∈ J. (3.38)

On the other hand,

1
µ

∣∣∣Dσy (t)
∣∣∣ ≤ 1

Γ(α−δ)

∫ t

0
(t − s)α−σ−1

∣∣∣∣ f (
s, y (s) ,Dδ (s)

)∣∣∣∣ ds (3.39)

+
|λ1|t1−σ

|λ1η−1|Γ(α)Γ(2−σ)

∫ η

0
(η − s)α−1

∣∣∣∣ f (
s, y (s) ,Dδ (s)

)∣∣∣∣ ds

+ t1−σ
|λ1η−1|Γ(α)Γ(2−σ)

∫ η

0
(η − s)α−1

∣∣∣∣ f (
s, y (s) ,Dδ (s)

)∣∣∣∣ ds

+


∣∣∣λ2−λ2λ1η

3
∣∣∣t1−σ

6|λ1η−1||λ2ξ−1|Γ(α−2)Γ(2−σ)

+
|λ2λ1η−λ2|t3−σ

|λ1η−1||λ2ξ−1|Γ(α−2)Γ(4−σ)


∫ ξ

0
(ξ − s)α−3

∣∣∣∣ f (
s, y (s) ,Dδ (s)

)∣∣∣∣ ds

+


∣∣∣1−λ1η

3
∣∣∣t1−σ

6|λ1η−1||λ2ξ−1|Γ(α−2)Γ(2−σ)

+
|λ1η−1|t3−σ

|λ1η−1||λ2ξ−1|Γ(α−2)Γ(4−σ)


∫ 1

0
(1 − s)α−3

∣∣∣∣ f (
s, y (s) ,Dδ (s)

)∣∣∣∣ ds.
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Thanks to (H3), we have

1
µ

∣∣∣Dσy (t)
∣∣∣ ≤ L1

[
1

Γ(α−σ+1) +
|λ1|η

α+1
|λ1η−1|Γ(α+1)Γ(2−σ)

]
(3.40)

+L1

[ ∣∣∣λ2−λ2λ1η
3
∣∣∣ξα−2+

∣∣∣1−λ1η
3
∣∣∣

6|λ1η−1||λ2ξ−1|Γ(α−1)Γ(2−σ) +
|λ2λ1η−λ2|ξ

α−2+|λ1η−1|
|λ1η−1||λ2ξ−1|Γ(α−1)Γ(4−σ)

]
.

Therefore,∣∣∣Dσy (t)
∣∣∣ ≤ µL1

[
1

Γ(α−σ+1) +
|λ1|η

α+1
|λ1η−1|Γ(α+1)Γ(2−σ)

]
(3.41)

+µL1

[ ∣∣∣λ2−λ2λ1η
3
∣∣∣ξα−2+

∣∣∣1−λ1η
3
∣∣∣

6|λ1η−1||λ2ξ−1|Γ(α−1)Γ(2−σ) +
|λ2λ1η−λ2|ξ

α−2+|λ1η−1|
|λ1η−1||λ2ξ−1|Γ(α−1)Γ(4−σ)

]
.

Thus, ∣∣∣∣Dβy (t)
∣∣∣∣ ≤ µL1N2, t ∈ J. (3.42)

From (3.38) and (3.42) , we get
‖y‖X ≤ µL1 (N1 + N2) . (3.43)

Analogously, we can obtain
‖x‖Y ≤ µL2

(
N3 + N4

)
. (3.44)

It follows from (3.43) and (3.4) that

‖(x, y)‖X×Y ≤ µL1 (N1 + N2) + µL2
(
N3 + N4

)
. (3.45)

Hence,
‖φ (x, y)‖X×Y < ∞. (3.46)

This shows that the set Ω is bounded. Thanks to A,B,C and D, we conclude that φ has at least one
fixed point. Theorem 3.2 is thus proved.

4. Examples

Example 4.1. Let us consider the coupled equations:

D
7
2 x (t) +

|y(t)|

7
(
πt2+3

)2
(2+|y(t)|)

+

√
πe−πt |cos(πt)|

∣∣∣∣∣D 7
3 y(t)

∣∣∣∣∣
7π(1+et)2

(
2+

∣∣∣∣∣D 7
3 y(t)

∣∣∣∣∣) = 0, t ∈ [0, 1] ,

D
11
3 y (t) +

3π|x(t)|(
5et2+3

√
π
)
(1+|x(t)|)

+
πe−2πt

∣∣∣∣∣D 5
2 x(t)

∣∣∣∣∣
5
(
t+3
√
π
)2

(
1+

∣∣∣∣∣D 5
2 x(t)

∣∣∣∣∣) = 0, t ∈ [0, 1] ,

x (0) = 0, x (1) − 3
4 x

(
1
3

)
= 0, y (0) = 0, y (1) − 3

4y
(

1
3

)
= 0,

x
′′

(0) = 0, x
′′

(1) − 4
5 x
′′ (2

3

)
= 0, y

′′
(0) = 0, y

′′
(1) − 4

5y
′′ (2

3

)
= 0.

(4.1)
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It is clear that

f (t, x, y) =
|x|

7
(
πt2 + 3

)2
(2 + |x|)

+

√
πe−πt |cos (πt)| |y|

7π
(
1 + et)2 (2 + |y|)

, t ∈ [0, 1] , x, y ∈ R,

g (t, x, y) =
3π |x|(

5et2 + 3
√
π
)

(1 + |x|)
+

πe−2πt |y|

5
(
t + 3

√
π
)2

(1 + |y|)
, t ∈ [0, 1] , x, y ∈ R.

For x, y, x1, y1 ∈ R, t ∈ [0, 1], we have

| f (t, x, y) − f (t, x1, y1)| ≤
1

7
(
πt2 + 3

)2 |x − x1| +

√
πe−πt

7π
(
1 + et)2 |y − y1| ,

and

|g (t, x, y) − g (t, x1, y1)| ≤
3π(

5et2 + 3
√
π
) |x − x1| +

πe−2πt

5
(
t + 3

√
π
)2 |y − y1| .

Hence,

a1 (t) =
1

7
(
πt2 + 3

)2 , b1 (t) =

√
πe−πt

7π
(
1 + et)2 ,

and

a2 (t) =
3π

5et2 + 3
√
π
, b2 (t) =

πe−2πt

5
(
t + 3

√
π
)2 .

These imply that

ω1 = sup
t∈[0,1]

a1 (t) =
1

63
, ω2 = sup

t∈[0,1]
b1 (t) =

√
π

28π
,

$1 = sup
t∈[0,1]

a2 (t) =
3π

5 + 3
√
π
,$2 = sup

t∈[0,1]
b2 (t) =

1
45
,

N1 = 1, 08935,N2 = 3, 444,N3 = 0, 77571,N4 = 2, 51754,

and,

(N1 + N2) (ω1 + ω2) +
(
N3 + N4

)
($1 +$2) = 0, 16329 + 0, 36466 = 0, 52795 < 1.

So by Theorem 3.1, the problem (4.1) has a unique solution (x, y) on [0, 1].
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Example 4.2. The following example illustrates Theorem 3.2. We take:

D
15
4 x (t) + 1(

t2+1
)(

2+

∣∣∣∣∣D 7
3 y(t)

∣∣∣∣∣) +
2e−t |cos(ty(t))|

7(1+et)2
(
2+

∣∣∣∣∣D 7
3 y(t)

∣∣∣∣∣) = 0, t ∈ [0, 1] ,

D
10
3 y (t) + 1(

et2+1
)
(1+|x(t)|)

+ e−t

(t+1)2
(
1+

∣∣∣∣∣D 5
2 x(t)

∣∣∣∣∣) = 0, t ∈ [0, 1] ,

x (0) = 0, x (1) − 3
4 x

(
1
3

)
= 0, y (0) = 0, y (1) − 3

4y
(

1
3

)
= 0,

x
′′

(0) = 0, x
′′

(1) − 4
5 x
′′ (2

3

)
= 0, y

′′
(0) = 0, y

′′
(1) − 4

5y
′′ (2

3

)
= 0.

(4.2)

We have

f (t, x, y) =
1(

t2 + 1
)

(2 + |y|)
+

2e−t |cos (tx)|

7
(
1 + et)2 (2 + |y|)

and

g(t, x, y) =
1(

et2 + 1
)

(1 + |x|)
+

e−t

(t + 1)2 (1 + |y|)

So by Theorem 3.2, the problem (4.2) has at least one solution on [0, 1].
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Abstract
Divisibility of trinomials by given polynomials over finite fields has been studied and used to construct orthogonal

arrays in recent literature. Dewar et al. (Dewar et al., 2007) studied the division of trinomials by a given pentanomial
over F2 to obtain the orthogonal arrays of strength at least 3, and finalized their paper with some open questions. One
of these questions is concerned with generalizations to the polynomials with more than five terms. In this paper, we
consider the divisibility of trinomials by a given maximum weight polynomial over F2 and apply the result to the
construction of the orthogonal arrays of strength at least 3.

Keywords: Divisibility of trinomials, Maximum weight polynomials, Orthogonal arrays.
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1. Introduction

Sparse irreducible polynomials such as trinomials over F2 are widely used to perform arith-
metic in extension fields of F2 due to fast modular reduction. In particular, primitive trinomials
and maximum-length shift register sequences generated by them play an important role in vari-
ous applications such as stream ciphers (see (Golomb, 1982), (Jambunathan, 2000)). But even
irreducible trinomials do not exist for every degree. When a primitive (respectively irreducible)
trinomial of a given degree does not exist, an almost primitive (respectively irreducible) trinomial,
which is a reducible trinomial with primitive (respectively irreducible) factor, may be used as an
alternative (Brent & Zimmermann, 2004). This encouraged the researchers to study divisibility of
trinomials by primitive or irreducible polynomials (Cherif, 2008), (Golomb & Lee, 2007), (Kim &
Koepf, 2009). The divisibility of trinomials by primitive polynomials is also related to orthogonal
arrays.

Let f be a polynomial of degree m over F2 and let a = (a0, a1, · · · ) be a shift-register sequence
with characteristic polynomial f . Denote by C f

n the set of all subintervals of this sequence with

∗Corresponding author
Email address: ryul_kim@yahoo.com (Ryul Kim)
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length n, where m < n ≤ 2m, together with the zero vector of length n. Munemasa (Munemasa,
1998) observed that very few trinomials of degree at most 2m are divisible by a given primitive
trinomial of degree m and proved that if f is a primitive trinomial satisfying certain properties,
then C f

n is an orthogonal array of strength 2 having the property of being very close to an orthog-
onal array of strength 3. Munemasa’s work was extended in (Dewar et al., 2007). The authors
considered the divisibility of a trinomial of degree at most 2m by a given pentanomial f of degree
m and obtained the orthogonal arrays of strength 3. They suggested some open questions in the
end of their paper. One of them is to extend the results to finite fields other than F2. In this regard,
Panario et al. (Panario et al., 2012) characterized the divisibility of binomials and trinomials over
F3. Another question in (Dewar et al., 2007) is related to extend the results to the polynomials with
more than five terms. In this paper we analyze the division of trinomials by a maximum weight
polynomial over F2.

In the theory of shift register sequences it is well known that the lower the weight, i.e. the
number of nonzero coefficients of the characteristic polynomial of shift register sequence, is, the
faster is the generation of the sequence. But Ahmadi and Menezes (Ahmadi & Menezes, 2007)
point out the advantage of maximum weight polynomials over F2 in the implementation of fast
arithmetic in extension fields.

We show that no trinomial of degree at most 2m is divisible by a given maximum weight
polynomial f of degree m, provided that m > 7. Using this result we can also obtain the orthogonal
arrays of strength at least 3. The rest of the paper is organized as follows. In Section 2, some basic
definitions and results are given and in Section 3, some properties of maximum weight polynomials
and shift register sequences generated by them are mentioned. We focus on the divisibility of
trinomials by maximum weight polynomials in Section 4, and conclude in Section 5.

2. Preliminaries

A period of a nonzero polynomial f (x) ∈ Fq[x] with f (0) , 0 is the least positive integer e for
which f (x) divides xe−1. A polynomial f (x) ∈ Fq[x] is called reducible if it has nontrivial factors;
otherwise irreducible. A polynomial f (x) of degree m is called primitive if it is irreducible and
has period 2m − 1. The reciprocal polynomial of f (x) = amxm + am−1xm−1 + · · · + a1x + a0 ∈ Fq[x]
with am , 0 is defined by

f ∗(x) = xm f (1/x) = a0xm + a1xm−1 + · · · + am−1x + am.

We refer to (Lidl & Niederreiter, 1994) for more information on the polynomials over finite fields.
Throughout this paper we only consider a binary field F2 and all the polynomials are assumed to
be in F2[x], unless otherwise specified.

A shift-register sequence with characteristic polynomial f (x) = xm +
∑m−1

i=0 cixi is the sequence
a = (a0, a1, · · · ) defined by the recurrence relation

an+m =

m−1∑
i=0

ciai+n

for n ≥ 0.
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A subset C of Fn
2 is called an orthogonal array of strength t if for any t− subset T = {i1, i2, · · · , it}

of {1, 2, · · · , n} and any t−tuple (b1, b2, · · · , bt) ∈ Ft
2, there exist exactly |C|/2t elements c =

(c1, c2, · · · , cn) of C such that ci j = b j for all 1 ≤ j ≤ t (Munemasa, 1998). From the defini-
tion, if C is an orthogonal array of strength t, then it is also an orthogonal array of strength s for
all 1 ≤ s ≤ t.

The next theorem, due to Delsarte, relates orthogonal arrays to linear codes.

Theorem 2.1. (Delsarte, 1973) Let C be a linear code over Fq. Then C is an orthogonal array of
maximum strength t if and only if C⊥, its dual code, has minimum weight t + 1.

Munemasa (Munemasa, 1998) described the dual code of the code generated by a shift-register
sequence in terms of multiples of its primitive characteristic polynomial and Panario et al. (Panario
et al., 2012) generalized this result as follows by removing the primitiveness condition for the
characteristic polynomial.

Theorem 2.2. (Panario et al., 2012) Let a = (a0, a1, · · · ) be a shift register sequence with minimal
polynomial f , and suppose that f has degree m with m distinct roots. Let ρ be the period of f
and 2 ≤ n ≤ ρ. Let C f

n be the set of all subintervals of the shift register sequence a with length n,
together with the zero vector of length n. Then the dual code of C f

n is given by

(C f
n )⊥ = {(b1, · · · , bn) :

n−1∑
i=0

bi+1xi is divisible by f .}

A maximum weight polynomial is a degree-m polynomial of weight m (where m is odd) over
F2(Ahmadi & Menezes, 2007), namely,

f (x) = xm + xm−1 + · · · + xl+1 + xl−1 + · · · + x + 1 =
xm+1 + 1

x + 1
+ xl

If you take
g(x) = (x + 1) f (x) = xm+1 + xl+1 + xl + 1,

then the weight of g(x) is 4, and its middle terms are consecutive, so reduction using g(x) instead
of f (x) is possible and can be effective in the arithmetic of an extension field F2m as if the reduction
polynomial were a trinomial or a pentanomial. This fact motivated us to consider the divisibility
of trinomials by maximum weight polynomials.

3. Character of shift register sequence generated by a maximum weight polynomial

In this section we state a simple property of maximum weight polynomials and characterize
the shift register sequences generated by them.

Proposition 3.1. Let f (x) = xm + xm−1 + · · · + xl+1 + xl−1 + · · · + 1 ∈ F2[x]. If f (x) is irreducible,
then gcd(m, l) = 1.
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Proof. Suppose gcd(m, l) = d > 1,m = m1d and l = l1d. Then we have

g(x) := (x + 1) f (x) = xm+1 + xl+1 + xl + 1
= xl+1(xm−l + 1) + (xl + 1) = xl+1(xm1d−l1d + 1) + (xl1d + 1)
= xl+1(xd(m1−l1) + 1) + (xl1d + 1).

So (xd + 1)/(x + 1) is a factor of f (x), which means f (x) is reducible. �

Proposition 3.2. Let f (x) = xm + xm−1 + · · ·+ xl+1 + xl−1 + · · ·+ 1 ∈ F2[x] be a primitive polynomial
and

an+m =

m−1∑
i=0

an+i + an+l(n ≥ 0)

be a shift-register sequence with characteristic polynomial f . Then for all positive integer n,

an+m = an−1 + an−1+l + an+l.

Proof. Since f (x) is the characteristic polynomial of (a0, a1, · · · ), we get al = a0 + a1 + · · ·+ am

where a0, a1, · · · , am−1 are initial values not all of which are zero. We use induction on n.
If n = 1,

am+1 = a1 + · · · + al + al+2 + · · · + am

= a0 + (a0 + · · · + al + al+1 + al+2 + · · · + am) + al+1

= a0 + al + al+1.

Now assume that the equation an+m = an−1 + an−1+l + an+l holds true for all positive integers less or
equal to n. Then,

am+n+1 = an+1 + · · · + an+l + an+l+2 + · · · + an+m

= (a0 + · · · + am) + (a0 + · · · + an) + an+l+1

+(am+1 + · · · + am+n)
= al + (a0 + · · · + an) + an+l+1 + (a0 + al + al+1)

+(a1 + al+1 + al+2) + · · · + (an−1 + al+n−1 + al+n)
= an + al+n + an+l+1

This completes the proof. �

4. Divisibility of trinomials by maximum weight polynomials

In this section we consider the divisibility of trinomials by maximum weight polynomials,
provided that the degree of the trinomial does not exceed double the degree of the maximum
weight polynomial. Let f (x) = xm + xm−1 + · · ·+ xl+1 + xl−1 + · · ·+ 1 ∈ F2[x] and suppose that f (x)
divides a trinomial g(x) with

g(x) = f (x)h(x) = (xm + xm−1 + · · · + xl+1 + xl−1 + · · · + 1) ·
t∑

k=0

xik ,
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Figure 1. An illustration of equation g(x) = f (x)
∑t

k=0 xik

where xiks are the non-zero terms of h(x) and 0 = i0 < i1 < · · · < it. The above equation can be
illustrated as in Figure 1.
Here (l) stands for the missing terms. We adopt the same terminology as in (Dewar et al., 2007),
(Panario et al., 2012). In particular, if the sum of coefficients in the same column of Figure 1 is
0, then we write that the corresponding terms xi cancel and if the sum is 1 then we say that one
of the corresponding terms is left-over. The proof of our main results will be done with Figure 1.
Since the most top-left term m + it and the most bottom-right term 0 + i0 are trivial left-over terms,
we have only one left-over term undetermined. Below a left-over term means the left-over term
which is neither m + it nor 0 + i0. And we always assume that m + i0 is in the same column as
s + it, 0 ≤ s ≤ m − 1 and denote the number of terms in h(x) as N.

Lemma 4.1. Let f (x) = xm + xm−1 + · · · + xl+1 + xl−1 + · · · + 1 ∈ F2[x] and g(x) be a trinomial of
degree at most 2m divisible by f (x) with g(x) = f (x)h(x). Then N equals to 3 or 5.

Proof. Since g(x) is a trinomial and f (x) has an odd number of terms, h(x) also has an odd
number of terms, that is, t is even. Suppose that N is greater or equal to 7. If s ≥ l then for every
even number k, m + it−k is a left-over term. Since t ≥ 6, we have more than 2 left-over terms which
contradicts the assumption.

Consider the case of s < l. First assume that there exists a unique left-over term to the left of
m + i0. It is sufficient to show l ≥ 3 because if so, 0 + i2 is an extra left-term which leads to a
contradiction. Observe a position l + it. If l + it ≥ m + it−2 then clearly l ≥ it−2 − i0 ≥ 4, so we have
done. Assume that l + it < m + it−2. Then l + it ≥ m + it−4 because if not, then m + it−2 and m + it−4

are left-over terms. Thus we have l ≥ it−4 − i0. If l + it > m + it−4 then l > 2 and if l + it = m + it−4

then it−4 − i0 > 2 because if it−4 − i0 = 2 then m + it−5 = l + it−1 and so an extra left-over term
appears.

Next assume that there is no left-over term to the left of m+i0. Then it is clear that m+it−2 = l+it

and l ≥ it−2 − i0 ≥ 5 hence 0 + i2 and 0 + i4 are left-over terms; contradiction. �

Lemma 4.2. Under the same condition as in Lemma 1, if s < l then m + i0 cannot be a left-over
term.

Proof. Assume that m + i0 is a left-over term. Then all the remaining terms in other columns
must cancel and by Lemma 1 N = 3 or N = 5. If N = 3, then l + i1 > m + i0 from s < l and
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thus an extra left-over term occurs in the column of l + i1. Now assume that N is 5. We see easily
l + it = m + it−2 and it − it−1 = 1. If there is an extra left-over term to the left of m + i0, then we
have done. If there is no any extra left-over term to the left of m + i0, then i2 − i1 = 2 because if
i2 − i1 = 1 then m + i1 = l + it−1 and so m + i1 is an extra left-over term and if i2 − i1 > 2 then
l − 2 + it = l − 1 + it−1 = m − 2 + i2 and so l − 2 + it is an extra left-over term. Then from the
condition it ≤ m, it follows l ≥ 3 and thus 0 + i2 is an extra left-over term; contradiction. �

Theorem 4.1. Let f (x) = xm + xm−1 + · · · + xl+1 + xl−1 + · · · + 1 ∈ F2[x]. If g(x) is a trinomial of
degree at most 2m divisible by f (x) with g(x) = f (x)h(x), then

1) f (x) is one of the polynomial exceptions given in Table 1.
2) f (x) is the reciprocal of one of the polynomials listed in the previous item.

Table 1. Table of polynomial exceptions
No g(x) f (x) h(x)
1 x5 + x4 + 1 x3 + x + 1 x2 + x + 1
2 x6 + x4 + 1 x3 + x2 + 1 x3 + x2 + 1
3 x9 + x7 + 1 x5 + x3 + x2 + x + 1 x4 + x + 1
4 x7 + x5 + 1 x5 + x4 + x3 + x + 1 x2 + x + 1
5 x8 + x5 + 1 x5 + x4 + x3 + x2 + 1 x3 + x2 + 1
6 x14 + x13 + 1 x7 + x6 + x5 + x4 + x3 + x + 1 x7 + x5 + x2 + x + 1
7 x13 + x10 + 1 x7 + x6 + x5 + x4 + x3 + x2 + 1 x6 + x5 + x3 + x2 + 1

Proof. We divide into three cases: s > l or s = l or s < l.
Case 1 : s > l.

Since h(x) has an odd number of terms, s ≤ m − 2 and m + i0 is a left-over term, hence all the
remaining terms in other columns must cancel. There is no missing term to the left of s + it, and
therefore m + it−2 is a left-over term. This means i0 = it−2, namely, N = 3. Since m − 1 + i0 must
cancel, s = l + 1 and m− 2 + i0 cancels up automatically from it − it−1 = 1. We see easily that l = 1
or m − 3 + i0 is a missing term because m − 3 + i0 must cancel up. If l = 1, then clearly m = 5 and
we get the 5th polynomial in Table 1. If m−3 + i0 is a missing term, then l = m−3. Since l−1 + i0

must cancel up, l must equal to 2 and so we get the 4th polynomial in Table 1.
Case 2 : s = l.

In this case, m + i0 cannot be a left-over term because the number of non-zero terms in column
of m + i0 is even. If there is a unique left-over term to the left of m + i0, then it must be m − 1 + it

or m + i2.
Case 2.1 : m − 1 + it is a unique left-over term to the left of m + i0.

Clearly it−1 = it − 2. If N = 3 then m − 1 + i0 is an extra left-term and if N = 5 then m + it−2 is
so. This contradicts to the assumption.
Case 2.2 : m + i2 is a unique left-over term to the left of m + i0.

This is the case of N = 5 and it − it−1 = i2 − i1 = 1. m − 1 + i0 cancels automatically because
m − 1 + i0 = l + it−1. Thus we have only two possible cases: l = 1 or l , 1, l + i2 = m − 2 + i0.
Assume that l = 1 then m − 3 + i0 must be in the column of l + i2 and m − 5 + i0 must cancel with
0 + i1 so we get the 7th polynomial in Table 1. And assume that l , 1, l + i2 = m − 2 + i0 then
it−1 − i2 = 1 and observing m − 4 + i0 implies that m − 4 = l, l − 3 , 0 or m − 4 > l, l = 3. In these
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two cases we have an extra left-over term l − 2 + i0; contradiction.
Case 2.3 : There is no left-over term to the left of m + i0.

It is obvious that N = 3 and it − i1 = 1. If i1 − i0 > 3 then we have two left-over terms among
j + i0(1 ≤ j ≤ 3). Hence i1 − i0 is less or equals to 3. Examining all cases for i1 − i0 we get the
reciprocals of the 1st, 3rd and 4th polynomials in Table 1.
Case 3 : s < l.

By lemma 2, m+i0 is not a left-over term. So there exists z(1 ≤ z ≤ t−1) such that m+i0 = l+iz.
Case 3.1 : m + i0 = l + it−1.

Clearly we have it−1 ≥ it − 3. First assume that it−1 = it − 3. Then l equals to m − 1 or m − 2. If
l = m− 1, then l − 1 + it = m− 2 + it is a left-over term so l − 3 + it = l + it−1 = m + i0 and h(x) has
three terms. Since the unique left-over term has already been determined, 0+ it = l−1+ it−1 = l+ i0

and we get the 3rd polynomial in Table 1. If l = m− 2, then m− 1 + it is a left-over term and m + i0

must cancel with 0 + it which means i1 − i0 = 2 and l = 3. But then 1 + i0 appears as an extra
left-over term; contradiction.

Next assume that it−1 = it − 2. When l , m − 1, m − 1 + it is a left-over term and l ≤ m − 3
because if l = m − 2 then m + it−1 is an extra left-over term. l + it must cancel with m + it−2 and in
fact N is 5. Thus i2 − i1 = 1. By the condition m + i0 = l + it−1, we have i1 − i0 = 1. Since m− 1 + i0

must cancel up, l − 2 = 0 or m − 3 = l. If l − 2 = 0 then we get the 6th polynomial in Table 1 and
the equation m−3 = l leads to a contradiction due to an extra left-over term in column of l−3 + i0.
When l = m − 1, clearly N is 3 from the conditin l + it−1 = m + i0. By research of possible values
of l we get the reciprocals of the 2nd and 5th polynomials in Table 1.

Next assume that it−1 = it − 1. If N = 5 then m + it−2 is a left-over term and it−2 − i1 = 1, hence
an extra left-over term occurs in the comumn of l+ it. Thus N is 3. Since l−1+ it = l+ it−1 = m+ i0,
l + 1 + it−1 is a left-over term. If m − 1 , l, then l − 1 = 0 from consideration of m − 1 + i0 and
therefore we get the 2nd polynomial in Table 1. If m − 1 = l, then l − 1 cannot be zero, so we get
the 1st polynomial in Table 1.
Case 3.2 : m + i0 = l + i2.

In this case N is 5 and clearly 2 ≤ l ≤ m − 2. Observe a column of l + it.
Case 3.2.1 : m + i2 < l + it.

We have a left-over term in the column of l + it and it − it−1 = 1. Then m + i2 must cancel with
l − 1 + it and also i2 − i1 − 1. By the condition l + i2 = m + i0, m − 1 + i0 must cancel with l + i1.
From it ≤ m we have l ≥ 3 and i1 − i0 = 1 because if not, then 1 + i0 is an extra left-over term.
Hence l equals to m − 2. Since m − 1 + i0 must cancel up, l − 4 , 0. Observing the term l − 1 + i0,
we see that l − 5 = 0 and then l − 2 + i0 appears as an extra left-over term; contradiction.
Case 3.2.2 : m + i2 = l + it.

Assume that m− 1 + it is a left-over term. Then clearly l < m− 2 and it − it−1 = 2. If i2 − i0 = 2,
then m + i0 must concel with l + it−1 which contradicts to the condition m + i0 = l + tt−2. And if
i2 − i0 > 2, then an extra left-over term occurs in the column of l + 1 + it or l + 2 + it which again
leads to a contradiction.

Now assume that m − 1 + it is not a left-over term. Then it − it−1 = 1 and m + i1 cancels with
l + it−1 or m + i1 < l + it−1. If m + i1 cancels with l + it−1 then m + i1 is a left-over term and i2− i1 = 1.
From it ≤ m, we have 0 ≤ l− 2. Since if i1 − i0 ≥ 2 then 1 + i0 is an extra left-over term, i1 − i0 = 1
and l = m−2 = 4. Then l+2+ i0 appears as an extra left-over term; contradiction. If m+ i1 < l+ it−1
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then m + i1 must cancel with m − 2 + i2 or m − 3 + i2. Briefly considering as above, we arrive at a
contradiction in both cases.
Case 3.2.3 : m + i2 > l + it.

You shall see that l ≤ m − 3, it − it−1 = 1 and m + i2 is a left-over term. Since m − 1 + i2

must cancel, m − 1 + i2 = l + it or m − 1 + i2 = m + i1. In the first case i2 − i1 = 3 because
l + it−1 = m − 2 + i2 = l − 1 + it. Since m + i1 < l + it−1, l is greater or equals to 3. If i1 − i0 > 1
then 1 + i0 is an extra left-over term and if i1 − i0 = 1 then l = 3 and m − 2 + i0 is an extra left-over
term, which leads to a contradiction. In the second case we have l + it = m + i0; contradiction.
Case 3.3 : m + i0 = l + i1.

In this case we have l ≥ 3 from it ≤ m. First assume that 1 + i0 is a left-over term. Then
clearly i1 − i0 = 2, l + i0 = 0 + i2 and l + 1 + i0 = l − 1 + i1 = 1 + i2 = 0 + it−1. Since
l + 2 + i0 = l + i1 = 2 + i2 = 1 + it−1 = 0 + it, we have m = l + 2. Then from 5 + i2 = 4 + it−1 = 3 + it,
we have l = 5 which corresponds the reciprocal of the 6th polynomial in Table 1.

Next assume that 1 + i0 is not a left-over term. Then i1 − i0 = 1, l = m − 1 and 0 + i2 is a
left-over term because if not, then 0 + i2 = l + i0 and thus N = 3 which is the case mentioned
above. Considering the first and last terms in every rows, we have the following equations:

it−1 − i2 = 1, 0 + it = l + i0, l + i2 > m + i1, i2 − i1 = 2,
0 + it = l + i0, it − it−1 = 2.

This implies the reciprocal of the 7th polynomial in Table 1. �
Note that every polynomial f (x) listed in Table 1 has degree less than 8. From this fact we can

immediately get the following corollary.

Corollary 4.1. Let f (x) be a maximum weight polynomial of odd degree m greater than 7 and g(x)
be a trinomial of degree at most 2m. Then g(x) is not divisible by f (x).

Combining these facts with Theorem 1 and Theorem 2, we get the following corollary on
orthogonal arrays of strength 3.

Corollary 4.2. Let f (x) be a primitive maximum weight polynomial of odd degree m greater than
7. If m ≤ n ≤ 2m, then C f

n is an orthogonal array of strength at least 3.

5. Conclusion

In this paper, we analyzed the divisibility of trinomials by maximum-weight polynomials over
F2 and used the result to obtain the orthogonal arrays of strength 3. More precisely, we showed
that if f (x) is a maximum-weight polynomial of degree m greater than 7, then f (x) does not divide
any trinomial of degree at most 2m. Our work gives a partial answer to one of the questions posted
in (Dewar et al., 2007). As anticipated in (Dewar et al., 2007), (Panario et al., 2012), one seems
to need some new techniques to give a complete answer to the question.

Acknowledgement. We would like to thank anonymous referees for their valuable comments
and suggestions.
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Abstract

Let 0 < p ≤ +∞ and ΩR =

{
z ∈ Cn; exp VE(z) < R

}
, for some R > 1, where VE = sup

{
1
d ln |Pd |, Pd polynomial

of degre ≤ d, ‖Pd‖E ≤ 1
}

is the Siciak extremal function of a L-regular compact E.
The aim of this paper is the characterization of the generalized growth of analytic functions of several complex

variables in the open set by means of the best polynomial approximation in Lp-norm on a compact E with respect to
the set Ωr =

{
z ∈ Cn; exp VE(z) ≤ r

}
, 1 < r < R.

Keywords: Extremal function, L-regular, generalized growth, best approximation of analytic function, Lp-norm.
2010 MSC: Primary 30E10; Secondary 41A21, 32E30.

1. Introduction

Let E be a compact L-regular of Cn. For an entire function f in Cn developed according
an extremal polynomial basis (Ak)k (see Zeriahi (1987)), M. Harfaoui (see Harfaoui (2010) and
Harfaoui (2011)) have generalized growth in term of coefficients with respect the sequence (Ak)k.
The growth used by M. Harfoui was defined according to the functions α and β (see Harfaoui
(2010), pp. 5, eq. (2.14)), with respect to the set:

Ωr =
{
z ∈ Cn, exp(VE)(z) < r

}
,

where
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VE = sup
{1
d

log |Pd|, Pd polynomial of degree ≤ d, ‖Pd‖E ≤ 1
}

is the Siciak’s extremal function of E which is continuous in Cn (Because E is L-regular). The
(α, β)-order and the (α, β)-type of f an entire function (or generalized order and generalized type)
are defined respectively by:

ρ(α, β) = lim sup
r→+∞

α
(

log(‖ f ‖Ωr
)
)

β(log(r))
and σ(α, β) = lim sup

r→+∞

α
(
‖ f ‖Ωr

)
[
β(r)

]ρ(α,β) ,

where ∥∥∥ f
∥∥∥

Ωr
= sup

Ωr

∣∣∣ f (z)
∣∣∣.

These results have been used to establish the generalized growth in terms of best approximation
in Lp-norm for p ≥ 1.

Let f be a function defined and bounded on E. For k ∈ N put

π
p
k (E, f ) = inf

{∥∥∥∥ f − P
∥∥∥∥

Lp(E,µ)
, P ∈ Pk(Cn)

}
,

where Pk(Cn) is the family of all polynomials of degree ≤ k and µ the well-selected measure (The
equilibrium measure µ = (ddcVE)n associated to a L-regular compact E) (see Zeriahi (1983)) and
Lp(E, µ), p ≥ 1, is the class of all functions such that:∥∥∥∥ f

∥∥∥∥
Lp(E,µ)

=
( ∫

E
| f |p dµ

)1/p
< ∞.

For an entire function f ∈ Cn M. Harfaoui established a precise relationship between the gen-
eral growth with respect to the set (see (Harfaoui (2010)): Ωr =

{
z ∈ Cn : exp(VE)(z) < r

}
, and the

coefficients of the development of f with respect to the sequence (Ak)k, called extremal polynomial
(see Zeriahi (1987)). He used these results to give the relationship between the generalized growth
of f and the sequence (πp

k (E, f ))k. Note that M. Harfaoui did not study the case 0 < p < 1 because
the triangle inequality is not satisfied. A. Janik (see Janik (1991)) characterized the (α, β)-order of
an analytic function g in ΩR defned by

ΩR =
{
z ∈ Cn, exp(VE(z)) < R

}
, for some R > 1,

by means of polynomial approximation and interpolation to g on on a L-regular compact E, with
respect to the set

Ωr =
{
z ∈ Cn, exp(VE(z)) < r, 1 < r < R

}
.

In his work A. Janik used the best approximation defined, for a function defined and bounded
on E, by:

E(1)
n = E(1)

n ( f , E) =‖ f − tn ‖,

E(2)
n = E(2)

n ( f , E) =‖ f − ln ‖,
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E
(3)
n+1 = E

(3)
n+1( f , E) =‖ ln+1 − ln ‖,

where tn denoted the nth Chebychev polynomial of the best approximation to f on E and ln denoted
the nth Lagrange interpolation polynomial for f with nodes at extremal points of E (see Siciak
(1962)).

The (α, β)-order of an analytic function was defined as follows:
If E be a compact L-regular. If f is an analytic function in

ΩR =
{
z ∈ Cn : exp(VE(z)) < R

}
for some R > 1. We define the (α, β)-order of f (or generalized order) by

ρ(α, β) = lim sup
r→R

α
(

log(‖ f ‖Ωr
)
)

β(R/(R − r))

where
∥∥∥ f

∥∥∥
Ωr

= sup
Ωr

∣∣∣ f (z)
∣∣∣ = sup

{
| f (z) |: exp VE(z) ≤ r, 1 < r < R

}
.

In this work we study the generalized order and generalized type, which will be defined later,
for an analytic function in the open set ΩR, with respect to the set Ωr in terms of coefficients of the
analytic function in the development according to the sequence of extremal polynomials. So we
obtain a generalization of the results of M. Harfaoui (see Harfaoui (2010) and Harfaoui (2011))
and A. Janik (see Janik (1984), and Janik (1991)) replacing Cn by ΩR and the entire function in Cn

by analytic function in ΩR .
After studying the generalized type of an analytic function in ΩR, for some R > 1, we use this

results to characterize the generalized type by means of best polynomial approximation on E in
Lp-norm for 0 < p ≤ +∞.

Recall that the generalized growth used by M. Harfaoui (see Harfaoui (2010) and Harfaoui
(2011)) called (α, β)-growth was defined with respect to functions α and β defined as:

Let α and β be two positive, strictly increasing to infinity differentiable functions ]0,+∞[ to
]0,+∞[such that for every c > 0:

such that 

lim
x→+∞

α(cx)
α(x)

= 1,

lim
x→+∞

β
(
1 + xω(x)

)
β(x)

= 1, lim
x→+∞

ω(x) = 0,

lim
x→+∞

d
(
β−1(cα(x))

)
α(log(x))

≤ b.

α
(
x/β−1(cα(x))

)
=

(
1 + o(x)

)
α(x), for x→ +∞,

where d(u) means the differential of u.

2. Definitions and notations

Before we give some definitions and results which will be frequently used in this paper.
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Definition 2.1. (Siciak (1977)) Let E be a compact set in Cn and let
∥∥∥.∥∥∥

E
denote the maximum

norm on E. The function

VE = sup
{1
d

log |Pd|, Pd polynomial of degree ≤ d,
∥∥∥Pd

∥∥∥
E
≤ 1, d ∈ N

}
is called the Siciak’s extremal function of the compact E.

Definition 2.2. Zeriahi (1983) A compact E in Cn is said to be L-regular if the extremal function,
VE, associated to E is continuous on Cn.

Regularity is equivalent to the following Bernstein-Markov inequality (see Siciak (1962)): For
any ε > 0, there exists an open U ⊃ E such that for any polynomial P,

∥∥∥P
∥∥∥

U
≤ eε.deg(P)

∥∥∥P
∥∥∥

E
.

In this case we take U =
{
z ∈ Cn; VE(z) < ε

}
.

Regularity also arises in polynomials approximation. For f ∈ C(E), we let

εd(E, f ) = inf
{∥∥∥ f − P

∥∥∥
E
, P ∈ Pk(Cn)

}
where Pk(Cn) is the set of polynomials of degree at most d. Siciak (see Siciak (1977)) showed:

If E is L-regular, then lim sup
d→+∞

(
εd(E, f )

)1/d
=

1
r
< 1 if and only if f has an analytic continuation

to
{
z ∈ Cn; VE(z) < log

(1
r

)}
. It is known that if E is an compact L-regular of Cn, there exists a

measure µ, called extremal measure, having interesting properties (see Siciak (1962) and Siciak
(1977)), in particular, we have:

(P1) Bernstein-Markov inequality: ∀ε > 0, there exists C = Cε is a constant such that

(BM) :
∥∥∥Pd

∥∥∥
E

= C(1 + ε)sk

∥∥∥∥Pd

∥∥∥∥
L2(E,µ)

, (2.1)

for every polynomial of n complex variables of degree at most d.
(P2) Bernstein-Waish (B.W) inequality:
For every set L-regular E and every real r > 1 we have:∥∥∥ f

∥∥∥
E
≤ M.rdeg( f )

( ∫
E
| f |p .dµ

)1/p
(2.2)

Note that the regularity is equivalent to the Bernstein-Markov inequality.
Let s : N→ Nn, k → s(k) = (s1(k), ...., sn(k)) be a bijection such that

|s(k + 1)| ≥ |s(k)| where |s(k)| = s1(k) + .... + sn(k).

A. Zeriahi (see Zeriahi (1987)) has constructed according to the Hilbert Schmidt method a
sequence of monic orthogonal polynomials according to a extremal measure (see Siciak (1962)),
(Ak)k, called extremal polynomial, defined by

Ak(z) = zs(k) +

k−1∑
j=1

a jzs( j) (2.3)
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such that
∥∥∥∥Ak

∥∥∥∥
Lp(E,µ)

=

[
inf

{∥∥∥∥zs(k) +

k−1∑
j=1

a jzs( j)
∥∥∥∥L2

(E,µ)
, (a1, a2, ..., an) ∈ Cn

}]1/sk

.

We need the following notations which will be used in the sequel: (N1) νk = νk(E) =∥∥∥∥Ak

∥∥∥∥
L2(K,µ)

. (N2) ak = ak(E) =
∥∥∥∥Ak

∥∥∥∥
E

= max
z∈K

∣∣∣Ak(z)
∣∣∣ and τk =

(
ak

)1/sk
, where sk = deg(Ak). With

that notations and (B.W) inequality we have∥∥∥Ak

∥∥∥
Ωr
≤ ak.rsk (2.4)

where sk = deg(Ak). For more details (see Zeriahi (1983)).

Definition 2.3. Zeriahi (1983) Let E be a compact L-regular. If f is an analytic function in

ΩR =
{
z ∈ Cn : exp(VE(z)) < R

}
for some R > 1. We define the (α, β)-growth ( (α, β)-order and (α, β)-type) of f (or generalized

order) by ρ(α, β) = lim sup
r→R

α
(

log(‖ f ‖Ωr
)
)

β(R/(R − r))
, σ(α, β) = lim sup

r→R

α
(

log(‖ f ‖Ωr
)
)

[
β(R/(R − r))

]ρ(α,β) , where
∥∥∥ f

∥∥∥
Ωr

=

sup
z∈Ωr

∣∣∣ f (z)
∣∣∣ = sup

{
| f (z) |: exp VE(z) ≤ r, 1 < r < R

}
.

Note that in the classical case α(x) = β(x) = log(x). We need the following lemma (see Zeriahi
(1987)).

Lemma 2.1. ( Zeriahi (1987)) If E is a compact L-regular subset of Cn, then for every θ > 1, there
exists an integer Nθ ≥ 1 and a constant Cθ > 0 such that:

π
p
k (E, f ) ≤ Cθ

(r + 1)Nθ

(r − 1)2N−1

‖ f ‖Ωrθ

rk . (2.5)

for every k ≥ 1, every r > 1 and every f ∈ 0
(
Ωrθ

)
. If f =

+∞∑
k=0

fk.Ak be an entire function, then for

every θ > 1, there exists Nθ ∈ N∗ and Cθ > 0 such that∣∣∣∣ fk

∣∣∣∣νk ≤ Cθ

(r + 1)Nθ

(r − 1)2N−1

‖ f ‖Ωrθ

rsk
, (2.6)

for every k ≥ 0 and r > 1. Cθ and Nθ do not depend on r or k, or f .

Note that the second assertion of the lemma is a consequence of the first assertion and it
replaces Cauchy inequality for complex function defined on the complex plane C.
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3. Generalized order and coefficient characterizations with respect to extremal polynomial

The purpose of this section is to establish the relationship of the generalized growth of an
analytic function in ΩR with respect to the set Ωr =

{
z ∈ C : exp(VE(z)) < r

}
and coefficients of an

entire function f ∈ Cn in the development with respect to the sequence of extremal polynomials.
Let (Ak)k be a basis of extremal polynomial associated to the set E defined the relation (2.3).

We recall that (Ak)k is a basis of O(Cn) (the set of entire functions on Cn). So if f is an entire
function then f =

∑
k≥1

fk.Ak.

Put
lim sup

k→+∞

α(sk)

β

[
sk

log
(
| fk|.τ

sk
k .R

sk
)] = µ(α, β). (3.1)

To prove the aim result of this section we need the following lemmas:

Lemma 3.1. ( Zeriahi (1987)) Let E be a compact L-regular subset of Cn. Then

lim
k→+∞

[
|Ak(z)|
νk

]1/sk

= exp(VE(z)), (3.2)

for every z ∈ Cn \ Ê the connected component of Cn \ E,

lim
k→+∞

[
‖Ak‖E

νk

]1/sk

= 1. (3.3)

Lemma 3.2. For every r > 1 and µ > 0, the maximum of the function

x→ ω(x, r) = x. log
(
r/R

)
+

x

β−1
(
α(x)/µ

)
is reached for x = xr solution of the equation

x = α−1
{
µβ

[1 − d log
(
β−1(α(x)/µ)

)
/d(log(x))

log
(
R/r

) ]}
. (3.4)

Proof. Put G(x, µ) = β−1
(
α(x)/µ

)
, then ω(x, r) = x. log

(
r/R

)
+

x
G(x, µ)

. The maximum of the

function x → ω(x, r) is reached for x = xr solution of the equation of
dω(x, r)

dx
= 0. We have

ω(x, r)
dx

= 0⇔ log
( r
R
)

+

G(x, µ) − x.
dG(x, µ)

dx(
G(x, µ)

)2 = 0, or G(x, µ) =

1 −
x

G(x, µ)
.
dG(x, µ)

dx
log

(
R/r

) .



M. Harfaoui et al. / Theory and Applications of Mathematics & Computer Science 4 (1) (2014) 65–80 71

Since
dG(x, µ)

dx
=

dG(x, µ)
d log(x)

.
d log(x)

dx
=

1
x
.
dG(x, µ)
d log(x)

, we get

G(x, µ) =

1 −
1

G(x, µ)
.
dG(x, µ)
d log(x)

log
(
R/r

) =

1 −
d log G(x, µ)

d log(x)
log

(
R/r

) .

We deduce x = xr = α−1

{
µα

[1 − d
(
β−1(α(x)/µ)

)
/d(log(x))

log
(
R/r

) ]}
.

Lemma 3.3. Let f =
∑
k≥0

fk.Ak and E a L-regular compact. For every r ∈]1,R[, we put


M( f , r) = sup

k∈N

{
‖ fk.Ak ‖E .rk, r > 0

}
ρ(α, β) = lim sup

r→R

α
(

log(M( f , r))
)

β(R/(R − r))

then ρ(α, β) ≤ µ(α, β) and ρ(α, β) ≤ ρ(α, β).

Proof. By the definition of µ (3.1) we have, for r sufficiently close to R and µ = µ + ε,

log
(
| fk | .τ

sk
k .R

sk
)
≤

α(sk)

β−1
(1
µ
.α

(
sk
)) .

Then log
(
| fk | .τ

sk
k .r

sk
)
≤ sk log

(
r/R

)
+

α(sk)

β−1
(1
µ
.α

(
sk
)) . By the proprieties of α and β,the function

t → log(t) and the Lemma 3.3 we get xr =
(
1 + o(1)

)
α−1

(
µ.β

(
R/(R − r)

))
as r → R. Indeed this

result is a consequence of lim
x→+∞

∣∣∣∣∣∣d
(
β−1(cα(x))

)
α(log(x))

∣∣∣∣∣∣ ≤ b, log(1 + t) = (1 + o(t)).t, t → 0. Therefore

log
(
‖ fk.Ak ‖E .rsk

)
≤ C0.α

−1
(
µ.β

(
R/(R − r)

))
, k ∈ N. Passing to the maximum for the variable

k ∈ N we obtain, for r sufficiently close to R log
(
M( f , r)

)
≤ C0.α

−1
(
µ.β

(
R/(R− r)

))
, k ∈ N. Then,

by the proprieties of α, we obtain
α
(

log(M( f , r))
)

β(R/(R − r))
≤ µ. Passing to upper limit for r → R we have

(∗) ρ(α, β) ≤ µ.

Moreover we have for z ∈ Ωr and k ∈ N, ‖ f ‖Ωr
≤

∑
k≥0

| fk | .‖Ak‖Ωr ≤
∑
k≥0

| fk | .‖Ak‖E.rsk .

Write r =
√

r.R.
√

r/R, then ‖ f ‖Ωr
≤

∑
k≥0

| fk | .‖Ak‖E.(
√

r.R)sk .(
√

r/R)sk . Because
√

r/R < 1
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then ‖ f ‖Ωr
≤

∑
k≥0

sup
k∈N

(
| fk | .‖Ak‖E.(

√
r.R)sk

)
.(
√

r/R)sk thus ‖ f ‖Ωr
≤ M( f , r′)

∑
k≥0

( √
r/R

)sk ≤

M( f , r′).
1

1 −
√

r/R
. where r′ =

√
r.R. Therefore log

(
‖ f ‖Ωr

)
≤ log

(
M( f , r′)

)
− log

(
1 −
√

r/R
)
.

We have
α
(

log
(
‖ f ‖Ωr

))
β(R/(R − r))

≤
α
(

log
(
M( f ,

√
r.R) − log

(
1 −
√

r/R
)))

β(R/(R −
√

r.R))
.
β(R/(R −

√
r.R))

β(R/(R − r.R))
. Passing to

the upper limit we get

(∗∗) ρ(α, β) ≤ ρ(α, β).

By the relations (*) and (**) we obtain ρ(α, β) ≤ µ(α, β).

Theorem 3.1. Let E be a compact L-regular and f =
∑
k≥1

fk.Ak such that

lim sup
k→+∞

α(sk)

β

[
sk

log
(
| fk|.τ

sk
k .R

sk
)] = µ(α, β) < ∞. (3.5)

Then f is analytic in ΩR, for some R > 1 and its (α, β)-order ρ(α, β) = µ(α, β).

Proof. It is known that for every polynomial P(see Siciak (1977))

| P(z) |≤‖ P ‖E
(

exp
(
VE(z)

))deg(P)
, for every z ∈ Cn. (3.6)

So for every r ∈]1,R[, and for P = fk.Ak we get

| fk.Ak(z) |≤| fk | . ‖ Ak ‖E

(
exp

(
VE(z)

))sk
, for everyz ∈ Cn. (3.7)

Then for every z ∈ Ωr, we have | fk.Ak(z) |≤| fk | . ‖ Ak ‖E .rsk . So, for every r ∈]1,R[ the series∑
fk.Ak is convergent in Ωr, whence

∑
k≥1

fk.Ak is analytic in ΩR.

Now we shall show that µ is the (α, β)-order of f . By the Lemma 3.3, to complete the proof of
the theorem it suffices to show that ρ(α, β) ≥ µ(α, β). By definition of ρ, we have, for every ε > 0
there exists rε ∈]1,R[ such that for every r ∈]rε ,R[ log

(
‖ f ‖Ωr

)
≤ α−1

[
(ρ(α, β) + ε).β(R/(R − r))

]
.

Applying (2.6) and (3.3) we have, for every k ∈ N and r > 1 sufficiently close to R

log
(
| fk | τ

sk
k .R

sk
)
≤ −sk log

(
r/R

)
+ log

(
C0.

(r − 1)Nθ

(R − r)−(2N+1)

)
+ log

(
‖ f ‖Ωr

)
, (3.8)

then log
(
| fk | τ

sk
k .R

sk
)
≤ ϕ(r, sk), where

ϕ(r, sk) = −sk log
(
r/R

)
+ log

(
C0.

(r − 1)Nθ

(R − r)−(2N+1) + β−1
[
(ρ(α, β) + ε).β(R/(R − r))

]
.
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Put ρ = ρ(α, β) and rk = R.
{

1 −
1

β−1

(
1

ρ + ε
.α

( sk

β−1(α(sk)/(ρ + ε))

))
}

. Replacing in the relation

(3.8) r by rk and applying the proprieties of the functions α and β:

α
(
x/β−1(cα(x))

)
=

(
1 + o(x)

)
α(x), for c > 0, x→ +∞,

and the proprieties of the logarithm, we obtain log
(
| fk | τ

sk
k .R

sk
)
≤ C1.

sk

β−1(α(sk)/(ρ + ε))
where

C1 is a constant. Therefore log
(
| fk | τ

sk
k .R

sk
)
≤ C1.

sk

β−1(α(sk)/(ρ + ε))
, thus

β

 C1.sk

log
(
| fk | τ

sk
k .R

sk
) ≥ α(sk)/(ρ + ε).

Passing to the upper limit, after a simple calculus, we obtain µ(α, β) ≤ ρ(α, β).

4. Generalized type and coefficient characterizations with respect to extremal polynomial

The purpose of this section is to establish the relationship of the generalized type of an analytic
function in ΩR with respect to the set Ωr =

{
z ∈ C : exp(VE(z)) < r

}
and its coefficients in the

development according to the sequence of extremal polynomials.
Let E be a compact L-regular and f =

∑
k≥1

fk.Ak be an analytic function of (α, β)-order ρ =

ρ(α, β), and put:

τE(α, β) = lim sup
k→+∞

α(sk){
β

(
sk

log
(
| fk|.τ

sk
k .R

sk
))}ρ(α,β) . (4.1)

We need the following proposition:

Proposition 4.1. Let f =
∑
k≥0

fk.Ak and E a L-regular compact. For every r ∈]1,R[, we put


M( f , r) = sup

k∈N

{
| fk | . ‖ Ak ‖E .rsk

}
σ1(α, β) = lim sup

r→R

α
(

log(M( f , r))
)

(
β(R/(R − r))

)ρ(α,β)

then σ(α, β) ≤ σ1(α, β).

Proof. For z ∈ Ωr and k ∈ N, using the similar arguments and inequalities as in Lemma 2.3

α
(

log
(
‖ f ‖Ωr

))
[
β(R/(R − r))

]ρ(α,β) ≤
α
(

log
(
M( f ,

√
r.R) − log

(
1 −
√

r/R
)))

[
α(R/(R −

√
r.R))

]ρ(α,β) .

[
α(R/(R −

√
r.R))

]ρ(α,β)

[
α(R/(R − r))

]ρ(α,β) .
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We have lim sup
r→R

[
α(R/(R −

√
r.R))

]ρ(α,β)

[
α(R/(R − r))

]ρ(α,β) = 1.

Proceeding to the upper limit we get

(∗) σ(α, α) ≤ σ1(α, β).

Theorem 4.1. Let E be a compact L-regular and f =
∑
k≥1

fk.Ak. If f is of finite generalized (α, β)-

order ρ(α, β), and

τE(α, β) = lim sup
k→+∞

α(sk){
β

(
sk

log
(
| fk|.τ

sk
k .R

sk
))}ρ(α,β) < +∞. (4.2)

Then f is analytic in ΩR, for some R > 1, and its (α, β)-type σ(α, β) = τE(α, β).

Proof. Put τ = τE(α, β), ρ = ρ(α, β), and σ = σ(α, β). The function is analytic by the definition
τE(α, β) and the arguments used in theorem 3.1.

1. Now we show that σ(α, β) ≤ τE(α, β). If τ < ∞, by the definition of τ, for every ε > 0, there

exists k0 ∈ N such that for every k ≥ kε α(sk) ≤ (τ + ε).
{
β

(
sk

log
(
| fk | τ

sk
k .R

sk
))}ρ. A simple

calculus gives for, τ = τ + ε.

log
(
| fk | τ

sk
k .R

sk
)
≤

sk

β−1

((1
τ
α(sk)

)1/ρ
) , (4.3)

for every k ≥ kεfor every k ≥ kε .
Since log

(
| fk | .τ

sk
k .r

sk
)
≤ sk log(r/R) + log

(
| fk | τ

sk
k .R

sk
)
. By (4.3), we get

log
(
| fk | τ

sk
k .r

sk
)
≤ sk log(r/R) +

sk

β−1

((1
τ
α(sk)

)1/ρ
) . (4.4)

For every r ∈]1,R[, and r and r sufficiently close to R, we put

φ(x, r) = x log
(
r/R

)
+

x

β−1

((1
τ
α(x)

)1/ρ
) .

If we put F = F
(
x, τ,

1
ρ

)
= β−1

((1
τ
α(x)

)1/ρ
)

then φ(x, r) = x log
(
r/R

)
+

x
F
, and the maximum

of the function x→ φ(x, r) is reached for x = xr solution of the equation of

dφ(x, r)
dx

=
∂φ

∂x
(x, r) = log

(
r/R

)
+

d
dx

{ x
F

}
= 0.
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We have
φ(x, r)

dx
= 0 ⇔ log

( r
R
)

+

F − x.
dF
dx(

F
)2 = 0, or F =

1 −
x
F
.
dF
dx

log
(
R/r

) . Since
dF
dx

=

dF
d log(x)

.
d log(x)

dx
=

1
x
.

dF
d log(x)

, we get F =

1 −
1
F
.

dF
d log(x)

log
(
R/r

) =

1 −
d log F
d log(x)

log
(
R/r

) , or

β−1
((1
τ
α(x)

)1/ρ
)

=

1 −
d log β−1

((1
τ
α(x)

)1/ρ
)

d log(x)
log

(
R/r

) .

We deduce x = xr = α−1


τ.β


1 − d log

(
β−1

((1
τ
α(x)

)1/ρ
))
/d(log(x))

log
(
R/r

)


ρ .We have log

( r
R

)
=

log
(r − R

R
+ 1

)
∼

r − R
R

(
because

r − R
R
→ 0

)
and

∣∣∣∣∣∣∣∣∣∣∣∣∣
d
[
log

(
β−1

((
α(x)

)ρ) )]
d log(x)

∣∣∣∣∣∣∣∣∣∣∣∣∣
≤ b, where b is

a positive constant. Then by the proprieties of α we get

xr =
(
1 + o(1)

)
ρ.β−1

(
τ
(
α(R/(R − r))

)ρ)
.

By (4.4), we have log
(
| fk | τ

sk
k .r

sk
)
≤ sup

r∈N
φ(x, r) = φ(xr, r). Replacing sk by xr in this last

relation we obtain log
(
| fk | τ

sk
k .r

sk
)
≤

(
1 + o(1)

)
β−1

(
τ
(
α(R/(R − r))

)ρ)
R/(R − r)

. Since
R

R − r
> 1

and
ρ − 1
ρ

< 1, then log
(
| fk | τ

sk
k .r

sk
)
≤ C.β−1

(
τ.
(
α(R/(R − r))

)ρ)
.

Then sup
k∈N

log
(
| fk | τ

sk
k .r

sk ≤ C.α−1
(
τ.
(
α(R/(R − r))

)ρ) or log(M( f , r)) ≤ C.β−1
(
τ.
(
α(R/(R − r))

)ρ)
.

Therefore
α
(

log(M( f , r))
)(

α(R/(R − r))
)ρ ≤ τ.

Proceeding to the upper limit for r → R, get σ1(α, α) = lim
r→R

α
(

log(M( f , r))
)(

α(R/(R − r))
)ρ ≤ τ.

By the relations (*) of the proposition 4.1 we obtain σ(α, α) = lim
r→R

α
(

log(M( f , r))
)(

α(R/(R − r))
)ρ ≤ τ.

Thus σ(α, β) ≤ τE(α, β). The result is obviously holds for τ = +∞.
2. Now we show that σ(α, β) ≥ τE(α, β). Put σ = σ(α, β)+ε, ρ = ρ(α, β). Suppose that σ < ∞.

By definition of σ(α, β), we have for every ε > 0, there exist rε ∈]1,R[, such that for every
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r > rε ( R > r > rε > 1) log
(
‖ f ‖Ωr

)
≤ α−1

[
σ.

(
β(R/(R − r))

)ρ]
. Applying (3.3) and (2.6) we

get, for every k ∈ N and r sufficiently close to R:

log
(
| fk | τ

sk
k .r

sk
)
≤ −sk log(r) + log

(
C0.

(r + 1)Nθ

(r − 1)(2N+1)

)
+ log

(
‖ f ‖Ωr

)
.

As for every r ∈]1,R[ log
(
| fk | τ

sk
k .R

sk
)

= −sk log
(
r/R

)
+ log

(
| fk | τ

sk
k .r

sk
)

then log
(
|

fk | τ
sk
k .R

sk
)
≤ −sk log

(
r/R

)
+ log

(
C0.

(r + 1)Nθ

(r − 1)(2N+1)

)
+ log

(
‖ f ‖Ωr

)
. or log

(
| fk | τ

sk
k .R

sk
)
≤

−sk log
(
r/R

)
+ log

(
C0.

(r + 1)Nθ

(r − 1)(2N+1)

)
+ α−1

[
σ.

(
β(R/(R − r))

)ρ]
.

Since sk ≥ 1, we obtain, for k sufficiently large,
log

(
| fk | τ

sk
k .R

sk
)

sk
≤ ω(r, k) where ω(r, k) =

− log
(
r/R

)
+

1
sk

log
(
C0.

(r + 1)Nθ

(r − 1)(2N+1)

)
+

1
sk
α−1

[
σ.

(
β(R/(R − r))

)ρ]
.

Since lim
k→+∞

1
sk

log
(
C0.

(r + 1)Nθ

(r − 1)(2N+1)

)
+

1
sk
α−1

[
σ.

(
β(R/(R− r))

)ρ]
= 0 we get, for r sufficiently

close to R, lim
k→+∞

ω(r, k) = − log
(
r/R

)
= log

(
R/r

)
.

Then for k sufficiently large and r sufficiently close to R, we haveω(r, k) = (1+o(1)) log
(
R/r

)
, k →

+∞, then
1
sk

log
(
| fk | τ

sk
k .R

sk
)
≤ (1 + o(1)) log

(
R/r

)
. (4.5)

Choose rk = R.
β−1

(
1
σ
α(sk)

)1/ρ

1 + β−1
( 1
σ
α(sk)

)1/ρ
. Using the relation (4.5) and the proprieties of the func-

tion t → log(t), we obtain, for r sufficiently close to R
log

(
| fk | τ

sk
k .R

sk
)

sk
≤

(
1+o(1)

)(R
r
−1

)
.

because log
(R

r

)
= log

(R − r + r
r

)
= log

(
1 +

R − r
r

)
∼

R − r
r

(r → R).

Replacing r by the chosen rk in this last relation we obtain
R − rk

rk
=

1

β−1
( 1
σ
α(sk)

)1/ρ
.

Then, for r sufficiently close to R and k r sufficiently large we get
log

(
| fk | τ

sk
k .R

sk
)

sk
≤

1

β−1
( 1
σ
α(sk)

)1/ρ
, thus β−1

( 1
σ
α(sk)

)1/ρ
≤

sk

log
(
| fk | τ

sk
k .R

sk
) or

( 1
σ
α(sk)

)1/ρ
≤ β

 sk

log
(
| fk | τ

sk
k .R

sk
) .

Therefore
1
σ
α(sk) ≤

β
 sk

log
(
| fk | τ

sk
k .r

sk
)


ρ

or
α(sk)β

 sk

log
(
| fk | τ

sk
k .r

sk
)


ρ ≤ σ = σ + ε.
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Proceeding to the upper limit we obtain σ(α, β) ≥ τE(α, β). The result is obviously holds for
σ(α, β) = +∞.

5. Generalized (α, β)-growth and best polynomial approximation of analytic functions in
Lp−norm.

Let E a L-regular compact of Cn. The purpose of this paragraph is to give the relationship
between the generalized order of an analytic function and speed of convergence to 0 in the best
polynomial in Lp-norm on E. We need the following lemma.

Lemma 5.1. . Let f =
∑
k≥0

fk.Ak an element of Lp(E, µ), for p ≥ 0, and

π
p
k (E, f ) = inf

{∥∥∥∥ f − P
∥∥∥∥

Lp(E,µ)
, P ∈ Pk(Cn)

}
.

Then
lim sup

k→+∞

α(sk)

β

[
sk

log
(
| fk|.τ

sk
k .R

sk
)] = lim sup

k→+∞

α(k)

β

[
k

log
(
π

p
k (E, f ).Rk

)] (5.1)

and
lim sup

k→+∞

α(sk){
β

(
sk

log
(
| fk|.τ

sk
k .R

sk
))}ρ(α,β) = lim sup

k→+∞

α(k)β
 k

log
(
π

p
k (E, f ).Rk

)

ρ(α,β) . (5.2)

Proof. Assume that p ≥ 2. If f ∈ Lp(E, µ) where p ≥ 2, then f =

+∞∑
k=0

fk.Ak with convergence in

L2(E, µ), hence for k ≥ 0, fk =
1
νk

2

∫
E

f .Akdµ and therefore fk =
1
νk

2

∫
E
( f − Pk−1).Akdµ (because

deg(Ak) = sk). Since the relation,
∣∣∣ fk

∣∣∣ ≤ 1
νk

2

∫
E

∣∣∣ f − Pk−1

∣∣∣.∣∣∣Ak

∣∣∣µ is satisfied, is easily verified by

using inequalities Bernstein-walsh and Holder that we have for all ε > 0∣∣∣ fk

∣∣∣.νk ≤ Cε.(1 + ε)sk .π
p
sk−1(E, f ). (5.3)

for all k ≥ 0.
If 1 ≤ p < 2, let p′ such that

1
p

+
1
p′

= 1, we have p′ ≥ 2. According to the inequality of

Hölder we have:
∣∣∣ fk

∣∣∣.ν2
k ≤

∥∥∥∥ f − Pk−1

∥∥∥∥
Lp(E,µ)

.
∥∥∥∥|Ak

∥∥∥∥
Lp′ (E,µ)

. But
∥∥∥∥Ak

∥∥∥∥
Lp′ (E,µ)

≤ C.
∥∥∥Ak

∥∥∥
E

= C.ak(E). This

shows, according to inequality (BM), that:
∣∣∣ fk

∣∣∣.ν2
k ≤ C.Cε.(1 + ε)sk .

∥∥∥∥ f − Psk−1

∥∥∥∥
Lp(E,µ)

.
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Hence the result
∣∣∣ fk

∣∣∣.ν2
k ≤ C′ε.(1 + ε)sk .πsk−1

k (E, f ). In both cases we have therefore∣∣∣ fk

∣∣∣.ν2
k ≤ Aε.(1 + ε)sk .π

p
sk−1(E, f ) (5.4)

where Aε is a constant which depends only on ε.
After passing to the upper limit in the relation (5.4) and applying the relation (3.3) we get

lim sup
k→+∞

α(sk)

β

[
sk

log
(
| fk|.τ

sk
k .R

sk
)] ≤ lim sup

k→+∞

α(sk)

β

[
k

log
(
π

p
k (E, f ).Rk

)] .

To prove the other inequality we consider the polynomial of degree sk, Pk(z) =

k∑
s j=0

f j.A j then

π
p
sk−1(E, f ) ≤

+∞∑
s j=sk

∣∣∣ f j

∣∣∣.∥∥∥∥A j

∥∥∥∥
Lp(E,µ)

≤ C0

+∞∑
s j=sk

∣∣∣ f j

∣∣∣.∥∥∥A j

∥∥∥
E
. By Bernstein-Walsh inequality we have

π
p
k (E, f ) ≤ Cε

+∞∑
s j=sk

(1 + ε)s j
∣∣∣ f j

∣∣∣.ν j for k ≥ 0 and p ≥ 1. If we take as a common factor (1 + ε)sk .
∣∣∣ fk

∣∣∣.νk

the other factor is convergent thus we have πp
k (K, f ) ≤ C(1 + ε)sk .

∣∣∣ fk

∣∣∣.νk and by (3.3) we have, then

π
p
k (E, f ) ≤ C(1 + ε)2sk .

∣∣∣ fk

∣∣∣.τsk
k . (5.5)

We deduce lim sup
k→+∞

α(sk)

β

[
sk

log
(
| fk|.τ

sk
k .R

sk
)] ≥ lim sup

k→+∞

α(k)

β

[
k

log
(
π

p
k (E, f ).Rk

)] .
Applying this Lemma 5.1 we get the following main result:

Theorem 5.1. Let f ∈ Lp(E, µ), then f is µ-almost-surely the restriction to E of an analytic
function in Cn of finite generalized order ρ(α, β) if and only if

ρ(α, β) = lim sup
k→+∞

α(k)

β

[
k

log
(
π

p
k (E, f ).Rk

)] +∞. (5.6)

Theorem 5.2. Let f ∈ Lp(E, µ), then f is µ-almost-surely the restriction to E of an analytic
function in Cn of finite generalized order ρ(α, β) and finite generalized type σ(α, β) if and only if

σ(α, β) = lim sup
k→+∞

α(k)β
 k

log
(
π

p
k (E, f ).Rk

)

ρ(α,β) . (5.7)
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Proof. We prove only the first Theorem 5.1, the second is proved by the same arguments.
Suppose that f is µ-almost-surely the restriction to E of an entire function g of general order ρ

(0 < ρ < +∞) and show that ρ = ρ(α, β).
We have g ∈ Lp(E, µ), p ≥ 2 and g =

∑
k≥0

gk.Ak in L2(E, µ) Since g is an element of L2(E, µ) then

g =

+∞∑
k=0

gk.Ak and according to the Theorem 3.1 ρ(g, α, β) = lim sup
k→+∞

α(sk)

β

[
sk

log
(
| fk|.τ

sk
k .R

sk
)] and with

the Lemma 5.1 (relation(5.1)) we have lim sup
k→+∞

α(sk)

β

[
sk

log
(
| fk|.τ

sk
k .R

sk
)] = lim sup

k→+∞

α(k)

β

[
k

log
(
π

p
k (E, f ).Rk

)] .
But g = f on E hence ρ = lim sup

k→+∞

α(sk)

β

[
k

log
(
π

p
k (E, f ).Rk

)] < +∞.

Now suppose that f is a function of Lp(E, µ) such that the relation (5.6) is verified. The proof
is done in three steps p ≥ 2, 1 ≤ p < 2 and 0 < p < 1.

Step.1. Let p ≥ 2, then f =

+∞∑
k=0

fk.Ak, because f is an element of L2(E, µ)
(
(Lp(E, µ))p≥1 is

decreasing sequence
)
. Consider in Cn the series

∑
fk.Ak, k ≥ 0. By the relation (5.6) and the

inequality (BW) we have the inequality on coefficients | Ak | (2.4), it can be seen that this series
converges normally on all compact of Cn, to an analytic function denoted f1. We have f1 = f ,
obviously, µ-almost surly on E.

We verify easily that this series converges normally on all compact of Cn to an analytic function
denoted f1. We have f1 = f , obviously, µ-almost surly on E, and by Theorem 3.1 we have

lim sup
k→+∞

α(sk)

β

[
sk

log
(
| fk|.τ

sk
k .R

sk
)] = lim sup

k→+∞

α(k)

β

[
k

log
(
π

p
k (E, f ).Rk

)] < +∞.

According to the Lemma 5.1 we get ρ( f1) = lim sup
k→+∞

α(k)

β

[
k

log
(
π

p
k (E, f ).Rk

)] < +∞.

Let f1 =
∑
k≥0

fk.Ak, then f1(z) = f (z) µ-almost surely for every z in E. Therefore the (α, β)-order

of f1 is: ρ( f1, α, β) = lim sup
k→+∞

α(k)

β

[
k

log
(
π

p
k (E, f ).Rk

)] < +∞ (see Theorem 3.1). By Lemma 5.1 we

check ρ( f1) = ρ so the proof is completed.
Step.2. Now let p ∈ [1, 2[ and f ∈ Lp(E, µ). By (BM) inequality and Hölder inequality we

have again the inequality the relation (5.4) and by the previous arguments we obtain the result.
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Step.3. Let 0 < p < 1, of course, for 0 < p < 1 the Lp-norm does not satisfy the triangle
inequality. But our relations (5.3) and relation (5.4) are also satisfied for 0 < p < 1 (see Kumar
(2011)), because using Holder’s inequality we have, for some M > 0 and all r > p (p fixed)

‖‖ f ‖Lp(E,µ)≤ M. ‖ f ‖Lr(E,µ) .

Using the inequality
∫

E
| f |p dµ ≤‖ f ‖p−r

E .

∫
E
| f |r dµ we get ‖ f ‖Lp(E,µ)≤‖ f ‖1−(r/p)

E . ‖

f ‖r/p
Lr(E,µ) . We deduce that (E, µ) satisfies the Bernstein.Markov inequality. For ε > 0 there is a

constant C = C(ε, p) > 0 such that, for all (analytic) polynomials P we have

‖‖ P ‖E≤ C(1 + ε)deg(P). ‖ P ‖Lp(E,µ) .

Thus if (E, µ) satisfies the Bernstein-Markov inequality for one p > 0 then (5.4) and (5.5) are
satisfied for allp > 0.

The rest of proof is easily deduced using the same reasoning as in step 1 and step 2.
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Abstract
In this paper we obtain some common fixed point theorems for Hardy and Rogers type fuzzy mappings on closed

balls in a complete metric space. Our investigation is based on the fact that fuzzy fixed point results can be obtained
simply from the fixed point theorem of multi-valued mappings with closed values.In real world problems there are
various mathematical models in which the mappings are contractive on the subset of a space under consideration but
not on the whole space itself. Our results generalize several results of literature.

Keywords: Fuzzy fixed point, Hardy and Rogers mapping, contraction, closed balls, continuous mapping.
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1. Introduction

It is a well-known fact that the results of fixed points are very useful for determining the exis-
tence and uniqueness of solutions to various mathematical models.In 1922,Banach a Polish math-
ematician proved a theorem under appropriate of a fixed point this result is called Banach fixed
point theorem.This theorem is also applied to prove the existence and uniqueness of the solutions
of differential equations. Many authors have made different generalization of Banach fixed point
theorem. The study of fixed points of mappings satisfying certain contractive conditions has been
at the center of vigorous research activity, and it has a wide range of applications in different areas
such as nonlinear and adoptive control systems, parameterize estimation problems, fractal image
decoding,computing magneto static fields in a nonlinear medium and convergence of recurrent
networks.
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The notion of fixed points for fuzzy mappings was introduced by Weiss (Weiss, 1975) and
Butnariu (Butnariu, 1982). Fixed point theorems for fuzzy set valued mappings have been stud-
ied by Heilpern (Heilpern, 1981) who introduced the concept of fuzzy contraction mappings and
established Banach contraction principle for fuzzy mappings in complete metric linear spaces
which is a fuzzy extension of Banach fixed point theorem and Nadlers (Nadler, 1969) theorem for
multi-valued mappings. Park and Jeong (Park & Jeong, 1997) proved some common fixed point
theorems for fuzzy mappings satisfying in complete metric space which are fuzzy extensions of
some theorems in (Azam, 1992; Park & Jeong, 1997). In this paper we obtain some common fixed
point theorems of Hardy and Rogers type fuzzy mappings on closed balls.

2. Basic concepts

Let (X, d) be a metric space, then we use the following notations: Let

2X = {A : A is a subset of X},

CL(2X) = {A ∈ 2X : A is nonempty and closed},

C(2X) = {A ∈ 2X : A is nonempty and compact},

CB(2X) = {A ∈ 2X : A is nonempty, closed and bounded},

For A, B ∈ CB(2X), d(x, A) = inf
y∈A

d(x, y), d(A, B) = inf
x∈A,y∈B

d(x, y) then the Hausdroff metric dH on

CB(2X) induced by d is defined as: dH(A, B) =

{
sup
a∈A

d(a, B), sup
b∈B

d(A, b)
}
.

A fuzzy set in X is a function with domain X and values in [0, 1] and IX is the collection of all
fuzzy sets in X . If A is a fuzzy set and x ∈ X then the function values A(x) is called the grade of
membership of x in A. The α-level set of a fuzzy set A, is denoted by [A]α, and is defined as:

[A]α = {x : A(x) ≥ α if α ∈ (0, 1]} and [A]0 = {x : A(x) ≥ 0}.

For x ∈ X, we denote the fuzzy set χ{x} by {x} unless and until it is stated, where χA is the
characteristic function of the crisp set A. Now we define a sub-collection of IX as follows:
τ(X) = {A ∈ IX : [A]1is nonempty and closed}, for A,B ∈ IX, A ⊂ B means A(x) ≤ B(x) for
each x, y ∈ X. For A, B ∈ τ(X) then define D1{A, B} = dH([A]1, [B]1).
A point x∗ ∈ X is called a fixed point of a fuzzy mappings T : X → IX if x∗ ⊂ T x∗ see (Heilpern,
1981)

Lemma 2.1. (Nadler, 1969) Let A and B be nonempty closed and bounded subsets of a metric
space (X, d) . If a ∈ A , then d(a, B) ≤ dH(A, B).

Lemma 2.2. (Nadler, 1969) Let A and B be nonempty closed and bounded subsets of a metric
space (X, d) and 0 < ξ ∈ R then for a ∈ A there exists b ∈ B such that d(a, B) ≤ dH(A, B) + ξ.

Lemma 2.3. (Nadler, 1969) The completeness of (X, d) implies that (CB(2X), dH) is complete.
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Theorem 2.1. (Hardy & Rogers, 1973) Let (X, d) be a complete metric space and a mapping
T : X → X suppose there exists non-negative constants a1, a2, a3, a4, a5 satisfying a1 + a2 + a3 +

a4 + a5 < 1 such that for each x, y ∈ X

d(Fx, Fy) ≤ a1d(x, y) + a2d(x, Fx) + a3d(y, Fy) + a4d(x, Fy) + a5d(y, Fx)

holds then F has a unique fixed point in X.

3. Main Results

The mapping satisfies the contractive condition in Theorem (2.1) is called Hardy and Rogers
type mapping. It is mentioned that Hardy and Rogers contractive condition does not implies that
the mapping T is continuous, which differentiates it from Banach contractive condition for c ∈ X
and 0 < r < R. Let S r(c) = {x ∈ X/d(c, x) < r} be the ball of radius r centered at c, the closure
of S r(c) is denoted by S r(c). We present a result regarding the existence of common fixed point
for fuzzy mappings satisfying Hardy and Rogers type contractive condition on closed balls. The
theorem is as follows:

Theorem 3.1. Let (X, d) be a complete metric space x0 ∈ X and mapping F,T : S r(x0) → τ(X).
Suppose there exist a constants a1, a2, a3, a4, a5 satisfying a1 + a2 + a3 + a4 + a5 < 1 with

D1(Fx,Ty) ≤ a1d(x, y) + a2d(x, [Fx]1) + a3d(y, [Ty]1) + a4d(x, [Ty]1) + a5d(y, [Fx]1) (3.1)

for all x, y ∈ S r(x0) and

d(x0, [Fx0]1) <
(1 − a1 − a2 − a3 − 2a4)r

(1 − a3 − a4)
(3.2)

holds. Then F and T has a common fuzzy fixed point in S r(x0) that is there exists x∗ ∈ S r(x0) with
{x∗} ⊆ Fx∗ ∩ T x∗.

Proof. Choose x1 ∈ X such that {x1} ⊆ Fx0 and

d(x0, x1) <
(1 − a1 − a2 − a3 − 2a4)r

(1 − a3 − a4)
(3.3)

since [Fx0]1 , φ for the sake of simplicity chooses λ =
(a1+a2+a4)
(1−a3−a4) this gives us d(x0, x1) < (1 − λ)r

which implies that x1 ∈ S r(x0). Now choose ε > 0 such that

λd(x0, x1) +
ε

(1 − a3 − a4)
< λ(1 − λ)r. (3.4)

Then choose ε > 0 such that {x2} ⊆ T x1 and by using inequality (3.1) and Lemma 2.1 we have

d(x1, x2) ≤ D1(Fx0,T x1) + ε

≤ a1d(x0, x1) + a2d(x0, [Fx0]1) + a3d(x1, [T x1]1) + a4d(x0, [T x1]1) + a5d(x1, [Fx0]1 + ε

≤ a1d(x0, x1) + a2d(x0, x1) + a3d(x1, x2) + a4d(x0, x2) + a5d(x1, x1) + ε

= (a1 + a2)d(x0, x1) + a3d(x1, x2) + a4d(x0, x2) + ε
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i.e. d(x1, x2) ≤ λd(x0, x1)+ ε
(1−a3−a4) where λ =

(a1+a2+a4)
(1−a3−a4) . Now by inequality (3.4) we get d(x1, x2) <

λ(1 − λ)r. Note that x2 ∈ S r(x0) since

d(x0, x2) ≤ d(x0, x1) + d(x1, x2) < (1 − λ)r + λ(1 − λ)r = (1 − λ)r(1 + λ)
< (1 − λ)(1 + λ + λ2 + λ3 + ...)r = r

continue this process and having chosen {xn} in X such that {x2k+1} ⊆ Fx2k and {x2k+2} ⊆ T x2k+1

with d(x2k+1, x2k+2) < λ2k+1(1 − λ)r where k = 0, 1, 2, . . .
Notice that {xn} is cauchy sequence in S r(x0) which is complete. Therefore a point x∗ ∈ S r(x0)

exists with limn−→∞xn = x∗. It remains to show that {x∗} ⊆ T x∗ and {x∗} ⊆ Fx∗. Now by using
Lemma 2.1 and inequality (3.1) we get

d(x∗, [T x∗]1) ≤ d(x∗, x2n+1) + d(x2n+1, [T x∗]1)
≤ d(x∗, x2n+1) + D1(Fx2n+2,T x∗)
≤ d(x∗, x2n+1) + a1d(x2n+2, x∗) + a2d(x2n+2, [Fx2n+2]1) + a3d(x∗, [T x∗]1)

+a4d(x2n+2, [T x∗]1) + a5d(x∗, [Fx2n+2]1)
≤ d(x∗, x2n+1) + a1d(x2n+2, x∗) + a2d(x2n+2, x2n+1) + a3d(x∗, [T x∗]1)

+a4d(x2n+2, [T x∗]1) + a5d(x∗, x2n+1)
≤ d(x∗, x2n+1) + a1d(x2n+2, x∗) + a2d(x2n+2, x2n+1) + a4d(x2n+2, x∗)

+a4d(x∗, [T x∗]1) + a5d(x∗, x2n+1)
≤ d(x∗, x2n+1) + a1d(x2n+2, x∗) + a2d(x2n+2, x2n+1)

+a4d(x2n+2, x∗) + a5d(x∗, x2n+1)
−→ 0 as n −→ ∞

This implies that d(x∗, [T x∗]1) = 0, which implies that {x∗} ⊆ T x∗. Similarly consider that
d(x∗, [Fx∗]1) ≤ d(x∗, x2n+2) + d(x2n+2, [Fx∗]1) to show that {x∗} ⊆ Fx∗. This implies that the
mappings F and T have a common fixed point S r(x0), i.e. {x∗} ⊆ Fx∗ ∩ T x∗.

Corollary 3.1. Let (X, d) be a complete metric space x0 ∈ X and mapping F : S r(x0)→ τ(X).Suppose
there exist a non negative constants a1, a2, a3, a4, a5 satisfying a1 + a2 + a3 + a4 + a5 < 1 with

D1(Fx, Fy) ≤ a1d(x, y) + a2d(x, [Fx]1) + a3d(y, [Fy]1) + a4d(x, [Fy]1) + a5d(y, [Fx]1)

for all x, y ∈ S r(x0) and

d(x0, [Fx0]1) <
(1 − a1 − a2 − a3 − 2a4)r

1 − a3 − a4

holds. Then F has a common fuzzy fixed point in S r(x0) that is there exists x∗ ∈ S r(x0) with

{x∗} ⊆ Fx∗.

Proof. Put T = F in Theorem 3.1 we get x∗ ∈ S r(x0) such that {x∗} ⊆ Fx∗.
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Theorem 3.2. Let (X, d) be a complete metric space x0 ∈ X and mapping F,T : X : → τ(X).Suppose
there exist a constants a1, a2, a3, a4, a5 satisfying a1 + a2 + a3 + a4 + a5 < 1 with

D1(Fx,Ty) ≤ a1d(x, y) + a2d(x, [Fx]1) + a3d(y, [Ty]1) + a4d(x, [Ty]1) + a5d(y, [Fx]1)

for all x, y ∈ X and

d(x0, [Fx0]1) <
(1 − a1 − a2 − a3 − 2a4)r

1 − a3 − a4

holds.Then F and T has a common fuzzy fixed point in X that is there exists x∗ ∈ X with

{x∗} ⊆ Fx∗ ∩ T x∗.

Proof: Fix x0 ∈ X and choose r > 0 such that

d(x0, [Fx0]1) <
(1 − a1 − a2 − a3 − 2a4)r

1 − a3 − a4

Now Theorem 3.1 guarantees that there exists x∗ ∈ X with

{x∗} ⊆ Fx∗ ∩ T x∗.

Corollary 3.2. Let (X, d) be a complete metric space x0 ∈ X and mapping F : X → τ(X).Suppose
there exist a constants a1, a2, a3, a4, a5 satisfying a1 + a2 + a3 + a4 + a5 < 1 with

D1(Fx, Fy) ≤ a1d(x, y) + a2d(x, [Fx]1) + a3d(y, [Fy]1) + a4d(x, [Fy]1) + a5d(y, [Fx]1)

for all x, y ∈ X and

d(x0, [Fx0]1) <
(1 − a1 − a2 − a3 − 2a4)r

1 − a3 − a4

holds.Then F has a common fuzzy fixed point in X that is there exists x∗ ∈ X with

{x∗} ⊆ Fx∗.

Proof: In Theorem 3.2 take T=F we get x∗ ∈ X such that {x∗} ⊆ Fx∗.

4. The importance and future of this theory:

Fuzzy sets and mappings play important roles in the fuzzification of systems. In particular,
in the recent years the fixed point theory for fuzzy mappings and for a family of these mappings
obtained via implicit functions named Hardy and Rogers type mappings. In this article can further
be used in the process of finding the solution of functional equations in fuzzy systems. As far
as the application of contraction mapping is concerned the situation is not fully exploited. It
is quite possible that a contraction T is defined on the whole space X but it is contractive on
the subset Y of the subset of the space rather on the whole space X. Moreover the contraction
mapping under consideration may not be continues. If Y is closed, then it is complete,so that a
mapping T has a fixed point x in Y ,and xn → x as in the case of whole space X provided we
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improve a simple restriction on the choice of x0, so that x′ns remains in Y . In this paper, we have
discussed this concept for fuzzy Hardy and Rogers mappings on a complete metric space x which
generalize/improves several classical tendon with (Azam et al., 2013) will become the foundation
of fuzzy theory on closed balls.

An example of a fuzzy mapping which is contractive on the subset of a space but not on the
whole space is as follows:

Example 4.1. Let X = R and d : XxX → R is defined by d(x, y) = |x − y| where x, y ∈ X consider
the mapping F : X → τ(X) is defined by

F(x) =

{
χ(1−x), if x is irrational;
χ( 1+x

3 ), if x is rational.

then F is Hardy and Rogers type fuzzy mapping on the closed balls S ( 1
2 )(

1
2 ) = [0, 1] but not on the

whole space X.
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Abstract
We prove some fixed point theorems for ordered F-generalized contractions in ordered 0- f -orbitally complete

partial metric spaces. Our results generalize some well-known results in the literature, in particular the recent result of
Wardowski [Fixed Point Theory Appl. 2012:94 (2012)] from metric spaces to ordered 0- f -orbitally complete partial
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Keywords: Partial metric space, partial order, fixed point, F-generalized contraction, 0- f -orbitally complete
space.
2010 MSC: 47H10, 54H25.

1. Introduction

In 1994, Matthews (Matthews, 1994) introduced the notion of a partial metric space, as a part
of the study of denotational semantics of dataflow networks. In a partial metric space, the usual
distance was replaced by partial metric, with an interesting property of “nonzero self distance” of
points. Also, the convergence of sequences in this space was defined in such a way that the limit
of a convergent sequence need not be unique. Matthews showed that the Banach contraction prin-
ciple is valid in partial metric spaces and can be applied in program verifications. Later on, several
authors generalized the results of Matthews (see, for example, (Ahmad et al., 2012; Bari et al.,
2012; Kadelburg et al., 2013; Nashine et al., 2012; Vetro & Radenović, 2012)). O’Neill (O’Neill,
1996) generalized the concept of partial metric space a bit further by admitting negative distances.
The partial metric defined by O’Neill is called dualistic partial metric. Heckmann (Heckmann,
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1999) generalized it by omitting small self-distance axiom. The partial metric defined by Heck-
mann is called the weak partial metric. Romaguera (Romaguera, 2010) introduced the notions of
0-Cauchy sequences and 0-complete partial metric spaces and proved some characterizations of
partial metric spaces in terms of completeness and 0-completeness.

The existence of fixed points of mappings in partially ordered sets was investigated by Ran and
Reurings (Ran & Reurings, 2004) and then by Nieto and Rodrı́guez-Lopez (Nieto & Lopez, 2005,
2007). In these papers, some results on the existence of a unique fixed point for nondecreasing
mappings were applied to obtain a unique solution for a first order ordinary differential equation
with periodic boundary conditions. Later on, these results were generalized by several authors in
different spaces.

Recently, Wardowski (Wardowski, 2012) has introduced a new concept of F-contraction and
proved a fixed point theorem which generalizes Banach contraction principle in a different direc-
tion than in the known results from the literature in complete metric spaces.

In this paper, we prove some fixed point theorems for ordered F-generalized contractions in
ordered 0- f -orbitally complete partial metric spaces. The results of this paper generalize and
extend the results of Wardowski (Wardowski, 2012), Ran and Reurings (Ran & Reurings, 2004),
Nieto and Rodrı́guez-Lopez (Nieto & Lopez, 2005, 2007), Altun et al. (Altun et al., 2010), Ćirić
(Ćirić, 1971, 1972) and some other well-known results in the literature. Some examples are given
which illustrate our results.

2. Preliminaries

First we recall some definitions and properties of partial metric spaces (see, e.g., (Matthews,
1994; Oltra & Valero, 2004; O’Neill, 1996; Romaguera, 2010, 2011)).

Definition 2.1. A partial metric on a nonempty set X is a function p : X × X → R+ (R+ stands for
nonnegative reals) such that for all x, y, z ∈ X:

(P1) x = y if and only if p(x, x) = p(x, y) = p(y, y);
(P2) p(x, x) ≤ p(x, y);
(P3) p(x, y) = p(y, x);
(P4) p(x, y) ≤ p(x, z) + p(z, y) − p(z, z).

A partial metric space is a pair (X, p) such that X is a nonempty set and p is a partial metric on X.

It is clear that, if p(x, y) = 0, then from (P1) and (P2) x = y. But if x = y, p(x, y) may not be 0.
Also, every metric space is a partial metric space, with zero self distance.

Example 2.1. If p : R+×R+ → R+ is defined by p(x, y) = max{x, y}, for all x, y ∈ R+, then (R+, p)
is a partial metric space.

For some more examples of partial metric spaces, we refer to (Aydi et al., 2012) and the
references therein.

Each partial metric on X generates a T0 topology τp on X which has as a base the family of
open p-balls {Bp(x, ε) : x ∈ X, ε > 0}, where Bp(x, ε) = {y ∈ X : p(x, y) < p(x, x) + ε} for all
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x ∈ X and ε > 0. A mapping f : X → X is continuous if and only if, whenever a sequence {xn} in
X converging with respect to τp to a point x ∈ X, the sequence { f xn} converges with respect to τp

to f x ∈ X.

Theorem 2.1. (Matthews, 1994) For each partial metric p : X × X → R+ the pair (X, d) where,
d(x, y) = 2p(x, y) − p(x, x) − p(y, y) for all x, y ∈ X, is a metric space.

Here (X, d) is called the induced metric space and d is the induced metric. In further discussion,
unless something else is specified, (X, d) will represent the induced metric space.

Let (X, p) be a partial metric space.

(1) A sequence {xn} in (X, p) converges to a point x ∈ X if and only if p(x, x) = limn→∞ p(xn, x).
(2) A sequence {xn} in (X, p) is called a Cauchy sequence if there exists (and is finite) limn,m→∞ p(xn, xm).
(3) (X, p) is said to be complete if every Cauchy sequence {xn} in X converges with respect to

τp to a point x ∈ X such that p(x, x) = limn,m→∞ p(xn, xm).
(4) A sequence {xn} in (X, p) is called a 0-Cauchy sequence if

limn,m→∞ p(xn, xm) = 0. The space (X, p) is said to be 0-complete if every 0-Cauchy se-
quence in X converges with respect to τp to a point x ∈ X such that p(x, x) = 0.

Lemma 2.1. (Matthews, 1994; Oltra & Valero, 2004; Romaguera, 2010, 2011) Let (X, p) be a
partial metric space and {xn} be any sequence in X.

(i) {xn} is a Cauchy sequence in (X, p) if and only if it is a Cauchy sequence in the metric space
(X, d).

(ii) (X, p) is complete if and only if the metric space (X, d) is complete. Furthermore, limn→∞ d(xn, x) =

0 if and only if p(x, x) = limn→∞ p(xn, x) = limn,m→∞ p(xn, xm).
(iii) Every 0-Cauchy sequence in (X, p) is Cauchy in (X, d).
(iv) If (X, p) is complete then it is 0-complete.

The converse assertions of (iii) and (iv) do not hold. Indeed, the partial metric space (Q∩R+, p),
where Q denotes the set of rational numbers and the partial metric p is given by p(x, y) = max{x, y},
provides an easy example of a 0-complete partial metric space which is not complete. Also, it is
easy to see that every closed subset of a 0-complete partial metric space is 0-complete.

The proof of the following lemma is easy and for details we refer to (Karapınar, 2012) and the
references therein.

Lemma 2.2. Assume xn → z as n→ ∞ in a partial metric space (X, p) such that p(z, z) = 0. Then
limn→∞ p(xn, y) = p(z, y) for all y ∈ X.

The notion of orbital completeness of metric spaces was introduced in (Ćirić, 1971) and
adapted to partial metric spaces in (Karapınar, 2012) as follows:

Let (X, p) be a partial metric space and f : X → X be a mapping. For any x ∈ X, the set
O(x) = {x, f x, f 2x, . . .} is called the orbit of f at point x. (X, p) is called f -orbitally complete if
every Cauchy sequence in O(x) converges in (X, p).

Now, we define 0- f -orbital completeness of a partial metric space.
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Definition 2.2. Let (X, p) be a partial metric space and f : X → X be a mapping. (X, p) is said to
be 0- f -orbitally complete, if every 0-Cauchy sequence in O(x) = {x, f x, f 2x, . . .}, x ∈ X, converges
with respect to τp to a point u ∈ X such that p(u, u) = 0.

Note that every complete partial metric space is 0-complete, and every 0-complete partial
metric space is 0- f -orbitally complete for every f : X → X. But, the converse assertions need not
hold as shown by the following example.

Example 2.2. Let X = R+ ∩ (Q \ {1}) and p : X × X → R+ be defined by

p(x, y) =

|x − y|, if x, y ∈ [0, 1);
max{x, y}, otherwise.

Define f : X → X by f x = x
2 for all x ∈ X. Then (X, p) is a partial metric space. Note that (X, p) is

not complete because the induced metric space (X, d), where

d(x, y) =

2|x − y|, if x, y ∈ [0, 1);
|x − y|, otherwise,

is not complete. Also (X, p) is not 0-complete. Indeed, for xn = 1− 1
n for all n ∈ N, we observe that,

p(xn, xm) = | 1n −
1
m | → 0 as n→ ∞. But, there is no u ∈ X such that limn→∞ p(xn, u) = p(u, u) = 0.

Now, it is easy to see that (X, p) is 0- f -orbitally complete.

Consider, together with Wardowski in (Wardowski, 2012), the following properties for a map-
ping F : R+ → R:

(F1) F is strictly increasing, that is, for α, β ∈ R+, α < β implies F(α) < F(β);
(F2) for each sequence {αn} of positive numbers, limn→∞ αn = 0 if and only if limn→∞ F(αn) =

−∞;
(F3) there exists k ∈ (0, 1) such that limα→0+ αkF(α) = 0.

We denote the set of all functions satisfying properties (F1)–(F3), by F .
For examples of functions F ∈ F , we refer to (Wardowski, 2012). Wardowski defined in

(Wardowski, 2012) F-contractions as follows:
Let (X, ρ) be a metric space. A mapping T : X → X is said to be an F-contraction if there

exists F ∈ F and τ > 0 such that, for all x, y ∈ X, ρ(T x,Ty) > 0 we have

τ + F(ρ(T x,Ty)) ≤ F(ρ(x, y)).

Similarly, we adopt the following definitions.

Definition 2.3. Let X be a nonempty set, � a partial order relation defined on X and p be a partial
metric on X (then, (X,�, p) is called an ordered partial metric space). A map f : X → X is called:

1. an ordered F-contraction if there exists F ∈ F and τ > 0 such that, for all x, y ∈ X with
x � y and p( f x, f y) > 0 we have

τ + F(p( f x, f y)) ≤ F(p(x, y)). (2.1)
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2. an ordered F-weak contraction if there exists F ∈ F and τ > 0 such that, for all x, y ∈ X
with x � y and p( f x, f y) > 0 we have

τ + F(p( f x, f y)) ≤ F(max{p(x, y), p(x, f x), p(y, f y)}). (2.2)

If inequality (2.2) is satisfied for all x, y ∈ X, then f is called an F-weak contraction;
3. an ordered F-generalized contraction if there exists F ∈ F and τ > 0 such that, for all

x, y ∈ X with x � y and p( f x, f y) > 0 we have

τ + F(p( f x, f y)) ≤ F(max{p(x, y), p(x, f x), p(y, f y),
p(x, f y) + p(y, f x)

2
}). (2.3)

If inequality (2.3) is satisfied for all x, y ∈ X, then f is called an F-generalized contraction.

The following example shows that the class of F-contractions in partial metric spaces is more
general than that in metric spaces.

Example 2.3. Let X = R+ and p : R+×R+ → R+ be defined by p(x, y) = max{x, y} for all x, y ∈ X.
Note that the metric induced by p (as well as the usual metric) on X is given by d(x, y) = |x − y|
for all x, y ∈ X. Define f : X → X by

f x =

 x
2 , if x ∈ [0, 1);
0, if x = 1.

Then for x = 1, y = 9
10 there is no τ > 0 and F ∈ F such that

τ + F(d( f x, f y)) ≤ F(d(x, y)).

On the other hand, for τ = log 2 and F(α) = logα + α, it is easy to see that f is an F-contraction
in (X, p).

3. Main results

The following is our first main result.

Theorem 3.1. Let (X,�, p) be an ordered partial metric space and f : X → X be an ordered
F-generalized contraction for some F ∈ F . If (X, p) is 0- f -orbitally complete and the following
conditions hold:

(i) f is nondecreasing with respect to “�”, that is, if x � y then f x � f y;
(ii) there exists x0 ∈ X such that x0 � f x0;

(iii) (a) f is continuous, or
(b) F is continuous and for every nondecreasing sequence {xn}, xn → u ∈ X as n → ∞

implies xn � u for all n ∈ N.

Then f has a fixed point u ∈ X. Furthermore, the fixed point of f is unique if and only if the set of
all fixed points of f is well-ordered.
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Proof. First, we shall show the existence of fixed point of f . Let x0 ∈ X be the point given by
(ii). We define a sequence {xn} in X by xn+1 = f xn for all n ≥ 0. If there exists n0 ∈ N such that
xn0+1 = xn0 then xn0 is a fixed point of f . Therefore, assume that xn+1 , xn for all n ≥ 0. As,
x0 � f x0 we have x0 � x1, and since f is nondecreasing with respect to �, we have f x0 � f x1

that is x1 � x2. Similarly, we obtain xn � xn+1 for all n ≥ 0. Also, f is an ordered F-generalized
contraction therefore, for any n ∈ N it follows from (2.3) and symmetry of p that

τ + F(p( f xn, f xn−1)) = τ + F(p( f xn−1, f xn))
≤ F(max{p(xn, xn−1), p(xn, f xn), p(xn−1, f xn−1),

p(xn, f xn−1) + p(xn−1, f xn)
2

})

= F(max{p(xn, xn−1), p(xn, xn+1), p(xn−1, xn),
p(xn, xn) + p(xn−1, xn+1)

2
})

≤ F(max{p(xn, xn−1), p(xn, xn+1),
p(xn−1, xn) + p(xn+1, xn)

2
}).

Note that, for any a, b ∈ R+ we have max{a, b, a+b
2 } = max{a, b}, therefore it follows from the

above inequality that

τ + F(p(xn+1, xn)) ≤ F(max{p(xn, xn−1), p(xn, xn+1)})
F(p(xn+1, xn)) ≤ F(max{p(xn, xn−1), p(xn, xn+1)}) − τ. (3.1)

If, max{p(xn, xn−1), p(xn, xn+1)} = p(xn, xn+1) then from (3.1) we have

F(p(xn+1, xn)) ≤ F(p(xn, xn+1)) − τ < F(p(xn, xn+1)),

a contradiction. Therefore, max{p(xn, xn−1), p(xn, xn+1)} = p(xn, xn−1) and from (3.1) we have

F(p(xn+1, xn)) ≤ F(p(xn, xn−1)) − τ for all n ∈ N. (3.2)

Setting pn = p(xn+1, xn) it follows by successive applications of (3.2) that

F(pn) ≤ F(pn−1) − τ ≤ F(pn−2) − 2τ ≤ · · · ≤ F(p0) − nτ. (3.3)

From (3.3) we have limn→∞ F(pn) = −∞, and since F ∈ F we must have

lim
n→∞

pn = 0. (3.4)

Again, as F ∈ F there exists k ∈ (0, 1) such that

lim
n→∞

(pn)kF(pn) = 0. (3.5)

From (3.3) we have
(pn)k[F(pn) − F(p0)] ≤ −nτ(pn)k ≤ 0.
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Letting n→ ∞ in the above inequality and using (3.4) and (3.5) we obtain

lim
n→∞

n(pn)k = 0. (3.6)

It follows from (3.6) that there exists n1 ∈ N such that n(pn)k < 1 for all n > n1, that is,

pn ≤
1

n1/k for all n > n1. (3.7)

Let m, n ∈ N with m > n > n1. Then it follows from (3.7) that

p(xn, xm) ≤ p(xn, xn+1) + p(xn+1, xn+2) + · · · + p(xm−1, xm)
− [p(xn, xn) + p(xn+1, xn+1) + · · · + p(xm−1, xm−1)]

≤ pn + pn+1 + · · ·

≤
1

n1/k +
1

(n + 1)1/k + · · ·

=

∞∑
i=n

1
i1/k .

As k ∈ (0, 1), the series
∑∞

i=n
1

i1/k converges, so it follows from the above inequality that limn→∞ p(xn, xm) =

0, that is, the sequence {xn} is a 0-Cauchy sequence in O(x0) = {x0, f x0, f 2x0, . . .}. Therefore, by
0- f -orbital completeness of (X, p), there exists u ∈ X such that

lim
n→∞

p(xn, u) = lim
n,m→∞

p(xn, xm) = p(u, u) = 0. (3.8)

We shall show that u is a fixed point of f . For this, we consider two cases.
Case I: Suppose (a) is satisfied, that is, f is continuous. Then using (3.8) and Lemma 2.2, we

obtain
p(u, f u) = lim

n→∞
p(xn, f u) = lim

n→∞
p( f xn−1, f u) = p( f u, f u).

Suppose that p( f u, f u) > 0. Then as u � u, using (2.3) we obtain

τ + F(p( f u, f u)) ≤ F(max{p(u, u), p(u, f u), p(u, f u),
p(u, f u) + p(u, f u)

2
})

= F(max{p(u, u), p(u, f u)})
= F(p(u, f u)),

that is, F(p( f u, f u)) < F(p(u, f u)) and from F ∈ F we have p( f u, f u) < p(u, f u) = p( f u, f u), a
contradiction. Therefore, p( f u, f u) = p(u, f u) = 0, that is, f u = u, so u is a fixed point of f .

Case II: Suppose that (b) is satisfied. Then we consider two subcases.
(i): For each n ∈ N, there exists kn ∈ N such that p(xkn+1, f u) = 0 and kn > kn−1, where k0 = 1.

Then, using Lemma 2.2, we have

p(u, f u) = lim
n→∞

p(xkn+1, f u) = 0.



94 Satish Shukla et al. / Theory and Applications of Mathematics & Computer Science 4 (1) (2014) 87–98

Therefore, f u = u, that is, u is a fixed point of f .
(ii): There exists n2 ∈ N such that p(xn, f u) , 0 for all n > n2. In this case, since {xn} is a

nondecreasing sequence and xn → u as n → ∞, we have xn � u for all n ∈ N. Therefore, using
(2.3) we obtain

τ + F(p(xn+1, f u)) = τ + F(p( f xn, f u))

≤ F(max{p(xn, u), p(xn, f xn), p(u, f u),
p(xn, f u) + p(u, f xn)

2
})

≤ F(max{p(xn, u), p(xn, xn+1), p(u, f u),
p(xn, u) + p(u, f u) + p(u, xn+1)

2
}).

From (3.8), there exists n3 ∈ N such that, for all n > n3 we have

max{p(xn, u), p(xn, xn+1), p(u, f u),
p(xn, u) + p(u, f u) + p(u, xn+1)

2
} = p(u, f u),

so, for n > max{n2, n3} we obtain

τ + F(p(xn+1, f u)) ≤ F(p(u, f u)).

As F is continuous, letting n → ∞ in the above inequality and using (3.8) and Lemma 2.2 we
obtain

τ + F(p(u, f u)) ≤ F(p(u, f u)),

a contradiction. Therefore, we must have p(u, f u) = 0 that is f u = u. Thus u is a fixed point of f .
Suppose that the set of fixed points of f is well-ordered and u, v ∈ F f with p(u, v) > 0, where

F f denotes the set of all fixed points of f . As F f is well-ordered, let u � v. Then from (2.3) we
obtain

τ + F(p(u, v)) = τ + F(p( f u, f v))

≤ F(max{p(u, v), p(u, f u), p(v, f v),
p(u, f v) + p(v, f u)

2
})

≤ F(max{p(u, v), p(u, u), p(v, v), p(v, u)})
≤ F(p(u, v)),

a contradiction. Similarly, for v � u we get a contradiction. Therefore, the fixed point of f is
unique. For the converse, if the fixed point of f is unique then F f , being a singleton, is well-
ordered.

The following corollaries are immediate consequences of the above theorem.

Corollary 3.1. Let (X,�, p) be an ordered partial metric space and f : X → X be an ordered
F-contraction. Let (X, p) is 0- f -orbitally complete and the following conditions hold:

(i) f is nondecreasing with respect to “�”, that is, if x � y then f x � f y;
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(ii) there exists x0 ∈ X such that x0 � f x0;
(iii) (a) f is continuous, or

(b) F is continuous and for every nondecreasing sequence {xn} such that xn → u ∈ X as
n→ ∞ it follows that xn � u for all n ∈ N.

Then f has a fixed point u ∈ X. Furthermore, the fixed point of f is unique if and only if the set of
all fixed points of f is well-ordered.

Corollary 3.2. Let (X,�, p) be an ordered partial metric space and f : X → X be an ordered
F-weak contraction. If (X, p) is 0- f -orbitally complete and the following conditions hold:

(i) f is nondecreasing with respect to “�”, that is, if x � y then f x � f y;
(ii) there exists x0 ∈ X such that x0 � f x0;

(iii) (a) f is continuous, or
(b) F is continuous and for every nondecreasing sequence {xn} such that xn → u ∈ X as

n→ ∞ it follows that xn � u for all n ∈ N.

Then f has a fixed point u ∈ X. Furthermore, the fixed point of f is unique if and only if the set of
all fixed points of f is well-ordered.

Remark. We note that every metric space is a partial metric space with zero self distance. Therefore
we can replace the partial metric p by a metric ρ in Theorem 3.1. Also, after this replacement, the
0- f -orbital completeness reduces to orbital completeness of the metric space. Therefore, by this
replacement in Theorem 3.1, we obtain the fixed point result for ordered F-generalized contraction
in orbitally complete metric spaces.

In the above theorems the fixed point of the self map f is the limit of a 0-Cauchy sequence and
due to 0- f -orbital completeness of the space this limit has zero self distance. The next theorem
shows that, if an ordered F-generalized contraction has a fixed point then its self distance must be
zero, that is, it does not depend on the properties of space such as completeness etc.

Theorem 3.2. Let (X,�, p) be an ordered partial metric space and f : X → X be an ordered
F-generalized contraction. If f has a fixed point u then p(u, u) = 0.

Proof. Suppose that u ∈ F f and p(u, u) > 0. Then, it follows from (2.3) that

τ + F(p(u, u)) = τ + F(p( f u, f u))

≤ F(max{p(u, u), p(u, f u), p(u, f u),
p(u, f u) + p(u, f u)

2
})

= F(p(u, u)).

As τ > 0, the above inequality yields a contradiction. Therefore, we have p(u, u) = 0 for all
u ∈ F f .

The following example illustrates our results.
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Example 3.1. Let X = [0, 2] ∩ (Q \ {1}) and define p : X × X → R+ by

p(x, y) =


|x − y|, if x, y ∈ [0, 1);
0, if x = y = 2;
max{x, y}, otherwise.

Then (X, p) is a partial metric space. Define a partial order relation “�” on X by

� = {(x, y) : x, y ∈ [0, 1), y ≤ x} ∪ {(x, y) : x, y ∈ (1, 2), y ≤ x} ∪ {(2, 2)}.

Define f : X → X by

f x =


x
2 , if x ∈ [0, 1);
1
4 , if x ∈ (1, 2);
2, if x = 2.

Then it is easy to see that (X, p) is a 0- f -orbitally complete partial metric space. Let F(α) = logα
for all α ∈ R+. Then f satisfies all the conditions of Corollary 3.1 (except that the set of fixed
points of f is well-ordered) with τ ≤ log 2. Note that, F f = {0, 2} with p(0, 0) = p(2, 2) = 0 and
(2, 0), (0, 2) < �. Now, the metric d induced by p is given by

d(x, y) =

2|x − y|, if x, y ∈ [0, 1);
|x − y|, otherwise,

and (X, d) is not complete. Similarly, if ρ is the usual metric on X then (X, ρ) is not complete,
therefore the results from metric cases are not applicable here. This example shows also that
an ordered F-contraction may not be an F-contraction (not even an F-generalized contraction).
Indeed, for x ∈ [0, 1), y = 2 there exists no F ∈ F and τ > 0 such that

τ + F(p( f x, f y)) ≤ F(max{p(x, y), p(x, f x), p(y, f y),
p(x, f y) + p(y, f x)

2
}).

Therefore, f is not an F-generalized contraction in (X, p). Similarly, for x = 0, y = 2 one can see
that f is not an F-generalized contraction in (X, d) and (X, ρ).

In the following theorem the conditions on self map f , “nondecreasing”, continuous and 0- f -
orbital completeness of space, are replaced by another condition on self map f .

Theorem 3.3. Let (X,�, p) be an ordered partial metric space and f : X → X be an ordered F-
generalized contraction. Let there exists u ∈ X such that u � f u and p(u, f u) ≤ p(x, f x) for all
x ∈ X. Then f has a fixed point u ∈ X. Furthermore, the fixed point of f is unique if and only if
the set of all fixed points of f is well-ordered.

Proof. Let G(x) = p(x, f x) for all x ∈ X. Then by assumption we have

G(u) ≤ G(x) for all x ∈ X. (3.9)
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We shall show that f u = u. Suppose that G(u) = p(u, f u) > 0. Then since u � f u, it follows from
(2.3) that

F(G( f u)) = F(p( f u, f f u))

≤ F(max{p(u, f u), p(u, f u), p( f u, f f u),
p(u, f f u) + p( f u, f u)

2
}) − τ

≤ F(max{p(u, f u), p( f u, f f u),
p(u, f u) + p( f u, f f u)

2
}) − τ

= F(max{G(u),G( f u),
G(u) + G( f u)

2
}) − τ

= F(max{G(u),G( f u)}) − τ.

If max{G(u),G( f u)} = G( f u), then it follows from the above inequality that F(G( f u)) < F(G( f u)),
a contradiction. If max{G(u),G( f u)} = G(u), then again we obtain F(G( f u)) < F(G(u)) and
F ∈ F so G( f u) < G(u), a contradiction. Thus, we must have G(u) = p(u, f u) = 0, that is f u = u
and so u is a fixed point of f .

The necessary and sufficient condition for the uniqueness of fixed point follows from a similar
process as used in Theorem 3.1.
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Abstract
In this article we introduce the sequence spaces cI

0(F, p), cI(F, p) and lI
∞(F, p) for F = ( fk) a sequence of moduli

and p = (pk) sequence of positive reals and study some of the properties and inclusion relation on these spaces.
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1. Introduction

Throughout the article N, R, C and ω denotes the set of natural,real,complex numbers and the
class of all sequences respectively.

The notion of the statistical convergence was introduced by H. Fast (Fast, 1951). Later on it
was studied by J. A. Fridy (Fridy, 1985, 1993) from the sequence space point of view and linked
it with the summability theory. The notion of I-convergence is a generalization of the statistical
convergence. At the initial stage it was studied by Kostyrko, Šalát and Wilczyński (Kostyrko &
Šalát and W. Wilczyński, 2000). Later on it was studied by Šalát, Tripathy and Ziman (Šalát et
al., 1963) and Demirci (Demirci, 2001). Recently it was studied by V. A. Khan and K. Ebadullah
(Khan & Ebadullah, 2011; Khan et al., 2011; Khan & Ebadullah, 2012; Khan et al., 2012) and
Tripathy and Hazarika (Tripathy & Hazarika, 2009, 2011).

Here we give some preliminaries about the notion of I-convergence.
Let N be a non empty set. Then a family of sets I ⊆ 2N (2N denoting the power set of N) is said

to be an ideal if I is additive i.e A, B ∈ I ⇒ A ∪ B ∈ I and hereditary i.e A ∈ I, B ⊆ A⇒ B ∈ I.
A non-empty family of sets £(I) ⊆ 2N is said to be filter on N if and only if φ < £(I),for

A, B ∈ £(I) we have A ∩ B ∈ £(I) and for each A ∈ £(I) and A ⊆ B implies B ∈ £(I).

∗Corresponding author
Email addresses: vhbadshah@gmail.com (Vakeel A. Khan), cp_wadhwani@yahoo.co.in (Khalid Ebadullah)
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An Ideal I ⊆ 2N is called non-trivial if I , 2N . A non-trivial ideal I ⊆ 2N is called admissible
if {{x} : x ∈ N} ⊆ I.

A non-trivial ideal I is maximal if there cannot exist any non-trivial ideal J , I containing I as
a subset.
For each ideal I, there is a filter £(I) corresponding to I. i.e £(I) = {K ⊆ N : Kc ∈ I},where
Kc = N − K.

Definition 1.1. A sequence (xk) is said to be I-convergent to a number L if for every ε > 0.
{k ∈ N : |xk − L| ≥ ε} ∈ I. In this case we write I-lim xk = L. The space cI of all I-convergent
sequences to L is given by

cI = {(xk) : {k ∈ N : |xk − L| ≥ ε} ∈ I, for some L∈ C}.

Definition 1.2. A sequence (xk) is said to be I-null if L = 0. In this case we write I-lim xk = 0.

Definition 1.3. A sequence (xk) is said to be I-cauchy if for every ε > 0 there exists a number m
= m(ε) such that {k ∈ N : |xk − xm| ≥ ε} ∈ I.

Definition 1.4. A sequence (xk) is said to be I-bounded if there exists M >0 such that {k ∈ N :
|xk| > M} ∈ I.

Definition 1.5. Let (xk), (yk) be two sequences. We say that (xk) = (yk) for almost all k relative to
I (a.a.k.r.I), if {k ∈ N : xk , yk} ∈ I.

Definition 1.6. For any set E of sequences the space of multipliers of E, denoted by M(E) is given
by

M(E) = {a ∈ ω : ax ∈ E for all x ∈ E}).

Definition 1.7. The concept of paranorm(See (Maddox, 1969)) is closely related to linear metric
spaces. It is a generalization of that of absolute value.
Let X be a linear space. A function g : X −→ R is called paranorm, if for all x, y, z ∈ X,
(PI) g(x) = 0 i f x = θ,
(P2) g(−x) = g(x),
(P3) g(x + y) ≤ g(x) + g(y),
(P4) If (λn) is a sequence of scalars with λn → λ (n → ∞) and xn, a ∈ X with xn → a (n → ∞) ,
in the sense that g(xn − a)→ 0 (n→ ∞) , in the sense that g(λnxn − λa)→ 0 (n→ ∞).

A paranorm g for which g(x) = 0 implies x = θ is called a total paranorm on X, and the pair
(X, g) is called a totally paranormed space.

The idea of modulus was structured in 1953 by Nakano. (See (Nakano, 1953)).
A function f : [0,∞)−→[0,∞) is called a modulus if

(1) f (t) = 0 if and only if t = 0,
(2) f (t+u)≤ f (t)+ f (u) for all t,u≥0,
(3) f is increasing, and
(4) f is continuous from the right at zero.



Vakeel A. Khan et al. / Theory and Applications of Mathematics & Computer Science 4 (1) (2014) 99–105 101

Ruckle (Ruckle, 1968, 1967, 1973) used the idea of a modulus function f to construct the
sequence space

X( f ) = {x = (xk) :
∞∑

k=1

f (|xk|) < ∞}.

This space is an FK space,and Ruckle (Ruckle, 1968, 1967, 1973) proved that that the intersecton
of all such X( f ) spaces is φ, the space of all finite sequences.
The space X( f ) is closely related to the space l1 which is an X( f ) space with f (x) = x for all real
x ≥ 0.Thus Ruckle (Ruckle, 1968, 1967, 1973) proved that, for any modulus f .

X( f ) ⊂ l1 and X( f )α = l∞.

The space X( f ) is a Banach space with respect to the norm ||x|| =
∞∑

k=1
f (|xk|) < ∞.

Spaces of the type X( f ) are a special case of the spaces structured by B. Gramsch in (Gramsch,
1967). From the point of view of local convexity, spaces of the type X( f ) are quite pathological.
Symmetric sequence spaces, which are locally convex have been frequently studied by D. J. H
Garling (Garling, 1966, 1968)and W. H. Ruckle (Ruckle, 1968, 1967, 1973).

After then E. Kolk (Kolk, 1993, 1994) gave an extension of X( f ) by considering a sequence of
modulii F = ( fk) and defined the sequence space

X(F) = {x = (xk) : ( fk(|xk|)) ∈ X}.(See (Kolk, 1993, 1994)).

The following subspaces of ω were first introduced and discussed by Maddox (Maddox, 1986,
1970, 1969). l(p) = {x ∈ ω :

∑
k
|xk|

pk < ∞}, l∞(p) = {x ∈ ω : sup
k
|xk|

pk < ∞}, c(p) = {x ∈ ω :

lim
k
|xk − l|pk = 0, for some l ∈ C}, c0(p) = {x ∈ ω : lim

k
|xk|

pk = 0, }, where p = (pk) is a sequence
of strictly positive real numbers.

After then Lascarides (Lascarides, 1971, 1983) defined the following sequence spaces:
l∞{p} = {x ∈ ω : there exists r > 0 such that sup

k
|xkr|pk tk < ∞},

c0{p} = {x ∈ ω : there exists r > 0 such that lim
k
|xkr|pk tk = 0, },

l{p} = {x ∈ ω : there exists r > 0 such that
∞∑

k=1
|xkr|pk tk < ∞},

Where tk = p−1
k , for all k ∈ N.

We need the following lemmas in order to establish some results of this article.

Lemma 1.1. Let h = inf
k

pk and H = sup
k

pk. Then the following conditions are equivalent.(See[28]).

(a) H < ∞ and h > 0.
(b) c0(p) = c0 or l∞(p) = l∞.
(c) l∞{p} = l∞(p).
(d) c0{p} = c0(p).
(e) l{p} = l(p).

Lemma 1.2. Let K∈ £(I) and M⊆N. If M<I, then M∩K < I.(See (Tripathy & Hazarika, 2009,
2011)). (c.f (Dems, 2005; Gurdal, 2004; Khan & Ebadullah, 2011, 2012; Kolk, 1993; Lascarides,
1971; Tripathy & Hazarika, 2011)).
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2. Main Results

Throughout the article l∞, cI , cI
0,m

I and mI
0 represent the bounded , I-convergent, I-null, bounded

I-convergent and bounded I-null sequence spaces respectively.
In this article we introduce the following classes of sequence spaces.

cI(F, p) = {(xk) ∈ ω : fk(|xk − L|pk) ≥ ε for some L} ∈ I

cI
0(F, p) = {(xk) ∈ ω : fk(|xk|

pk) ≥ ε} ∈ I.

lI
∞(F, p) = {(xk) ∈ ω : sup

k
fk(|xk|

pk) < ∞} ∈ I.

Also we denote by mI(F, p) = cI(F, p) ∩ l∞(F, p) and mI
0(F, p) = cI

0(F, p) ∩ l∞(F, p).

Theorem 2.1. Let (pk) ∈ l∞. Then cI(F, p), cI
0(F, p),mI(F, p) and mI

0(F, p) are linear spaces.

Proof. Let (xk), (yk) ∈ cI(F, p) and α, β be two scalars. Then for a given ε > 0 we have

{k ∈ N : fk(|xk − L1|
pk) ≥

ε

2M1
, for some L1 ∈ C} ∈ I

{k ∈ N : fk(|yk − L2|
pk) ≥

ε

2M2
, for some L2 ∈ C} ∈ I

where M1 = D.max{1, sup
k
|α|pk}, M2 = D.max{1, sup

k
|β|pk} and D = max{1, 2H−1} where H =

sup
k

pk ≥ 0. Let A1 = {k ∈ N : fk(|xk − L1|
pk) < ε

2M1
, for some L1 ∈ C} ∈ £(I), A2 = {k ∈ N :

fk(|yk − L2|
pk) < ε

2M2
, for some L2 ∈ C} ∈ £(I) be such that Ac

1, A
c
2 ∈ I. Then

A3 = {k ∈ N : fk(|(αxk + βyk) − fk(αL1 + βL2)|pk) < ε} ⊇ {k ∈ N : |α|pk fk(|xk − L1|
pk) <

ε

2M1
|α|pk .D}

∩{k ∈ N : |β|pk fk(|yk − L2|
pk) <

ε

2M2
|β|pk .D}.

Thus Ac
3 = Ac

1 ∩ Ac
2 ∈ I. Hence (αxk + βyk) ∈ cI(F, p). Therefore cI(F, p) is a linear space. The rest

of the result follows similarly.

Theorem 2.2. Let (pk) ∈ l∞. Then mI(F, p) and mI
0(F, p) are paranormed spaces, paranormed by

g(xk) = sup
k

fk(|xk|
pk
M ) where M = max{1, sup

k
pk}.

Proof. Let x = (xk), y = (yk) ∈ mI(F, p). (1) Clearly, g(x) = 0 if and only if x = 0. (2) g(x) = g(−x)
is obvious. (3) Since pk

M ≤ 1 and M > 1, using Minkowski’s inequality and the definition of f
we have sup

k
fk(|xk + yk|

pk
M ) ≤ sup

k
fk(|xk|

pk
M ) + sup

k
f (|yk|

pk
M ) (4) Now for any complex λ we have

(λk) such that λk → λ, (k → ∞). Let xk ∈ mI( f , p) such that fk(|xk − L|pk) ≥ ε. Therefore,
g(xk−L) = sup

k
fk(|xk−L|

pk
M ) ≤ sup

k
fk(|xk|

pk
M )+sup

k
fk(|L|

pk
M ).Hence g(λnxk−λL) ≤ g(λnxk)+g(λL) =

λng(xk) + λg(L) as (k → ∞). Hence mI(F, p) is a paranormed space. The rest of the result follows
similarly.
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Theorem 2.3. A sequence x = (xk) ∈ mI(F, p) I-converges if and only if for every ε > 0 there
exists Nε ∈ N such that {k ∈ N : fk(|xk − xNε

|pk) < ε} ∈ mI(F, p).

Proof. Suppose that L = I − lim x. Then Bε = {k ∈ N : |xk − L|pk < ε
2 } ∈ mI(F, p). For all ε > 0.

Fix an Nε ∈ Bε . Then we have |xNε
− xk|

pk ≤ |xNε
− L|pk + |L − xk|

pk < ε
2 + ε

2 = ε which holds for all
k ∈ Bε . Hence {k ∈ N : fk(|xk − xNε

|pk) < ε} ∈ mI(F, p).
Conversely, suppose that {k ∈ N : fk(|xk − xNε

|pk) < ε} ∈ mI(F, p). That is {k ∈ N : (|xk −

xNε
|pk) < ε} ∈ mI(F, p) for all ε > 0. Then the set Cε = {k ∈ N : xk ∈ [xNε

− ε, xNε
+ ε]} ∈

mI(F, p) for all ε > 0. Let Jε = [xNε
− ε, xNε

+ ε]. If we fix an ε > 0 then we have Cε ∈ mI(F, p)
as well as C ε

2
∈ mI( f , p). Hence Cε ∩C ε

2
∈ mI(F, p). This implies that J = Jε ∩ J ε

2
, φ that is {k ∈

N : xk ∈ J} ∈ mI(F, p) that is diamJ ≤ diamJε where the diam of J denotes the length of interval
J. In this way, by induction we get the sequence of closed intervals Jε = I0 ⊇ I1 ⊇ ... ⊇ Ik ⊇ ...
with the property that diamIk ≤

1
2diamIk−1 for (k = 2, 3, 4, ...) and {k ∈ N : xk ∈ Ik} ∈ mI(F, p)

for (k = 1, 2, 3, ...). Then there exists a ξ ∈ ∩Ik where k ∈ N such that ξ = I − lim x. So that
fk(ξ) = I − lim fk(x), that is L = I − lim fk(x).

Theorem 2.4. Let H = sup
k

pk < ∞ and I an admissible ideal. Then the following are equivalent.

(a) (xk) ∈ cI(F, p);
(b) there exists(yk) ∈ c(F, p) such that xk = yk, for a.a.k.r.I; (c) there exists(yk) ∈ c(F, p) and
(xk) ∈ cI

0(F, p) such that xk = yk + zk for all k ∈ N and {k ∈ N : fk(|yk − L|pk) ≥ ε} ∈ I ; (d) there
exists a subset K = {k1 < k2....} of N such that K ∈ £(I) and lim

n→∞
fk(|xkn − L|pkn ) = 0.

Proof. (a) implies (b). Let (xk) ∈ cI(F, p). Then there exists L ∈ C such that {k ∈ N :
fk(|xk − L|pk) ≥ ε} ∈ I. Let (mt) be an increasing sequence with mt ∈ N such that {k ≤ mt :
fk(|xk − L|pk) ≥ ε} ∈ I. Define a sequence (yk) as yk = xk, for all k ≤ m1. For mt < k ≤ mt+1, t ∈ N.

yk =

{
xk, if |xk − L|pk < t−1,

L, otherwise. Then (yk) ∈ c(F, p) and form the following inclusion {k ≤ mt : xk ,

yk} ⊆ {k ≤ mt : fk(|xk − L|pk) ≥ ε} ∈ I. We get xk = yk, for a.a.k.r.I.

(b) implies (c).For (xk) ∈ cI(F, p). Then there exists (yk) ∈ c(F, p) such that xk = yk, for a.a.k.r.I.

Let K = {k ∈ N : xk , yk}, then k ∈ I. Define a sequence (zk) as zk =

{
xk − yk, if k ∈ K,

0, otherwise. Then

zk ∈ cI
0(F, p) and yk ∈ c(F, p).

(c) implies (d).Let P1 = {k ∈ N : fk(|xk|
pk) ≥ ε} ∈ I and K = Pc

1 = {k1 < k2 < k3 < ...} ∈ £(I).
Then we have lim

n→∞
fk(|xkn − L|pkn ) = 0.

(d) implies (a). Let K = {k1 < k2 < k3 < ...} ∈ £(I) and lim
n→∞

fk(|xkn − L|pkn ) = 0. Then for any
ε > 0, and Lemma 1.9, we have {k ∈ N : fk(|xk − L|pk) ≥ ε} ⊆ Kc ∪ {k ∈ K : fk(|xk − L|pk) ≥ ε}.
Thus (xk) ∈ cI(F, p).

Theorem 2.5. Let (pk) and (qk) be two sequences of positive real numbers. Then mI
0(F, p) ⊇

mI
0(F, q) if and only if lim

k∈K
inf pk

qk
> 0, where Kc ⊆ N such that K ∈ I.
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Proof. Let lim
k∈K

inf pk
qk
> 0. and (xk) ∈ mI

0(F, q). Then there exists β > 0 such that pk > βqk, for

all sufficiently large k ∈ K. Since (xk) ∈ mI
0(F, q), for a given ε > 0, we have B0 = {k ∈ N :

fk(|xk|
qk) ≥ ε} ∈ I Let G0 = Kc ∪ B0. Then G0 ∈ I. Then for all sufficiently large k ∈ G0,

{k ∈ N : fk(|xk|
pk) ≥ ε} ⊆ {k ∈ N : fk(|xk|

βqk) ≥ ε} ∈ I. Therefore (xk) ∈ mI
0(F, p).

Theorem 2.6. Let (pk) and (qk) be two sequences of positive real numbers. Then mI
0(F, q) ⊇

mI
0(F, p) if and only if lim

k∈K
inf qk

pk
> 0, where Kc ⊆ N such that K ∈ I.

Proof. The proof follows similarly as the proof of Theorem 2.5.

Theorem 2.7. Let (pk) and (qk) be two sequences of positive real numbers. Then mI
0(F, q) =

mI
0(F, p) if and only if lim

k∈K
inf pk

qk
> 0, and lim

k∈K
inf qk

pk
> 0, where K ⊆ N such that Kc ∈ I.

Proof. On combining Theorem 2.5 and 2.6 we get the required result.

Theorem 2.8. Let h = inf
k

pk and H = sup
k

pk. Then the following results are equivalent.

(a) H < ∞ and h > 0. (b) cI
0(F, p) = cI

0.

Proof. Suppose that H < ∞ and h > 0,then the inequalities min{1, sh} ≤ spk ≤ max{1, sH} hold for
any s > 0 and for all k ∈ N. Therefore the equivalent of (a) and (b) is obvious.

Theorem 2.9. Let F = ( fk) be a sequence of modulii. Then cI
0(F, p) ⊂ cI(F, p) ⊂ lI

∞(F, p) and the
inclusions are proper.

Proof. Let (xk) ∈ cI(F, p). Then there exists L ∈ C such that I − lim fk(|xk − L|pk) = 0. We have
fk(|xk|

pk) ≤ 1
2 fk(|xk − L|pk) + 1

2 fk(|L|pk). Taking supremum over k both sides we get (xk) ∈ lI
∞(F, p).

The inclusion cI
0(F, p) ⊂ cI(F, p) is obvious. Hence cI

0(F, p) ⊂ cI(F, p) ⊂ lI
∞(F, p).

Theorem 2.10. If H = sup
k

pk < ∞, then for a sequence of moduli F, we have lI
∞ ⊂ M(mI(F, p)),

where the inclusion may be proper.

Proof. Let a ∈ lI
∞. This implies that sup

k
|ak| < 1 + K. for some K > 0 and all k. Therefore

x ∈ mI(F, p) implies sup
k

fk(|akxk|
pk) ≤ (1 + K)H sup

k
fk(|xk|

pk) < ∞. which gives lI
∞ ⊂ M(mI(F, p)).

To show that the inclusion may be proper, consider the case when pk = 1
k for all k. Take ak = k for

all k. Therefore x ∈ mI(F, p) implies sup
k

fk(|akxk|
pk) ≤ sup

k
fk(|k|

1
k ) sup

k
fk(|xk|

pk) < ∞. Thus in this

case a = (ak) ∈ M(mI(F, p)) while a < lI
∞.

Acknowledgments. The authors would like to record their gratitude to the reviewer for his careful reading and
making some useful corrections which improved the presentation of the paper.
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In this paper we wish to establish a few inequalities related to fuzzy complex numbers which extend some standard

results.
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1. Introduction, Definitions and Notations

The idea of fuzzy subset µ of a set X was primarily introduced by L.A. Zadeh (Zadeh, 1965)
as a function µ : X → [0, 1] . Fuzzy set theory is a useful tool to describe situations in which the
data are imprecise or vague. Fuzzy sets handle such situation by attributing a degree to which a
certain object belongs to a set. Among the various types of fuzzy sets, those which are defined
on the universal set of complex numbers are of particular importance. They may, under certain
conditions, be viewed as fuzzy complex numbers.

A fuzzy set z f is defined by its membership function µ
(
z | z f

)
which is a mapping from the

complex numbers C into [0, 1] where z is a regular complex number as z = x + iy, is called a fuzzy
complex number if it satisfies the following conditions :

1. µ
(
z | z f

)
is continuous;

2. An α-cut of z f which is defined as zαf =
{
z | µ

(
z | z f

)
> α

}
, where 0 ≤ α < 1, is open,

bounded, connected and simply connected; and
3. z1

f =
{
z | µ

(
z | z f

)
= 1

}
is non-empty, compact, arcwise connected and simply connected.

(For detail on the set z f as mentioned above, one may see (Buckley, 1989)).
Using this concept of fuzzy complex numbers, J. J. Buckley (Buckley, 1989) shown that fuzzy

complex numbers is closed under the basic arithmetic operations. In paper (Buckley, 1989) we
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tanmaybiswas math@rediffmail.com (Tanmay Biswas), samtentamang@yahoo.in (Samten Tamang)
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also see the development of fuzzy complex numbers by defining addition and multiplication from
the extension principle which has been shown in terms of α-cuts.

We now review some definitions used in this paper.

Definition 1.1. (Buckley, 1989)The complex conjugate z f of z f is defined as

µ
(
z | z f

)
= µ

(
z | z f

)
,

where z = x − iy is the complex conjugate of z = x + iy. The complex conjugate z f of a fuzzy
complex number z f is also a fuzzy complex number because the mapping z = x + iy→ z = x − iy
is continuous.

Definition 1.2. (Buckley, 1989)The modulus
∣∣∣z f

∣∣∣ of a fuzzy complex number z f is defined as

µ
(
r |

∣∣∣z f

∣∣∣) = sup
{
µ
(
z | z f

)
| |z| = r

}
,

where r is the modulus of z.
Similarly we may define the modulus of a real fuzzy number R f as follows:

µ
(
|a| |

∣∣∣R f

∣∣∣) = sup{µ
(
a | R f

)
| |a| = a if a > 0, |a| = 0 if a = 0 and |a| = −a if a < 0}.

Now in the following, we define two special types of fuzzy complex numbers zn
f and nz f of the

fuzzy complex number z f , for any complex number z ∈ z f and n ∈ R .

Definition 1.3. Fuzzy complex numbers zn
f and nz f are defined as

µ(z | zn
f ) = µ(zn | z f )

and
µ(z | nz f ) = µ(n.z | z f ).

In particular when n = 2, we have

µ(z | z2
f ) = µ(z2 | z f ) and µ(z | 2z f ) = µ(2.z | z f ) .

It can be easily verified that

z2
f , z f .z f and 2z f , z f + z f but 2(z f1 + z f2) = 2z f1 + 2z f2 .

From the definition of fuzzy complex number one may easily verify that zn
f and nz f are also fuzzy

complex numbers when z f is a fuzzy complex number. It should be noted that the significance of
Definition 1.3 is completely different from the definitions of additions and multiplications of fuzzy
complex numbers as mentioned in (Buckley, 1989).

In this paper we wish to establish a few standared inequalities related to fuzzy complex num-
bers.
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2. Lemmas

In this section we present some lemmas which will be needed in the sequel.

Lemma 2.1. (Buckley, 1989) Let z f1 and z f2 be any two fuzzy complex numbers. Suppose A =

z f1 + z f2 and M = z f1 .z f2 respectively. Then for 0 ≤ α ≤ 1, Aα = S α and Mα = Pα holds where

S α =
{
z f1 + z f2 | (z1, z2) ∈ zαf1 × zαf2

}
and

Pα =
{
z f1 .z f2 | (z1, z2) ∈ zαf1 × zαf2

}
.

Also z f1 + z f2 and z f1 .z f2 are fuzzy complex numbers.

The following lemma may be deduced in the line of Lemma 2.1 and so its proof is omitted.

Lemma 2.2. Let z f1 , z f2 , z f3 , ..., z fn be any n number of fuzzy complex numbers. Also let A = z f1 +

z f2 + z f3 + ... + z fn and M = z f1 .z f2 .z f3 ...z fn respectively. Then for 0 ≤ α ≤ 1, Aα = S α and Mα = Pα

holds where

S α =
{
z f1 + z f2 + z f3 + ... + z fn | (z1, z2, z3, ..., zn) ∈ zαf1 × zαf2 × zαf3 × ... × zαfn

}
and

Pα =
{
z f1 .z f2 .z f3 ...z fn | (z1, z2, z3, ..., zn) ∈ zαf1 × zαf2 × zαf3 × ... × zαfn

}
.

Lemma 2.3. (Buckley, 1989) If z f is any fuzzy complex number then∣∣∣z f

∣∣∣α =
∣∣∣zαf ∣∣∣

where 0 ≤ α ≤ 1 and
∣∣∣z f

∣∣∣ is a truncated real fuzzy number.

Lemma 2.4. (Kaufmann & Gupta, 1985) If M and N be any two real fuzzy numbers then

(M + N)α = Mα + Nα

and if M ≥ 0,N ≥ 0 then
(M · N)α = Mα · Nα.

Lemma 2.5. (Buckley, 1989) Let z f be a fuzzy complex conjugate number of a fuzzy complex
number z f . Then

zαf = zαf
where 0 ≤ α ≤ 1.
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3. Theorems

In this section we present the main results of the paper.

Theorem 3.1. Let z f1 and z f2 be any two fuzzy complex numbers. Then∣∣∣z f1 − z f2

∣∣∣ ≥ ∣∣∣z f1

∣∣∣ − ∣∣∣z f2

∣∣∣ .
Proof. The meaning of the inequality is that the interval

∣∣∣z f1 − z f2

∣∣∣α is greater that or equal to the
interval

(∣∣∣z f1

∣∣∣ − ∣∣∣z f2

∣∣∣)α for 0 ≤ α ≤ 1.
Now from Lemma 2.1 and Lemma 2.3, we get that∣∣∣z f1 − z f2

∣∣∣α =
∣∣∣∣(z f1 − z f2

)α∣∣∣∣ =
∣∣∣zαf1 − zαf2

∣∣∣ =
{
|z1 − z2| | zi ∈ zαfi , i = 1, 2

}
. (3.1)

Again in view of Lemma 2.4, we obtain from Lemma 2.3 that(∣∣∣z f1

∣∣∣ − ∣∣∣z f2

∣∣∣)α =
∣∣∣z f1

∣∣∣α − ∣∣∣z f2

∣∣∣α =
∣∣∣zαf1 ∣∣∣ − ∣∣∣zαf2 ∣∣∣ =

{
|z1| − |z2| | zi ∈ zαfi , i = 1, 2

}
. (3.2)

Hence the result follows from (3.1) and (3.2) and in view of

|z1 − z2| ≥ |z1| − |z2| .

This proves the theorem.

J. J. Buckley (Buckley, 1989) proved the following results:
Theorem A (Buckley, 1989) Let z f1 and z f2 be any two fuzzy complex numbers. Then

(1).
∣∣∣z f1 − z f2

∣∣∣≤ ∣∣∣z f1

∣∣∣ + ∣∣∣z f2

∣∣∣ and (2).
∣∣∣z f1 .z f2

∣∣∣ = ∣∣∣z f1

∣∣∣ ∣∣∣z f2

∣∣∣ .
But he (Buckley, 1989) remained silent about the question when the equality holds in the in-

equality (1) of Theorem A. In the next two theorems, we wish to generalise the results of Theorem
A and find out the condition for which

∣∣∣z f1 − z f2

∣∣∣ =
∣∣∣z f1

∣∣∣ +
∣∣∣z f2

∣∣∣ holds respectively.

Theorem 3.2. Let z f1 , z f2 , z f3 , ..., z fn be any n number of fuzzy complex numbers. Then

(i).
∣∣∣z f1 + z f2 + z f3 + ... + z fn

∣∣∣ ≤ ∣∣∣z f1

∣∣∣ +
∣∣∣z f2

∣∣∣ +
∣∣∣z f3

∣∣∣ + ... +
∣∣∣z fn

∣∣∣ and

(ii).
∣∣∣z f1 .z f2 .z f3 ...z fn

∣∣∣ =
∣∣∣z f1

∣∣∣ ∣∣∣z f2

∣∣∣ ∣∣∣z f3

∣∣∣ ... ∣∣∣z fn

∣∣∣ .
Proof. In view of Lemma 2.1, it follows from Theorem A that∣∣∣z f1 + z f2 + z f3 + ... + z fn

∣∣∣ ≤ ∣∣∣z f1

∣∣∣ +
∣∣∣z f2 + z f3 + ... + z fn

∣∣∣
≤

∣∣∣z f1

∣∣∣ +
∣∣∣z f2

∣∣∣ +
∣∣∣z f3 + ... + z fn

∣∣∣
≤

∣∣∣z f1

∣∣∣ +
∣∣∣z f2

∣∣∣ +
∣∣∣z f3

∣∣∣ +
∣∣∣z f4 + ... + z fn

∣∣∣
................................

................................

≤
∣∣∣z f1

∣∣∣ +
∣∣∣z f2

∣∣∣ +
∣∣∣z f3

∣∣∣ + ... +
∣∣∣z fn

∣∣∣ .
This proves the first part of the theorem.
Similarly with the help of Lemma 2.1 and the equality

∣∣∣z f1 .z f2

∣∣∣ =
∣∣∣z f1

∣∣∣ ∣∣∣z f2

∣∣∣ , one can easily establish
the second part of the theorem.
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Remark. In view of Lemma 2.2, Lemma 2.3 and Lemma 2.4 it can also be shown that the intervals∣∣∣z f1 + z f2 + z f3 + ... + z fn

∣∣∣α and
∣∣∣z f1 .z f2 .z f3 ...z fn

∣∣∣α are less than or equal to the intervals(∣∣∣z f1

∣∣∣ +
∣∣∣z f2

∣∣∣ +
∣∣∣z f3

∣∣∣ + ... +
∣∣∣z fn

∣∣∣)α and
(∣∣∣z f1

∣∣∣ ∣∣∣z f2

∣∣∣ ∣∣∣z f3

∣∣∣ ... ∣∣∣z fn

∣∣∣)α respectively in Theorem 3.2 for 0 ≤ α ≤
1.

Theorem 3.3. Let z f1 and z f2 be any two fuzzy complex numbers such that
∣∣∣z f1 + z f2

∣∣∣ =
∣∣∣z f1

∣∣∣ +
∣∣∣z f2

∣∣∣
then either arg z1 − arg z2 is an even multiple of π or z1

z2
is a positive real number where z1 and z2

are any two members of z f1 and z f2 respectively.

Proof. The meaning of the equality is that the interval
∣∣∣z f1 + z f2

∣∣∣α is equal to the interval
(∣∣∣z f1

∣∣∣ +
∣∣∣z f2

∣∣∣)α
for 0 ≤ α ≤ 1.
Thus

∣∣∣z f1 + z f2

∣∣∣ =
∣∣∣z f1

∣∣∣ +
∣∣∣z f2

∣∣∣ i.e,
∣∣∣z f1 + z f2

∣∣∣α =
(∣∣∣z f1

∣∣∣ +
∣∣∣z f2

∣∣∣)α i.e.,
∣∣∣z f1 + z f2

∣∣∣α =
(∣∣∣z f1

∣∣∣α +
∣∣∣z f2

∣∣∣α)
i.e,

∣∣∣∣zαf1 + zαf2

∣∣∣∣ =
∣∣∣∣zαf1 ∣∣∣∣ +

∣∣∣∣zαf2 ∣∣∣∣ i.e., |z1 + z2| = |z1| + |z2| | zi ∈ zαfi , i = 1, 2; which is only possible
when either arg z1 − arg z2 is an even multiple of π or z1

z2
is a positive real number. Hence the

theorem follows.

Theorem 3.4. If z f1 and z f2 are any two fuzzy complex numbers with
∣∣∣z f1 + z f2

∣∣∣ =
∣∣∣z f1 − z f2

∣∣∣ , then
arg z1 and arg z2 differ by π

2 or 3π
2 where z1 and z2 are any two members of z f1 and z f2 respectively.

Proof. The meaning of the equality is that the α-cuts of
∣∣∣z f1 + z f2

∣∣∣ is equal to the corresponding
α-cuts of

∣∣∣z f1 − z f2

∣∣∣ for 0 ≤ α ≤ 1.
Now in view of Lemma 2.1 and Lemma 2.3, we obtain that∣∣∣z f1 + z f2

∣∣∣α =
∣∣∣∣(z f1 + z f2

)α∣∣∣∣ =
∣∣∣zαf1 + zαf2

∣∣∣ =
{
|z1 + z2| | zi ∈ zαfi , i = 1, 2

}
. (3.3)

Similarly, ∣∣∣z f1 − z f2

∣∣∣α =
∣∣∣∣(z f1 − z f2

)α∣∣∣∣ =
∣∣∣zαf1 − zαf2

∣∣∣ =
{
|z1 − z2| | zi ∈ zαfi , i = 1, 2

}
. (3.4)

Therefore from (3.3) and (3.4) it follows that
∣∣∣z f1 + z f2

∣∣∣ =
∣∣∣z f1 − z f2

∣∣∣ which implies that |z1 + z2| =

|z1 − z2| | zi ∈ zαfi , i = 1, 2 which is only possible when arg z1 and arg z2 differ by π
2 or 3π

2 .
Thus the theorem is established.

Theorem 3.5. Let z f1 and z f2 be any two fuzzy complex numbers. Then∣∣∣z f1 ± z f2

∣∣∣ ≥ ∣∣∣∣∣∣z f1

∣∣∣ − ∣∣∣z f2

∣∣∣∣∣∣ .
Proof. For 0 ≤ α ≤ 1, we have∣∣∣z f1 ± z f2

∣∣∣α =
∣∣∣∣(z f1 ± z f2

)α∣∣∣∣ =
∣∣∣zαf1 ± zαf2

∣∣∣ =
{
|z1 ± z2| | zi ∈ zαfi , i = 1, 2

}
. (3.5)

We also deduce that∣∣∣∣∣∣z f1

∣∣∣ − ∣∣∣z f2

∣∣∣∣∣∣α =
∣∣∣∣(∣∣∣z f1

∣∣∣ − ∣∣∣z f2

∣∣∣)α∣∣∣∣ =
∣∣∣∣∣∣z f1

∣∣∣α − ∣∣∣z f2

∣∣∣α∣∣∣ =
∣∣∣∣∣∣zαf1 ∣∣∣ − ∣∣∣zαf2 ∣∣∣∣∣∣ =

{
||z1| − |z2|| | zi ∈ zαfi , i = 1, 2

}
.

(3.6)
Hence the theorem follows from (3.5) and (3.6) and in view of the following inequality :

|z1 ± z2| ≥ ||z1| − |z2|| .
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Theorem 3.6. If z f1 and z f2 are any two fuzzy complex numbers, then

2
∣∣∣z f1 + z f2

∣∣∣ ≥ (∣∣∣z f1

∣∣∣ +
∣∣∣z f2

∣∣∣) ∣∣∣∣∣∣∣ z f1∣∣∣z f1

∣∣∣ +
z f2∣∣∣z f2

∣∣∣
∣∣∣∣∣∣∣ .

Proof. In order to prove this theorem, we wish to show that the interval
(
2
∣∣∣z f1 + z f2

∣∣∣)α is greater

than or equal to the interval
{(∣∣∣z f1

∣∣∣ +
∣∣∣z f2

∣∣∣) ∣∣∣∣∣ z f1

|z f1 |
+

z f2

|z f2 |

∣∣∣∣∣}α for 0 ≤ α ≤ 1.

From Lemma 2.3 and Lemma 2.4, we get that(∣∣∣z f1

∣∣∣ +
∣∣∣z f2

∣∣∣) ∣∣∣∣∣∣∣ z f1∣∣∣z f1

∣∣∣ +
z f2∣∣∣z f2

∣∣∣
∣∣∣∣∣∣∣

α

=

(∣∣∣z f1

∣∣∣ +
∣∣∣z f2

∣∣∣)α ∣∣∣∣∣∣∣ z f1∣∣∣z f1

∣∣∣ +
z f2∣∣∣z f2

∣∣∣
∣∣∣∣∣∣∣
α =

(∣∣∣z f1

∣∣∣α +
∣∣∣z f2

∣∣∣α) ∣∣∣∣∣∣∣
 z f1∣∣∣z f1

∣∣∣ +
z f2∣∣∣z f2

∣∣∣
α

∣∣∣∣∣∣∣


=

(∣∣∣zαf1 ∣∣∣ +
∣∣∣zαf2 ∣∣∣)

∣∣∣∣∣∣∣
 z f1∣∣∣z f1

∣∣∣
α +

 z f2∣∣∣z f2

∣∣∣
α

∣∣∣∣∣∣∣
 =

{(∣∣∣zαf1 ∣∣∣ +
∣∣∣zαf2 ∣∣∣) ∣∣∣∣∣(z f1

∣∣∣z f1

∣∣∣−1
)α

+

(
z f2

∣∣∣z f2

∣∣∣−1
)α∣∣∣∣∣}

=

{(∣∣∣zαf1 ∣∣∣ +
∣∣∣zαf2 ∣∣∣) ∣∣∣∣∣(zαf1 ∣∣∣zαf1 ∣∣∣−1

)
+

(
zαf2

∣∣∣zαf2 ∣∣∣−1
)∣∣∣∣∣} =

{
(|z1| + |z2|)

∣∣∣∣∣ z1

|z1|
+

z2

|z2|

∣∣∣∣∣ | zi ∈ zαfi , i = 1, 2
}
. (3.7)

Since
2 |z1 + z2| ≥ (|z1| + |z2|)

∣∣∣∣∣ z1

|z1|
+

z2

|z2|

∣∣∣∣∣ ,
in view of Definition 1.2 and Definition 1.3, the theorem follows from (3.3) and (3.7).

Theorem 3.7. Let z f1 and z f2 be any two fuzzy complex numbers. Then∣∣∣∣(z f1 + z f2

)2∣∣∣∣ +
∣∣∣∣(z f1 − z f2

)2∣∣∣∣ =
(
2
∣∣∣z2

f1

∣∣∣ − 2
∣∣∣z2

f2

∣∣∣) .
Proof. In view of Lemma 2.1, Lemma 2.3 and Lemma 2.4, we get for 0 ≤ α ≤ 1 that(∣∣∣∣(z f1 + z f2

)2∣∣∣∣ +
∣∣∣∣(z f1 − z f2

)2∣∣∣∣)α =

(∣∣∣∣(z f1 + z f2

)2∣∣∣∣α +
∣∣∣∣(z f1 − z f2

)2∣∣∣∣α) =

∣∣∣∣∣((z f1 + z f2

)2
)α∣∣∣∣∣ +

∣∣∣∣∣((z f1 − z f2

)2
)α∣∣∣∣∣

=

(∣∣∣∣(zαf1 + zαf2
)2∣∣∣∣ +

∣∣∣∣(zαf1 − zαf2
)2∣∣∣∣) =

{∣∣∣(z1 + z2)2
∣∣∣ +

∣∣∣(z1 − z2)2
∣∣∣ | zi ∈ zαfi , i = 1, 2

}
=

{
|z1 + z2|

2 + |z1 − z2|
2
| zi ∈ zαfi , i = 1, 2

}
. (3.8)

Analogously we also see that(
2
∣∣∣z2

f1

∣∣∣ − 2
∣∣∣z2

f2

∣∣∣)α =
(
2
∣∣∣z2

f1

∣∣∣α − 2
∣∣∣z2

f2

∣∣∣α) =

(
2
∣∣∣∣(z2

f1

)α∣∣∣∣ − 2
∣∣∣∣(z2

f2

)α∣∣∣∣) =

(
2
∣∣∣∣(zαf1)2∣∣∣∣ − 2

∣∣∣∣(zαf2)2∣∣∣∣)
=

{
2
∣∣∣z2

1

∣∣∣ − 2
∣∣∣z2

2

∣∣∣ | zi ∈ zαfi , i = 1, 2
}

=
{
2 |z1|

2
− 2 |z2|

2
| zi ∈ zαfi , i = 1, 2

}
. (3.9)

Now in the line of Definition 1.3, it follows from (3.8)and (3.9) that the corresponding α-cuts are
equal. Hence the theorem follows as we obtain the equality of the two real fuzzy numbers.
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In the next theorem we establish a few properties of fuzzy complex conjugate numbers de-
pending on the concept of it.

Theorem 3.8. Let z f be a fuzzy complex conjugate number of a fuzzy complex number z f . Then

(1) . z f = z f , (2) .
(
z f1 ± z f2

)
= z f1 ± z f2 , (3).

(
z f1 .z f2

)
= z f1 · z f2 ,

(4).
(

z f1
z f2

)
=

z f1
z f2

and (5) .
∣∣∣z f

∣∣∣ =
∣∣∣z f

∣∣∣ .
Proof. In view of Lemma 2.5 and for 0 ≤ α ≤ 1, we obtain that(

z f

)α
=

(
z f

)α
= zαf =

{
z | for all z ∈ zαf

}
.

Again
zαf =

{
z | µ

(
z | z f

)
> α

}
=

{
z | for all z ∈ zαf

}
.

Since z = z, the first part of the theorem follows from above.

For the second part of the theorem, we have to prove that the α-cuts of
(
z f1 ± z f2

)
are equal to

the corresponding α-cuts of z f1 ± z f2 .
Now it follows from Lemma 2.1 and Lemma 2.5 that((

z f1 ± z f2

))α
=

(
z f1 ± z f2

)α
=

(
zαf1 ± zαf2

)
=

{
z1 ± z2 | zi ∈ zαfi , i = 1, 2

}
and (

z f1 ± z f2

)α
=

(
z f1

)α
±

(
z f2

)α
=

(
zαf1

)
±

(
zαf2

)
=

{
−
z1 ±

−
z2 | zi ∈ zαfi , i = 1, 2

}
.

Thus the second part of the theorem is established in view of z1 + z2 = z1 + z2.
We also observe that(

z f1 .z f2

)α
=

(
z f1 .z f2

)α
=

(
zαf1 .z

α
f2

)
=

{
z1.z2 | zi ∈ zαfi , i = 1, 2

}
. (3.10)

We may also see that(
z f1 .z f2

)α
=

(
z f1

)α
.
(
z f2

)α
= zαf1 .z

α
f2

=

{
−
z1.
−
z2 | zi ∈ zαfi , i = 1, 2

}
. (3.11)

Now from (3.10) and (3.11) , we obtain that the corresponding α-cuts are equal. This proves the
third part of the theorem.

For the fourth part of the theorem, we deduce that(z f1

z f2

)α =

(
z f1

z f2

)α
=

(
z f1 .z

−1
f2

)α
= zαf1 .

(
z−1

f2

)α
=

(
zαf1 .

(
zαf2

)−1
)

=

{
z1

z2
| zi ∈ zαfi , i = 1, 2

}
and(

z f1

z f2

)α
=

(
z f1 .z

−1
f2

)α
=

(
z f1

)α
.
(
z−1

f2

)α
= zαf1 .

((
z f2

)α)−1
= zαf1 ·

((
zαf2

))−1
=


−
z1
−
z2

| zi ∈ zαfi , i = 1, 2

 .
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Hence the α-cuts of
(

z f1
z f2

)
are equal to the corresponding α-cuts of z f1

z f2
which implies that the two

fuzzy complex numbers are equal. Thus the fourth part of the theorem follows.
Again we have from Lemma 2.3 and Lemma 2.5 that∣∣∣z f

∣∣∣α =
∣∣∣zαf ∣∣∣ =

{
|z| | for all z ∈ z f

}
and (∣∣∣z f

∣∣∣)α =
∣∣∣∣(z f

)α∣∣∣∣ =
∣∣∣zαf ∣∣∣ =

{∣∣∣z∣∣∣ | for all z ∈ z f

}
.

Consequently the last part of the theorem follows in view of |z| =
∣∣∣z∣∣∣ .

4. Open Problem

As open problems, there are several scopes to investigate the theory of analyticity and sin-
gularity in case of functions of fuzzy complex variables; and analogously entire or meromorphic
functions of fuzzy complex variables may be defined. Naturally, the theory of different aspects of
growth properties of entire and meromorphic functions, comparative growth estimates of iterated
entire functions, results related to exponent of convergence of zeros of entire functions of fuzzy
complex variables etc. may also be studied afresh.
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Abstract
In this paper we study the action of a double infinite matrix A on f ∈ Hp

ν (weighted Banach space, 1 ≤ p ≤ ∞)
and on its wavelet coefficients. Also, we find the frame condition for A−transform of f ∈ Hp

ν whose wavelet series
expansion is known.
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1. Introduction

The mathematical background for today’s signal processing applications are Gabor (Feichtinger
& Strohmer, 1998), wavelet (Daubechies, 1992) and sampling theory (Benedetto & Ferreira,
2001). Without signal processing methods several modern technologies would not be possible,
like mobile phone, UMTS, xDSL or digital television. In other words, we can say that any ad-
vance in signal processing sciences directly leads to an application in technology and information
processing. A signal is sampled and then analyzed using a Gabor respectively wavelet system.
Many applications use a modification on the coefficients obtained from the analysis and synthesis
operations. If the coefficients are not changed, the result of synthesis should be the original signal,
i.e., perfect reconstruction is needed. One way is to analyze the signal using orthonormal basis.
For practical point of view it is noted that the concept of an orthonormal basis is not always useful.
Sometimes it is more important for a decomposing set to have other special properties rather than
guaranteing unique coefficients. This led to the concept of frames introduced by Duffin and Scha-
effer (Duffin & Schaeffer, 1952). Now a days it is one of most important foundations of Gabor
(Moricz & Rhoades, 1989), wavelet (S.T. Ali & Gazeau, 2000) and sampling theory (Aldroubi &
Gröchenig, 2001). In signal processing applications frames have received more and more attention

Email address: d kumar001@rediffmail.com (Devendra Kumar)
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(H. Bölcskei & Feichtinger, 1998; Kronland-Martinet & Grossmann, 1991; Munch, 1992; Sheikh
& Mursaleen, 2004).

Frame provide stable expansions in Hilbert spaces, but they may be over complete and the
coefficients in the frame expansion need not be unique unlike in orthogonal expansions. This
redundancy is useful for the application point of view that is to noise reduction or for the re-
construction from lossy data (Daubechies, 1992; Duffin & Schaeffer, 1952; Matz & Hlawatsch,
2002). The construction of stable orthonormal basis are often difficult in a numerical efficient way
than the construction of frames which are more flexible. Sometimes it is reasonable to use the
frames to analyze additional properties of functions beyond the Hilbert space. These properties
are encoded in the frame coefficients. Wavelet frames encode information on the smoothness and
decay properties or phase space localization of functions by means of the magnitudes of the frame
coefficients. The aim is to study these properties in Banach space norms. Moreover, to charac-
terize an associated family of Banach spaces of functions by the values of the frame coefficients
which play an important role in non-linear approximation and in compression algorithms (DeVore
& Temlyakov, 1996). However, in (Gröchenig, 2004) Gröchenig showed that certain frames for
Hilbert spaces extend automatically to Banach frames. Using this theory he derived some results
on the construction of non-uniform Gabor frames and solved a problem about non-uniform sam-
pling in shift-invariant spaces. Recently, Kumar (Kumar, 2013) studied the convergence of wavelet
expansions associated with dilation matrix in the variable Lp spaces using the approximate iden-
tity. In an another paper Kumar (Kumar, 2009) studied the convergence of non-orthogonal wavelet
expansions in Lp(R), 1 < p < ∞.

The space L2(R) of measurable function f is defined on the real line R, that satisfies
∫ ∞
−∞
| f (x)|2dx <

∞. The inner product of two square integrable functions f , g ∈ L2(R) is defined as

< f , g >=

∫ ∞

−∞

f (x)g(x)dx, ‖ f ‖2 =< f , f >1/2 .

Every function f ∈ L2(R) can be written as f (x) =
∑

j,k∈z c j,kϕ j,k(x) (z is the set of integers).
This series representation of f is called wavelet series. Analogous to the notation of Fourier

coefficients, the wavelet coefficients c j,k are given by c j,k =
∫ ∞
−∞

f (x)ϕ j,k(x)dx =< f , ϕ j,k >, ϕ j,k =

2 j/2ϕ(2 jx − k).

Now, if we define continuous wavelet transform as (Wϕ( f ))(b, a) = |a|−1/2
∫ ∞
−∞

f (x)ϕ
(

x−b
a

)
dx, f ∈

L2(R) then the wavelet coefficients are given by c j,k = (Wϕ( f ))
(

k
2 j ,

1
2 j

)
.

A sequence {xn} in a Hilbert space H is a frame if there exist constant c1 and c2, 0 < c1 ≤

c2 < ∞, such that c1‖ f ‖2 ≤
∑

n∈z | < f , xn > |
2 ≤ c2‖ f ‖2, for all f ∈ H. The supremum of all

such numbers c1 and infimum of all such numbers c2 are called the frame bounds of the frame.
The frame is called tight frame when c1 = c2 = 1. Any orthonormal basis in a Hilbert space H is
a normalized tight frame. The connection between frames and numerically stable reconstruction
from discretized wavelet was pointed out by (Grossmann et al., 1985). In 1985, they defined that
a wavelet function ϕ ∈ L2(R), constitutes a frame with frame bounds c1 and c2, if any f ∈ L2(R)
such that c1‖ f ‖2 ≤

∑
j,k∈z | < f , ϕ j,k > |

2 ≤ c2‖ f ‖2. Again, it is said to be tight if c1 = c2 and is said
to be exact if it ceases to be frame by removing any of its element. For more details see (Chui,
1992; Daubechies et al., 1986).
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2. Notations and Auxiliary Results

Let N and χ be countable index sets in some R2 and both χ and N are separated i.e.,
infm,n∈χ;m,n |m − n| ≥ δ > 0, and likewise for N.

Weight Functions of Polynomial Growth. A weight is a non-negative continuous function
on Rd. An s−moderate weight ν is called polynomially grows, if there are constants C, s ≥ 0 such
that ν(t) ≤ C(1 + |t|)s.

Lemma 2.1. If f (x) =
∑

j,k∈N c j,kϕ j,k(x) is a wavelet expansion of f ∈ L2(Rd) with wavelet coeffi-
cients c j,k =

∫ ∞
−∞

f (x)ϕ j,k(x)dx =< f , ϕ j,k > and A(amn jk) = [(1 + |m− j|)(1 + |n− k|)]−s−d−ε for some
ε > 0 and j, k ∈ N,m, n ∈ χ, then the operator A defined on finite sequences (c j,k) j,k∈N by matrix
multiplication (Ac)m,n =

∑∞
j=0

∑∞
k=0 amn jkc j,k extends to a bonded operator from lp

ν (N) to lp
ν (χ) for

all p ∈ [1,∞] and all s−moderate weights ν.

Proof. To prove the result we have to show the boundedness of A from l1
ν(N) to l1

ν(χ) and from
l∞ν (N) to l∞ν (χ). Then using the interpolation technique of [4] for weighted Lp−space, the lemma
holds for all p ∈ [1,∞].

First we consider

‖Ac j,k‖l1ν(χ) =
∑

m,n∈χ

∣∣∣∣∣∣∣∑j,k∈N

amn jkc j,k

∣∣∣∣∣∣∣ ν(m, n) ≤
∑

m,n∈χ

∑
j,k∈N

[
(1 + |m − j|)(1 + |n − k|)

]−s−d−ε
|c j,k|ν(m, n)

≤ sup
j,k∈N

 ∑
m,n∈χ

[(1 + |m − j|)(1 + |n − k|)]−d−ε

×(
sup

m,n∈χ; j,k∈N
[(1 + |m − j|)(1 + |n − k|)]−s[ν( j, k)]−1ν(m, n)

)
×

∑
j,k∈N

|c j,k|ν( j, k).

Using (Gröchenig, 2004), Lemma 2.2 in above inequality we obtain

≤ sup
j,k∈N

(
C(1 + | j − k|)−d−ε

) (
sup
j,k∈N

C(1 + | j − k|)−s

)
×

[ν( j, k)]−1ν(m, n)×
∑
j,k∈N

|c j,k|ν( j, k) = C‖c j,k‖l1ν(N).

The first supremum in right hand side of above inequality is finite by (Gröchenig, 2004),
Lemma 2.1] and second supremum in finite due to s−moderate and sub multiplicavity of the
weights. Now we have

‖Ac j,k‖l∞ν (χ) = sup
m,n∈χ

∣∣∣∣∣∣∣∑j,k∈N

amn jkc j,k

∣∣∣∣∣∣∣ ν(m, n)

≤ sup
m,n∈χ

∑
j,k∈N

[
(1 + |m − j|)(1 + |n − k|)

]−s−d−ε
|c j,k|ν(m, n)

≤

 sup
m,n∈χ

∑
j,k∈N

[(1 + |m − j|)(1 + |n − k)]−d−ε

×
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sup

m, n ∈ χ
j, k ∈ N

[(1 + |m − j|)(1 + |n − k|)]−s.ν(m, n)ν( j, k)−1


×

(
sup
j,k∈N
|c j,k|ν( j, k)

)
.

Again, using (Gröchenig, 2004), Lemma 2.2 in above inequality we get

≤

C sup
∑
j,k∈N

(1 + | j − k|)−d−ε

 (sup(1 + | j − k|)−sν(m, n)ν( j, k)−1
)
×(

sup
j,k∈N
|c j,k|ν( j, k)

)
≤ CC

′

‖c j,k‖l∞ν (N).

Let {φ j,k : j, k ∈ N} be a Riesz basis of H with dual basis {φ̃ j,k : j, k ∈ N} and ν be a weight
function on Rd of polynomial type.

Definition 2.1. Assume that lp
ν (N) ⊆ l2

ν(N). Then the Banach space Hp
ν is defined to be

Hp
ν = { f ∈ H : f =

∑
j,k∈N

c j,kφ j,k for c j,k ∈ lp
ν (N)}

with norm ‖ f ‖Hp
ν

= ‖c j,k‖lp
ν
. It should be noted that c j,k is uniquely determined, in fact, c j,k =<

f , φ̃ j,k >.

By assumption lp
ν (N) ⊆ l2

ν(N), it means Hp
ν is a (dense) subset of H. On the other hand, if

lp
ν * l2

ν and p < ∞, we define Hp
ν to be the completion of the subspace H0 of finite linear combi-

nations, i.e., H0 = { f =
∑

j,k∈N c j,kφ j,k : supp c is finite }, with respect to the norm ‖ f ‖Hp
ν

= ‖c‖lp
ν
. If

p = ∞ and lp
ν * l2, we take the weak completion of H0 to define H∞ν . In these cases Hp

ν * H.

Frame Operators and Localization of Frames. Let z = {ϕm,n : m, n ∈ χ} be a frame for H
and S f =

∑
m,n∈χ < f , ϕm,n > ϕm,n be the corresponding frame operator. Each frame element has a

natural expansion with respect to the given Riesz basis as

ϕm,n =
∑
j,k∈N

〈
ϕm,n, φ̃ j,k

〉
φ j,k =

∑
j,k∈N

< ϕm,n, φ j,k > φ̃ j,k.

The frame operator S is invertible on H. Our problem is how to extend the mapping properties
of S on Banach spaces Hp

ν . For this purpose we take f =
∑

j,k f j,kφ j,k such that

S f =
∑

m,n∈χ

< f , ϕm,n > ϕm,n =
∑

m,n∈χ

∑
j,k∈N

f j,k < φ j,k, ϕm,n > ϕm,n

=
∑

m,n∈χ

∑
i,l∈N

∑
j,k∈N

f j,k < φ j,k, ϕm,n >
〈
ϕm,n, φ̃i,l

〉
φi,l

=
∑

i,l

∑
j,k

∑
m,n

< φ j,k, ϕm,n >
〈
ϕm,n, φ̃i,l

〉 f j,k

 φi,l.
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Now let A = ail jk be infinite matrix defined as

ail jk =
∑

m,n∈χ

< φ j,k, ϕm,n >
〈
ϕm,n, φ̃i,l

〉
=

〈
Sφ j,k, φ̃i,l

〉
. (2.1)

Define a mapping Γ such that Γ : H → l2(N), (Γ f ) j,k =
〈

f , φ̃ j,k

〉
.

Since {φ j,k} is a Riesz basis, Γ is invertible and an isometric isomorphism between Hp
ν and

lp
ν (N). Therefore, S = Γ−1AΓ carries over to the Banach spaces Hp

ν . To study the behavior of frame
operator S on Hp

ν , it is sufficient to study the infinite matrix A on sequence space lp
ν (N). For this

purpose we will use the following fundamental theorem of Jaffard [14].

Theorem A. Assume that the matrix G = (Gk,l)k,l∈N satisfies the following properties:

(a) G is invertible as an operator on l2(N), and
(b) |Gkl| ≤ C(1 + |k − l|)−l, k, l ∈ N for some constant C > 0 and some r > d. Then the inverse

matrix H = G−1 satisfies the same off-diagonal decay, that is

|Hkl| ≤ C
′

(1 + |k − l|)−r, k, l ∈ N.

Using above theorem we can prove:

Theorem 2.1. Assume that the matrix A = (ail jk)i,l, j,k∈N satisfies the following properties:

(a) A is invertible as an operator on l2(N), and
(b) |ail jk| ≤ C[(1 + |i − j|)(1 + |l − k|)]−r, i, l, j, k ∈ N for some constant C > 0 and some r > d.

Then the inverse matrix T = A−1 satisfies the same off-diagonal decay, i.e.,∣∣∣Til jk

∣∣∣ ≤ C
′

[(1 + |i − j|)(1 + |l − k|)]−r, i, l, j, k ∈ N.

Definition 2.2. The frame z = {ϕm,n : m, n ∈ χ} is said to be polynomially localized with respect
to Riesz basis {φ j,k} with decay s > 0 (or simply s−localized), if

| < ϕm,n, φ j,k > | ≤ C[(1 + |m − j|)(1 + |n − k|)]−s

and

| < ϕm,n, φ̃ j,k > | ≤ C[(1 + |m − j|)(1 + |n − k|)]−s∀i, k ∈ N and m, n ∈ χ.

Now we prove:

Proposition 2.1. Let z = (ϕm,n : m, n ∈ χ) is an (s + d + ε)−localized frame for ε > 0, r ≥ 0 and
1 ≤ p ≤ ∞.Then

(i) the analysis operator defined by Cε f = (< f , ϕm,n >)m,n∈χ is bounded from Hp
ν to lp

ν (χ).
(ii) the synthesis operator defined on finite sequences by Dεc =

∑
m,n∈χ cm,nϕm,n extends to a

bounded mapping from lp
ν (χ) to Hp

ν .
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(iii) the frame operator S = S ε = DεCε =
∑

m,n∈χ < f , ϕm,n > ϕm,n maps Hp
ν into Hp

ν , and the
series converges unconditionally for 1 ≤ p ≤ ∞.

Proof. (i) Assume that f =
∑

j,k∈N f j,kφ j,k, | < f , ϕm,n > | =
∣∣∣∑ j,k∈N f j,k < φ j,k, ϕm,n >

∣∣∣ . In view of
Definition 2.4, we get≤ C

∑
j,k∈N

∣∣∣ f j,k

∣∣∣ [(1+|m− j|)(1+|n−k|)]−s−d−ε ≤CC
′ ∑

j,k∈N | f j,k|(1+| j−k|)−s−d−ε.

If f ∈ Hp
ν , then ‖ f ‖Hp

ν
=

∥∥∥( f j,k) j,k∈N

∥∥∥
lp
ν (N)

and Lemma 2.1 gives that ‖Cε f ‖lp
ν (χ) ≤ CC

′
∥∥∥( f j,k) j,k∈N

∥∥∥
lp
ν (N)

=

CC
′

‖ f ‖Hp
ν
.

(ii) Now we have (Dεc) j,k∈N =
〈∑

m,n∈χ cm,nϕm,n, φ̃ j,k

〉
or

|(Dεc) j,k∈N | ≤
∑

m,n∈χ

|cm,n|

∣∣∣∣〈ϕm,n, φ̃ j,k

〉∣∣∣∣ ≤ C
∑

m,n∈χ

|cm,n|[(1 + |m − j|)(1 + |n − k|)]−s−d−ε

≤ CC
′
∑

m,n∈χ

|cm,n|(1 + | j − k|)−s−d−e = CC
′

(A∗|c|) j,k.

Now Lemma 2.1 (by interchanging N and χ) gives ‖Dεc‖Hp
ν

= ‖A∗|c|‖lp
ν (N) ≤ ‖A∗‖op‖c‖lp

ν (χ).
(iii) The boundlessness of frame operator S follows by combining (1) and (ii). For un-

conditional convergence of the series defining S , let ε > 0, choose N0 = N0(ε), such that
‖ < f , ϕm,n >m,n(not∈N0) ‖lp

ν
≤ ε. Then for any finite set N1 ⊇ N0, from (i) and (ii), we obtain∥∥∥∥∥∥∥S f −

∑
m,n∈N

< f , ϕm,n > ϕm,n

∥∥∥∥∥∥∥
Hp
ν

≤ ‖Cε‖op‖ < f , ϕm,n > ‖ ≤ ‖Cε‖op.ε.

Which implies that the series
∑

m,n∈χ < f , ϕm,n > ϕm,n converges unconditionally in Hp
ν .

Proposition 2.2. Assume that z = {ϕm,n : m, n ∈ χ} is polynomially localized with respect to the
Riesz basis {φ j,k} with decay s > d. Then

|A| = |ail jk| ≤ C(1 + | j − k|)−s for i, l, j, k ∈ N.

Proposition 2.3. From (2.1) we get

|ail jk| ≤ C
∑

m,n∈χ

[(1 + |m − j|)(1 + |n − k|)(1 + |i − m|)(1 + |l − n|)]−s

≤ CC
′
∑
i,l∈N

[(1 + |i − j|)(1 + |l − k|)]−s ≤ CC
′

C
′′

(1 + | j − k|)−s.

3. Main Results

The following definition is due to Moricz and Rhoades (Moricz & Rhoades, 1989).

Definition 3.1. Let A = (ail jk) be a double non-negative infinite matrix of real numbers. Then,
A−transform of a double sequence x = {x j,k} is

∑∞
j=0

∑∞
k=0 amn jkx j,k which is called A−means or

A−transform of the sequence x = {x j,k}.



120 Devendra Kumar / Theory and Applications of Mathematics & Computer Science 4 (1) (2014) 114–122

Sheikh and Mursaleen (Sheikh & Mursaleen, 2004) study the frame condition by using the
action of frame operator A on non-negative infinite matrix in Hilbert space. In this paper our aim
is to extend these results on weighted Banach space in Rd.

Now we prove our main results:

Theorem 3.1. Let A = (ail jk) be a double non-negative infinite matrix. If f (x) =
∑

m,n∈χ cm,nϕm,n(x)
is a wavelet expansion of f ∈ Hp

ν with wavelet coefficients cm,n =< f , ϕm,n >, then the frame
condition for A−transform of f ∈ Hp

ν is

c1‖ f ‖Hp
ν
≤

∥∥∥∥∥∥∥ ∑
m,n∈χ

< A f , ϕm,n >

∥∥∥∥∥∥∥
lp
ν

≤ c2‖ f ‖Hp
ν

where {ϕm,n : m, n ∈ χ} is an (s + d + ε)−localized frame for ε > 0, s ≥ 0 and 1 ≤ p ≤ ∞.

Proof. We take f =
∑

j,k∈N f j,kφ j,k, then

∑
m,n∈χ

| < A f , ϕm,n > | ≤

∣∣∣∣∣∣∣∑j,k∈N

∑
m,n∈χ

A f j,k < φ j,k, ϕm,n >

∣∣∣∣∣∣∣ ≤ ∑
j,k∈N

|A f jk|| < φ j,k, ϕm,n > |

≤ c
∑
j,k∈N

|A f j,k|((1 + |m − j|)(1 + |n − k|))−s−d−ε ≤ CC
′
∑
j,k∈N

|A f j,k|(1 + | j − k|)−s−d−ε.

If f ∈ Hp
ν , then ‖ f ‖Hp

ν
= ‖( f j,k) j,k∈N‖lp

ν
. Hence we get∥∥∥∥∥∥∥ ∑

m,n∈χ

< A f , ϕm,n >

∥∥∥∥∥∥∥
lp
ν

≤ CC
′

‖A‖op‖ f ‖Hp
ν
≤ c2‖ f ‖Hp

ν
.

Now, for any f ∈ Hp
ν , define

f̃ =

∥∥∥∥∥∥∥ ∑
m,n∈χ

< A f , ϕm,n >

∥∥∥∥∥∥∥
−1

lp
ν

f < A f̃ , ϕm,n >=

∥∥∥∥∥∥∥ ∑
m,n∈χ

< A f , ϕm,n >

∥∥∥∥∥∥∥
−1

lp
ν

< A f , ϕm,n >

then ∥∥∥∥∥∥∥ ∑
m,n∈χ

< A f , ϕm,n >

∥∥∥∥∥∥∥
lp
ν

≤ 1.

Hence, if there exists a positive constant α, such that

‖Acm,n‖lp
ν
≤ α


∥∥∥∥∥∥∥ ∑

m,n∈χ

< A f , ϕm,n >

∥∥∥∥∥∥∥
lp
ν


−1

‖Acm,n‖lp
ν
≤ α


∥∥∥∥∥∥∥ ∑

m,n∈χ

< A f , ϕm,n >

∥∥∥∥∥∥∥
lp
ν


−1

‖ f ‖Hp
ν
≤

(
α

‖A‖op

)

it follows that
[∥∥∥∑m,n∈χ < A f , ϕm,n >

∥∥∥
lp
ν

]
≥ c1‖ f ‖Hp

ν
.

Hence the proof is completed.
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Theorem 3.2. If f =
∑

j,k∈N c j,kφ j,k and {ϕm,n : m, n ∈ χ} forms a frame with respect to Riesz basis
{φ j,k}, then the α j,k are the wavelet coefficients of A f , where {di,l} is defined as the A−transform of
{c j,k} such that

di,l =
∑
j,k∈N

ail jkc j,k,

α j,k =
∑
i,l∈χ

di,l < φ j,k, ϕi,l > .

Proof. Using the definition of A−transform of f =
∑

il∈χ ci,lϕi,l by assumption we get

< A f , ϕi,l >=
∑
j,k∈N

ail jkc j,k < φ j,k, ϕi,l >

or ∑
i,l∈χ

< A f , ϕi,l >=
∑
i,l∈χ

(Ac)i,l < φ j,k, ϕi,l >=
∑
i,l∈χ

di,l < φ j,k, ϕi,l > .

Therefore, the wavelet coefficients of A f with respect to Riesz basis {φ j,k} are given by

α j,k =
∑
i,l∈χ

di,l < φ j,k, ϕi,l > .

Hence the proof is completed.
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Abstract

The focus of this article is on automatic detection of fence or wire mesh (a form of quasi-periodic texture) in
images through frequency domain analysis. Textures can be broadly classified in to two general classes: quasi-
periodic and random. For example, a fence has a repetitive geometric pattern, which can be classified as a quasi-
periodic texture. Quasi-periodic textures can be easily detected in the frequency spectrum of an image as they result
in peaks in the frequency spectrum. This article explores a novel way of de-fencing viewed as a quasi-periodic texture
segmentation by filtering in frequency domain to segregate the fence from the background. A resulting de-fenced
image is followed by support vector machine classification.An interesting application of the proposed approach is
the removal of occluding structures such as fence or wire mesh in animal enclosure photography.

Keywords: Frequency spectrum, quasi-periodic texture, texture segmentation
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1. Introduction

This article introduces an algorithm to detect automatically fence or wire mesh structures,
which typically present in the foreground of the image. A region in an image has a constant texture,
provided a set of local statistics or other local propertiesof the picture function are constant,
slowly varying, or approximately periodic (Tuceryan & Jain, 1993). A fence can be classified as a
texture in an image. Textures can be broadly classified in to two general classes:periodicor more
generallyquasi-periodic texturesandrandom textures.
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According to (Rangayyan, 2004), if there is a repetition of a texture element at almost regular
or quasi-periodic intervals, such textures can be classified as quasi-periodic or ordered and the
smallest repetitive element is called a texton or a texel. Incontrast if no such repetitive element
can be identified, those textures can be classified as random.

(Ohm, 2004) classifies textures asregular andirregular textures. Regular textures refer to tex-
tures, which exhibits strong periodic or quasi-periodic behavior. According to (Ohm, 2004), exact
periodicity is a very rare case mostly found in synthetic images. The regular structures in natural
images are often quasi-periodic, which means that periodicpattern can clearly be recognized, but
have slight variations of periods. As it will be shown in section 2, quasi-periodic textures are a
generalization of periodic textures.

Based on the above classifications, a fence structure, whichhas a texture element repeating
at quasi-periodic intervals can be categorized as a quasi-periodic texture. Hence, a fence-like
texture can be modeled as a quasi-periodic signal, which shows peaks in its power spectrum. It
is mentioned in (Chang & Kuo, 1993) that these kinds of quasi-periodic signals possess dominant
frequencies located in the middle frequency channels.

The perception of texture has numerous dimensions. Thus, a number of different texture repre-
sentations were introduced from time to time in order to accommodate a variety of textures. These
representations are categorized in (Tuceryan & Jain, 1993) as statistical methods, which involves
co-occurrence matrices and autocorrelation features, geometric methods, model based methods
and signal processing methods. Signal processing methods are subdivided into spatial domain
filtering (Malik & Perona, 1990) and frequency filtering.

Frequency analysis of the textured image is close to human perception of texture as human
visual system analyzes the textured image by decomposing the image into its frequency and orien-
tation components (Campbell & Robson, 1968). (Turner, 1986) and (Clark et al., 1987) proposed
to use the Gabor filters in texture analysis. The Gabor filter is a frequency and orientation selective
filter. Another model, which is widely used for texture analysis is wavelet transform (Chang &
Kuo, 1992, 1993; Wilscy & Sasi, 2010).

The focus of this article is on images, which are occluded with fence textures as shown in
figure1. In such cases, it is challenging to segment the fence from the rest of the image, especially
when the image background is regular. Simple colour segmentations and edge detection does not
work in this case.

The traditional frequency filters used for texture analysis, Gabor and Wavelet cannot be directly
applied to extract fence texture in our scenario as the frequencies correspond to both fence and the
background are present in the spectrum. Thus, we first perform frequency domain processing to
isolate fence texture from the background and subsequentlyapply Wavelet transform.

An interesting application of the proposed algorithm can bedetection and removal of fence-
like textures obstructing the images in zoo photography. According to many web articles on pho-
tography (Stalking, 2010; Masoner, 2013), wire mesh and fences are a major challenge in zoo
photography. The algorithm proposed in this article was tested for fences with different shapes,
sizes, colours and orientations.

The rest of the article is organized as follows. Section2 introduces quasi-periodic signals
and provides the mathematical background to analyze quasi-periodic signals in images. Section3
discusses the implementation of the quasi-periodic texture detection algorithm in three steps: (1)
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frequency domain filtering for quasi-periodic texture detection, (2) multiresolution processing for
fence mask formation and (3) fence segmentation through SVMclassification. The experimen-
tal results of the proposed algorithm are given in Section4 for some zoo images as well as for
some challenging images from PSU NRT Database (Liu, 2007). A comparison of the proposed
method with existing fence detection techniques is given insection5 followed by future work and
conclusion in sections6 and7 respectively.

Figure 1. Images Occluded with Fence Textures.

2. Quasi-periodic Signals

Before going into details of quasi-periodic texture detection in images, understanding the math-
ematical background of quasi-periodic signals is important.

Definition 2.1. Continuous-time Periodic Signal((Proakis & Manolakis, 2006, §1, p. 13))
By definition, A continuous signal f(t) locally defined on thesetL2(R) of finite energy signals is
fully periodic with period T, when the signal exactly satisfies

f (t) = f (t + T).

Definition 2.2. Continuous-time Quasi-periodic Signal((Martin et al., 2010))
A signal fqp(t) is quasi-periodic with k periodsT1, ...,Tk when

fqp(t) = g { f1(t), f2(t), ..., fk(t)} ,

where the k signalsfi(t) are continuous periodic signals with respect to each period Ti.

In the case of continuous functions locally defined on the setL2(R) of finite energy signals,
quasi-periodic signals are a generalization of periodic signals. All the periods are required to be
strictly positive and to be rationally linearly independent (Martin et al., 2010).

Definition 2.3. Discrete-time Periodic Signal((Proakis & Manolakis, 2006, §1, p. 15))
A discrete-time signal f(n) is periodic with period N, if andonly if,

f (n) = f (n+ N) for all n.
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Based on the definition of continuous-time quasi-periodic signals, the definition for discrete-
time quasi-periodic signals can be derived.

Definition 2.4. Discrete-time Quasi-periodic Signal
A discrete-time signalfqp(n) is quasi-periodic with k periodsN1, ...Nk when

fqp(n) = g{ f1(n), f2(n), ..., fk(n)},

whereg : Zk → Z and the k signalsfi(n) are discrete-time periodic signals with respect to each
periodNi .

In the context of this paper, an image is considered as a 2D discrete-time signal. If we extend
the definition of 1D quasi-periodic signal to 2D quasi-periodic signal;

Definition 2.5. 2D Discrete-time Periodic Signal((Woods, 2006, §1, p. 7))
A 2D discrete-time signal f(x,y) is periodic with period (M,N), if and only if,

f (x, y) = f (x+ M, y) = f (x, y+ N),∀n,m ∈ Z.

Definition 2.6. 2D Discrete-time Quasi-periodic Signal
A 2D discrete-time signalfqp(x, y) is quasi-periodic with k periods (M1, ...Mk,N1, ...Nk) when

fqp(x, y) = g{ f1(x, y), f2(x, y), ..., fk(x, y)},

where the k signalsfi(x, y) are discrete-time periodic signals with respect to periods (Mi ,Ni).
Hence, a quasi-periodic signal can be defined as a combination of periodic signals with incom-
mensurate (not rationally related) frequencies (Battersby & Porta, 1996). If the frequencies are
commensurate, thenfqp becomes a periodic signal (Regev, 2006).

A discrete-time quasi-periodic signal can be expressed with a Fourier series as given in defini-
tion 2.8as a generalization of definition2.7. 1D case will be considered for simplicity and it can
be extended to 2D.

Definition 2.7. Fourier Series of a Discrete-time Periodic Signal ((Proakis & Manolakis, 2006,
§4, p. 242))

f (n) =
N−1
∑

k=0

ckexp

(

j2πkn
N

)

.

Definition 2.8. Fourier Series of a Discrete-time Quasi-periodic Signal ((Regev, 2006, p. 156))
The Fourier series of a r-quasi-periodic signal is given by (Regev, 2006):

fqp(n) =
∑

k1

∑

k2

...
∑

kr

ck1k2...kr exp

[

j

(

2πk1n
N1

+
2πk2n

N2
+ ... +

2πkrn
Nr

)]

,

where k=1,2,...,r and the frequenciesωk = 2π/Nk are incommensurate.
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Theorem 2.1. Let fqp(n) be a discrete-time quasi-periodic signal. Then the frequency spectrum
of fqp(n) consists of a set of peaks determined by the fundamental frequencies of each discrete
periodic signal component in the signal.

Proof. With ωi = 2π/Ni , fqp(n) in definition2.8can be re-written as

fqp(n) =
∑

K

cKexp
[

jKΩn
]

,

whereK = (k1, k2, ..., kr) andΩ = (ωi, ω2, ..., ωr). Thus, the frequency spectrum contains numerous
peaks at all frequenciesν, satisfying

2πν = |K ·Ω| = |k1ω1 + k2ω2 + ... + krωr |,

for any combination of integersk1, k2, ..., kr .

3. Quasi-periodic Texture Detection in Frequency Domain

3.1. Frequency Domain Filtering for Quasi-periodic Texture Detection

As proven by theorem2.1, the Fourier spectrum of a quasi-periodic signal consists of a discrete
set of spikes or peaks at a number of frequencies depending onthe number of periodic signals it is
comprised of. Hence, based on theorem2.1, the fence-like quasi-periodic structure should result
in peaks in the frequency spectrum of the image. The objective of this section is to filter those
spikes in the frequency spectra relevant to the quasi-periodic signal in order to extract the fence
texture corresponding to the quasi-periodic signal from the rest of the image.

To achieve this, first start with the frequency domain representation of the 2D image. We will
be considering the DFT of an image.

F(u, v) =
M−1
∑

x=0

N−1
∑

y=0

f (x, y)exp
[

− j2π
(ux

M
+

vy
N

)]

u=0,1,...M-1, v=0,1,...N-1. (3.1)

To filter the frequencies showing spikes in the frequency spectra, it is necessary to perform
thresholding based on the magnitude of each frequency component. A filter functionH1(u, v) in
frequency domain can be defined for this purpose as given below.

H1(u, v) =

{

1 if |F(u, v)| > T,
0 otherwise,

(3.2)

where T is a threshold to filter spikes in frequency.
Once the thresholding is applied to the frequency components:

F′(u, v) = H1(u, v)F(u, v)

Although, we filtered the frequency components corresponding to peaks in the frequency spec-
tra, it is necessary to filter peaks in frequencies resulted by other details in the image. For an ex-
ample, the DC component F(0,0), which can be derived by substituting u=0 and v=0 in equation
3.1. |F(0, 0)| typically is the largest component of the spectrum.
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F(0, 0) = MN
1

MN

M−1
∑

x=0

N−1
∑

y=0

f (x, y) = MN f (x, y).

The quasi-periodic signal in our case is the fence. Fence-like textures typically result in qausi-
periodic signals whose dominant frequencies are located inthe middle frequency channels (Chang
& Kuo, 1993). Therefore, by using a bandpass filter in frequency domain,the frequencies corre-
sponding to the fence can be filtered.

H2(u, v) =

{

1 if D1 ≤ D(u, v) ≤ D2,

0 otherwise.
(3.3)

whereD1 andD2 are constants and D(u,v) is the distance between a point (u,v) in the frequency
domain and the center of the frequency spectrum.

Thus, the final result in frequency domain after applying thesecond filter would be:

F′′(u, v) = H2(u, v)F′(u, v),
= H2(u, v)H1(u, v)F(u, v),
= H(u, v)F(u, v),

whereH = H2H1, since the application ofH1 andH2 can be considered as a cascade system.
WhenF′′(u, v) is transferred back into spatial domain, the resulting image is given by:

g(x, y) =
1

MN

M−1
∑

u=0

N−1
∑

v=0

F′′(u, v)exp
[

j2π
(ux
M
+

vy
N

)]

x=0,1,...M-1, y=0,1,...N-1.

It is important to note thatH1 andH2 are zero phase shift filters, which affect the magnitude
of the frequency spectra, but do not alter the phase angle. These filters affect the real (Re(u,v))
and imaginary (Im(u,v)) parts equally, thus cancels out when calculating phase angleφ(u, v) =
arctan[Im(u, v)/Re(u, v)].

Figure2(d) illustrates the final result of frequency domain filtering explained above. It can be
clearly seen that the fence texture is emphasized and other image details have been suppressed.

3.2. Multiresolution Processing for Fence Mask Formation

The human visual system analyzes the textured images by decomposing the image into its fre-
quency and orientation components (Campbell & Robson, 1968). Wavelet transformation provides
the ability to analyze images through multiresolution processing.

Wavelet transform in two dimension provides the two dimensional scaling functionφ(x, y)
and three two dimensional directionally sensitive waveletsψH(x, y), ψV(x, y),ψD(x, y) as given in
(Gonzalez & Richard, 2002).

φ j,m,n(x, y) = 2
j
2φ(2 j x−m, 2 jy− n).

ψi
j,m,n(x, y) = 2

j
2ψi(2 j x−m, 2 jy− n), i = {H,V,D}.
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(a) Original Image (f(x,y)). (b) Filtered Peak Frequencies (F’(u,v)).

(c) Bandpassed Spectrum (F”(u,v)). (d) Spatial Domain (g(x,y)).

Figure 2. Frequency Domain Filtering for Fence Texture Segregation from Image
Background.

These wavelets measure intensity variations for images along different directions:ψH mea-
sures variations along horizontal direction (along columns),ψV measures variations along vertical
direction (along rows) andψD corresponds to variations along diagonals.

The discrete transform of image f(x,y) is:

Wφ( j0,m, n) =
1
√

MN

M−1
∑

x=0

N−1
∑

y=0

f (x, y)φ j0,m,n(x, y).

Wi
ψ( j,m, n) =

1
√

MN

M−1
∑

x=0

N−1
∑

y=0

f (x, y)ψi
j,m,n(x, y), i = {H,V,D},

where j0 is an arbitrary starting scale and theWφ(J0,m, n) coefficients define an approximation
of f(x,y) at scalej0. TheWi

ψ( j,m, n) coefficients add horizontal, vertical and diagonal details for
scalesj ≥ j0. Wi

ψ( j0,m, n) coefficients are called detail coefficients. Usuallyj0 is set to zero.
For each level j, thresholding is performed on the details coefficientsWi

ψ( j,m, n) to extract the
fence masksMi( j,m, n) at each level j.

Mi( j,m, n) =

{

1 if Wi
ψ( j,m, n) > T j, whereT j is the threshold for levelj,

0 otherwise.
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The final fence mask at level j is obtained by performingORoperation of the vertical, horizon-
tal and diagonal fence masks at level j.

M( j,m, n) = MV( j,m, n) ⊕ MH( j,m, n) ⊕ MD( j,m, n).

The detected fence masks at 3 consecutive levels are shown infigure3.

(a) M(1,m,n). (b) M(2,m,n). (c) M(3,m,n).

Figure 3. Detected Fence Masks at Three Different Levels.

Next, the fence masks at different levels of wavelet pyramid were combined by using a coarser
to finer strategy. The objective is to reduce noise and extract pixels, which fall exactly on the fence.
In order to make the resultant mask in the same size as the original image, a mask was created at
the zero level by just thresholding the spatial domain result of frequency filtering (g(x,y)). Hence,
altogether we have fence masks at 4 different levels in the pyramid.

First, the highest level fence mask (level 3) was consideredand if a pixel belongs to the mask
then we move to the next lower level (level 2) and check for theneighbouring children of the orig-
inal pixel. If any of the neighbouring children are mask pixels, then recursively go and check for
their neighbouring children in the subsequent lower levels. Finally, when the algorithms reaches
the bottom most level (zero level), it marks the mask pixels as 1, given that the neighbouring
children in the lowest level are mask pixels as well. The resultant fence mask is shown in Figure
4.

Figure 4. Fence Mask Formed by Combining Wavelet Decomposition Levels.

images/fig3a.eps
images/fig3b.eps
images/fig3c.eps
images/fig4.eps


R. Hettiarachchi, et al./ Theory and Applications of Mathematics& Computer Science 4 (2) (2014) 123–139 131

3.3. Fence Segmentation through SVM Classification

Although the noise is minimized and the fence is emphasized in the detected fence mask, it is
not perfectly detected yet. However, the detected fence mask classifies a good number of pixels,
which exactly falls on the fence in the image. This knowledgeon fence pixels can be used to
segment the fence. Hence, it was decided to pick some samplesfrom the fence mask and use
the features of those sample pixels to train aSupport Vector Machine (SVM) classifierin order to
segment the fence texture. A SVM classifier with a linear kernel is used in this case.

In addition to the samples from fence, it is necessary to picksamples from background to
train the SVM classifier. For this purpose two root level fence masks were generated. One root
level mask was generated by selecting a very high threshold and the other one is generated by
using a very low threshold. These masks were used as the root level mask in the process of
combining wavelet decomposition levels as explained in section 3.2separately in order to generate
two different final fence masks as shown in Figure5.

As it can be clearly seen, the root level mask with high threshold generates a very thin final
mask, resulting points, which exactly lie on the fence. On the other hand the root level mask with
low threshold generates a thick fence mask, which has some points fall on the background as well.

(a) Thin Mask with High Threshold. (b) Thick Mask with Low Threshold.

Figure 5. Two Fence Masks used for SVM Classification.

The thin mask was used to pick random samples, which represent fence class and the negation
of the thick mask (1-thick mask) is used to pick random samples, which represent the background
class. The use of negation of thick mask for background sample selection reduces the chance of
picking fence pixels as background pixels and hence improves the accuracy of classification.

The feature vector selected for classification plays a very important role in this case as it affects
the overall performance of the classification. The RGB colour channels and the gradient direction
of the samples were used as the feature set for classification. The resultant fence mask can be
further improved with the help of morphological operations.

The algorithm to achieve fence-like quasi-periodic texture detection in digital images is given
in Algorithm 1.
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Algorithm 1 Algorithm for fence-like quasi-periodic texture detection in images

1: Read the fenced imageI
2: ConvertI into frequency domain using Discrete Fourier Transform (let the output beF)
3: Filter F using the peak frequency filterH1 defined in equation3.2(let the output beF1)
4: Filter F1 using the band pass filterH2 defined in equation3.3(let the output beF2)
5: ConvertF2 back into spatial domain (let the output befiltI )
6: Perform Wavelet decomposition onfiltI with three decomposition levels
7: for each Wavelet decomposition leveldo
8: Find vertical (V), horizontal (H) and Diagonal (D) components
9: Threshold V, H and D with the same threshold

10: Combine thresholded V, H and D components using logical OR operation
11: end for

⊲ %comment: Obtain fence mask by combining all three levels ofthe wavelet pyramid (let
the output be fenceMask)%

12: Start from the highest Wavelet decomposition level (level 3)
13: for each pixel in level 3do
14: if a pixel belongs to the maskthen
15: Move to next lower level
16: if current level== lowest levelthen
17: Mark the pixel as mask pixels
18: Mark the neighbouring children as mask pixels
19: else
20: Check neighbouring children
21: if neighbouring children are mask pixelsthen
22: Go back to step 14
23: end if
24: end if
25: end if
26: end for
27: Prepare the training data matrix using feature vectors of sample pixels fall on fence (fence-

Mask==1) and background (fenceMask==0).
28: Train the SVM classifier by using training data matrix of step25.
29: Perform SVM classification by using the trained classifier instep 26 by giving original image

as the input to obtain final fence mask.
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(a) Child Image. (b) Fence Mask for Child Image.

(c) Building Image. (d) Fence Mask for Building Image.

(e) Flower Image. (f) Fence Mask for Flower Image.

Figure 6. Results of Fence-like Texture Detection in Images from PSU NRT Database
(Liu, 2007).
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4. Experimental Results

The frequency domain-based fence-like quasi-periodic texture detection algorithm proposed
in this article was implemented in Matlab R2013a and it was tested with a number of images
with fence-like texture. Some test images were obtained from PSU Near-regular Texture database
(Liu, 2007). Images with fences of different shapes (square and diagonal), sizes, colours and
orientations were used for this experiment. Figure6 illustrates results of some of the challenging
cases encountered during experiments.

For the completion of the sample application chosen in this paper, once the fence texture was
successfully detected and removed, the region, which belonged to the fence, should be filled with
relevant information in order to obtain the final image. One of the techniques, which can serve
this purpose isinpainting. According to (Bertalmioet al., 2000), inpainting is themodification
of images in a way that is non-detectable for an observer who does not know the original image.
There are numerous inpainting techniques introduced in past literature.

For examples region filling and object removal by exemplar-based image inpainting by Crim-
inisi et al. (Criminisi et al., 2004), Fields of experts by Roth et al. (Roth & Black, 2009) and Image
completion with structure propagation by Sun et al. (Sunet al., 2005). Among these techniques,
the exemplar based image inpainting technique (Criminisi et al., 2004) was used to fill the fence
region in this approach. The results are given in figure7.

Interestingly, some image distortions can be observed after performing inpainting for some
images. The region belonged to the fence texture is much moredifficult to texture fill than large,
circular regions of similar area. The fence texture in this case is usually wide spread in the whole
image. Thus, it requires the inpainting algorithm to correctly propagate and join different types of
structures in order to fill this wide spread fence region. Hence, mistakes in structure propagation
can be quiet frequent in this case. The high ratio of foreground area to background area and the
fragmented background source textures may become challenging for the inpainting technique.

5. Comparison with Existing Fence Detection Techniques

Most of the articles, which investigated the image de-fencing problem, have used a texture
based approach to detect the fence, based on the assumption that a fence is a near regular structure.
(Liuy et al., 2008) introduced an image de-fencing technique based on latticestructure of regular
textures in their article. The de-fencing algorithm proposed in (Liuy et al., 2008) consists of three
steps.(1) automatically finding the skeleton structure of a potential frontal layer in the form of a
deformed lattice; (2) classifying pixels as foreground or background using appearance regularity
as the dominant cue, and (3) inpainting the foreground regions using the background texture which
is typically composed of fragmented source regions to reveal a complete, non-occluded image
(Liuy et al., 2008).

In the first step, to automatically detect the lattice of the fence, (Liuy et al., 2008) uses the
iterative algorithm explained in (Hayset al., 2006), which tries to find the most regular lattice for
a given image by assigning the neighbour relationships suchthat neighbors have maximum visual
similarity. Step one results in a mesh of quadratiles, whichcontains repeated elements or texels.
In the second step standard deviation of each colour channeland the color features are used for k-
means clustering for background foreground separation. Inorder to obtain the standard deviation,
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(a) Lynx. (b) Fence Mask. (c) Fence Mask Applied Im-
age.

(d) Inpainted Image.

(e) Puma. (f) Fence Mask. (g) Fence Mask Applied Im-
age.

(h) Inpainted Image.

(i) Lion (Schneider, 2010). (j) Fence Mask. (k) Fence Mask Applied Im-
age.

(l) Inpainted Image.

(m) Leopard. (n) Fence Mask. (o) Fence Mask Applied Im-
age.

(p) Inpainted Image.

(q) Puppies (Liu, 2007). (r) Fence Mask. (s) Fence Mask Applied Im-
age.

(t) Inpainted Image.

Figure 7. Results of Fence Removal from Zoo Images.
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the texels were aligned and arranged in a stack and standard deviation is calculated along each
vertical column of pixels. Finally, texture based inpainting technique introduced by Criminisi et
al. (Criminisi et al., 2004, 2003) is used to obtain the final de-fenced image.

Park et al. revisits the image de-fencing problem in their paper (Park et al., 2011). They
no longer uses the lattice detection algorithm introduced in (Hayset al., 2006), as they states its
performance is far from practical due to inaccuracy and slowness. Rather the implementation of
lattice detection algorithm in (Parket al., 2011) is similar to (Parket al., 2009). In their method,
once the type of the repeating pattern is learnt, the irregularities are removed and the learned reg-
ularity is used in evaluating the foreground appearance likelihood during the lattice growth. They
have improved the lattice detection algorithm by introducing an online learning and classification.

In essence, the de-fencing algorithms introduced in both ofthese articles uses a lattice de-
tection algorithm in order to find the fence mask. Thus, the success of both algorithms depends
on finding the repeated element or texel in the fence structure. The lattice detection algorithm
used by (Liuy et al., 2008) has no measures against irregularities in the lattice while the lattice
detection algorithm used by (Parket al., 2011) takes some measures to remove irregularities dur-
ing lattice growth. However, both these approaches depend on the regularity of the fence as well
as the irregularity of the background of the image. Although(Parket al., 2011) takes measures
against irregularities in the fence, it does not take in to account the possibility of regularities in the
background. Furthermore, the lattice detection process itself is very complex and time consuming.

In contrast to the two methods discussed above, the method explained in this article uses a fre-
quency domain approach to address the fence detection problem. Due to the uncertainty principle,
the global wide spread fence texture in spatial domain becomes local to a set of frequencies in the
frequency domain. So the processing required to extract thefence texture in frequency domain
is simpler and faster compared to spatial domain processing. This becomes advantageous in the
proposed method compared to the existing techniques. Moreover, the band pass filtering in fre-
quency domain used in the proposed method helps to avoid other periodic structures (regularities)
in the background, which is not possible in existing techniques. The proposed method is robust
against deformations and irregularities in the fence texture due to SVM classification used in fence
segmentation phase.

The existing near regular lattice detection approaches work well for some images and on the
other hand fail for some cases. They have observed that the failure cases are often accompanied
by sudden changes of colors in the background and obscuring objects in front of the fence. For
examples in (Liuy et al., 2008) method, the lattice detection fails for images (a) and (c) in Figure
6 and for image (q) in Figure7. The proposed method is successful in detecting fence texture in
all those images. A comparison of fence mask detected in Flower image by (Liuy et al., 2008)
method and proposed method is given in Figure8.

However, the proposed method fails to provide satisfactoryresults for blurred images, espe-
cially when the fence is very much blurred. In such cases preprocessing to sharpen the fence may
give better results. Furthermore, fence segmentation becomes challenging when the visual similar-
ity between fence pixels and background pixels becomes high. Feature set used for segmentation
has to be tuned to overcome such problems. Determining the correct feature set is challenging in
such scenarios.
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(a) Flower Image. (b) (Liuy et al., 2008). (c) Proposed Method.

Figure 8. Comparison of Fence Mask Detected for Flower Image.

6. Future Work

Fence texture segmentation becomes challenging, when there are pixels with features similar
to fence pixels in the background. SVM classification used for final segmentation of the fence
texture in this article can be replaced with descriptive motif pattern generation described in (Peters
& Hettiarachichi, 2013). The accuracy of this phase can be further improved with help of near set
theory (Peters, 2013; Peters & Naimpally, 2012; Peters, 2014; Peterset al., 2014).

7. Conclusion

Fence-like texture present in the foreground of the image occludes the points of interest in
an image and is difficult to segment by directly applying conventional frequency filters used for
texture analysis. The proposed approach in this article segregates each fence texture by frequency
domain processing prior to wavelet transformation and the segmentation is achieved through sup-
port vector machine classification.

The proposed method works well for fence texture with different shapes, sizes, colours and
orientations. Fence texture detection was successful not only for images having fence in the fore-
ground but also for images having fence in the background.

As a sample application of the proposed approach, removal offences from zoo animal enclo-
sure images is presented. In addition to this, the proposed approach to de-fencing can be used for
any application, where the images are occluded with fence-like texture.
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Peters, J.F., E.̇Inan and M.A.Öztürk (2014). Spatial and descriptive isometries in proximity spaces.General Mathe-
matics Notes21(2), 1–10.

Proakis, John and Dimitris Manolakis (2006).Digital Signal Processing: Principles, Algorithms and Applications.
Prentice Hall.

Rangayyan, Rangaraj M (2004).Biomedical image analysis. CRC press.

Regev, Oded (2006).Chaos and complexity in astrophysics. Cambridge University Press.

Roth, Stefan and Michael J Black (2009). Fields of experts.International Journal of Computer Vision82(2), 205–229.

Schneider, Mara Kay (2010). African adventures at the zion wildlife gardens.
http://maerchens-adventures.blogspot.ca/2010/08/african-adventures-at-zion-wildlife.html.

http://vivid.cse.psu.edu/texturedb/gallery/
http://photography.about.com/od/animalphotography/a/zoophotos.htm
http://maerchens-adventures.blogspot.ca/2010/08/african-adventures-at-zion-wildlife.html


R. Hettiarachchi, et al./ Theory and Applications of Mathematics& Computer Science 4 (2) (2014) 123–139 139

Stalking, Light (2010). The three main challenges of zoo photography (and how to overcome them).
http://www.lightstalking.com/zoo-photography-challenges.

Sun, Jian, Lu Yuan, Jiaya Jia and Heung-Yeung Shum (2005). Image completion with structure propagation.ACM
Transactions on Graphics (ToG)24(3), 861–868.

Tuceryan, Mihran and Anil K Jain (1993). Texture analysis.Handbook of pattern recognition and computer vision.

Turner, Mark R (1986). Texture discrimination by gabor functions.Biological Cybernetics55(2-3), 71–82.

Wilscy, M and Remya K Sasi (2010). Wavelet based texture segmentation. In:Computational Intelligence and Com-
puting Research (ICCIC), 2010 IEEE International Conference on. IEEE. pp. 1–4.

Woods, John W (2006).Multidimensional signal, image, and video processing and coding. Academic press.

http://www.lightstalking.com/zoo-photography-challenges


Theory and Applications of Mathematics & Computer Science 4 (2) (2014) 140–153

Counting Sets of Lattice Points in the Plane with a Given Diameter
under the Manhattan and Chebyshev Distances

Mugurel Ionuţ Andreicaa,∗
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Abstract
In this paper we present new algorithms for counting the sets of lattice points in the plane whose diameter is a

given value D, under the Manhattan (L1) and Chebyshev (L∞) distances. We consider two versions of the problem:
counting all sets within a given lattice U × V , and counting all sets that are not equivalent under translations.
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1. Introduction

In this paper we present new algorithms for counting the sets of lattice points in the plane
with a given diameter, under the Manhattan (L1) and Chebyshev (L∞) distances. We consider two
versions of the problem. In the first version we assume that a fixed size 2D grid is given and
the sets must be placed inside this grid. Two sets are different if they have a different number of
points or the positions of their points inside the grid are not all identical. In the second version we
assume that two sets are considered identical (and, thus, need to be counted only once) if one can
be obtained from another by translation operations.

The rest of this paper is structured as follows. In Section 2 we present the problems in more
details, together with some preliminaries required by the algorithms presented in the other sections.
In Section 3 we present an algorithm with O(D · log(D)) arithmetic operations for the Chebyshev
(L∞) distance which can solve both versions of the problem. In Section 4 we present a more
efficient algorithm, with only O(log(D)) arithmetic operations, for the Chebyshev distance, but
only for the second version of the problem. In Sections 5 and 6 we present algorithms with a
similar number of arithmetic operations for the Manhattan distance and for the same versions of
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the problem. In Section 7 we present experimental results regarding the two algorithms for the
Manhattan distance. In Section 8 we discuss related work. In Section 9 we conclude and discuss
future work.

2. Problem Statement and Preliminaries

In this paper we consider sets of lattice points in the plane. A lattice point is a point with
integer coordinates. The diameter of a set of points is the maximum distance between any two
points in the set. In this paper we will consider two distances. The Manhattan distance (also called
the L1 distance) between two points (x1, y1) and (x2, y2) is defined as |x1 − x2| + |y1 − y2|. The L∞
distance (also called the Chebyshev distance) between two points (x1, y1) and (x2, y2) is defined as
max{|x1 − x2|, |y1 − y2|}. When the coordinates of the points are integer (i.e. when we consider only
lattice points) both the L1 and the L∞ distances are integers.

We consider two versions of the problem for counting sets of lattice points having exactly a
given diameter D (under the L1 or L∞ distances). The first version assumes that a 2D grid of
fixed size U × V is given (U is the number of points along the OX axis and V is the number of
points along the OY axis). We may assume that the points of the grid have coordinates (x, y) with
0 ≤ x ≤ U − 1 and 0 ≤ y ≤ V − 1. In this case two sets of points are considered different if they
consist of a different number of points or if the positions of their points are not all identical. The
dimensions of the grid (U and V) are part of the input of the algorithms presented for this version.

For the second version we assume that two sets A and B are identical if one can be obtained
from another by translation operations. To be more precise, set A is considered identical to B if
there exist the integer numbers T X and TY such that by adding T X to the x-coordinate of each
point of A and TY to the y-coordinate of each point of A we obtain exactly the set B (note that this
automatically implies that A and B have the same number of points). In this case the sets are not
constrained to be located within a fixed size grid, so the parameters U and V from the first version
of the problem do not exist here.

We are interested in computing the number of sets of points with a given value of the diameter
D (D ≥ 1) under both versions of the problem and considering either the L1 or the L∞ distance.
Let’s consider, for instance, the second version of the problem. For D = 1 there are two sets of
lattice points for the Manhattan distance, each consisting of two adjacent lattice points. In the
first set the two points are horizontally adjacent and in the second set the two points are vertically
adjacent. On the other hand, there are 9 sets of lattice points for D = 1 and the Chebyshev distance.

In order for a set of points in the plane to have diameter D under the L∞ distance all the points
must be located inside a square of side length D and for at least one pair of opposite sides there
must be at least one point from the set located on each of the two sides.

The diameter of a set of points A under the Manhattan distance is equivalent to the diameter
under the L∞ distance of a modified set of points B (Indyk, 2001). B is obtained by transforming
each point (x, y) of A into the point (x − y, x + y) in B. Thus, the two problems considered in this
paper are strongly connected to each other. The transformed coordinates correspond to diagonal
coordinates.

In a 2D plane we have two types of diagonals: main diagonals (running from north-east to
south-west) and secondary diagonals (running from north-west to south-east). All the points (x, y)
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on the same main diagonal have the same value of x − y and all the points (x, y) on the same
secondary diagonal have the same value of x + y. The index of a main diagonal is the difference
x − y of all the points (x, y) on it. Similarly, the index of a secondary diagonal is the sum x + y of
all the points (x, y) on it. The parity of a diagonal (main or secondary) is defined as the parity of
its index. The distance between two diagonals of the same type (main or secondary) is defined as
the absolute difference of their indices.

After the transformation to diagonal coordinates we can easily see that in order for a set of
points to have exactly diameter D under the Manhattan distance one of the following conditions
must hold:

1. It should have at least two points located on main diagonals at distance D apart, while the
other pairs of main diagonals of all the points are located at distance at most D apart and the
pairs of secondary diagonals of all the points are at distance strictly less than D or

2. It should have at least two points located on secondary diagonals at distance D apart while
the other pairs of secondary diagonals of all the points are located at distance at most D apart
and the pairs of main diagonals of all the points are at distance strictly less than D or

3. It should have at least two points located on main diagonals at distance D apart and at least
two points located on secondary diagonals at distance D apart and all the other pairs of main
and secondary diagonals of the points are at distance at most D apart.

The three cases correspond to different types of sets of points (i.e. each set of points hav-
ing diameter D under the Manhattan distance belongs to exactly one of the three cases). Note
that there is a bijection between the sets of points corresponding to cases 1 and 2. Each set of
points corresponding to case 1 can be transformed into a set of points corresponding to case 2 (by
switching the order of the diagonals). Similarly, each set of points corresponding to case 2 can be
transformed into a set of points corresponding to case 1.

Thus, for the second version of the problem, it will be enough to count the number of sets
of points corresponding to case 1 (C1) and the number of sets of points corresponding to case 3
(C3) in order to obtain the total number of sets of points having diameter D under the Manhattan
distance. Then, the total number of sets of lattice points having diameter D (under the Manhattan
distance) is equal to 2 ·C1 + C3.

3. Algorithm 1 for Counting Sets of Lattice Points of Diameter D under the Chebyshev (L∞)
Distance

In this section we will present an algorithm which computes the number of sets of lattice points
having diameter D under the Chebyshev distance for both versions of the problem. The algorithm
will make use of a function denoted by CNTS ETS (LX, LY) which will compute the number of
sets of lattice points contained in a rectangle having side length LX along the OX axis and side
length LY along the OY axis and such that each counted set has at least one point on each of the 4
sides of the rectangle. Moreover, the corners of the rectangle are lattice points.

We will start with some simple cases. We have CNTS ETS (0, 0) = 1 and CNTS ETS (P, 0) =

CNTS ETS (0, P) = 2P−1. When both LX and LY are greater than or equal to 1 we will use the
following approach. We will first identify the 4 corners of the rectangle. We will consider each
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of the 24 binary configurations of 4 bits. Let BC denote the current binary configuration and
BC(i) will denote bit i in the configuration (0 ≤ i ≤ 3). Each bit will correspond to one of the 4
corners. If BC(i) is 1 we will assume that the corresponding corner is selected to be part of the set;
otherwise we will assume that it is not selected. Lets consider now each of the horizontal sides
of the rectangle. If at least one corner located on the considered side was selected, then there are
2LX−1 possibilities left for selecting the remaining points (non-corners) of the horizontal side (note
that the side contains LX + 1 points overall, out of which 2 are corners). If none of the corners
of the side are selected, then there are only 2LX−1 − 1 possibilites left for selecting the remaining
points of the horizontal side. The situation is similar for the vertical sides: if at least one corner is
selected from a vertical side, there are 2LY−1 possibilities of selecting the remaining points of the
vertical side; otherwise the number of possibilities is only 2LY−1 − 1. After considering all the 4
sides of the rectangle we need to consider the points located strictly inside the rectangle. There
are NIN = (LX − 1) · (LY − 1) points located strictly inside the rectangle. Each of these inner
points may be selected or not, meaning that there are 2NIN possibilities of selecting these points.
For a given binary configuration BC the number of possibilities of selecting points according to it
is equal to the product of five terms: four of which are the number of possibilities corresponding
to each of the 4 sides of the rectangle and the 5th term corresponds to the number of possibilities of
selecting the inner points of the rectangle. The value returned by CNTS ETS (LX, LY) is equal to
the sum of the numbers of possibilities of selecting points corresponding to each of the 24 binary
configurations.

We will use a variable C ranging from 0 to D. For each value of C we will first compute
CNTS ETS (D,C). Note that this value corresponds to the number of sets of lattice points having
diameter D and which are contained in a minimum bounding rectangle of side lengths D (along
the OX axis) and C (along the OY axis). For the first version of the problem, each set counted by
CNTS ETS (C,D) may appear multiple times inside the grid - in fact, it may appear (U−D)·(V−C)
times (as that’s the number of possibilities of placing a D · C rectangle inside the grid). Thus, we
will add the term CNTS ETS (D,C) · (U − D) · (V − C) to the final answer for the first version of
the problem (or 0, if D > U or C > V). In the second version of the problem we simply need to
add CNTS ETS (D,C) to the final answer for the second version of the problem. This is because
all the sets counted by CNTS ETS (D,C) are different under translation operations.

If C < D we will also compute CNTS ETS (C,D) (which is identical in value to CNTS ETS (D,
C)). For the first version of the problem we will add to the final answer the value CNTS ETS (C,D)·
(U −C) · (V − D) (or 0, if C > U or D > V). For the second version of the problem we will add to
the final answer the value CNTS ETS (C,D).

The algorithm presented in this section uses O(D · log(D)) arithmetic operations, because it
considers O(D) cases and for each case it needs to perform a constant number of exponentiations
where the base 2 logarithm of the exponent is of the order O(log(D)). All the exponentiations raise
2 to a given exponent. If D is not very large we may consider precomputing all the powers of 2
from 0 to D (we may achieve this with only O(D) multiplications because we can write 2P = 2P−1 ·2
for P ≥ 1 and we can consider the values of P in ascending order). However, NIN is of the order
O(D2). If D is sufficiently small then we may precompute powers of 2 up to D2 (using O(D2)
multiplications). If, however, D2 is too large, then we need to notice that, as C increases from 0 to
D, NIN also increases. We will assume that our algorithm considers the values of C in ascending
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order (note that NIN is the same for both CNTS ETS (D,C) and CNTS ETS (C,D)). Let’s assume
that PREVNIN is equal to the value of NIN for the case C − 1 and RES PREVNIN = 2PREVNIN .
We will initially (for C = 0) have PREVNIN = 0 and RES PREVNIN = 1. When we need to
compute 2NIN for a case we will first compute the difference DIFNIN = NIN − PREVNIN. We
will always have DIFNIN = D − 1. Thus, we can compute 2NIN with only one multiplication, as
RES PREVNIN ·2DIFNIN (note that 2DIFNIN is taken from the table of precomputed powers of two).
After handling the current value of C we will update PREVNIN = NIN and RES PREVNIN =

2NIN (where 2NIN was just computed by the method we presented). Using this approach we only
need O(D) arithmetic operations instead of O(D · log(D)).

So far we assumed that we want to compute the number of sets of lattice points exactly. In this
case we will need to work with numbers which have O(4 ·D) bits. However, there are many situa-
tions when the exact numbers are not required. For instance, if we are only interested in computing
the number of sets modulo a given number M, then we only need numbers having O(2 · log(M))
bits for storing intermediate and final results. If M is sufficiently small (e.g. a 32-bit number)
then we can practically assume that on the current machine architectures the numbers we use have
a constant number of bits. However, the exponents to which 2 is raised can still be pretty large
numbers (having O(log(D)) bits). This may not necessarily be a problem, but we may inadver-
tently face some challenging algorithmic problems. For instance, when multiplying (LX − 1) by
(LY − 1) in the CNTS ETS function we need to multiply together two numbers having O(log(D))
bits. The naive algorithm would use O(log2(D)) time for computing the result. In order to speed
up the multiplication we may need to use more complicated algorithms (Schonhage & Strassen,
1971), (Furer, 2009) which reduce the time complexity to O(log(D)·log(log(D))·log(log(log(D))))
or slightly better. Nevertheless, there is a simple situation when all these complications are not
needed: when M is an odd prime. In this case we know that AM−1 = 1 (modulo M) for any natural
number 1 ≤ A ≤ M − 1. Since we only need to raise 2 at some powers (modulo M), we notice
that we only need the remainder of the exponent when divided by M − 1 in order to compute the
required result. Thus, instead of using exact exponents we will only use the exponents modulo
M − 1. This way we can avoid the complicated multiplication of (LX − 1) by (LY − 1) and replace
it with the multiplication of ((LX-1) mod (M-1)) by ((LY-1) mod (M-1)). This way we will need to
spend O(log(D)) time in order to compute the remainders of numbers having O(log(D)) bits when
divided by M − 1, but we do not need to multiply together two large numbers.

4. Algorithm 2 for Counting Sets of Lattice Points of Diameter D under the Chebyshev (L∞)
Distance

The algorithm presented in this section can only solve the second version of the problem (i.e.
when two sets are identical if one can be obtained from another by using translation operations).
We will first define the following function: NS ETS (LX, LY)=the number of sets of lattice points
contained in a rectangle of horizontal side length LX and vertical side length LY such that at least
one point is located on each of the opposite vertical sides (for this function we will ignore the
fact the two sets are identical if one can be obtained from another by translation operations). We
assume LX ≥ 1 and LY ≥ 0, both numbers are integers and the corners of the rectangle are lattice
points. Such a rectangle contains (LX + 1) · (LY + 1) lattice points inside of it or on its borders. It
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is easy to see that NS ETS (LX, LY) = (2LY+1 − 1)2 · 2(LX+1)·(LY+1)−2·(LY+1). This formula corresponds
to the following cases. On each of the two opposite vertical sides we must have one selected point.
Thus, there are 2LY+1 − 1 possibilities of choosing lattice points on each of these two sides. Each
of the remaining (LX + 1) · (LY + 1) − 2 · (LY + 1) lattice points can be selected or not to be part
of the set. Thus, we have 2(LX+1)·(LY+1)−2·(LY+1) possibilities for selecting these points. If LY < 0, by
definition, we will have NS ETS (LX, LY) = 0.

In order for a set of points in the plane to have diameter D under the Chebyshev distance all
the points must be located inside a square of side length D, such that at least one pair of opposite
sides has at least one point from the set on each side from the pair. We will consider three cases:

1. both of the vertical opposite sides of the square contain points from the set on them, but not
both horizontal sides of the square contain points from the set: the number of sets corre-
sponding to this case is NS ETS (D,D−1)−NS ETS (D,D−2) (this forces every set to have
a point selected on the bottom side of the square of side length D)

2. both of the horizontal opposite sides of the square contain points from the set on them,
but not both vertical sides of the square contain points from the set: the number of sets
corresponding to this case is also NS ETS (D,D − 1) − NS ETS (D,D − 2).

3. both of the horizontal opposite sides and both of the vertical opposite sides of the square
contain points from the set on them: the number of sets corresponding to this case is
NS ETS (D,D) − 2 · NS ETS (D,D − 1) + NS ETS (D,D − 2). We actually made use of
the inclusion-exclusion principle here. From all the sets of lattice points with points on both
opposite vertical sides (NS ETS (D,D)) we subtracted the sets of lattice points which do not
have points on the top or bottom horizontal side (2 · NS ETS (D,D − 1)). In doing this we
over-subtracted the sets of lattice points which do not have points on any of the horizontal
sides (NS ETS (D,D − 2)) thus, we need to add this number back.

By adding together the numbers corresponding to the cases 1, 2 and 3, we obtain the total num-
ber of sets of lattice points having diameter D under the Chebyshev distance: 2 · (NS ETS (D,D −
1) − NS ETS (D,D − 2)) + NS ETS (D,D) − 2 · NS ETS (D,D − 1) + NS ETS (D,D − 2), which
simplifies to NS ETS (D,D) − NS ETS (D,D − 2).

This method requires O(log(D2)) = O(log(D)) arithmetic operations in order to compute the
answer (this number corresponds to raising 2 to a power whose value is of the order O(D2)). In
case exact results are not needed, the same discussion from the previous section applies to this
case, too, because in the NS ETS function we need to multiply two numbers of O(log(D)) bits
each: (LX + 1) and (LY + 1).

5. Algorithm 1 for Counting Sets of Lattice Points of Diameter D under the Manhattan (L1)
Distance

In this section we present an algorithm similar in essence to the one from section 3. The algo-
rithm can compute the number of sets of lattice points having diameter D under the Manhattan dis-
tance for both versions of the problem. The algorithm will make use of a function CNT EQ(C, X)
which computes the number of sets of lattice points such that:

• the main diagonals of at least two points are at distance exactly D apart
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• all the other pairs of main diagonals of the points are at distance at most D apart

• the secondary diagonals of at least two points are at distance exactly C apart

• all the other pairs of secondary diagonals of the points are at distance at most C apart

• X = 0 means that the parity of the first secondary diagonal is equal to the parity of the first
main diagonal, while X = 1 means that these parities differ (the first diagonal of each type
is the one with the smallest index)

The algorithm will simply iterate through all the values of C (from 0 to D), and for each value
of C, through all the values of X (from 0 to 1).

For the first version of the problem we will need to compute the minimum bounding rectangle
for the sets counted by CNT EQ(C, X) (X = 0, 1). Let’s assume that the minimum bounding
rectangle has side length MBRX along the OX axis and MBRY along the OY axis. We will add to
the final answer the value CNT EQ(C, X)·(U−MBRX)·(V−MBRY) (X = 0, 1), or 0 if MBRX > U
or MBRY > V . If C < D then we have a set of symmetric sets of lattice points by switching the
role of main and secondary diagonals. These sets have a minimum bounding rectangle with side
length MBRY along the OX axis and MBRX along the OY axis. Thus, we will also add to the final
answer the value CNT EQ(C, X) · (U − MBRY) · (V − MBRX) (X = 0, 1), or 0 if MBRX > V or
MBRY > U.

For the second version of the problem C1 will be equal to the sum of the values CNT EQ(C, X)
(0 ≤ C ≤ D − 1, 0 ≤ X ≤ 1) and C3 will be equal to CNT EQ(D, 0) + CNT EQ(D, 1).

When computing CNT EQ(C, ∗), we need to consider a figure containing lattice points en-
closed by a pair of main diagonals at distance D and a pair of secondary diagonals at distance C.
We will denote the first main diagonal as the left diagonal, the second main diagonal as the right
diagonal, the first secondary diagonal as the bottom diagonal and the second secondary diagonal
as the top diagonal. We will need to compute the following numbers:

• NLEFT=the number of lattice points on the left diagonal of the figure

• NRIGHT=the number of lattice points on the right diagonal of the figure

• NUP=the number of lattice points on the top diagonal of the figure

• NDOWN=the number of lattice points on the bottom diagonal of the figure

• NTOTAL=the total number of lattice points inside the figure and on its borders

Then, we will need to identify the corners of the figure. A corner is a lattice point which
belongs to two adjacent diagonals (a main diagonal and a secondary diagonal). Note that we may
have 0, 2 or 4 corners. Let’s assume that we have NC corners. We will make sure to decrease the
corresponding numbers (NLEFT , NRIGHT , NUP, NDOWN) by the number of corners among
the set of lattice points which were counted (e.g. if the left diagonal has Q corners on it, we will
decrease NLEFT by Q).
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In Fig. 1, 2, 3, 4 we present all the cases which may occur during the computation of the
CNT EQ(C, X) function (the remaining cases are reducible to these 4 cases by symmetry). Lattice
points on the main diagonals are drawn in green, lattice points on the secondary diagonals are
drawn in red, corners are drawn in cyan and inner lattice points are drawn in yellow. In Fig. 1 we
have D = 10, C = 8 and X = 0. Notice that we obtain NC = 4 corners. Note that two adjacent
diagonals form a corner if they have the same parity. In Fig. 2 we have D = 10, C = 7 and X = 0.
In this case we obtain only NC = 2 corners. This is because the top diagonal has a different parity
from both the left and the right diagonals, thus forming no corners with them. In Fig. 3 we have
D = 9, C = 7 and X = 0; we obtain NC = 2 corners. In Fig. 4 we have D = 12, C = 8 and X = 1;
no corner is formed in this case.

The main algorithm for computing CNT EQ(C, X) is as follows. We will consider each possible
binary configuration of NC bits. If bit i (0 ≤ i ≤ NC − 1) is set to 1 we will assume that the
corresponding corner (i) belongs to the set of lattice points; otherwise, it doesn’t belong to the
set. After deciding the states of the corners we will check which of the first and second main
and secondary diagonals have no selected corners on them. For each such diagonal we will have
2NP − 1 possibilities of choosing lattice points on it (where NP is the number of lattice points on
it, excluding the corners). This equation makes sure that at least one lattice point is selected on
each such diagonal. For each of the other diagonals we will have 2NP possibilities of choosing
lattice points on them (for these diagonals it is possible to not select any of the lattice points on
them, because they already have a selected corner). Then each of the interior lattice points of the
figure can be selected as part of the set or not (there are NIN = NTOT AL − (NUP + NDOWN +

NLEFT + NRIGHT + NC) lattice points inside the figure and, thus, there are 2NIN possibilities of
choosing the inner points). The answer for each binary configuration of the corners is the product
between the number of possibilities for each of the 4 diagonals and for the inner points of the
figure. CNT EQ(C, X) is the sum of all the answers for each binary configuration of corners. Note
that this algorithm works even when NC = 0 (there is one binary configuration of 0 bits).

Figure 1. D=10, C=8, X=0, NC=4. Figure 2. D=10, C=7, X=0, NC=2.
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Figure 3. D=9, C=7, X=0, NC=2. Figure 4. D=12, C=8, X=1, NC=0.

What is left is to identify the values NUP, NDOWN, NLEFT , NRIGHT , NTOT AL and the
corners depending on the values of C, X and the parity of D. We will also define the parameter Y ,
which is defined similarly as X, but for the second secondary diagonal (i.e. Y = 0 if the second
secondary diagonal has the same parity as the first main diagonal, and Y = 1 otherwise). Note that
Y = X if C is even, and Y = 1 − X if C is odd. From now on we will assume that the value of Y is
computed when evaluating the function CNT EQ(C, X).

We will first consider the case when D is even. If C = 0 and X = 0 then CNT EQ(0, 0) = 2D/2−1.
If C = 0 and X = 1 then CNT EQ(0, 1) = 0. Let’s consider now that C ≥ 1. If X = 0 then
NDOWN = (D/2) + 1 and if X = 1 then NDOWN = D/2. Note that whenever we use the division
operator ”/” in this paper we refer to integer division. Similarly, if Y = 0 then NUP = (D/2) + 1,
and if Y = 1 then NUP = D/2. If X = 0 then we have NLEFT = NRIGHT = (C/2) + 1;
otherwise, if X = 1 then we have NLEFT = NRIGHT = (C + 1)/2. NTOT AL is equal to
NLEFT · ((D/2) + 1) + (C + 1 − NLEFT ) · (D/2).

If D is odd then we have the following values. NUP = NDOWN = (D + 1)/2. If X = 0 then
NLEFT = (C/2) + 1 and NRIGHT = (C + 1)/2; otherwise, if X = 1 then NLEFT = (C + 1)/2
and NRIGHT = (C/2) + 1. NTOT AL is equal to (C + 1) · ((D + 1)/2).

The exact formulas we presented for NUP, NDOWN, NLEFT , NRIGHT and NTOT AL can
be easily derived by a careful analysis of all the relevant cases. Let’s consider now the cases from
Fig. 1, 2, 3, 4 and verify the formulas for those cases. In Fig. 1 we have NLEFT = (4/2) + 1 = 5,
NRIGHT = (4/2) + 1 = 5, NDOWN = (10/2) + 1 = 6, NUP = (10/2) + 1 = 6 and NTOT AL =

5 · ((10/2) + 1) + (8 + 1 − 5) · (10/2) = 50. In Fig. 2 we have NLEFT = (7/2) + 1 = 4,
NRIGHT = (7/2) + 1 = 4, NDOWN = (10/2) + 1 = 6, NUP = 10/2 = 5 and NTOT AL =

4 · ((10/2) + 1) + (7 + 1 − 4) · (10/2) = 44. In Fig. 3 we have NLEFT = (7/2) + 1 = 4,
NRIGHT = (7 + 1)/2 = 4, NDOWN = (9 + 1)/2 = 5, NUP = (9 + 1)/2 = 5 and NTOT AL =

(7 + 1) · ((9 + 1)/2) = 40. In Fig. 4 we have NLEFT = (8 + 1)/2 = 4, NRIGHT = (8 + 1)/2 = 4,
NDOWN = 12/2 = 6, NUP = 12/2 = 6 and NTOT AL = 4 ·((12/2)+1)+(8+1−4) ·(12/2) = 58.
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We will show now how to compute the sizes MBRX and MBRY of the minimum bounding
rectangle corresponding to the sets counted by CNT EQ(C, X) (X = 0, 1). MBRX = NLEFT − 1 +

NUP − 1 + Y and MBRY = NLEFT − 1 + NDOWN − 1 + X. Let’s verify now these formulas
for the cases presented in Fig. 1, 2, 3, 4. In Fig. 1 we have MBRX = 5 − 1 + 6 − 1 + 0 = 9
and MBRY = 5 − 1 + 6 − 1 + 0 = 9. In Fig. 2 we have MBRX = 4 − 1 + 5 − 1 + 1 = 8
and MBRY = 4 − 1 + 6 − 1 + 0 = 8. In Fig. 3 we have MBRX = 4 − 1 + 5 − 1 + 1 = 8
and MBRY = 4 − 1 + 5 − 1 + 0 = 7. In Fig. 4 we have MBRX = 4 − 1 + 6 − 1 + 1 = 9 and
MBRY = 4 − 1 + 6 − 1 + 1 = 9.

After initializing the NUP, NDOWN, NLEFT , NRIGHT and NTOT AL values, we need to
identify the corners. We will consider each pair of (main diagonal, secondary diagonal) and check
if they have the same parity (note that the parity of each main and secondary diagonal can be
uniquely determined relative to the parity of the first main diagonal from the values X, Y and
D; for instance, if X = 0 the first main diagonal and the first secondary diagonal have the same
parity, if Y = 0 the first main diagonal and the second secondary diagonal have the same parity, if
(X = 0) and (D is even) the second main diagonal and the first secondary diagonal have the same
parity, if (Y = 0) and (D is even) the second main diagonal and the second secondary diagonal
have the same parity). Whenever a main diagonal and a secondary diagonal have the same parity,
they form a corner. Whenever a corner is identified, the number of lattice points corresponding
to the two diagonals is decremented by 1. For instance, if the first main diagonal and the first
secondary diagonal form a corner then NLEFT and NDOWN are both decremented by 1. If the
first main diagonal and the second secondary diagonal form a corner then both NLEFT and NUP
are decremented by 1. If the second main diagonal and the first secondary diagonal form a corner
then NRIGHT and NDOWN are both decremented by 1. If the second main diagonal and the
second secondary diagonal form a corner then both NRIGHT and NUP are decremented by 1.
NC is set to the number of identified corners and the corners are placed in an array on positions 0
to NC − 1, so that we know exactly to which diagonals each corner i (0 ≤ i ≤ NC − 1) belongs to.

The algorithm presented in this section uses O(D · log(D)) arithmetic operations, because it
considers O(D) cases and for each case it needs to perform a constant number of exponentiations
where the base 2 logarithm of the exponent is of the order O(log(D)). In order to reduce the
number of arithmetic operations to O(D) we can use the same approach as in section 3. We will
assume that our algorithm considers the values of C in ascending order and for each value of C it
first computes CNT EQ(C, 0) and then CNT EQ(C, 1). Let’s assume that PREVNIN is equal to the
value of NIN for the case C − 1 and X = 1 and RES PREVNIN = 2PREVNIN . We will initially have
PREVNIN = 0 and RES PREVNIN = 1. When we need to compute 2NIN for a case we will first
compute the difference DIFNIN = NIN − PREVNIN. We will always have 0 ≤ DIFNIN ≤ D.
Thus, we can compute 2NIN with only one multiplication, as RES PREVNIN · 2DIFNIN (note that
2DIFNIN is taken from the table of precomputed powers of two). After handling the case (C, X = 1)
we will update PREVNIN = NIN and RES PREVNIN = 2NIN (where 2NIN was just computed by
the method we presented). Using this approach we only need O(D) arithmetic operations instead
of O(D · log(D)). The same discussion as in Section 3, regarding the computation of exact numbers
or of numbers modulo a given number M, applies here, too. In this case NTOT AL is the value of
order O(D2) which is obtained by multiplying together two numbers which are of the order O(D).
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6. Algorithm 2 for Counting Sets of Lattice Points of Diameter D under the Manhattan (L1)
Distance

Our second algorithm for the Manhattan distance (and only for the second version of the prob-
lem) will use a function CNT LEQ(C, X), where C ≤ D and X = 0 or 1. CNT LEQ(C, X) computes
the number of sets of lattice points such that:

• the main diagonals of at least two points are at distance exactly D apart

• all the other pairs of main diagonals of the points are at distance at most D apart

• all the pairs of secondary diagonals of the points are at distance at most C apart

• X = 0 means that the parity of the first secondary diagonal is equal to the parity of the first
main diagonal, while X = 1 means that these parities differ (the first diagonal of each type
is the one with the smallest index)

For C < 0 we have CNT LEQ(C, 0) = CNT LEQ(C, 1) = 0, by definition. We will present
solutions for C ≥ 0 depending on the parity of D.

We will first consider the case when D is even. In this case we have CNT LEQ(0, 0) = 2D/2−1

and CNT LEQ(0, 1) = 0 (note that every time we use division we consider integer division). Let’s
consider now the case C ≥ 1. All the points must be contained between two main diagonals
located at distance D apart and between two secondary diagonals located at distance C apart.

For X = 0 this figure has P = (C/2) + 1 lattice points on each of the main diagonals and has
R = ((C/2) + 1) · ((D/2) + 1) + (C − (C/2)) · (D/2) lattice points in total inside of it and on its
borders. CNT LEQ(C, 0) is equal to (2P − 1)2 · 2R−2·P.

For X = 1 the figure has P = (C + 1)/2 lattice points on each of the main diagonals and has
R = ((C + 1)/2) · ((D/2) + 1) + (C + 1 − (C + 1)/2) · (D/2) lattice points in total inside of it and
on its borders. CNT LEQ(C, 1) is defined identically as CNT LEQ(C, 0), except that we use these
new values for P and R.

Let’s consider now the case when D is odd. We have CNT LEQ(C, 0) = CNT LEQ(C, 1).
The figure defined by the main and secondary diagonals has P = (C/2) + 1 lattice points on the
first main diagonal and Q = (C + 1)/2 lattice points on the second main diagonal. In total, the
figure contains R = (C + 1) · ((D + 1)/2) lattice points inside of it and on its borders. We have
CNT LEQ(C, 0) = CNT LEQ(C, 1) = (2P − 1) · (2Q − 1) · 2R−P−Q.

Note that the CNT LEQ function ignores the fact that two sets are identical if one can be
obtained from another by translation operations. Instead, it considers two sets to be different if
they correspond to different subsets of points belonging to the figure. However, this aspect will
be considered when deriving the final formula for the number of sets of lattice points with a given
diameter, by using the inclusion-exclusion principle.

The total number of sets of lattice points corresponding to case 1 is equal to C1 = CNT LEQ(D−
1, 0) + CNT LEQ(D − 1, 1) −CNT LEQ(D − 2, 0) −CNT LEQ(D − 2, 1). The total number of sets
of lattice points corresponding to case 3 is equal to C3 = (CNT LEQ(D, 0)−CNT LEQ(D−1, 0)−
CNT LEQ(D−1, 1)+CNT LEQ(D−2, 1))+(CNT LEQ(D, 1)−CNT LEQ(D−1, 0)−CNT LEQ(D−
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1, 1) + CNT LEQ(D − 2, 0)). Again we made use of the inclusion-exclusion principle when com-
puting C1 and C3.

It is easy to see that this algorithm uses O(log(D)) arithmetic operations (from a constant
number of exponentiations where the base 2 logarithm of the exponent is of the order O(log(D))).
The same discussion as in Section 3, regarding the computation of exact numbers or of numbers
modulo a given number M, applies to this case, too. In this case R is the value which is obtained
by multiplying together two numbers having O(log(D)) bits each.

7. Experimental Results

We implemented the two algorithms for the Manhattan distance and the second version of the
studied problem, presented in Sections 5 and 6. For the algorithm from Section 5 we used its
O(D) optimized version. We computed the values modulo a prime number M = 109 + 7, in order
to make use of all the computation optimizations possible. We also implemented a backtracking
algorithm which generates every set independently (i.e. it enumerates all the valid sets of lattice
points having diameter D). We used several values of D in order to compare the running times of
the three algorithms. Note that for some values of D some of the algorithms were too slow and we
stopped them after a running time of 5 minutes. The running times are presented in Table 1 (a ”-”
is shown where the running time exceeded the 5 minutes threshold). All the three algorithms were
implemented in C/C++ and the code was compiled using the G++ compiler version 3.3.1. The
tests were run on a machine running Windows 7 with an Intel Atom N450 1.66 GHz CPU and 1
GB RAM.

As expected, the O(log(D)) algorithm is much faster than the other two algorithms. The O(D)
algorithm is faster for odd values of D than for even values. This is because, when D is odd, we
can never obtain a figure with 4 corners (in order to have 4 corners both the main and secondary
diagonals would need to have the same parity, but when D is odd the main diagonals have different
parities).

8. Related Work

There is a large body of work in the scientific literature concerned with counting lattice points
in various multidimensional structures. In (Loera, 2005) the general problem of counting lattice
points in polytopes was considered. The general problem of counting lattice points in a bounded
subset of the Euclidean space was considered in (Widmer, 2012). Harmonic analysis is applied in
(Chamizo, 2008) for counting lattice points in large parts of space.

A problem concerned with counting configurations of lattice points obtained when translating
a convex set in the plane was considered in (Huxley & Zunic, 2009), (Huxley & Zunic, 2013).
Two configurations were considered identical under similar conditions as the ones used in this
paper. Counting arrangements of connected polyominoes (equivalent under translation) and other
figures was considered in (Rechnitzer, 2000). The problem of counting directed lattice walkers
in horizontal strips of finite width was considered in (Chan & Guttman, 2003). Counting lattice
triangulations was studied in (Keibel & Ziegler, 2003).

As far as we are aware, the problems we considered in this paper have not been considered
before in any other publication.
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Table 1. Running time (in sec) of the three algorithms for several values of D.

D Backtracking Algorithm O(D) Algorithm O(log(D)) Algorithm
1 0.002 0.002 0.002
2 0.002 0.002 0.002
3 0.004 0.002 0.002
4 0.065 0.002 0.002
5 3.91 0.002 0.002
6 - 0.002 0.002

10 - 0.002 0.002
11 - 0.002 0.002
104 - 0.09 0.003

104 + 1 - 0.08 0.003
105 - 0.81 0.003

105 + 1 - 0.54 0.003
106 - 7.84 0.003

106 + 1 - 5.2 0.003
107 - 78.3 0.003

107 + 1 - 51.9 0.003
108 - - 0.003

108 + 1 - - 0.003
109 - - 0.004

109 + 1 - - 0.004

9. Conclusions

In this paper we presented novel, efficient algorithms for computing the number of sets of
lattice points in the plane whose diameter is exactly equal to D, when considering the Manhattan
(L1) or the Chebyshev (L∞) distance. We considered two versions for defining the equivalence of
two such sets of lattice points. The first version forces the sets of points to be fully included inside
a given 2D grid. The second version defines two sets of lattice points to be equivalent if one can
be obtained from another by using translation operations. Our algorithms require O(D · log(D))
or O(D) arithmetic operations (additions, multiplications) for the first version of the problem and
only O(log(D)) arithmetic operations for the second version of the problem for both distances. We
also discussed the possibility of computing the results modulo a given number M, as a way of
simplifying some parts of the algorithms (in particular, in order to use numbers with a number of
bits independent of D).

As future work we intend to approach the same problems described in this paper but for a
number of dimensions greater than 2. Note that in the 1D case the two problems are identical and
very simple to solve (for instance, the answer is always 2D−1 for the second version of the problem,
because we must have two points in the set at distance D and all the other D − 1 points between
them may be selected or not to be part of the set).
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Abstract
Let 0 < p ≤ +∞ and VK = sup

{
1
d ln |Pd |, Pd polynomial of degree ≤ d, ‖Pd‖K ≤ 1

}
the Siciak extremal function

of a L-regular compact K. The aim of this paper is the characterization of the proximate growth of entire functions of
several complex variables by means of the best polynomial approximation in Lp-norm on a L-regular compact K.
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1. Introduction

The classical growth have been characterized in term of approximation errors for a func-
tion continuous on [−1, 1] by A.R. Reddy(see (Reddy, 1972a), and a compact K of positive
capacity by T. Winiarski (see (Winiarski, 1970) with respect to maximum norm. For a noncon-

stant entire function f (z) =

+∞∑
k=0

ak.zλk and M( f , r) = max
|z|=r

∣∣∣ f (z)
∣∣∣, it is well known that the function

r → log(M( f , r)) is indefinitely increasing convex function of log(r). To estimate the growth of
f precisely, R.P. Boas, (see (Boas, 1954)), has introduced the concept of order, defined by the
number ρ (0 ≤ ρ ≤ +∞):

ρ = lim sup
r→+∞

log log(M( f , r))
log(r)

.

The concept of type has been introduced to determine the relative growth of two functions of
same nonzero finite order. An entire function, of order ρ (0 < ρ < +∞), is said to be of type σ
(0 ≤ σ ≤ +∞) if
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σ = lim sup
r→+∞

log(M( f , r))
rρ

.

If f is an entire function of infinite or zero order, the definition of type is not valid and the
growth of such function cannot be precisely measured by the above concept. However S.K. Bajpai,
O.P. Juneja and G.P. Kapoor (see (Bajpai et al., 1976)) have introduced the concept of index-pair
of an entire function. Thus, for p ≥ q ≥ 1, they defined also the number

ρ(p, q) = lim sup
r→+∞

log[p](M( f , r))
log[q](r)

b ≤ ρ(p, q) ≤ +∞ where b = 0 if p > q and b = 1 if p = q.
The function f is said to be of index-pair (p, q) if ρ(p− 1, q− 1) is nonzero finite number. The

number ρ(p, q) is called the (p, q)-order of f .
S.K. Bajpai, O.P. Juneja and G.P. Kapoor defined also the concept of the (p, q)-type σ(p, q),

for b < ρ(p, q) < +∞, by

σ(p, q) = lim sup
r→+∞

log[p−1]((M( f , r)))(
log[q−1](r)

)ρ(p,q)

In their works, the authors established the relationship of (p, q)-growth of f in term of the
coefficients ak in the Maclaurin series of f .

We have also many results in terms of polynomial approximation in classical case. Let K be
a compact subset of the complex plane C, of positive logarithmic capacity and f be a complex
function defined and bounded on K. For k ∈ N put

Ek(K, f ) =
∥∥∥ f − Tk

∥∥∥
K

where the norm
∥∥∥.∥∥∥

K
is the maximum on K and Tk is the k − th Chebytchev polynomial of the best

approximation to f on K.
S.N. Bernstein showed (see (Bernstein, 1926), p. 14), for K = [−1, 1], that there exists a

constant ρ > 0 such that
lim

k→+∞
k1/ρ k

√
Kk(K, f )

is finite, if and only if, f is the restriction to K of an entire function of order ρ and some finite type.
This result has been generalized by A.R. Reddy (see (Reddy, 1972a) and (Reddy, 1972b)) as

follows:
lim

k→+∞

k
√

Ek(K, f ) = (ρ.e.σ)2−ρ

if and only if f is the restriction to K of an entire function g of order ρ and type σ for K = [−1, 1].
In the same way T. Winiarski (see (Winiarski, 1970)) generalized this result for a compact K

of the complex plane C, of positive logarithmic capacity noted c = cap(K) as follows:
If K be a compact subset of the complex plane C, of positive logarithmic capacity then

lim
k→+∞

k
1
ρ k
√

Ek(K, f ) = c(eρσ)

1
ρ
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if and only if f is the restriction to K of an entire function of order ρ (0 < ρ < +∞) and type σ.

Recall that the capacity of [−1, 1] is cap([−1, 1]) =
1
2

and the capacity of a unit disc is
cap(D(O, 1)) = 1.

The authors considered respectively the Taylor development of f with respect to the sequence
(zn)n and the development of f with respect to the sequence (Wn)n defined by

Wn(z) =

j=n∏
j=1

(z − ηn j), n = 1, 2, ...

where η(n) = (ηn0, ηn1, ..., ηnn) is the n − th extremal points system of K (see (Winiarski, 1970), p.
260). We remark that the above results suggest that rate at which the sequence

(
k
√

Kk(K, f )
)

k
tends

to zero depends on the growth of the entire function (order and type). For a compact K the Siciak’s
extremal function of K (see (Siciak, 1962) and (Siciak, 1981)) is defined by:

VK = sup
{1
d

log |Pd|, Pd polynomial of degree ≤ d, ‖Pd‖K ≤ 1
}
.

It is known that the regularity of a compact K (we say K is L-regular) is equivalent to the continuity
of VK in Cn.

Let K be a compact L-regular of Cn. For an entire function f in Cn developed according
an extremal polynomial basis (Ak)k (see (Zeriahi, 1983)), M. Harfaoui (see (Harfaoui, 2010) and
(Harfaoui, 2011)) generalized growth in term of coefficients with respect the sequence (Ak)k. The
growth used by M. Harfoui was defined according to the functions α and β (see (Harfaoui, 2010),
pp. 5, eq. (2.14)), with respect to the set:

Ωr =
{
z ∈ Cn, exp(VK)(z) < r

}
.

M. Harfaoui (see (Harfaoui, 2010) and (Harfaoui, 2011)) obtained a result of generalized order
and generalized type ((α, β)-order and (α, β)-type) in term of approximation in Lp-norm for a
compact of Cn. Later M. Harfaoui an M. El Kadiri (see (Kadiri & Harfaoui, 2013)) obtained the
results in term of (p, q)-order and (p, q)-type for the entire functions .

These results will bee used to establish the generalized growth in terms of best approximation
in Lp-norm for p ≥ 1.

Let f be a function defined and bounded on K. For k ∈ N put

π
p
k (K, f ) = inf

{∥∥∥∥ f − P
∥∥∥∥

Lp(K,µ)
, P ∈ Pk(Cn)

}
,

where Pk(Cn) is the family of all polynomials of degree ≤ k and µ the well-selected measure (The
equilibrium measure µ = (ddcVK)n associated to a L-regular compact K) (see (Zeriahi, 1987)) and
Lp(K, µ), p ≥ 1, is the class of all functions such that:∥∥∥∥ f

∥∥∥∥
Lp(K,µ)

=
( ∫

K
| f |p dµ

)1/p
< ∞.

For an entire function f ∈ Cn, M. Harfaoui and M. El Kadiri established a precise relation-
ship between the (p, q)-growth and the general growth ((α, α)-growth) with respect to the set (see
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((Harfaoui, 2010), (Harfaoui, 2011), (Kadiri & Harfaoui, 2013) and (Harfaoui & Kumar, 2014))
and the coefficients of the development of f with respect to the sequence (Ak)k. He used these
results to give the relationship between the generalized growth of f and the sequence (πp

k (K, f ))k.
To our knowledge no work is discussed in term of best approximation in Lp-norm with respect

to the proximate growth.
The aim of this paper is to give the proximate growth and the (m, 1)- proximate growth of entire

functions in Cn (m ∈ N∗) by means of the best polynomial approximation in term of Lp-norm, with
respect to the set

Ωr =
{
z ∈ Cn; exp VK(z) ≤ r

}
.

In the paper of A. R. Reddy and T. Winiarski (see (Reddy, 1972a), (Reddy, 1972b) and
(Winiarski, 1970)) the authors use the development of f in the basis (zn)n and (Wn)n and used
the Cauchy inequality.

In our work we use a new basis of extremal polynomial and we replace the the Cauchy in-
equality by an inequality given by A. Zeriahi (see (Zeriahi, 1983)).

So we establish relationship between the rate at which
(
π

p
k (K, f )

)1/k
, for k ∈ N, tends to zero in

terms of best approximation in Lp-norm, and the proximate growth growth of entire functions of
several complex variables for a L-regular compact K of Cn.

2. Notations aned auxiliary results

Before we give some definitions and results which will be frequently used.
For p ∈ Z put

log[p](x) = log(log[p−1](x)); log[0](x) = x; Λ[p] =

p∏
k=1

log[k](x).

exp[p](x) = exp(exp[p−1](x)); exp[0](x) = x and E[p](x) =

p∏
k=0

expk(x).

Lemma 2.1. (see (Bajpai et al., 1976))
With the above notations we have the following results

(RR1) E[−p](x) =
x∧

[p−1](x)
and

∧
[−p](x) =

x
E[p−1](x)

(RR2)
d
dx

exp[p](x) =
E[p](x)

x
=

1∧
[−p−1](x)

(RR3)
d
dx

log[p](x) =
E[−p](x)

x
=

1∧
[p−1](x)

(RR4) E−1
[p](x) =

{ x, if p = 0
log[p−1]

{log(x) − log[2](x) + o(log[3](x))}, if p = 1, 2, ... .



158 Mohammed Harfaoui / Theory and Applications of Mathematics & Computer Science 4 (2) (2014) 154–168

(RR5) lim
x→+∞

exp
(
E[p−2](x)

)
=

{
e if p = 2
1 if p ≥ 3

(RR6) lim
x→+∞

[
exp[p−1]

(
E−1

[p−2](x)
) ] 1

x
=

{
e if p = 2
1 if p ≥ 3

It is known that if K is a compact L-regular of Cn, there exists a measure µ, called extremal
measure, having interesting properties (see (Siciak, 1962) and (Siciak, 1981)), in particular, we
have:

(P1) Bernstein-Markov inequality:
∀ε > 0, there exists C = Cε is a constant such that

(BM) :
∥∥∥Pd

∥∥∥
K

= C(1 + ε)sk

∥∥∥∥Pd

∥∥∥∥
L2(K,µ)

, (2.1)

for every polynomial of n complex variables of degree at most d.
(P2) Bernstein-Waish (B.W) inequality:
For every set L-regular K and every real r > 1 we have:∥∥∥ f

∥∥∥
K
≤ M.rdeg( f )

( ∫
K
| f |p .dµ

)1/p
(2.2)

Note that the regularity is equivalent to the Bernstein-Markov inequality.

For s : N→ Nn, k → s(k) = (s1(k), ...., sn(k)) be a bijection such that

|s(k + 1)| ≥ |s(k)| where |s(k)| = s1(k) + .... + sn(k),

A. Zeriahi (see (Zeriahi, 1983)) constructed according to the Hilbert Schmidt method a sequence
of monic orthogonal polynomials according to a extremal measure (see (Siciak, 1962)), (Ak)k,
called extremal polynomial, defined by

Ak(z) = zs(k) +

k−1∑
j=1

a jzs( j) (2.3)

such that

∥∥∥∥Ak

∥∥∥∥
Lp(E,µ)

=

[
inf

{∥∥∥∥zs(k) +

k−1∑
j=1

a jzs( j)
∥∥∥∥L2

(E,µ)
, (a1, a2, ..., an) ∈ Cn

}]1/sk

.

We need the following notations which will be used in the sequel:
(N1) νk = νk(K) =

∥∥∥∥Ak

∥∥∥∥
L2(K,µ)

.

(N2) ak = ak(K) =
∥∥∥∥Ak

∥∥∥∥
K

= max
z∈K

∣∣∣Ak(z)
∣∣∣ and τk =

(
ak

)1/sk
,

where sk = deg(Ak).
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With that notations and (B.W) inequality we have∥∥∥Ak

∥∥∥
Ωr
≤ ak.rsk (2.4)

where sk = deg(Ak).

Lemma 2.2. (see (Zeriahi, 1983))
Let K be a compact L-regular subset of Cn. Then

lim
k→+∞

[
|Ak(z)|
νk

]1/sk

= exp(VK(z)), (2.5)

for every z ∈ Cn \ K̂ the connected component of Cn \ K,

lim
k→+∞

[
‖Ak‖K

νk

]1/sk

= 1. (2.6)

3. Growth with respect to the proximate order and coefficient with respect to extremal
polynomial.

Before we give some definitions and results which will be frequently used in this paper.

Definition 3.1.
Let ρ be a positive real such that 0 < ρ < +∞. A proximate order for ρ is a function ρ(r)

defined in R+ and verified:

1. lim
r→+∞

ρ(r) = ρ;

2. lim
r→+∞

rρ′ log(r) = 0.

Example 3.1. The function ρ(r) defined by

rρ(r) = rρ
(

ln(r)
)β1 .

(
ln[2](r)

)β2)...( ln[m](r) )βm

is a proximate order for ρ, where log[m](r) is defined by:

log[0](r) = r, log[m](r) = ln+ (
log[m−1](r)

)
and ln+(t) = 1[1;+∞[ ln(t)

Theorem 3.1. If h(r) is a positive function for r > 0 such that

lim
r→+∞

log(h(r))
log(r)

= ρ < +∞,

then the proximate order ρ(r) maybe chosen such that for every r > 0: h(r) ≤ rρ(r), and for some
sequence rρ(rn)

n , h(rn) ≤ rρ(rn)
n , for n sufficiently large.

For an entire function in Cn we define the K-type for the proximate order as follows:
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Definition 3.2.
Let K be a L-regular of Cn. If for an entire function in Cn

lim sup
r→+∞

log
(
MK( f , r)

)
rρ(r) (3.1)

is finite not zero then the function ρ(r) is called proximate order

σK = lim
r→+∞

ln
(
MK( f , r)

)
rρ(r) (3.2)

is called K-type of f with respect to the proximate order ρ(r), where

MK( f , r) = sup
z∈Ωr

∣∣∣ f (z)
∣∣∣.

Let K be a compact L-regular and f an entire function of several variables and f (z) =

+∞∑
k=0

fk.Ak

the development of f with respect to the sequence of extremal polynomials.

2.1. K-type of f with respect to the proximate order

Theorem 3.2.
If ρ(r) is a proximate order for ρ then the K-type of f with respect to the proximate order is

given by the formula:

σK =
1

e.ρ
lim sup

k→+∞

(
ϕ(sk)τk

)ρ
.
∣∣∣ fk

∣∣∣ρ/sk
, (3.3)

where ϕ is the inverse function of the function r → rρ(r) = ψ(r).
We have so ψ(r) = y⇔ ϕ(y) = r.

Lemma 3.1. [7, p.42(1.58)]
For every k > 0 we have

lim sup
t→+∞

ϕ(k.t)
ϕ(t)

= k1/ρ.

Proof of theorem 3.2.
Put σ =

1
e.ρ

lim sup
k→+∞

(
ϕ(sk)τk

)ρ
.
∣∣∣ fk

∣∣∣ρ/sk and show that σ = σK .

Show that σ ≤ σK .

We have for every θ > 1 σK = lim
r→+∞

ln
(
MK( f , rθθ)

)
rρ(rθ) , then for every ε > 0 there exists r(ε) such

that for every r > r(ε)
log

(
‖ f ‖Ωrθ

)
≤ (rθ)rθ(σ(K, f ) + ε). (3.4)

But (r + 1)Nθ‖ f ‖Ωrθ
≤ exp

(
(σK, f + ε)(rθ)rθ), where Nθ ∈ N such that

∣∣∣ fk

∣∣∣νk ≤ Cθ.r−sk .
(r + 1)Nθ

(r − 1)2n−1 ‖ f ‖Ωrθ
(3.5)
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then ∣∣∣ fk

∣∣∣νk ≤ Cθ.r−sk . exp
(
(σ(K, f ) + ε)(rθ)rθ),

for r > r(ε) and k > k(ε) or

log
(∣∣∣ fk

∣∣∣νk
)
≤ log(Cθ) − sk log(r) +

(
(σ(K, f ) + ε)(rθ)rθ), (3.6)

for r > r(ε) and k > k(ε).
Chose r such that sk =

[
(σ(K, f ) + ε)(rθ)rθ.

]
, where

[
x
]

means the integer part of x. Then
sk ≤ (σ(K, f ) + ε)(rθ)rθ < sk + 1. Replacing in the relation (3.6) we get

log
(∣∣∣ fk

∣∣∣νk
)
≤ log(Cθ) − sk log(r) + sk log(θ) +

sk + 1
ρ

. (3.7)

Since
sk

ρ(σ(K, f ) + ε)
≤ (rθ)rθ, then ϕ

( sk

ρ(σ(K, f ) + ε)
)
≤ rθ, thus

log
[(
τk.ϕ(sk)

)ρ(∣∣∣ fk

∣∣∣)ρ/sk] ≤ ρ

sk
log(Cθ) + ρ log

( ϕ(sk)

ϕ
( sk

ρ.(σ(K, f ) + ε)
)) + 1 +

1
sk
.

After passing to the upper limit and applying the lemma 2.1, the relation (2.6) of the lemma 2.2
and the lemma 3.1 we get

lim sup
k→+∞

log
[(
ϕ(sk)

)ρ(
νk.

∣∣∣ fk|
)ρ/sk] ≤ log

(
ρ.σ(K, f )

)
+ 1 = log

(
e.ρ.(σ(K, f )

))
. (3.8)

which gives the result
lim sup

r→+∞

(
τk.ϕ(sk)

)ρ(∣∣∣ fk

∣∣∣)ρ/sk ≤ e.ρ.(σ(K, f )
)
. (3.9)

Show that σ ≥ σK . If σ < σK let σ1 and σ2 such that σ < σ1 < σ2 < σK . There exists k1such that
for every k > k1: (

τk
)sk .| fk| ≤

e.ρ.(σ1
)1/ρ

ϕ(sk)
(3.10)

as we have also for k sufficiently large (k > q2),
(
σ1.ρ

)1/ρ
.
ϕ
( sk
σ1.ρ

)
ϕ(sk)

, then for k0 = max
(
q1, q2

)
we

have

MK( f , r) ≤
k0∑

k=0

| fk|.‖Ak‖Ωr
+

+∞∑
k=k0+1

| fk|.‖Ak‖Ωr
. (3.11)

According to the Bernstein-Walsh inequality we have

‖Ak‖Ωr
≤ ak(K).rsk ,

and according to the Bernstein-Markov inequality we have

ak(K) ≤ Aε .(1 + ε)skak(K).τsk
k .
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Thus

MK( f , r) ≤ C0.rsk + Aε .

+∞∑
k=k0+1

( e1/ρ

ϕ
(
sk/σ1.ρ

))sk
.
(
(1 + ε)

)sk . (3.12)

If we put δ =
σ1

σ2
(δ < 1) then

MK( f , r) ≤ C0.rsk + Aε .

+∞∑
k=k0+1

(1 + ε

1 − ε

)sk
. sup

k>k0

eΨ(sk).

where
Ψ(x) = x log(r) −

x
ρ
− x log

(
ϕ
(
x/σ2.ρ

))
.

If we choose ε such that 0 < ε <
1 − δ
1 + δ

then
δ(1 + ε)

1 − ε
< 1 and thus

MK( f , r) ≤ C0.rsk + C. sup
k>k0

eΨ(sk).

We note that Ψ(x) = 0 is equivalent to

log(r) +
1
ρ
−

x
σ2.ρ

.
ϕ′

(
x/σ2.ρ

)
ϕ
(
x/σ2.ρ

) − log
(
ϕ
(
x/σ2.ρ

))
= 0, (3.13)

then the solution xr of the equation (3.13) verify

log(r) −
ρ

ε
< ϕ

( xr

σ2.ρ

)
< log(r) +

ρ

ε
for r > r1

and thus 
Ψ(x) ≤

xr

ρ
+ xr

(
log(r) − log

(
ϕ
( xr

σ2.ρ

)))
≤ (1 + ε)

xr

ρ
xr

σ2
≤

(
θ.r

)ϕ(θ) where θ = eε/ρ

Since for every θ > 1 we have
(
θ.r

)ϕ(θ)
≤ (θ.r)ρ+ε .rρ(r) then

eΨ(xr) ≤ e(1+ε).θρ+ε

.σ2.rρ(r) for r > r1

and consequently, for r > r1,

MK( f , r) ≤ C0.rsk0 + A.θρ+ε .σ2.rρ(r).

whence
log

(
MK( f , r)

)
rρ(r) ≤ σ1 + o(1),

passing to the upper limit we get σ(K, f ) ≤ σ1. Which leads a contradiction and this shows the
result.
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2.2.(K,m)-type of f with respect to the proximate order

For the entire functions infinite order we introduce the notion of m-order defined by:

ρm = lim sup
r→+∞

log[m] (MK( f , r)
)

log(r)
, (3.14)

for m ≥ 2. The function f is said to be of index-pair (m, 1) if ρm−1 = +∞ and ρm < +∞. The
number ρm is called the m-order of f .

Definition 3.3.
If ρ(r) is a proximate order associated to the m-order ρm, the (K,m)-type with respect to the

proximate order ρ(r) is defined by:

σm(K, f ) = lim sup
r→+∞

log[m] (MK( f , r
)

rρ(r) (3.15)

Let f =

+∞∑
k=0

fk( f ).Ak the development of f with respect to the sequence of extremal polynomi-

als.

Theorem 3.3.
The (K,m)-type of f with respect to the proximate order is given by the formula:

σm(K, f ) = lim sup
k→+∞

(
ϕ
(

log[m−2](sk)
)
τk

)ρ
.
∣∣∣ fk

∣∣∣ρ/sk
, (3.16)

for m > 2.

Proof of theorem 3.3.
Put ρm = ρ and σ = lim sup

k→+∞

(
ϕ
(

log[m](sk)
)
τk

)ρ
.
∣∣∣ fk

∣∣∣ρ/sk .

Show that σm(K, f ) ≤ σ.
We have for every ε > 0 there exists k0 such that for every k > k0

ϕ
(

log[m−2](sk)
)
τk.

∣∣∣ fk

∣∣∣1/sk
≤ σ1/ρ + ε, (3.17)

thus

MK( f , r) ≤ C0rsk(r) +

k0∑
k=0

| fk|.‖Ak‖Ωr
+

+∞∑
k=k0+1

( σ1/ρ + ε

ϕ
(

log[m−2](sk)
))sk

.rsk . (3.18)

For σ1 > σ we have ( σ1/ρ + ε

ϕ
(

log[m−2](sk)
))sk

.rsk ≤
(σ1/ρ + ε

σ
1/ρ
1 + ε

)s
. sup

k>k0

eΨ(sk),

where
Ψ(x) = x log(r) + x log

(
σ1/ρ + ε

)
+ x log

(
ϕ
(

log[m−2](x)
)
.
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The solution xr of the equation Ψ′(x) = 0 verify, for r sufficiently large (r > r1)

Ψ(xr) ≤ ε.exp[m−2]((1 + ε).θρ+ε .rρ(r)), where θ = (σ1/ρ + ε).eε

therefore
MK( f , r) ≤ C0rsk(r) + A.eΨ(xr), where A is a constant.

This gives lim sup
r→+∞

log[m] (MK( f , r
)

rρ(r) ≤ σ1 and since this is true for every σ1 > σ then

lim sup
r→+∞

log[m] (MK( f , r
)

rρ(r) ≤ σ.

Show now that σm(K, f ) ≥ σ.
By definition of σm(K, f ) we have for every ε > 0 there exists r0(ε) such that for every r > r0(ε)

,
MK( f , r) ≤ exp[m−2]

[(
σm(K, f ) + ε

)
(rθ)rθ

]
, and θ > 1,

thus ∣∣∣ fk

∣∣∣.τsk
k ≤ C′0. sup

k>k0

expΨ(sk) .

where
Ψ(x) = −sk log

( r
1 + ε

)
+ exp[m−2] [(σm(K, f ) + ε

)
(rθ)rθ].

For r sufficiently large the solution of the equation Ψ′(x) = 0 verify

E−1
[m−2]

(
sk(

1
ρ
− 1

))
≤

(
σm(K, f ) + ε

)
(rkθ)rkθ ≤ E−1

[m−2]
(
sk(

1
ρ

+ 1)
)
. (3.19)

Using the relation (3.19) an elementary calculus gives∣∣∣ fk

∣∣∣.τsk
k .ϕ

(
E−1

[m−2]
(
sk(

1
ρ
− 1)

))
≤ (σm(K, f ) + ε)1/ρ. exp[m−1]

[
E−1

[m−2]
(
sk(

1
ρ

+ 1)
)]
. (3.20)

Therefore passing to the upper limit and using the propriety of the function x → E[m−2](x) we
obtain the result.

4. Best polynomial approximation in terms of Lp-norm.

The object of this section is to study the relationship of the rate of the best polynomial approx-
imation of f in Lp-norm with the -growth with respect to the proximate order of an entire function
g such that g/K = f .

More precisely we show the following theorem:
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Theorem 4.1.
If ρ(r) is a proximate order for ρand f and let f ∈ Lp(K, µ) for p > 0. Then f is µ-almost-

surely the restriction to K of an entire function in Cn, f1, of finite nonzero order ρ and K-type
σ(K, f1) ∈]0,+∞5 with respect to the proximate order ρ(r) for ρ if and only if

σ(K, f1) =
1

e.ρ
lim sup

k→+∞

(
ϕ(k)

)ρ
.
(
E

p
k

)ρ/k
, (4.1)

where ϕ is the inverse function of the function r → rρ(r) = ψ(r).
We have so ψ(r) = y⇔ ϕ(y) = r.

Proof of theorem 4.1.
Suppose that f is µ-almost-surely the restriction to K of an entire function in Cn, f1, of finite

nonzero order ρ and K-type σ(K, f1) ∈]0,+∞5 with respect to the proximate order ρ(r) for ρ. We
have f1 ∈ L2(K, µ) and

f1 =

+∞∑
k=0

fk.Ak.

Put σ =
1

e.ρ
lim sup

k→+∞

(
ϕ(sk)τk

)ρ
.
∣∣∣ fk

∣∣∣ρ/sk

By the relation (92) for p ≥ 2 and the relation (96) for p ∈ [1, 2[ of the paper of M. El Kadiri
and M. Harfaoui (see (Kadiri & Harfaoui, 2013))(

ϕ(sk)
)ρ
.
(
νk.| fk|

)ρ/sk ≤
(
Aε

)ρ/sk
(
ϕ(sk)

)ρ
(1 + ε)ρ.

(
E

p
k

)ρ/sk (4.2)

then (
ϕ(sk)τk

)ρ
.
(
| fk

∣∣∣)ρ/sk ≤
(
ϕ(sk)

)ρ(
| fk

∣∣∣.νk
)ρ/sk .

(τsk
k

νk

)ρ/sk
(4.3)

By the relation 3.6 we have (
E

p
k

)1/sk
≤

(
Aε

)ρ/sk .
[
| fk

∣∣∣.νk.(1 + ε)sk+1 + ...
]
. (4.4)

But
σ′ = lim sup

k→+∞

(
ϕ(sk)

)ρ
.
(
νk.

∣∣∣ fk

∣∣∣ρ/sk
= e.ρ.σ.

Thus, for k sufficiently large

ϕ(sk).
(
νk.

∣∣∣ fk

∣∣∣)1/sk ≤ (σ′)1/ρ + ε ⇔ νk.
∣∣∣ fk

∣∣∣ ≤ [ (σ′)1/ρ + ε

ϕ(sk)

]sk
.

Hence for every j ∈ N;

νk+ j.
∣∣∣ fk+ j

∣∣∣ ≤ [ (σ′)1/ρ + ε

ϕ(sk+ j)

]sk+ j
.
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Then, if we put S = (1 + ε)sk .νk.
∣∣∣ fk + (1 + ε)sk+1 .νk+1.

∣∣∣ fk+1...., we have

S ≤
+∞∑
j=0

ε)sk+ j
[ (σ′)1/ρ + ε

ϕ(sk+ j)
]sk+ j

which is equivalent to

S ≤
[ (σ)1/ρ + ε

ϕ(sk+ j)

]sk
+∞∑
j=0

(1 + ε)sk+ j

[
(σ′)1/ρ + ε

]sk+ j[
(σ)1/ρ + ε

]sk

[ [
ϕ(sk)

]sk[
ϕ(sk+ j)

]sk+ j

]sk+ j

or

S ≤
[ (σ)1/ρ + ε

ϕ(sk)

]sk
+∞∑
j=0

(1 + ε)sk+ j

[
(σ′)1/ρ + ε

]sk+ j[
(σ)1/ρ + ε

]sk

[
ϕ(sk)

]sk[
ϕ(sk + j)

]sk
+ j

Since
ϕ(sk)

ϕ(sk + j)
≤ 1 we get also

S ≤ (1 + ε)sk .

(
(σ′)1/ρ + ε

)sk

ϕ(sk)
.

+∞∑
j=0

[
(1 + ε).

(σ′)1/ρ + ε

ϕ( j)

] j
.

As for k sufficiently large
(σ′)1/ρ + ε

ϕ(sk + j)
< 1 the series is convergent to a finite sum L and we will get

finally (
E

p
k

)1/sk
≤ (1 + ε)ρ

(
Aε

)1/sk .Lρ/sk .
[ (σ′)1/ρ + ε

ϕ(sk)

]ρ
which equivalent to (

ϕ(sk)
)ρ
.
(
E

p
k

)1/sk
≤ (1 + ε)ρ

(
Aε

)ρ/sk .Lρ/sk .
(
(σ′)1/ρ + ερ

)
.

Passing to the upper limit get

σ(K, f1) =
1

e.ρ
lim sup

k→+∞

(
ϕ(k)

)ρ
.
(
E

p
k

)ρ/k
≤ σ.

Conversely, suppose now that f satisfies the relation 4.6. We show the result by three steps.

If f ∈ Lp(K, µ) with p ≥ 2 then f ∈ L2(K, µ) and we have
+∞∑
k=0

fkAk with convergence in

L2(K, µ), where

fk =
1
ν2

k

∫
K

f .Ak (k ≥ 0).

We verify easily by the relations 3.3, 3.6 and the inequality (B.M):

lim sup
k→+∞

(
ϕ(sk)τk

)ρ
.
∣∣∣ fk

∣∣∣ρ/sk
= lim sup

k→+∞

(
ϕ(k)

)ρ
.
(
E

p
k

)ρ/k
. (4.5)
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By this inequality the series
∑

fkAk considered in Cn converges normally on every compact
of Cn to a function denoted f1 by the inequality (B.M) and the inequality of the coefficient of | fk|.
We have obviously f1 = f µ-a.s on K and the proof is completed by the theorem3.1.

If p ∈ [0, 2[ we take p′ such that
1
p

+
1
p′

= 1, then p′ ≥ 2. Applying the previous arguments of

the first step to p′ and Hölder and Bernstein inequality we obtain the result.
If 0 < p < 1, of course, for 0 < p < 1 the Lp-norm does not satisfy the triangle inequality.

But our relations (4.2) and (4.3) are also satisfied for 0 < p < 1 (see (Harfaoui & Kumar, 2014)),
because using Holder’s inequality we have, for some M > 0 and all r > p (p fixed)

‖ f ‖Lp(K,µ)≤ M. ‖ f ‖Lr(K,µ) .

Using the inequality ∫
K
| f |p dµ ≤‖ f ‖p−r

K .

∫
K
| f |r dµ

we get

‖ f ‖Lp(K,µ)≤‖ f ‖1−(r/p)
K . ‖ f ‖r/p

Lr(K,µ) .

We deduce that (K, µ) satisfies the Bernstein-Markov inequality. For ε > 0 there is a constant
C = C(ε, p) > 0 such that, for all (analytic) polynomials P we have

‖ P ‖K≤ C(1 + ε)deg(P). ‖ P ‖Lp(K,µ) .

Thus if (K, µ) satisfies the Bernstein-Markov inequality for one p > 0 then (4.2) and (4.3) are
satisfied for allp > 0.

The rest of proof is easily deduced using the same reasoning as in step.1 and step.2

Theorem 4.2.
If ρ(r) is a proximate order for ρm ∈]0,+∞[ (m > 2), and f and let f ∈ Lp(K, µ) for p > 0. Then

f is µ-almost-surely (µ-a.s) the restriction to K of an entire function in Cn, f1, of finite nonzero
m-order ρm and (K,m)-type σm(K, f1) ∈]0,+∞5 with respect to the proximate order ρ(r) for ρ if
and only if

σm(K, f1) = lim sup
k→+∞

(
ϕ(

(
log[m−2](k)

)
)
)ρm
.
(
E

p
k

)ρm/k, (4.6)

where ϕ is the inverse function of the function r → rρ(r) = ψ(r).
We have so ψ(r) = y⇔ ϕ(y) = r.

Proof of theorem 4.2.
The theorem can be proved on similar lines as those of the proof of the theorem 4.1 because

the relations (4.2) and (4.3) are still valid by iteration of logarithm . Hence we omit the proof.
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Some Results in Connection with the Bounds for the Zeros of
Entire Functions in the Light of Slowly Changing Functions
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Abstract
A single valued function of one complex variable which is analytic in the finite complex plane is called an entire

function. In this paper we would like to establish the bounds for the moduli of zeros of entire functions on the basis
of slowly changing functions.

Keywords: Zeros of entire functions, proper ring shaped region, slowly changing functions.
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1. Introduction, Definitions and Notations.

Let
P(z) = a0 + a1z + a2z2 + a3z3 + ...... + an−1zn−1 + anzn; |an| , 0

be a polynomial of degree n. Datt and Govil (Datt & Govil, 1978); Govil and Rahaman(Govil &
Rahaman, 1968); Marden (Marden, 1966); Mohammad (Mohammad, 1967); Chattopadhyay, Das,
Jain and Konwer (Chattopadhyay, 2005); Joyal, Labelle and Rahaman (Joyal, Labelle & Rahaman
1967) Jain (Jain, 1976), (Jain, 2006) Sun and Hsieh (Sun & Hsie, 1996); Zilovic, Roytman, Com-
bettes and Swamy (Zilovic, Roytman); Das and Datta (Das & Datta, 2008) etc. worked in the
theory of the distribution of the zeros of polynomials and obtained some newly developed results.

In this paper we intend to establish some sharper results concerning the theory of distribution
of zeros of entire functions on the basis of slowly changing functions.

The following definitions are well known :
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Chandra Pramanik)
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Definition 1.1. (Valiron, 1949)The order ρ and lower order λ of an entire function f are defined
as

ρ = lim sup
r→∞

log[2] M(r, f )
log r

and λ = lim inf
r→∞

log[2] M(r, f )
log r

,

where log[k] x = log(log[k−1] x) for k = 1, 2, 3, ... and log[0] x = x.

Let L ≡ L (r) be a positive continuous function increasing slowly i.e., L (ar) ∼ L (r) as r → ∞
for every positive constant a. Singh and Barker (Singh & Barker, 1977) defined it in the following
way:

Definition 1.2. (Singh & Barker, 1977) A positive continuous function L(r) is called a slowly
changing function if for ε (> 0),

1
kε
≤

L (kr)
L (r)

≤ kε for r > r (ε) and

uniformly for k(≥ 1).
If further, L(r) is differentiable, the above condition is equivalent to lim

r→∞

rL
′
(r)

L(r) = 0.
Somasundaram and Thamizharasi (Somasundaram & Thamizharasi, 1988) introduced the no-

tions of L-order and L-lower order for entire functions defined in the open complex plane C as
follows:

Definition 1.3. (Somasundaram & Thamizharasi, 1988) The L-order ρL and the L-lower order λL

of an entire function f are defined as

ρL = lim sup
r→∞

log[2] M(r, f )
log[rL(r)]

and λL = lim inf
r→∞

log[2] M(r, f )
log[rL(r)]

.

The more generalised concept for L-order and L-lower order are L∗-order and L∗-lower order
respectively. Their definitions are as follows:

Definition 1.4. The L∗-order ρL∗ and the L∗-lower order λL∗ of an entire function f are defined as

ρL∗ = lim sup
r→∞

log[2] M(r, f )
log[reL(r)]

and λL∗ = lim inf
r→∞

log[2] M(r, f )
log[reL(r)]

.

2. Lemmas

In this section we present some lemmas which will be needed in the sequel.

Lemma 2.1. If f (z) is an entire function of L-order ρL, then for every ε > 0 the inequality

N (r) ≤ [rL(r)]ρ
L+ε

holds for all sufficiently large r where N (r) is the number of zeros of f (z) in |z| ≤ [rL(r)].
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Proof. Let us suppose that f (0) = 1. This supposition can be made without loss of generality
because if f (z) has a zero of order ′m′ at the origin then we may consider g (z) = c · f (z)

zm where c is
so chosen that g (0) = 1. Since the function g (z) and f (z) have the same order therefore it will be
unimportant for our investigations that the number of zeros of g (z) and f (z) differ by m.

We further assume that f (z) has no zeros on |z| = 2[rL(r)] and the zeros zi’s of f (z) in |z| <
[rL(r)] are in non decreasing order of their moduli so that |zi| ≤ |zi+1|. Also let ρL suppose to be
finite.

Now we shall make use of Jenson’s formula as state below

log | f (0)| = −
n∑

i=1

log
R
|zi|

+
1

2π

2π∫
0

log
∣∣∣∣ f (

R eiφ
)∣∣∣∣ dφ. (2.1)

Let us replace R by 2r and n by N (2r) in (2.1).

∴ log | f (0)| = −
N(2r)∑
i=1

log
2r
|zi|

+
1

2π

2π∫
0

log
∣∣∣∣ f (

2r eiφ
)∣∣∣∣ dφ.

Since f (0) = 1,∴ log | f (0)| = log 1 = 0.

∴
N(2r)∑
i=1

log
2r
|zi|

=
1

2π

2π∫
0

log
∣∣∣∣ f (

2r eiφ
)∣∣∣∣ dφ. (2.2)

L.H.S. =

N(2r)∑
i=1

log
2r
|zi|
≥

N(r)∑
i=1

log
2r
|zi|
≥ N (r) log 2 (2.3)

because for large values of r, log 2r
|zi |
≥ log 2.

R.H.S =
1

2π

2π∫
0

log
∣∣∣∣ f (

2r eiφ
)∣∣∣∣ dφ ≤ 1

2π

2π∫
0

log M (2r) dφ = log M (2r) . (2.4)

Again by definition of order ρL of f (z) we have fore every ε > 0, and as L (2r) ∼ L (r) ,

log M (2r) ≤ [2rL(2r)]ρ
L+ε/2 log M (2r) ≤ [2rL(r)]ρ

L+ε/2. (2.5)

Hence from (2.2) by the help of (2.3), (2.4) and (2.5) we have

N (r) log 2 ≤ [2rL(r)]ρ
L+ε/2

N (r) ≤
2ρ

L+ε/2

log 2
·

[rL(r)]ρ
L+ε

[rL(r)]ε/2
≤ [rL(r)]ρ

L+ε.

This proves the lemma.
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In the line of Lemma 2.1, we may state the following lemma:

Lemma 2.2. If f (z) is an entire function of L∗-order ρL∗ , then for every ε > 0 the inequality

N (r) ≤ [reL(r)]ρ
L∗+ε

holds for all sufficiently large r where N (r) is the number of zeros of f (z) in |z| ≤ [reL(r)].

Proof. With the initial assumptions as laid down in Lemma 1, let us suppose that f (z) has no
zeros on |z| = 2[reL(r)] and the zeros zi’s of f (z) in |z| < [reL(r)] are in non decreasing order of their
moduli so that |zi| ≤ |zi+1|. Also let ρL∗ supposed to be finite.

In view of (2.1), (2.2), (2.3) and (2.4), by definition of ρL∗ and as L (2r) ∼ L (r) , we get for
every ε > 0 that

log M (2r) ≤ [2reL(2r)]ρ
L∗+ε/2, i.e., log M(2r) ≤ [2reL(r)]ρ

L∗+ε/2
.

Hence by the help of (2.3), (2.4) and (2) we obtain from (2.2) that

N (r) log 2 ≤ [2reL(r)]ρ
L∗+ε/2,N (r) ≤

2ρ
L∗+ε/2

log 2
·

[reL(r)]ρ
L∗+ε

[rL(r)]ε/2
≤ [reL(r)]ρ

L∗+ε.

Thus the lemma is established.

3. Theorems

In this section we present the main results of the paper.

Theorem 3.1. Let P(z) be an entire function defined by

P(z) = a0 + a1z + a2z2 + ... + anzn + ...

with L-order ρL. Also for all sufficiently large r in the disc |z| ≤ [rL(r)],
∣∣∣aN(r)

∣∣∣ , 0, |a0| , 0. and
also an → 0 as n > N(r). Then all the zeros of P(z) lie in the ring shaped region

1
t′0
≤ |z| ≤ t0

where t0 is the greatest positive root of

g(t) ≡
∣∣∣aN(r)

∣∣∣ tN(r)+1 −
(∣∣∣aN(r)

∣∣∣ + M
)

tN(r) + M = 0

and t′0 is the greatest positive root of

f (t) ≡ |a0| tN(r)+1 −
(
|a0| + M′) tN(r) + M′ = 0

where M = max
{
|a0| , |a1| , ....

∣∣∣aN(r)−1

∣∣∣}
and M′ = max

{
|a1| , |a2| , ....

∣∣∣aN(r)

∣∣∣} .
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Proof. Now
P(z) ≈ a0 + a1z + a2z2 + ... + aN(r)zN(r)

because N(r) exists for |z| ≤ [rL(r)]; r is sufficiently large and an → 0 as n > N(r). Then all the
zeros of P(z) lie in the ring shaped region given in Theorem 3.1 which we are to prove.

Now

|P(z)| ≈
∣∣∣a0 + a1z + a2z2 + ... + aN(r)zN(r)

∣∣∣
≥

∣∣∣aN(r)

∣∣∣ |z|N(r)
−

∣∣∣a0 + a1z + a2z2 + ... + aN(r)−1zN(r)−1
∣∣∣ .

Also∣∣∣a0 + a1z + a2z2 + ..... + aN(r)−1zN(r)−1
∣∣∣ ≤ |a0| + ... +

∣∣∣aN(r)−1

∣∣∣ |z|N(r)−1
≤ M

(
1 + |z| + ... + |z|N(r)−1

)
= M

|z|N(r)
− 1

|z| − 1
if |z| , 1. (3.1)

Therefore using (3.1) we obtain that

|P(z)| ≥
∣∣∣aN(r)

∣∣∣ |z|N(r)
−

∣∣∣a0 + a1z + a2z2 + ... + aN(r)−1zN(r)−1
∣∣∣ ≥ ∣∣∣aN(r)

∣∣∣ |z|N(r)
− M
|z|N(r)

− 1
|z| − 1

.

Hence

|P(z)| > 0 if
∣∣∣aN(r)

∣∣∣ |z|N(r)
− M
|z|N(r)

− 1
|z| − 1

> 0

i.e., if
∣∣∣aN(r)

∣∣∣ |z|N(r) > M
|z|N(r)

− 1
|z| − 1

i.e., if
∣∣∣aN(r)

∣∣∣ |z|N(r)+1
−

∣∣∣aN(r)

∣∣∣ |z|N(r) > M
(
|z|N(r)

− 1
)

i.e., if
∣∣∣aN(r)

∣∣∣ |z|N(r)+1
−

∣∣∣aN(r)

∣∣∣ |z|N(r)
− M |z|N(r) + M > 0

i.e., if
∣∣∣aN(r)

∣∣∣ |z|N(r)+1
−

(∣∣∣aN(r)

∣∣∣ + M
)
|z|N(r) + M > 0.

Therefore on |z| , 1, |P(z)| > 0 if
∣∣∣aN(r)

∣∣∣ |z|N(r)+1
−

(∣∣∣aN(r)

∣∣∣ + M
)
|z|N(r) + M > 0. Now let us consider

g(t) ≡
∣∣∣aN(r)

∣∣∣ tN(r)+1 −
(∣∣∣aN(r)

∣∣∣ + M
)

tN(r) + M = 0. (3.2)

Clearly the maximum number of changes in sign in (3.2) is two. So the maximum number of
positive roots of g(t) = 0 is two and by Descartes’ rule of sign if it is less, less by two. Clearly
t = 1 is one positive root of (3.2). So g(t) = 0 must have another positive root t1(say).
Let us take t0 = max {1, t1} . Clearly for t > t0, g(t) > 0. If not, for some t = t2 > t0, g(t2) < 0.
Now g(t2) < 0 and g(∞) > 0 imply that g(t) = 0 has another positive root in (t2,∞) which gives a
contradiction.
Therefore for t > t0, g(t) > 0 and so t0 > 1.
Hence |P(z)| > 0 for |z| > t0.

Therefore all the zeros of P(z) lie in the disc |z| ≤ t0. (3.3)
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Again let us consider

Q(z) = zN(r)P
(
1
z

)
≈ zN(r)

{
a0 +

a1

z
+ ... +

aN(r)

zN(r)

}
= a0zN(r) + a1zN(r)−1 + ... + aN(r)

i.e., |Q(z)| ≥ |a0| |z|N(r)
−

∣∣∣a1zN(r)−1 + ... + aN(r)

∣∣∣ for |z| , 1.

Now ∣∣∣a1zN(r)−1 + ... + aN(r)

∣∣∣ ≤ |a1| |z|N(r)−1 + ... +
∣∣∣aN(r)

∣∣∣ ≤ M′
(
|z|N(r)−1 + ... + 1

)
= M′

(
|z|N(r)

− 1
|z| − 1

)
for |z| , 1. (3.4)

Using (3.4) we get that

|Q(z)| ≥ |a0| |z|N(r)
−

∣∣∣a1zN(r)−1 + ... + aN(r)

∣∣∣ ≥ |a0| |z|N(r)
− M′

(
|z|N(r)

− 1
|z| − 1

)
for |z| , 1.

Therefore for |z| , 1,

|Q(z)| > 0 if |a0| |z|N(r)
− M′

(
|z|N(r)

− 1
|z| − 1

)
> 0

i.e., if |a0| |z|N(r) > M′

(
|z|N(r)

− 1
|z| − 1

)
i.e., if |a0| |z|N(r)+1

− |a0| |z|N(r)
− M′ |z|N(r) + M′ > 0

i.e., if |a0| |z|N(r)+1
−

(
|a0| + M′) |z|N(r) + M′ > 0.

So for |z| , 1, |Q(z)| > 0 if |a0| |z|N(r)+1
− (|a0| + M′) |z|N(r) + M′ > 0. Let us consider

f (t) ≡ |a0| tN(r)+1 −
(
|a0| + M′) tN(r) + M′ = 0.

Since the maximum number of changes of sign in f (t) is two, the maximum number of positive
roots of f (t) = 0 is two and by Descartes’ rule of sign if it is less, less by two. Clearly t = 1 is one
positive root of f (t) = 0. So f (t) = 0 must have another positive root t2 (say).
Let us take t′0 = max {1, t2} . Clearly for t > t′0, f (t) > 0. If not, for some t3 > t′0, f (t3) < 0. Now
f (t3) < 0 and f (∞) > 0 implies that f (t) = 0 have another positive root in the interval (t3,∞)
which is a contradiction.
Therefore for t > t′0, f (t) > 0.
Also t′0 ≥ 1. So |Q(z)| > 0 for |z| > t′0.
Therefore Q(z) does not vanish in |z| > t′0.

Hence all the zeros of Q(z) lie in |z| ≤ t′0.
Let z = z0 be a zero of P(z). Therefore P(z0) = 0. Clearly z0 , 0 as a0 , 0.
Putting z = 1

z0
in Q(z) we get thatQ

(
1
z0

)
=

(
1
z0

)N(r)
.P(z0) =

(
1
z0

)N(r)
.0 = 0. Therefore Q

(
1
z0

)
= 0. So
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z = 1
z0

is a root of Q(z) = 0. Hence
∣∣∣∣ 1
z0

∣∣∣∣ ≤ t′0 implies that |z0| ≥
1
t′0
.

As z0 is an arbitrary root of P(z) = 0.

Therefore all the zeros of P(z) lie in |z| ≥
1
t′0
. (3.5)

From (3.3) and (3.5) we get that all the zeros of P(z) lie in the proper ring shaped region 1
t′0
≤

|z| ≤ t0 where t0 and t′0 are the greatest positive roots of the equations g(t) ≡
∣∣∣aN(r)

∣∣∣ tN(r)+1 −(∣∣∣aN(r)

∣∣∣ + M
)

tN(r) + M = 0 and f (t) ≡ |a0| tN(r)+1 − (|a0| + M′) tN(r) + M′ = 0 where M and M′ are
given in the statement of Theorem 3.1. This proves the theorem.

In the line of Theorem 3.1, we may state the following theorem in view of Lemma 2.2:

Theorem 3.2. Let P(z) be an entire function defined by

P(z) = a0 + a1z + a2z2 + .... + anzn + ...

with L∗-order ρL∗ . Also for all sufficiently large r in the disc |z| ≤ [reL(r)],
∣∣∣aN(r)

∣∣∣ , 0, |a0| , 0. and
also an → 0 as n > N(r). Then all the zeros of P(z) lie in the ring shaped region

1
t′0
≤ |z| ≤ t0

where t0 is the greatest positive root of

g(t) ≡
∣∣∣aN(r)

∣∣∣ tN(r)+1 −
(∣∣∣aN(r)

∣∣∣ + M
)

tN(r) + M = 0

and t′0 is the greatest positive root of

f (t) ≡ |a0| tN(r)+1 −
(
|a0| + M′) tN(r) + M′ = 0

where M = max
{
|a0| , |a1| , ...

∣∣∣aN(r)−1

∣∣∣}
and M′ = max

{
|a1| , |a2| , ...

∣∣∣aN(r)

∣∣∣} .
The proof is omitted.

Theorem 3.3. Let P(z) be an entire function defined by

P(z) = a0 + a1z + a2z2 + ... + anzn + ...

with L-order ρL, aN(r) , 0, a0 , 0 and also an → 0 for n > N(r) for the disc |z| ≤ [rL(r)] when r is
sufficiently large. Further, for ρL > 0,

|a0| (ρL)N(r) ≥ |a1| (ρL)N(r)−1 ≥ ... ≥
∣∣∣aN(r)−1

∣∣∣ ρL ≥
∣∣∣aN(r)

∣∣∣ .
Then all the zeros of P(z) lie in the ring shaped region

1

ρL
(
1 + |a1 |

|a0 |ρL

) < |z| < 1
ρL

1 +
|a0|∣∣∣aN(r)

∣∣∣ (ρL)N(r)

 .
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Proof. For the given entire function

P(z) = a0 + a1z + a2z2 + ... + anzn + ...

with an → 0 as n > N(r), where r is sufficiently large, N(r) exists and N(r) ≤ [rL(r)]
ρL

+ε .
Therefore

P(z) ≈ a0 + a1z + a2z2 + ... + aN(r)zN(r)

as a0 , 0, aN(r) , 0 and an → 0 for n > N(r).
Let us consider

R(z) = (ρL)N(r)P
(

z
ρL

)
≈ (ρL)N(r)

(
a0 + a1

z
ρL + a2

z2

(ρL)2 + ... + aN(r)
zN(r)

(ρL)N(r)

)
=

(
a0(ρL)N(r) + a1(ρL)N(r)−1z + ... + aN(r)zN(r)

)
.

Therefore

|R(z)| ≥
∣∣∣aN(r)

∣∣∣ |z|N(r)
−

∣∣∣a0(ρL)N(r) + a1(ρL)N(r)−1z + ... + aN(r)−1ρ
LzN(r)−1

∣∣∣ . (3.6)

Now by the given condition |a0| (ρL)N(r) ≥ |a1| (ρL)N(r)−1 ≥ ... provided |z| , 0,we obtain that∣∣∣a0(ρL)N(r) + a1(ρL)N(r)−1z + ... + aN(r)−1ρ
LzN(r)−1

∣∣∣ ≤ |a0| (ρL)N(r) + ... +
∣∣∣aN(r)−1

∣∣∣ ρL |z|N(r)−1

≤ |a0| (ρL)N(r) |z|N(r)
(

1
|z|

+ ...... +
1
|z|N(r)

)
.

Therefore on |z| , 0,

−
∣∣∣a0(ρL)N(r) + a1(ρL)N(r)−1z + ... + aN(r)−1ρ

LzN(r)−1
∣∣∣ ≥ − |a0| (ρL)N(r) |z|N(r)

(
1
|z|

+ ... +
1
|z|N(r)

)
. (3.7)

Therefore using (3.7) we get from (3.6) that

|R(z)| ≥
∣∣∣aN(r)

∣∣∣ |z|N(r)
− |a0| (ρL)N(r) |z|N(r)

(
1
|z|

+ ... +
1
|z|N(r)

)
≥

∣∣∣aN(r)

∣∣∣ |z|N(r)
− |a0| (ρL)N(r) |z|N(r)

(
1
|z|

+ ... +
1
|z|N(r) + ...

)
= |z|N(r)

∣∣∣aN(r)

∣∣∣ − |a0| (ρL)N(r)

 ∞∑
k=1

1
|z|k


 .

Clearly
∞∑

k=1

1
|z|k

is a geometric series which is convergent for 1
|z| < 1 i.e., for |z| > 1 and converges

to 1
|z|

1
1− 1
|z|

= 1
|z|−1 . Therefore

∞∑
k=1

1
|z|k

= 1
|z|−1 if |z| > 1. Hence we get from above that for |z| > 1|R(z)| >
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|z|N(r)
(∣∣∣aN(r)

∣∣∣ − (ρL)N(r) |a0|
1
|z|−1

)
. Now for |z| > 1,

|R(z)| > 0 if |z|N(r)
(∣∣∣aN(r)

∣∣∣ − (ρL)N(r) |a0|
1
|z| − 1

)
≥ 0

i.e., if
∣∣∣aN(r)

∣∣∣ − (ρL)N(r) |a0|
1
|z| − 1

≥ 0

i.e., if
∣∣∣aN(r)

∣∣∣ ≥ (ρL)N(r) |a0|

|z| − 1

i.e., if |z| − 1 ≥ (ρL)N(r) |a0|∣∣∣aN(r)

∣∣∣
i.e., if |z| ≥ 1 + (ρL)N(r) |a0|∣∣∣aN(r)

∣∣∣ > 1.

Therefore |R(z)| > 0 if |z| ≥ 1 + (ρL)N(r) |a0 |

|aN(r)|
. So all the zeros of R(z) lie in |z| < 1 + |a0 |

|aN(r)|
(ρL)N(r).

Let z0 be an arbitrary zero of P(z). Therefore P(z0) = 0. Clearly z0 , 0 as a0 , 0. Putting z = ρLz0

in R(z) we have R(ρLz0) = (ρL)N(r).P(z0) = (ρL)N(r).0 = 0.

Hence z = ρLz0 is a zero of R(z). Therefore
∣∣∣ρLz0

∣∣∣ < 1+ |a0 |

|aN(r)|
(ρL)N(r)i.e., |z0| <

1
ρL

(
1 + |a0 |

|aN(r)|
(ρL)N(r)

)
.

Since z0 is any zero of P(z) therefore all the zeros of P(z) lie in

|z| <
1
ρL

1 +
|a0|∣∣∣aN(r)

∣∣∣ (ρL)N(r)

 . (3.8)

Again let us consider F(z) = (ρL)N(r)zN(r)P
(

1
ρLz

)
. Now F(z) = (ρL)N(r)zN(r)P

(
1
ρLz

)
≈ (ρL)N(r)zN(r)

{
a0 + a1

ρLz + ....... +
aN(r)

(ρLz)N(r)

}
= a0(ρL)N(r)zN(r)+a1(ρL)N(r)−1zN(r)−1+...+aN(r). There-

fore |F(z)| ≥ |a0| (ρL)N(r) |z|N(r)
−

∣∣∣a1(ρL)N(r)−1zN(r)−1 + ... + aN(r)

∣∣∣ . Again∣∣∣a1(ρL)N(r)−1zN(r)−1 + ... + aN(r)

∣∣∣ ≤ |a1| (ρL)N(r)−1 |z|N(r)−1 + ... +
∣∣∣aN(r)

∣∣∣
≤ |a1| (ρL)N(r)−1

(
|z|N(r)−1 + ... + |z| + 1

)
provided |z| , 0. So

∣∣∣a1(ρL)N(r)−1zN(r)−1 + ... + aN(r)

∣∣∣ ≤ |a1| (ρL)N(r)−1 |z|N(r)
(

1
|z| + ...... + 1

|z|N(r)

)
. So for

|z| , 0,|F(z)| ≥ |a0| (ρL)N(r) |z|N(r)
− |a1| (ρL)N(r)−1 |z|N(r)

(
1
|z| + ... + 1

|z|N(r)

)
= (ρL)N(r)−1 |z|N(r)

[
|a0| ρ

L − |a1|
(

1
|z| + ... + 1

|z|N(r)

)]
. Therefore for |z| , 0,

|F(z)| > (ρL)N(r)−1 |z|N(r)

|a0| ρ
L − |a1|

∞∑
k=1

1
|z|k

 . (3.9)

The geometric series
∞∑

k=1

1
|z|k

is convergent for 1
|z| < 1i.e., for |z| > 1 and converges to

1
|z|

1
1 − 1

|z|

=
1
|z| − 1

.
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Therefore
∞∑

k=1

1
|z|k

=
1
|z| − 1

if |z| > 1. (3.10)

Using (3.9) and (3.10) we have for |z| > 1, |F(z)| > (ρL)N(r)−1 |z|N(r)
[
|a0| ρ

L −
|a1 |

|z|−1

]
. Hence for

|z| > 1,

|F(z)| > 0 if |z|N(r) (ρL)N(r)−1
[
|a0| ρ

L −
|a1|

|z| − 1

]
≥ 0

i.e., if |a0| ρ
L −

|a1|

|z| − 1
≥ 0

i.e., if |a0| ρ
L ≥

|a1|

|z| − 1

i.e., if |z| ≥ 1 +
|a1|

|a0| ρL > 1.

Therefore |F(z)| > 0 for |z| ≥ 1 + |a1 |

|a0 |ρL . So F(z) does not vanish in |z| ≥ 1 + |a1 |

|a0 |ρL . Equivalently all
the zeros of F(z) lie in |z| < 1 + |a1 |

|a0 |ρL . Let z = z0 be any zero of P(z). Therefore P(z0) = 0. Clearly
a0 , 0 and z0 , 0.
Now let us put z = 1

ρLz0
in F(z). So we have F

(
1

ρLz0

)
= (ρL)N(r)

(
1

ρLz0

)N(r)
.P (z0) =

(
1
z0

)N(r)
.0 = 0.

Therefore z = 1
ρLz0

is a root of F(z).
Hence ∣∣∣∣∣ 1

ρLz0

∣∣∣∣∣ < 1 +
|a1|

|a0| ρL

i.e.,
1
|z0|

< ρL

(
1 +

|a1|

|a0| ρL

)
i.e., |z0| >

1

ρL
(
1 + |a1 |

|a0 |ρL

) .
As z0 is an arbitrary zero of P(z), all the zeros of P(z) lie on

|z| >
1

ρL
(
1 + |a1 |

|a0 |ρL

) . (3.11)

From (3.8) and (3.11) we get that all the zeros of P(z) lie on the proper ring shaped region
1

ρL
(
1+
|a1 |
|a0 |ρ

L

) < |z| < 1
ρL

(
1 + |a0 |

|aN(r)|
(ρL)N(r)

)
where |a0| (ρL)N(r) ≥ |a1| (ρL)N(r)−1 ≥ ... ≥

∣∣∣aN(r)

∣∣∣ for ρL > 0.

This proves the theorem.

In the line of Theorem 3.3, we may state the following theorem in view of Lemma 2.2 :
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Theorem 3.4. Let P(z) be an entire function defined by

P(z) = a0 + a1z + a2z2 + ... + anzn + ...

with L∗-order ρL∗ , aN(r) , 0, a0 , 0 and also an → 0 for n > N(r) for the disc |z| ≤ [reL(r)] when r
is sufficiently large. Further, for ρL∗ > 0,

|a0| (ρL∗)N(r) ≥ |a1| (ρL∗)N(r)−1 ≥ ..... ≥
∣∣∣aN(r)−1

∣∣∣ ρL∗ ≥
∣∣∣aN(r)

∣∣∣ .
Then all the zeros of P(z) lie in the ring shaped region

1

ρL∗
(
1 + |a1 |

|a0 |ρL∗

) < |z| < 1
ρL∗

1 +
|a0|∣∣∣aN(r)

∣∣∣ (ρL∗)N(r)

 .
The proof is omitted.

Corollary 3.1. From Theorem 3.3 we can easily conclude that all the zeros of

P(z) = a0 + a1z + ... + anzn

of degree n, |an| , 0 with the property |a0| ≥ |a1| ≥ ... ≥ |an| lie in the proper ring shaped region

1(
1 + |a1 |

|a0 |

) < |z| < (
1 +
|a0|

|an|

)

just on putting ρL = 1.

Corollary 3.2. From Theorem 3.4 we can easily conclude that all the zeros of

P(z) = a0 + a1z + ... + anzn

of degree n, |an| , 0 with the property |a0| ≥ |a1| ≥ ... ≥ |an| lie in the proper ring shaped region

1(
1 + |a1 |

|a0 |

) < |z| < (
1 +
|a0|

|an|

)

just on putting ρL∗ = 1.

Theorem 3.5. Let P(z) be an entire function with L-order ρL. For sufficiently large values of r in
the disk |z| ≤ [rL(r)], the Taylor’s series expansion of P(z)

P(z) = a0 + ap1z
p1 + ap2z

p2 + ... + apmzpm + aN(r)zN(r), a0 , 0

be such that 1 ≤ p1 < p2... < pm ≤ N(r) − 1, pi’s are integers and for ρL > 0,

|a0| (ρL)N(r) ≥
∣∣∣ap1

∣∣∣ (ρL)N(r)−p1 ≥ ... ≥
∣∣∣apm

∣∣∣ (ρL)N(r)−pm .
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Then all the zeros of P(z) lie in the proper ring shaped region

1
ρLt′0

< |z| <
1
ρL t0

where t0 and t′0 are the unique positive roots of the equations

g(t) ≡
∣∣∣aN(r)

∣∣∣ tN(r)−pm −
∣∣∣aN(r)

∣∣∣ tN(r)−pm−1 − |a0| (ρL)N(r) = 0 and

f (t) ≡ |a0| (ρL)p1tp1 − |a0| (ρL)p1tp1−1 −
∣∣∣ap1

∣∣∣ = 0

respectively.

Proof. Let
P(z) = a0 + ap1z

p1 + ... + apmzpm + aN(r)zN(r),
∣∣∣aN(r)

∣∣∣ , 0. (3.12)

Also for ρL > 0, |a0| (ρL)N(r) ≥
∣∣∣ap1

∣∣∣ (ρL)N(r)−p1 ≥ ... ≥
∣∣∣aN(r)

∣∣∣ . Let us consider

R(z) = (ρL)N(r)P
(

z
ρL

)
= (ρL)N(r)

{
a0 + ap1

zp1

(ρL)p1
+ .... + apm

zpm

(ρL)pm
+ aN(r)

zN(r)

(ρL)N(r)

}
= a0(ρL)N(r) + ap1(ρ

L)N(r)−p1zp1 + ... + apm(ρL)N(r)−pmzpm + aN(r)zN(r).

Therefore

|R(z)| ≥
∣∣∣aN(r)zN(r)

∣∣∣ − ∣∣∣a0(ρL)N(r) + ap1(ρ
L)N(r)−p1zp1 + ... + apm(ρL)N(r)−pmzpm

∣∣∣ . (3.13)

Now for |z| , 0, ∣∣∣a0(ρL)N(r) + ap1(ρ
L)N(r)−p1zp1 + ... + apm(ρL)N(r)−pmzpm

∣∣∣
≤ |a0| (ρL)N(r) +

∣∣∣ap1

∣∣∣ (ρL)N(r)−p1 |z|p1 + ... +
∣∣∣apm

∣∣∣ (ρL)N(r)−pm |z|pm

≤ |a0| (ρL)N(r) (1 + |z|p1 + ... + |z|pm)

= |a0| (ρL)N(r) |z|pm+1 (
1
|z|

+ ... +
1

|z|pm+1−p2
+

1
|z|pm+1−p1

+
1
|z|pm+1 ). (3.14)

Using (3.13) and (3.14), we have for |z| , 0

|R(z)| ≥
∣∣∣aN(r)

∣∣∣ |z|N(r)
− |a0| (ρL)N(r) |z|pm+1

(
1
|z|

+ ... +
1

|z|pm+1−p1
+

1
|z|pm+1

)
>

∣∣∣aN(r)

∣∣∣ |z|N(r)
− |a0| (ρL)N(r) |z|pm+1

(
1
|z|

+ ... +
1

|z|pm+1−p1
+

1
|z|pm+1 + ...

)
=

∣∣∣aN(r)

∣∣∣ |z|N(r)
− |a0| (ρL)N(r) |z|pm+1

∞∑
k=1

1
|z|k

. (3.15)
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The geometric series
∞∑

k=1

1
|z|k

is convergent for 1
|z| < 1i.e.,for |z| > 1 and converges to 1

|z|
1

1− 1
|z|

= 1
|z|−1 .

Therefore
∞∑

k=1

1
|z|k

= 1
|z|−1 for |z| > 1. So on |z| > 1,

|R(z)| > 0 if
∣∣∣aN(r)

∣∣∣ |z|N(r)
−
|a0| (ρL)N(r) |z|pm+1

|z| − 1
≥ 0

i.e., if
∣∣∣aN(r)

∣∣∣ |z|N(r)
≥
|a0| (ρL)N(r) |z|pm+1

|z| − 1
i.e., if

∣∣∣aN(r)

∣∣∣ |z|N(r)+1
−

∣∣∣aN(r)

∣∣∣ |z|N(r)
≥ |a0| (ρL)N(r) |z|pm+1

i.e., if |z|pm+1
(∣∣∣aN(r)

∣∣∣ |z|N(r)−pm −
∣∣∣aN(r)

∣∣∣ |z|N(r)−pm−1
− |a0| (ρL)N(r)

)
≥ 0.

Let us consider g(t) ≡
∣∣∣aN(r)

∣∣∣ |t|N(r)−pm −
∣∣∣aN(r)

∣∣∣ |t|N(r)−pm−1
− |a0| (ρL)N(r) = 0. Clearly g(t) = 0 has one

positive root because the maximum number of changes in sign in g(t) is one and g(0) = − |a0| ρ
N(r)

is −ve, g(∞) is +ve.
Let t0 be the positive root of g(t) = 0 and t0 > 1. Clearly for t > t0, g(t) > 0. If not for some t1 > t0,
g(t1) < 0.
Then g(t1) < 0 and g(∞) > 0. Therefore g(t) = 0 must have another positive root in (t1,∞) which
gives a contradiction .
Hence for t ≥ t0, g(t) ≥ 0 and t0 > 1. So |R(z)| > 0 for |z| ≥ t0.
Thus R(z) does not vanish in |z| ≥ t0.

Hence all the zeros of R(z) lie in |z| < t0.
Let z = z0 be any zero of P(z). So P(z0) = 0. Clearly z0 , 0 as a0 , 0. Putting z = ρLz0 in R(z)

we have R(ρLz0) = (ρL)N(r).P(z0) = (ρL)N(r).0 = 0. Therefore R(ρLz0) = 0 and so z = ρLz0 is a zero
of R(z) and consequently

∣∣∣ρLz0

∣∣∣ < t0 which implies |z0| <
t0
ρL . As z0 is an arbitrary zero of P(z),

all the zeros of P(z) lie in |z| <
t0

ρL . (3.16)

Again let us consider F(z) = (ρL)N(r)zN(r)P
(

1
ρLz

)
. Now

F(z) = (ρL)N(r)zN(r) .

{
a0 + ap1

1
(ρL)p1zp1

+ ..... + apm

1
(ρL)pmzpm

+ aN(r)
1

(ρL)N(r)zN(r)

}
= a0(ρL)N(r)zN(r) + ap1(ρ

L)N(r)−p1zN(r)−p1 + ... + apm(ρL)N(r)−pmzN(r)−pm + aN(r).

Also ∣∣∣ap1(ρ
L)N(r)−p1zN(r)−p1 + ... + apm(ρL)N(r)−pmzN(r)−pm + aN(r)

∣∣∣
≤

∣∣∣ap1

∣∣∣ (ρL)N(r)−p1 |z|N(r)−p1 + ... +
∣∣∣apm

∣∣∣ (ρL)N(r)−pm |z|N(r)−pm +
∣∣∣aN(r)

∣∣∣
≤

∣∣∣ap1

∣∣∣ (ρL)N(r)−p1
(
|z|N(r)−p1 + |z|N(r)−p2 + ... + |z|N(r)−pm + 1

)
.
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So for |z| , 0,

|F(z)| ≥ |a0| (ρL)N(r) |z|N(r)
−

∣∣∣ap1(ρ
L)N(r)−p1zN(r)−p1 + ... + apm(ρL)N(r)−pmzN(r)−pm + aN(r)

∣∣∣
≥ |a0| (ρL)N(r) |z|N(r)

−
∣∣∣ap1

∣∣∣ (ρL)N(r)−p1
(
|z|N(r)−p1 + |z|N(r)−p2 + ... + |z|N(r)−pm + 1

)
= |a0| (ρL)N(r) |z|N(r)

−
∣∣∣ap1

∣∣∣ (ρL)N(r)−p1 |z|N(r)−p1+1
(

1
|z|

+
1

|z|p2−p1+1 + ... +
1

|z|N(r)−p1+1

)

i.e., on |z| , 0, |F(z)| > |a0| (ρL)N(r) |z|N(r)
−

∣∣∣ap1

∣∣∣ (ρL)N(r)−p1 |z|N(r)−p1+1
(
∞∑

k=1

1
|z|k

)
. The geometric series

∞∑
k=1

1
|z|k

is convergent for 1
|z| < 1i.e., for |z| > 1 and converges to 1

|z|
1

1− 1
|z|

= 1
|z|−1 . Therefore

∞∑
k=1

1
|z|k

=

1
|z|−1 for |z| > 1. Therefore for |z| > 1

|F(z)| > |a0| (ρL)N(r) |z|N(r)
−

∣∣∣ap1

∣∣∣ (ρL)N(r)−p1 |z|N(r)−p1+1
(

1
|z| − 1

)

= (ρL)N(r)−p1

(
(ρL)p1 |a0| |z|N(r)

−
∣∣∣ap1

∣∣∣ |z|N(r)−p1+1

|z| − 1

)
= (ρL)N(r)−p1 |z|N(r)−p1+1

|a0|
(
ρL

)p1
|z|p1−1

−

∣∣∣ap1

∣∣∣
|z| − 1


For |z| > 1,

|F(z)| > 0 if |a0| (ρL)p1 |z|p1−1
−

∣∣∣ap1

∣∣∣
|z| − 1

≥ 0

i.e., if |a0| (ρL)p1 |z|p1−1
≥

∣∣∣ap1

∣∣∣
|z| − 1

i.e., if |a0| (ρL)p1 |z|p1 − |a0| (ρL)p1 |z|p1−1
−

∣∣∣ap1

∣∣∣ ≥ 0. (3.17)

Therefore on |z| > 1, |F(z)| > 0 if (3.17) holds. Let us consider f (t) = |a0| (ρL)p1tp1−|a0| (ρL)p1tp1−1−∣∣∣ap1

∣∣∣ = 0. Clearly f (t) = 0 has exactly one positive root and is greater than one. Let t′0 be the
positive root of f (t) = 0. Therefore t′0 > 1. Obviously if t ≥ t′0 then f (t) ≥ 0. So for |F(z)| > 0,
|z| ≥ t′0. Therefore F(z) does not vanish in |z| ≥ t′0.

Hence all the zeros of F(z) lie in |z| < t′0.
Let z = z0 be any zero of P(z). Therefore P(z0) = 0. Clearly z0 , 0 as a0 , 0.
Now putting z = 1

ρLz0
in F(z) we obtain that F

(
1

ρLz0

)
= (ρL)N(r)

(
1

ρLz0

)N(r)
.P (z0) =

(
1
z0

)N(r)
.P (z0)

=
(

1
z0

)N(r)
.0 = 0. Therefore z = 1

ρLz0
is a zero of F(z). Now

∣∣∣∣ 1
ρLz0

∣∣∣∣ < t′0 i.e.,
∣∣∣∣ 1
z0

∣∣∣∣ < ρLt′0 i.e., | z0| >
1
ρLt′0

.

As z0 is an arbitrary zero of P(z) therefore we obtain that

all the zeros of P(z) lie in |z| >
1
ρLt′0

. (3.18)
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Using (3.16) and (3.18) we get that all the zeros of P(z) lie in the ring shaped region 1
ρLt′0

< |z| < t0
ρL

where t0, t′0 are the unique positive roots of the equations g(t) = 0 and f (t) = 0 respectively whose
forms are given in the statement of Theorem 3.3. This proves the theorem.

In the line of Theorem 3.5, we may state the following theorem in view of Lemma 2.2 :

Theorem 3.6. Let P(z) be an entire function with L∗-order ρL∗ . For sufficiently large values of r in
the disk |z| ≤ [reL(r)], the Taylor’s series expansion of P(z)

P(z) = a0 + ap1z
p1 + ap2z

p2 + ... + apmzpm + aN(r)zN(r), a0 , 0

be such that 1 ≤ p1 < p2... < pm ≤ N(r) − 1, pi’s are integers and for ρL∗ > 0,

|a0| (ρL∗)N(r) ≥
∣∣∣ap1

∣∣∣ (ρL∗)N(r)−p1 ≥ ... ≥
∣∣∣apm

∣∣∣ (ρL∗)N(r)−pm .

Then all the zeros of P(z) lie in the proper ring shaped region

1
ρL∗t′0

< |z| <
1
ρL∗ t0

where t0 and t′0 are the unique positive roots of the equations

g(t) ≡
∣∣∣aN(r)

∣∣∣ tN(r)−pm −
∣∣∣aN(r)

∣∣∣ tN(r)−pm−1 − |a0| (ρL∗)N(r) = 0 and

f (t) ≡ |a0| (ρL∗)p1tp1 − |a0| (ρL∗)p1tp1−1 −
∣∣∣ap1

∣∣∣ = 0

respectively.

The proof is omitted.

Corollary 3.3. In view of Theorem 3.5 we may state that all the zeros of the polynomial P(z) =

a0 + ap1z
p1 + ... + apmzpm + anzn of degree n with 1 ≤ p1 < p2 < ... < pm ≤ n − 1, pi’s are integers

such that
|a0| ≥

∣∣∣ap1

∣∣∣ ≥ ........ ≥ |an|

lie in ring shaped region
1
t′0
< |z| < t0

where t0, t′0 are the unique positive roots of the equations

g(t) ≡ |an| tn−pm − |an| tn−pm−1 − |a0| = 0

and
f (t) ≡ |a0| tp1 − |a0| tp1−1 −

∣∣∣ap1

∣∣∣ = 0

respectively just substituting ρL = 1.
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Corollary 3.4. In view of Theorem 3.6 we may state that all the zeros of the polynomial P(z) =

a0 + ap1z
p1 + ... + apmzpm + anzn of degree n with 1 ≤ p1 < p2 < ... < pm ≤ n − 1, pi’s are integers

such that
|a0| ≥

∣∣∣ap1

∣∣∣ ≥ ........ ≥ |an|

lie in ring shaped region
1
t′0
< |z| < t0

where t0, t′0 are the unique positive roots of the equations

g(t) ≡ |an| tn−pm − |an| tn−pm−1 − |a0| = 0

and
f (t) ≡ |a0| tp1 − |a0| tp1−1 −

∣∣∣ap1

∣∣∣ = 0

respectively just substituting ρL∗ = 1.
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Abstract
In this article, the author tries to make primarity testing and factorization of integers by using Fourier transform

of a correlation function generated from the Riemann zeta function.
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1. Introduction

In number theory, integer factorization or prime factorization is the decomposition of a com-
posite number into smaller non-trivial divisors, which when multiplied together equal the original
integer. When the numbers are very large, no efficient, non-quantum integer factorization algo-
rithm is known; an effort by several researchers concluded in 2009, factoring a 232-digit number
(RSA-768), utilizing hundreds of machines over a span of 2 years. The presumed difficulty of
this problem is at the heart of widely used algorithms in cryptography such as RSA (Rivest et
al., 1978). Many areas of mathematics and computer science have been brought to bear on the
problem, including elliptic curves, algebraic number theory, and quantum computing.

In this article, the author tries to make primarity testing and factorization of integers by using
Fourier transform of a correlation function generated from the Riemann zeta function.
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2. Frequency Spectrum of a Correlation Function generated from the Riemann Zeta Func-
tion

Riemann zeta function is an analytic function defined by ζ(s) =

∞∑
n=1

n−s, which can also be

given by (Hardy & Riesz, 2005).

ζ(s) =
1

Γ(s)

∫ ∞

0

xs−1

ex − 1
dx (Re[ s ] > 1) , (2.1)

where Γ(s) is a Gamma function.
We define the Fourier transform of zσ(t, τ) shown as

Zσ(t, ω) = lim
T→∞

∫ +T

−T
zσ(t, τ)e−iωτdτ , (2.2)

where zσ(t, τ) is a time-dependent autocorrelation function (Yen, 1987) defined by

zσ(t, τ) = ζ(σ − i(t + τ/2)) · ζ∗(σ − i(t − τ/2)) .

In this formula, ζ∗(s) is a conjugate of ζ(s) .

From the infinite sum of the Riemann zeta function given by ζ(σ − it) =

∞∑
n=1

exp(it log n)
nσ

, we

have

Zσ(t, ω) = lim
T→∞

∫ +T

−T

∞∑
k=1

1
kσ

exp
[
i (t + τ/2) log k

]
·

∞∑
l=1

1
lσ

exp
[
−i (t − τ/2) log l

]
e−iωτdτ

= lim
T→∞

∫ +T

−T

∞∑
k,l=1

1
(kl)σ

exp
[
i log(k/l)t

]
exp

[
i log(kl)τ/2

]
e−iωτdτ.

For the integer n , put n = kl , then we can write

Zσ(t, ω) = lim
T→∞

∞∑
k,l=1

1
nσ

exp
[
i log (k/l) t

] ∫ +T

−T
exp

(
iτ log n/2

)
e−iωτdτ ,

where
∫ +T

−T
exp

(
iτ log n/2

)
e−iωτdτ =

2T sin
(
ω − 1

2 log n
)

(ω − 1
2 log n)

.

When we let a(n, t) =
∑
n=kl

exp
[
i log (k/l) t

]
, Eq.(2) can be rewritten as

Zσ(t, ω) = lim
T→∞

∞∑
n=1

a(n, t)
nσ

2T sin
(
ω − 1

2 log n
)(

ω − 1
2 log n

) =

∞∑
n=1

a(n, t)
nσ

2πδ
(
ω − 1

2 log n
)
,
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where a(n, t) is a real valued function given by

a(n, t) =
1
2

∑
n=kl

{
exp

[
i log (k/l) t

]
+ exp

[
i log (l/k) t

] }
=

∑
n=kl

cos
[
log (k/l) t

]
and δ(ω) is a Dirac’s delta function.

Lemma 2.1. a(n, t) is a multiplicative on n .

Proof. As we can write a(n, t) =
∑
n=kl

exp[i log(k/l)t] , the multiplicative property of which can be

shown from
a(n, t) =

∑
k|n

exp
(
it log(k2/n)

)
=

1
nit

∑
k|n

k2it ,

where the subscript k|n indicates integers k which divide n .
If f (n) is multiplicative, then F(n) =

∑
d|n

f (d) is multiplicative. From which, we have a(mn, t) =

a(m, t)a(n, t) for the case when satisfying (m, n) = 1 , because k2it is multiplicative.

From the definition of a(n, t) , we can obtain the following recurrence formula given by
(Musha, 2012).

a(pr, t) = a(pr−1, t) cos(t log p) + cos(rt log p) (r = 1, 2, 3, · · · ). (2.3)

From which, it can be proved that a(pr, t) =
sin[(r + 1)t log p]

sin(t log p)
. (2.4)

From Eq.(3), we have Zσ
(
t, 1

2 log n
)

=
2πδ(0)

nσ
a(n, t) .

For the integer n given by n = paqbrc · · · , we have

Zσ
(
t, 1

2 log n
)

=
2πδ(0)

nσ
sin[(a + 1)t log p]

sin(t log p)
sin[(b + 1)t log q]

sin(t log q)
sin[(c + 1)t log r]

sin(t log r)
· · · ,

from Lemma.1 and Eq.(5).

From the Fourier transform of Za

(
t, 1

2 log n
)

given by Fn(ω) =

∫ +∞

−∞

Zσ
(
t, 1

2 log n
)

e−iωtdt , we

can obtain the following Lemma.

Lemma 2.2. If n = p1 p2 p3 · · · pk , where p1, p2, p3, · · · , pk are different primes, Fn(ω) is consisted
of 2k−1 discrete spectrum.

Proof. From Eq. (4), we have

a(n, t) = 2 cos(t log p1) · 2 cos(t log p2) · 2 cos(t log p3) · · · 2 cos(t log pk).
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By the trigonometrical formula shown as cosα · cos β =1
2 {cos(α − β) + cos(α + β)} , we have

a(n, t) = 22 ×
1
2

{
cos[t(log p1 − log p2)] + cos[t(log p1 + log p2)]

}
· 2 cos(t log p3) · · · 2 cos(t log pk)

= 22
{
cos[t(log p1 − log p2)] cos(t log p3) + cos[t(log p1 + log p2)] cos(t log p3)

}
· · · 2 cos(t log pk)

= 22 ×
1
2

{
cos[t(log p1 − log p2 − log p3)] + cos[t(log p1 − log p2 + log p3)]

+ cos[t(log p1 + log p2 − log p3)] + cos[t(log p1 + log p2 + log p3)]
}

2 cos(t log p4) · · · 2 cos(t log pk)

By repeating the above computations, we have

a(n, t) = 2
2k−1∑
i=1

cos[ t(λi1 log p1 + λi2 log p2 + · · · + λik log pk)],

where λi1 = +1 and λi j = +1 or −1 for j > 1.
As log p1, log p2, log p3, · · · , log pk are linearly independent over Z (Kac, 1959), thus Fn(ω)

is consisted of 2k−1 different spectrum.

Then we obtain following Theorems.

Theorem 2.1. If and only Fn(ω) is consisted of a single spectra for ω ≥ 0 , then n is a prime.

Proof. The Fourier transform of cos(t log p) can be given by π[δ(ω − log p) + δ(ω + log p)] , and
thus it is clear from Lemma 2.2.

Theorem 2.2. If and only Fn(ω) is consisted of two spectrum for ω ≥ 0 , then n has either form of
n = p · q (p , q) , n = p2 or n = p3 .

Proof. From Theorem I, there is only a case for the integer n = p1 p2 · · · pk , when Fn(ω) is
consisted of two spectrum, that is n = p · q (p , q) .

From Eq.(4), we have following equations for a(pr, t) ;

r = 1, a(p, t) = 2 cos(t log p)

r = 2, a(p2, t) = 1 + 2 cos(2t log p)

r = 3, a(p3, t) = 2 cos(t log p) + 2 cos(3t log p)

r = 4, a(p4, t) = 1 + 2 cos(2t log p) + 2 cos(4t log p)

r = 5, a(p5, t) = 2 cos(t log p) + 2 cos(3t log p) + 2 cos(5t log p)

r = 6, a(p6, t) = 1 + 2 cos(2t log p) + 2 cos(4t log p) + 2 cos(6t log p)

r = 7, a(p7, t) = 2 cos(t log p) + 2 cos(3t log p) + 2 cos(5t log p) + 2 cos(7t log p)
...

Including the spectra at ω = 0 , there are cases for r = 2 and r = 3 when a(n, t) has two
spectrum.
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Theorem 2.3. If Fn(ω) is consisted of two spectrums at frequencies ω1 and ω2 and n = p · q , we
can obtain factors of an integer n given by p = exp

(ω2 − ω1
2

)
and q = exp

(ω1 + ω2
2

)
.

Proof. If n = p · q , then we obtain Zσ
(
t, 1

2 log n
)

=
4πδ(0)

nσ × cos(t log p) · cos(t log q) =

2πδ(0)
nσ

{
cos[(log q − log p)t] + cos[(log q + log p)t]

}
.

When we let ω1 = log q− log p , ω2 = log q+ log p , we have p = exp
(
ω2−ω1

2

)
, q = exp

(
ω1+ω2

2

)
.

3. Primarity Testing and Factorization from Fourier spectrum

From Theorems 2.1, 2.2 and 2.3, we can make primality testing and factorization of the integer
n consisted of two primes from the Fourier spectrum Fn(ω) (ω ≥ 0) by following procedures;

At first, compute the Fourier transform Zσ(t, ω) =

∫ +∞

−∞

zσ(t, τ)e−iωτdτ, where zσ(t, τ) = ζ(σ −

i(t + τ/2)) · ζ∗(σ − i(t − τ/2)) , from which we can obtain the Fourier spectrum by Fn(ω) =∫ +∞

−∞

Zσ
(
t, 1

2 log n
)

e−iωtdt. Then we can make primality testing and integer factorization of an integer

n, the process of which is shown in Figure 1.

Figure 1. Process to conduct primality testing for the integer n.

From this process, we can recognize the prime as a single spectra from the frequency analysis
result. If there are two spectrum observed from the calculation result, n has either form of n = p ·q
(p , q), n = p2 or n = p3 .

In this case, we can obtain factors of an integer n from Theorem 2.3.

As the Fourier transform Zσ(t, ω) =

∫ +∞

−∞

zσ(t, τ)e−iωτdτ can be computed by using discrete

FFT (fast Fourier transform) algorithm for the calculation of Wigner distribution function (Boashash
& Black, 1987), (Dellomo & Jacyna, 1991) because Zσ(t, ω) can be regarded as a Wigner distribu-
tion of the Riemann’s zeta function, we can obtain the Fourier spectrum of Fn(ω) by conducting
FFT calculations.
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By using this method, we can propose some possible applications which use the theory pre-
sented in this paper.

• Primary testing of large numbers such as Mersenne numbers 2m − 1 can be conducted by
using the algorithm shown in Figure 1 from the approximation, ω = 1

2 log(2m−1) = m
2 log 2−

1/2m+1 − 1/22m+2 − · · · .

• Factorization of an integer n consisted of two primes can be conducted by using this method.
By using FFT algorithm, there is a possibility to complete the computation within a poly-
nomial time, whereas there is no known efficient algorithm that runs in polynomial time
(Ribenboim, 1991).

• Breaking the public-key crypto system, which is considered to be hard by using the conven-
tional computer systems, because the RSA crypto-system depends on the factorization of an
integer composed of two large primes.

It is also known that Fourier transform can be conducted by the quantum computer, the schematic
diagram for the quantum Fourier transform is shown in Figure 2 (Nielsen & Chuang, 2000).

Figure 2. Schematic diagram for the quantum Fourier transform.

In this figure, H is a Hadamard gate and Rk is a unitary transformation given by

Rk =

[
1 0
0 e2πi/2k

]
.

Hence it can be seen that primality testing and integer factorization of an integer n consisted
of two primes can be conducted efficiently by using quantum computation besides the notably
Shor’s integer factorization algorithm (Yang, 2002), which gives us the possibility to break the
RSA cryptosystem.
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4. Conclusion

From the spectrum obtained by the Fourier transform of a correlation function generated from

the Riemann zeta function given by Fn(ω) =

∫ +∞

−∞

Zσ
(
t, 1

2 log n
)

e−iωtdt, we can see the primarity of

an integer n if and only the Fn(ω) has a single spectra. Moreover we can factorize the integer n
consisted of two primes by using this method.
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Abstract

We present a new method using multiple coarse grid computation technique to solve one dimensional (1D) partial
differential equation (PDE). Our method is based on a fourth order discretization scheme on two scale grids and
the Richardson extrapolation. For a particular implementation, we use multiple coarse grid computation to compute
the fourth order solutions on the fine grid and all the coarse grids. Since every fine grid point has a corresponding
coarse grid point with fourth order solution, the Richardson extrapolation procedure is applied for every fine grid
point to increase the order of solution accuracy from fourthorder to sixth order. We compare the maximum absolute
error and the order of solution accuracy for our new method, the standard fourth order compact (FOC) scheme and
Wang-Zhang’s sixth order multiscale multigrid method. Twoconvection-diffusion problems are solved numerically
to validate our proposed method.

Keywords: partial differential equation, multiple coarse grid computation, multigrid method.
2010 MSC:65N06, 65N55, 65F10.

1. Introduction

Numerical solutions of partial differential equations (PDEs) play a crucial role in many simula-
tion and engineering modeling applications, such as airplane manufacturing (Gametet al., 1999),
auto manufacturing (Gerlingeret al., 1998), medical imaging (Kanget al., 2004), oil exploration
and production (Li et al., 2005), semiconductor (Careyet al., 1996), communications (Kim &
Kim, 2004), etc. Over the past several decades, computational mathematicians and engineers have
developed many efficient fast algorithms to reduce the computation time. However, the increasing
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demand for higher resolution simulations in less computer time has continuously challenged the
computational scientists to come up with more efficient, scalable numerical algorithms to solve
PDEs.

In many scientific and engineering applications, such as theglobal ocean modeling and wide
area weather forecasting, the computational domains are huge and the grid spaces are not small. In
the context of the finite difference methods, the standard second order discretization scheme or the
first order upwind difference scheme yield unsatisfactory results because they may need fine mesh
griddings to compute approximate solutions of acceptable accuracy. In addition, the second order
scheme may also produce numerical solutions with nonphysical oscillations for the convection
dominated problems (Spotz, 1995).

Higher order (more than two) discretization methods are considered to be useful to reduce
computational cost in very large scale modelings and simulations, which use relatively coarser
mesh griddings to yield approximate solutions of comparable accuracy, compared with lower order
discretization. Generally, higher order discretization schemes need more complicated procedures
and more preprocessing costs to construct the coefficient matrix. However, they usually yield
linear systems of much smaller size, compared with those from the lower order methods.

For the development of fourth order compact difference schemes, Guptaet al. proposed a
fourth order nine-point compact (FOC) scheme to discretizethe two dimensional (2D) convection-
diffusion equation with variable coefficients (Guptaet al., 1984). There are also some other similar
fourth order compact schemes that have been developed for the convection-diffusion equations.
Readers are referred to (Li et al., 1995; Spotz, 1995; Spotz & Carey, 1995) and the references
therein for more details.

For the sixth order schemes, Chu and Fan (Chu & Fan, 1998, 1999) proposed a three point
combined compact difference (CCD) scheme for solving 2D Stommel Ocean model, which is a
convection-diffusion equation. Their scheme can achieve sixth order accuracy for the inner grid
points and fifth order accuracy for the boundary grid points.CCD scheme is considered as an
implicit scheme because it does not compute the solution of the variables of interest directly. It
also has a stability problem that for certain problems, if a large meshsize is used, the computed
solution may be oscillatory (Zhang & Zhao, 2005).

In contrary, theexplicit compact schemes compute the solutions of the variables directly. In
addition, the explicit schemes have an additional advantage that they can avoid the oscillations in
computed solutions. However, the higher order explicit compact schemes are more complicated
to develop in higher dimensions, compared with the implicitschemes. As far as we know, there is
no existing explicit compact scheme on a single scale grid that is higher than the fourth order.

By using the idea of multiscale computation, Sun and Zhang (Sun & Zhang, 2004) first pro-
posed a sixth order explicit finite difference discretization strategy, which is based on the Richard-
son extrapolation technique and an operator interpolationscheme. Recently, Wang and Zhang
developed an efficient and scalable sixth order explicit compact scheme for 2D/3D Poisson and
convection-diffusion equations by using multiscale mutigrid method and an operator based inter-
polation combined with extrapolation technique (Wang & Zhang, 2009, 2011, 2010). The How-
ever, for the operator based interpolation, if the coefficient matrixA is not diagonally dominant
like the convection-diffusion equation with very large cell Reynolds number, it may take a large
number of iterations to converge. In this paper, we present another technique called the multiple
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coarse grid computation technique. This approach can be used to compute the fourth order solu-
tions on the fine grid and every coarse grid, which means that we can directly apply Richardson
extrapolation for every grid point on the find grid and no operator based interpolation is needed.

An outline of the paper is as follows. In Section 2, we illustrate our sixth order strategy by
using multiple coarse grid computation technique. Numerical results will be provided in Section
3. Section 4 contains the concluding remarks.

2. Sixth Order Multiple Coarse Grid Computation

Our motivation is to build an efficient and scalable method for solving PDEs like the convection-
diffusion equations with high order of solution accuracy. In addition, we want the new method to
have good potential to be modified to work on parallel computers. In (Wang & Zhang, 2009),
Wang and Zhang successfully increase the order of solution accuracy from fourth order to sixth
order by using multiscale multigrid method, Richardson extrapolation and an operator based in-
terpolation. Important properties of the Richardson extrapolation has been studied by Zlatevet
al. Readers are referred to (Zlatevet al., 2010) and the references therein for more details. The
interpolation strategy is an mesh-refinement type of iterative method and it is very efficient for
some PDEs like the Poisson equation. Since their discretization scheme is based on the standard
explicit fourth order compact scheme, so their is no nonphysical oscillation in the computed solu-
tions. The proof and numerical analysis of this property canbe found in (Spotz, 1995). However,
it is not efficient and scalable for some problems like the convection-diffusion equation with high
Reynolds numbers (Wang & Zhang, 2011). For some cases, the interpolation procedure may take
thousands of iterations to converge. In addition, this method does not have a good potential for
parallel implementation.

The idea of using multiple coarse grid computation is from the parallel superconvergent multi-
grid method. In addition to splitting the original grid and filtering residual vector to exploit paral-
lelism, one can use the concurrent relaxation method on multiple grids (Zhu, 1993). The multigrid
superconvergent method uses multiple coarse grids to generate better correction for the fine grid
solution than that from a single coarse grid. The reason is that for standard multigrid method of
1D problem as in figure1, the residual of the fine grid is projected to onlyevencoarse grid. But
we can also project the residual tooddcoarse grids. Therefore, a combination of error correction
from all the coarse grids may make the fine grid converge faster than that from a single coarse grid.
In general, for ad dimensional problem, the fine grid can be easily coarsened into 2d coarse grids.
If the computation work for each coarse grid can be loaded to aseparate processor and computed
simultaneously, we can develop an parallel solver for solving PDEs.

2.1. 1D multiple coarse grid computation

Let’s consider the multiple coarse grid computation technique for the one dimensional (1D)
convection diffusion equation, which can be written as

ux + b(x)ux + c(x)u = f (x), 0 ≤ x ≤ l, (2.1)

where the known functionsb(x), c(x) and f (x) are assumed to have the necessary derivatives up to
certain orders. Eq. (2.1) can be discretized by some finite difference scheme to result in a system
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of linear equations
Ahuh = f h, (2.2)

whereh is the uniform grid spacing of the discretized domainΩh.

even

odd

fine

2h

2h

h

−4 −3 −2 −1 0 1 2 3 4
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1

2

3

4−4

Figure 1. Illustration of the multiple coarse grid for 1D problem.

In order to achieve sixth order solution accuracy, we need tocompute the fourth order so-
lutions for the fine grid and two coarse grids like figure1. Then we can apply the Richardson
extrapolation. The fourth order compact (FOC) scheme we useis from (Wang & Zhang, 2011).

From figure1, we can find out that two coarse grids are generated in such a way that all the
even-numbered grid points fromΩh belong to coarse gridΩeven and all the odd-numbered grid
points belong to coarse gridΩodd. So we have

Ωeven= {xj |xj ∈ Ωh and ( j = even)},
Ωodd = {xj |xj ∈ Ωh and ( j = odd)}.

We note that the even indexed coarse grid is easy to be solved by double the mesh size fromh
to 2h. However, the coarse gridΩodd only contains theblackcolor grid points from fine grid but
no red color boundary grid points. It is very difficult to develop the finite difference schemes for
coarse gridΩodd if we only have the inner grid points. One possible approach is to add these red
color boundaries toΩodd and develop special computational stencil for grid pointu−3 andu3 as
shown in figure2. For the 1D problem in figure2, the computational stencil for the grid points
near the boundaries are different with other inner grid points. For the inner grid pointslike u−1 and
u1, their finite difference schemes are based on 2h meshsize. However, if we take grid pointu−3

in Ωodd as an example, its compact finite difference scheme needs the boundary grid pointu−4 and
inner grid pointu−1. The meshsize betweenu−4 andu−1 areh and 2h.

2h

−3 −1 1 3−4 4

−4

h

odd

−2 −1 0 1 2 3 4−3

fine

Figure 2. Ωodd with two added red color boundary grid points.
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Figure 3. Ωodd with two red color boundary and two blue color inner grid points .

Lemma 2.1. For coarse grid as shown in figure2, the solution accuracy for the central difference
operator becomes first order.

Proof. It can be easily verified by using Taylor series expansion.

Since the second order central difference operator is degraded to the first order, the FOC
scheme which is based on the approximation for the second order terms will be degraded to the
second order for these near boundary grid points. In order tocompute fourth order solution for
every coarse grid point, we add two more grid points to theΩodd like thebluecolor grid points in
figure3.

By adding these four grid points, now we can discretize everygrid point inΩodd with fourth
order accuracy using FOC scheme. Let’s assume theΩodd containsNx grid points

uodd(0), uodd(1), ... , uodd(Nx)

as in figure4. Then theΩevenwill containsNx− 3 grid points and fine grid will contains 2Nx− 7
grid points. The grid points onΩodd are approximated as follows:

• For j ∈ {1, 2,Nx− 2,Nx− 1}, uodd( j) is approximated by three-point computational stencil
from FOC scheme using grid pointsuodd( j−1) anduodd( j+1) with meshsizeh. The truncation
error isO(h4).

• For j = 3, uodd( j) is approximated by three-point computational stencil from FOC scheme
using grid pointsuodd( j−2) anduodd( j+1) with meshsize 2h. The truncation error isO((2h)4).

• For j ∈ [4,Nx− 4], uodd( j) is approximated by three-point computational stencil from FOC
scheme using grid pointsuodd( j − 1) anduodd( j + 1) with meshsize 2h. The truncation error
is O((2h)4).

• For j = Nx − 3, uodd( j) is approximated by three-point computational stencil from FOC
scheme using grid pointsuodd( j − 1) anduodd( j + 2) with meshsize 2h. The truncation error
is O((2h)4).

1Dmulti2.eps
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Figure 4. Representation of modifiedΩodd for 1D problem.

By using above discretization strategy, we can approximatethe fourth order solution for every
grid point onΩodd. After we get fourth order solutions for the fine grid and two coarse grids, each
grid point on the fine grid will have a corresponding grid point on eitherΩevenor Ωodd. Then we
apply Richardson extrapolation (Cheney & Kincard, 1999) for every fine grid point to approximate
the sixth order solution like

ũh
j =

16uh
j − u2h

j

15
, (2.3)

whereuh
j is jth grid point from fine grid andu2h

j is the corresponding coarse grid point.

3. Numerical Results

Two 1D convection-diffusion equations are solved using the multiple coarse grid computation
strategy discussed in the previous sections. We compared the truncated error and the order of
accuracy by using our multiple coarse grid computation technique (MCG), standard fourth order
scheme (FOC), and the sixth order operator based interpolation scheme (SOC) in (Wang & Zhang,
2011).

The codes are written in Fortran 77 programming language andrun on one node of the Lip-
scomb HPC Cluster at the University of Kentucky. Each node has 36GB of local memory and
runs at 2.66GHz. The initial guess for our test cases is the zero vector. The stopping criteria for
the iterative methods we tested and the operator based interpolation procedure is 10−10. The errors
reported are the maximum absolute errors over the discrete grid of the finest level.

For the order of solution accuracy, we denoteE(h) and E(H) to be the solution error with
meshsizeh andH, respectively. The order of accuracym is calculated from the formula

E(h)
E(H)

=
hm

Hm

=⇒ m= log(h/H)(E(h)/E(H)).

The order of accuracy is formally defined when the meshsize approaches zero. Therefore, when
the meshsize is relatively large, the discretization scheme may not achieve its formal order of
accuracy.
Problem 1. Let’s consider the examples from Sun’s previous work (Sun & Zhang, 2004), which
is a 1D convection-diffusion equation like

∂2u
∂x2
− ∂u
∂x
− u = − cosx− 2 sinx, 0 ≤ x ≤ π. (3.1)

Eq. (3.1) has the Dirichlet boundary conditions asu(0) = u(π) = 0. The analytic solution for this
problem isu(x) = sinx.

1Dmulti3.eps
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Figure 5. Comparison of maximum errors of FOC, SOC and MCG methods forProb-
lem 1.

The computational results are listed in Table1 and figure5. From Table1, we can see that
the multiple coarse grid method (MCG) is more accurate than the fourth order scheme (FOC).
Although the MCG method is not as accurate as the SOC but it canachieve the sixth order solution
accuracy when the number of intervals is bigger than 8. The reason why MCG is less accurate than
SOC is that there are two near boundary grid point using meshsizeh to approximate instead of 2h
in Ωodd.

Table 1. Comparison of maximum errors and the order of accuracy by using FOC,
SOC, and MCG methods for Eq. (3.1).

FOC SOC MCG
h Error Order Error Order Error Order
π/8 5.02e-5 4.0 1.30e-5 5.9 2.08e-5 5.7
π/16 3.18e-6 4.0 2.10e-7 6.0 3.94e-7 6.1
π/32 2.00e-7 4.0 3.32e-9 6.0 5.81e-9 5.8
π/64 1.25e-8 4.1 5.20e-11 6.0 1.06e-10 6.0
π/128 7.83e-10 4.1 8.73e-13 6.0 1.71e-12 6.0

Problem 2. We solve another classical 1D convection-diffusion equation

∂2u
∂x2
−
∂u
∂x
= 0, 0 ≤ x ≤ 1. (3.2)

The boundary condition for Eq. (3.2) is u0 = 0 andu1 = 1. The analytic solution isu(x) =
(ex − 1)/(e− 1).
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Figure 6. Comparison of maximum errors of FOC, SOC and MCG methods for Prob-
lem 2.

The numerical results of Problem 2 are listed in Table2 and figure6. We note that when
n > 32, the order of solution accuracy is not high enough as we hope. The reason is that the
computed solutions withh = 1/64 andh = 1/128 are not as accurate as they should be, due to the
stopping criteria we set. Once again, the solutions from ourMCG method are more accurate than
the FOC method and can achieve the sixth order whenn < 64.

Table 2. Comparison of maximum errors and the order of accuracy by using FOC,
SOC, and MCG methods for Eq. (3.2).

FOC SOC MCG
h Error Order Error Order Error Order

1/8 7.76 e-5 3.9 2.24e-9 5.9 2.78-9 5.7
1/16 5.12e-6 4.0 4.01e-11 6.0 5.29-11 6.0
1/32 3.27e-7 4.0 5.91e-13 6.0 8.27-13 5.9
1/64 1.91e-8 4.0 2.34e-14 4.9 3.21-14 4.8
1/128 1.19e-9 4.0 7.93e-15 1.6 1.02-14 1.6

We want to mention here that the SOC method for both test casesis slightly more accurate than
the MCG method, but the MCG method has a very good potential for parallel implementation. The
computing tasks for MCG procedure can be divided to three independent processors (one for find
grid and two for coarse grids). In addition, since the MCG method does not need the operator
based interpolation procedure to approximate the sixth order fine grid solution, it will save a large
amount of CPU costs for some high Reynolds number problems (Wang & Zhang, 2011).

MultiP2.eps
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4. Concluding Remarks and Future Work

We presented a new sixth order solution method based on the fourth order discretization and
multiple coarse grid computation for solving 1D convection-diffusion equation. Our numerical
experiments show that the new sixth order strategy is more accurate than the standard fourth order
scheme and can achieve the sixth order solution accuracy.

It is worth pointing out that our solution strategy can be applied to solve many other types of
PDEs, because it does not require the additional work to redesign the discretization schemes. The
advantage of using multiple coarse grids is that we can use itto increase the order of accuracy
without using operator based interpolation scheme. However, there is still a lot of work that needs
to be done to develop a useful multiple coarse grid computation method that can be applied to
real-world problems. In this paper, we just use the standardGauss-Seidel iterative method for
MCG strategy, because our goal is to test whether the MCG method can achieve the sixth order
accuracy or not. For some real applications, we should use multigrid method and implement the
multiple coarse grid computation in the multigrid cycle.

For the future research work, we will extend our 1D multiple coarse grid computation method
to higher dimensional problems. For 2D problems, we will generate four course grids by the index
of x andy direction as (even, even), (even, odd), (odd, even) and (odd, odd). Here, (even, even) is
the course grid in standard multigrid method. Like 1D strategy, only the (even, even) course grid
has the full boundary conditions. We need to find a way to add artificial boundary grid points for
other three course grids. Another possible solution is to use algebraic multigrid method instead of
geometric multigrid method, this is also one of our researchinterest in the future.

For the parallelization, the parallel multiscale multigrid (MCG) method has been discussed in
(Xiao, 1994; Zhu, 1993). However, these parallel MCG methods are only used to speedup the
convergence. As we mentioned in previous section, the computation of each course grid and the
fine grid is independent. If we want to solve a 3D problem, we can use nine processors to solve the
fourth order solutions on the fine grid and eight coarse grids. Then an Richardson extrapolation,
which can also been parallelized, can increase the order of accuracy to sixth order.
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Abstract
The main aim of this paper is to study a concept of nonuniform polynomial stability for evolution operators on

the half-line. The obtained results are variants for nonuniform polynomial stability of some well-known theorems due
to Barbashin, Datko, Rolewicz and Zabczyk in the case of uniform exponential stability. This paper generalizes well-
known results for the nonuniform exponential stability (Lupa & Megan, 2012) and the uniform polynomial stability
(Megan & Ceausu, 2012).
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1. Introduction and preliminaries

The notion of exponential stability plays an important role in the theory of differential equa-
tions in Banach spaces, particularly in the study of asymptotical behaviors. It has gained promi-
nence since appearance of two fundamental monographs of J. L. Massera, J. J. Schäffer (Massera
& Schäffer, 1966) and J. L. Daleckii, M. G. Krein (Daleckii & Krein, 1974). These were followed
by the important books of C. Chicone and Yu. Latushkin (Chicone & Latushkin, 1999) and L.
Barreira and C. Valls (Barreira & Valls, 2008).

The most important stability concept used in the qualitative theory of differential equations is
the uniform exponential stability. In some situations, particulary in the nonautonomous setting,
the concept of uniform exponential stability is too restrictive and it is important to look for a more
general behavior.
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Two different perspectives can be identified to generalize the concept of uniform exponential
stability, on the one hand one can define exponential stabilities that depends on the initial time
(and therefore are nonuniform) and, on the other hand, one can consider grow rates that are not
necessarily exponential.

The first approach leads to the concepts of nonuniform exponential stabilities and can be found
in the works (Barreira & Valls, 2008), (Lupa & Megan, 2012), (Megan, 1995), (Minda & Megan,
2011), (Pinto, 1988) and the second approach is presented in the papers (Barreira & Valls, 2009),
(Bento & Silva, 2009), (Bento & Silva, 2012), (Megan & Ramneantu, 2011), (Megan & Minda,
2011).

A natural generalization is to consider stability concepts that are both nonuniform and not
necessarily exponential. This was the approach followed by Barreira and Valls in (Barreira &
Valls, 2009) and A. Bento and C. Silva in (Bento & Silva, 2009), (Bento & Silva, 2012), who
studied a nonuniform polynomial dichotomy concept. A principal motivation for weakening the
assumption of uniform exponential behavior is that from the point of view of ergodic theory, almost
all variational equations in a finite dimensional space admit a nonuniform exponential dichotomy.

In this paper we consider a concept of nonuniform polynomial stability for evolution operators
in Banach spaces. This concept has been considered in the case of invertible evolution operators
in the papers (Barreira & Valls, 2009) due to L. Barreira and C. Valls, respectively in (Bento &
Silva, 2009), (Bento & Silva, 2012) due to A. Bento and C. Silva.

Some results concerning polynomial stability for evolution operators were published in our
papers (Megan & Ramneantu, 2011), (Megan & Ceausu, 2012), (Megan & Minda, 2011). We
remark that the results obtained in (Megan & Ramneantu, 2011) are for the case of evolution op-
erators with uniform exponential growth. In this paper we consider the case of evolution operators
with nonuniform polynomial growth.

The obtained results in this paper can be considered as variants for nonuniform polynomial sta-
bility of some well-known theorems due to Barbashin ((Barbashin, 1967)), Datko ((Datko, 1972))
and Rolewicz ((Rolewicz, 1986)) in the case of uniform exponential stability. We remark that our
proofs are not adaptations for polynomial stability of the proofs presented in (Barbashin, 1967),
(Datko, 1972) and (Rolewicz, 1986). The case of nonuniform exponential stability has been stud-
ied in (Lupa & Megan, 2012), (Minda & Megan, 2011), respectively (Megan & Ramneantu, 2011),
(Megan & Ceausu, 2012).

Moreover, we note that we consider evolution operators which are not supposed to be invertible
and the polynomial stability concept studied in this paper uses the evolution operators in forward
time. Thus the stability results obtained in this paper hold for a much larger class of differential
equations than in the classical theory of uniform exponential stability.

Let X be a real or complex Banach space and let I be the identity operator on X. The norm on
X and on B(X), the algebra of all bounded linear operators acting on X, will be denoted by ‖ · ‖.

Let
∆ = {(t, s) ∈ R2

+ : t ≥ s}.

We recall that a mapping Φ : ∆ −→ B(X) is called an evolution operator on X if

(e1) Φ(t, t) = I, for all t > 0;
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(e2) Φ(t, s)Φ(s, r) = Φ(t, r), for all (t, s), (s, r) ∈ ∆.

Definition 1.1. An evolution operator Φ : ∆ −→ B(X) is said to be

(i) with polynomial growth (and denote p.g) if there exist M ≥ 1, ω > 0 and ε ≥ 0 such that

(s + 1)ω ‖ Φ(t, s) ‖≤ M(t + 1)ω(s + 1)ε, f or all (t, s) ∈ ∆;

(ii) polynomially stable (and denote p.s) if there exist N ≥ 1, α > 0 and β ≥ 0 such that

(t + 1)α ‖ Φ(t, s) ‖≤ N(s + 1)α+β, f or all (t, s) ∈ ∆;

(iii) exponentially stable (and denote e.s) if there exist N1 ≥ 1, α1 > 0 and β1 ≥ 0 such that

eα1t ‖ Φ(t, s) ‖≤ N1e(α1+β1)s, f or all (t, s) ∈ ∆.

Definition 1.2. An evolution operator Φ : ∆ −→ B(X) is said to be

(i) measurable, if for all (s, x) ∈ R+ × X the mapping t 7−→‖ Φ(t, s)x ‖ is measurable on [s,∞).

(ii) ∗-measurable, if for all (s, x∗) ∈ R+ × X∗ the mapping s 7−→‖ Φ(t, s)∗x∗ ‖ is measurable on
[0, t].

2. Results

Theorem 2.1. Let Φ : ∆ −→ B(X) be a measurable evolution operator. If Φ is p.s then there exist
D ≥ 1, d > 0 and c ≥ 0 such that∫ ∞

s
(τ + 1)d−1‖Φ(τ, s)x‖dτ ≤ D(s + 1)d+c‖x‖, (2.1)

for all s ≥ 0 and x ∈ X.

Proof. If Φ is p.s, then according to Definition 1.1 (ii) there exist the constants N ≥ 1, α > 0 and
β ≥ 0 such that, for all d ∈ (0, α) and c = β we have∫ ∞

s
(τ + 1)d−1‖Φ(τ, s)x‖dτ ≤ N(s + 1)α+β‖x‖

∫ ∞

s
(τ + 1)d−α−1dτ ≤ D(s + 1)d+c‖x‖,

for all (s, x) ∈ R+ × X, where D = N+α−d
α−d .

Theorem 2.2. Let Φ : ∆ −→ B(X) be a measurable evolution operator with p.g and with the
property that there exist D ≥ 1, c ≥ 0 and d > ε such that (2.1) holds, where ε is given by
Definition 1.1(i). Then Φ is p.s.
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Proof. Let x ∈ X and t ≥ 2s + 1. Because∫ t

t−1
2

(τ + 1)a−1dτ = (t + 1)a 2a − 1
a2a ,

for all t ≥ 0 and a > 0 we have

(t + 1)d−ε‖Φ(t, s)x‖ = N
∫ t

t−1
2

(τ + 1)d−ε−1‖Φ(t, s)x‖dτ

= N
∫ t

t−1
2

(τ + 1)d−ε−1‖Φ(τ, s)x‖M
(

t + 1
τ + 1

)ω
(τ + 1)εdτ

≤ 2ωNM
∫ ∞

s
(τ + 1)d−1‖Φ(τ, s)x‖dτ ≤ 2ωNMD(s + 1)d+c‖x‖.

Hence, we have that

(t + 1)d−ε‖Φ(t, s)x‖ ≤ 2ωNMD(s + 1)d−ε+c+ε‖x‖,

for all t ≥ 2s + 1 and x ∈ X, where N =
(d−ε)2d−ε

2d−ε−1 .
For t ∈ [s, 2s + 1) we have

(t + 1)d−ε‖Φ(t, s)x‖ ≤ 2d+ω−εM(s + 1)d‖x‖

and hence,
(t + 1)d−ε‖Φ(t, s)x‖ ≤ K(s + 1)d−ε+c+ε‖x‖,

for all (t, s, x) ∈ ∆ × X, where K = max{2ωNMD, 2d−ε+ωM}.
Finally, we obtain that Φ is p.s.

A discrete variant of the Theorem 2.2 is

Theorem 2.3. Let Φ : ∆ −→ B(X) be an evolution operator with p.g and with the property that
there exist the constants D ≥ 1, d > 0 and c ≥ 0 such that

∞∑
k=n

(k + 1)d‖Φ(k, n)x‖ ≤ D(n + 1)d+c‖x‖,

for all n ∈ N and x ∈ X. Then Φ is p.s.

Proof. According the hypothesis, if we consider k = m then we have

(m + 1)d‖Φ(m, n)x‖ ≤ D(n + 1)d+c‖x‖,

for all m, n ∈ N, m ≥ n and x ∈ X, which proves that Φ is p.s.
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Remark. Theorem 2.3 can be considered a Zabczyk’s (Zabczyk, 1974) type theorem for polyno-
mial stability.

Theorem 2.4. Let Φ : ∆ −→ B(X) be an evolution operator. Then Φ is p.s if and only if there exist
the constants B ≥ 1 and b > c ≥ 0 such that

n∑
k=0

(k + 1)−b−1‖Φ(n, k)x‖ ≤ B(n + 1)c−b‖x‖,

for all n ∈ N and x ∈ X.

Proof. Necessity. If we consider b ∈ (β, α + β), c = β and B =
N+α+β−b
α+β−b we have

n∑
k=0

(k + 1)−b−1‖Φ(n, k)x‖ ≤ N(n + 1)−α‖x‖
n∑

k=0

(k + 1)α+β−b−1

≤ N(n + 1)−α‖x‖
(
1 +

∫ n

0
(τ + 1)α+β−b−1dτ

)
≤ B(n + 1)c−b‖x‖,

for all n ∈ N and x ∈ X.
Sufficiency. Let n ≥ k ≥ 0 with n, k ∈ N. According to the hypothesis we have that

(k + 1)−b−1‖Φ(n, k)x‖ ≤ B(n + 1)c−b‖x‖

which implies
(n + 1)b−c‖Φ(n, k)x‖ ≤ B(k + 1)b−c+1+c‖x‖,

for all x ∈ X. Hence, Φ is p.s.

Remark. Theorem 2.4 can be considered a Barbashin’s type theorem for polynomial stability (see
(Barbashin, 1967)).

We consider the set

R = {R : R+ −→ R+|R nondecreasing, R(t) > 0, ∀ t > 0}.

Theorem 2.5. Let Φ : ∆ −→ B(X) be a ∗-measurable evolution operator with p.g. Then Φ is p.s
if and only if there exist B ≥ 1, b > c ≥ 0 and a function R ∈ R such that∫ t

0
R

(
(τ + 1)−b−1‖Φ(t, τ)∗x∗‖

)
dτ ≤ BR

(
(t + 1)c−b‖x∗‖

)
,

for all (t, s, x∗) ∈ ∆ × X∗.

Proof. Necessity. Let us consider R(t) = t, t ≥ 0. If Φ is p.s, then there exist N ≥ 1, α > 0 and
β ≥ 0 such that for all b ∈ (β, α + β) and c = β we have∫ t

0
(τ + 1)−b−1‖Φ(t, τ)∗x∗‖dτ ≤ N(t + 1)−α‖x∗‖

∫ t

0
(τ + 1)α+β−b−1dτ = B(t + 1)c−b‖x∗‖,
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where B =
N+α+β−b
α+β−b .

Sufficiency. Let x ∈ X with ‖x‖ ≤ 1 and a − 1 > B. For t ≥ as + a − 1 we have

(a − 1)R
(
M−1a−b−ω−1(s + 1)−b−c−1|〈x∗,Φ(t, s)x〉|

)
=

∫ s+a−1

s
R

(
M−1a−b−ω−1(s + 1)−b−c−1|〈Φ(t, τ)∗x∗,Φ(τ, s)x〉|

)
dτ

≤

∫ as+a−1

s
R

(τ + 1)−b−1‖Φ(t, τ)∗x∗‖a−b−ω−1
(
τ + 1
s + 1

)b+ω+1 dτ

≤

∫ t

0
R

(
(τ + 1)−b−1‖Φ(t, τ)∗x∗‖

)
dτ < (a − 1)R

(
(t + 1)c−b‖x∗‖

)
.

Since R is nondecreasing, we obtain that

M−1a−b−ω−1(s + 1)−b−c−1|〈x∗,Φ(t, s)x〉| ≤ (t + 1)c−b‖x∗‖‖x‖.

By taking supremum relative to ‖x∗‖ ≤ 1, we have that

(t + 1)b−c‖Φ(t, s)‖ ≤ Mab+ω+1(s + 1)b+c+1.

If t ∈ [s, as + a − 1) we have

(t + 1)b−c‖Φ(t, s)‖ ≤ M
(

t + 1
s + 1

)b−c+ω

(s + 1)b ≤ Mab+ω+1(s + 1)b,

and, further,
(t + 1)b−c‖Φ(t, s)‖ ≤ Mab+ω+1(s + 1)b+c+1,

for all (t, s) ∈ ∆, which proves that Φ is p.s.

Remark. Theorem 2.5 can be considered a Rolewicz’s type theorem for polynomial stability (see
(Rolewicz, 1986)).

Corollary 2.6. Let Φ : ∆ −→ B(X) be a ∗-measurable evolution operator with p.g. Then Φ is p.s
if and only if there exist B ≥ 1 and b > c ≥ 0 such that∫ t

0
(τ + 1)−b−1‖Φ(t, τ)∗x∗‖dτ ≤ B(t + 1)c−b‖x∗‖,

for all (t, s, x∗) ∈ ∆ × X∗.
Proof. It follows from Theorem 2.5 for R(t) = t.

Remark. A similar result was obtained by N. Lupa and M. Megan in (Lupa & Megan, 2012) for
the case of nonuniform exponential stability.
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3. Examples

In this section we will give some examples that illustrate the connection between the exponen-
tial stability and the polynomial stability, as well as the connection between polynomial growth
and polynomial stability. Furthermore, we will present some examples of evolution operators
which are not p.s and the integral from (2.1) is convergent, respectively divergent.

In contrast with uniform case (where uniform exponential stability implies uniform polynomial
stability, see (Megan & Ramneantu, 2011)) in the nonuniform case there is no connection between
the concepts of exponential stability and polynomial stability, as shown in the following examples.

Example 3.1. We consider the function

u : [1,∞) −→ R∗+, u(t) = (t + 1)3 + 1

and the evolution operator

Φ : ∆ −→ B(X), Φ(t, s) =
(s + 1)2u(s)
(t + 1)2u(t)

I.

We have that
(t + 1)2‖Φ(t, s)‖ ≤ 2(s + 1)5, f or all (t, s) ∈ ∆.

It results that Φ is p.s. If we suppose that Φ is e.s, then there exist N1 ≥ 1, α1 > 0 and β1 ≥ 0 such
that

eα1t(s + 1)2[(s + 1)3 + 1] ≤ N1e(α1+β1)s(t + 1)2[(t + 1)3 + 1], f or all (t, s) ∈ ∆.

For s = 0 and t −→ ∞, we obtain a contradiction and hence Φ is not e.s.

Example 3.2. The evolution operator

Φ : ∆ −→ B(X), Φ(t, s) =
e(2−cos s)s

e(2−cos t)t I

satisfies the condition
et‖Φ(t, s)‖ ≤ e3s, f or all (t, s) ∈ ∆.

Hence Φ is e.s. If we suppose that Φ is p.s then there exist N ≥ 1, α > 0 and β ≥ 0 such that

(t + 1)αe(2−cos s)s ≤ N(s + 1)α+βe(2−cos t)t, f or all (t, s) ∈ ∆.

From here, for t = 2(n + 1)π and s = (2n + 1)π we obtain

(2nπ + 2π + 1)α e4nπ+π ≤ N (2nπ + π)α+β ,

which for n −→ ∞ yields a contradiction.

It is obvious that if an evolution operator is p.s then it has p.g. The next example presents an
evolution operator with p.g, which is not p.s and the integral from (2.1) is divergent.
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Example 3.3. The evolution operator

Φ : ∆ −→ B(X), Φ(t, s) =
(s + 1)1−cos(s+1)

(t + 1)1−cos(t+1) I

satisfies the relation

(s + 1)ω‖Φ(t, s)‖ ≤ (t + 1)ω(s + 1)ε, f or all (t, s) ∈ ∆.

It results that Φ has p.g for all ω > 0 and ε = 2.
If we suppose that Φ is p.s then there exist N ≥ 1, α > 0 and β ≥ 0 such that

(t + 1)α
(s + 1)1−cos(s+1)

(t + 1)1−cos(t+1) ≤ N(s + 1)α+β,

for all (t, s) ∈ ∆. For s = π
2 − 1 and t = 2π + 2nπ − 1, we obtain

(2π + 2nπ)α
π

2
≤ N

(
π

2

)α+β

,

which if n −→ ∞, leads to a contradiction. We obtain thus that Φ is not p.s.
Let d ≥ 2 and s ≥ 0. Then we have∫ ∞

s
(τ + 1)d−1‖Φ(τ, s)x‖dτ ≥ (s + 1)1−cos(s+1)‖x‖

∫ ∞

s
(τ + 1)d−3dτ = ∞.

The next evolution operator does is not p.s and the integral from (2.1) is divergent.

Example 3.4. We consider the set

A = {n +
1

n + 1
: n ∈ N}

and a function u : [0,∞) −→ [1,∞)

u(t) =

{
et+1, t < A

e2, t ∈ A.

and the evolution operator

Φ : ∆ −→ B(X), Φ(t, s) =
u(s)
u(t)

I

Let d > 0 and s ≥ 0. Then we have∫ ∞

s
(τ + 1)d−1‖Φ(τ, s)x‖dτ = u(s)‖x‖

∫ ∞

s
(τ + 1)d−1e−(τ+1)dτ

≤ u(s)‖x‖
∫ ∞

s+1
yd−1e−ydy = ‖x‖u(s)Γ(d) < ∞.

If we suppose that Φ has p.g then there exist M ≥ 1, ω > 0 and ε ≥ 0 such that

(s + 1)ωu(s) ≤ M(t + 1)ω(s + 1)εu(t), f or all (t, s) ∈ ∆.

For s = n and t = n + 1
n+1 we obtain

en+1(n + 1)2ω ≤ Me2(n + 1)ε(n2 + 2n + 2)ω,

which for n −→ ∞ yields a contradiction. Hence, Φ does not have p.g and so Φ is not p.s.



210 M. Megan et al. /Theory and Applications of Mathematics & Computer Science 4 (2) (2014) 202–210

4. Open Problem

Finally, we put the following open problems:

1 There exist evolution operators which are not p.s and the relation (2.1) is satisfied?

2 There are evolution operators with p.g with ε > 0, which are not p.s and the relation (2.1) is
satisfied for d ∈ (0, ε)?
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Abstract
In this article we introduce the sequence spacesZI(F),ZI

0(F) andZI
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1. Introduction

Let R, and C be the sets of all real and complex numbers respectively. We write

ω = {x = (xk) : xk ∈ R or C }

the space of all real or complex sequences. Let `∞, c and c0 denote the Banach spaces of bounded,
convergent and null sequences respectively normed by ||x||∞ = sup

k
|xk|. Each linear subspace of ω,

for example λ, µ ⊂ ω is called a sequence space. A sequence space λ with linear topology is called
a K-space provided each of maps pi −→ C defined by pi(x) = xi is continuous for all i ∈ N. A
K-space λ is called an FK-space provided λ is a complete linear metric space. An FK-space whose
topology is normable is called a BK-space. Let λ and µ be two sequence spaces and A = (ank)
is an infinite matrix of real or complex numbers ank, where n, k ∈ N. Then we say that A defines
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a matrix mapping from λ to µ and we denote it by writing A : λ −→ µ. If for every sequence
x = (xk) ∈ λ the sequence Ax = {(Ax)n}, the A transform of x is in µ, where

(Ax)n =
∑

k

ankxk, (n ∈ N). (1.1)

By (λ : µ), we denote the class of matrices A such that A : λ −→ µ. Thus, A ∈ (λ : µ) if and
only if series on the right side of (1) converges for each n ∈ N and every x ∈ λ. The approach
of constructing the new sequence spaces by means of the matrix domain of a particular limitation
method have been recently employed by Altay, Başar and Mursaleen (Altay et al., 2006), Başar
and Altay (Altay & Başar, 2003), Malkowsky (Malkowsky, 1997), Ng and Lee (Ng & Lee, 1978)
and Wang (Wang, 1978). Şengönül (Şengönül, 2007) defined the sequence y = (yi) which is
frequently used as the Zp transform of the sequence x = (xi) i.e, yi = pxi + (1 − p)xi−1 where
x−1 = 0, p , 0, 1 < p < ∞ and Z p denotes the matrix Z p = (zik) defined by

zik =


p, (i = k),

1 − p, (i − 1 = k); (i, k ∈ N),
0, otherwise.

Following Basar and Altay (Altay & Başar, 2003), Şengönül (Şengönül, 2007) introduced the
Zweier sequence spacesZ andZ0 as followsZ = {x = (xk) ∈ ω : Z px ∈ c},Z0 = {x = (xk) ∈ ω :
Z px ∈ c0}. Here we quote below some of the results due to Şengönül (Şengönül, 2007) which we
will need in order to establish the results of this article.

Theorem 1.1 ((Şengönül, 2007), Theorem 2.1). The setsZ andZ0 are the linear spaces with the
co-ordinate wise addition and scalar multiplication which are the BK-spaces with the norm

||x||Z = ||x||Z0 = ||Z px||c.

Theorem 1.2 ((Şengönül, 2007), Theorem 2.2). The sequence spaces Z and Z0 are linearly
isomorphic to the spaces c and c0 respectively, i.eZ � c andZ0 � c0.

Theorem 1.3 ((Şengönül, 2007), Theorem 2.3). The inclusionsZ0 ⊂ Z strictly hold for p , 1.

Theorem 1.4 ((Şengönül, 2007), Theorem 2.6). Z0 is solid.

Theorem 1.5 ((Şengönül, 2007), Theorem 3.6). Z is not a solid sequence space.

The concept of statistical convergence was first introduced by Fast (Fast, 1951) and also in-
dependently by Buck (Buck, 1953) and Schoenberg (Schoenberg, 1959) for real and complex
sequences. Further this concept was studied by Connor (Connor, 1988, 1989; Connor & Kline,
1996), Connor, Fridy and Kline (Fridy & Kline, 1994) and many others. Statistical convergence is
a generalization of the usual notion of convergence that parallels the usual theory of convergence.
A sequence x = (xk) is said to be Statistically convergent to L if for a given ε > 0

lim
k

1
k
|{i : |xi − L| ≥ ε, i ≤ k}| = 0.
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Later on it was studied by Fridy (Fridy, 1985, 1993) from the sequence space point of view and
linked it with the summability theory. The notion of I-convergence is a generalization of the
statistical convergence. At the initial stage it was studied by Kostyrko, Šalát, Wilczyński (Kostyrko
et al., 2000). Later on it was studied by Šalát, Tripathy, Ziman (Šalát et al., 2004; Šalát et al.,
2005) and Demirci (Connor et al., 2001). Here we give some preliminaries about the notion of
I-convergence.

Let X be a non empty set. A set I⊆ 2X (2X denoting the power set of X) is said to be an ideal if
I is additive i.e A, B ∈ I ⇒ A∪B ∈ I and hereditary i.e A ∈ I, B ⊆ A⇒ B ∈ I. A non empty family
of sets £(I) ⊆ 2X is said to be filter on X if and only if φ < £(I), for A, B ∈ £(I) we have A∩B ∈ £(I)
and for each A ∈ £(I) and A ⊆ B implies B ∈ £(I). An Ideal I ⊆ 2X is called non-trivial if I , 2X.
A non-trivial ideal I ⊆ 2X is called admissible if {{x} : x ∈ X} ⊆ I. A non-trivial ideal I is maximal
if there cannot exist any non-trivial ideal J , I containing I as a subset. For each ideal I, there is a
filter £(I) corresponding to I. i.e £(I) = {K ⊆ N : Kc ∈ I}, where Kc = N − K.

Definition 1.1. A sequence space E is said to be solid or normal if (xk) ∈ E implies (αkxk) ∈ E for
all sequence of scalars (αk) with |αk| < 1 for all k ∈ N.

Definition 1.2. A sequence space E is said to be monotone if it contains the canonical preimages
of all its stepspaces.

Definition 1.3. A sequence space E is said to be convergence free if (yk) ∈ E whenever (xk) ∈ E
and xk = 0 implies yk = 0.

Definition 1.4. A sequence space E is said to be a sequence algebra if (xkyk) ∈ E whenever
(xk), (yk) ∈ E.

Definition 1.5. A sequence space E is said to be symmetric if (xπ(k)) ∈ E whenever (xk) ∈ E where
π(k) is a permutation on N.

Definition 1.6. A sequence (xk) ∈ ω is said to be I-convergent to a number L if for every ε > 0.
{k ∈ N : |xk − L| ≥ ε} ∈ I. In this case we write I-lim xk = L.
The space cI of all I-convergent sequences to L is given by

cI = {(xk) ∈ ω : {k ∈ N : |xk − L| ≥ ε} ∈ I, for some L∈ C}.

Definition 1.7. A sequence (xk) ∈ ω is said to be I-null if L = 0. In this case we write I-lim xk = 0.

Definition 1.8. A sequence (xk) ∈ ω is said to be I-cauchy if for every ε > 0 there exists a number
m = m(ε) such that {k ∈ N : |xk − xm| ≥ ε} ∈ I.

Definition 1.9. A sequence (xk) ∈ ω is said to be I-bounded if there exists M > 0 such that
{k ∈ N : |xk| ≥ M} ∈ I.

Definition 1.10. A modulus function f is said to satisfy 42-condition if for all values of u there
exists a constant K > 0 such that f (Lu) ≤ KL f (u) for all values of L > 1.
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Definition 1.11. Take for I the class I f of all finite subsets of N. Then I f is a non-trivial admissible
ideal and I f convergence coincides with the usual convergence with respect to the metric in X (see
(Khan & Ebadullah, 2011; Kostyrko et al., 2000)).

Definition 1.12. For I= Iδ and A ⊂ N with δ(A) = 0 respectively. Iδ is a non-trivial admissible
ideal, Iδ-convergence is said to be logarithmic statistical covergence (see (Khan & Ebadullah,
2011; Kostyrko et al., 2000)).

Definition 1.13. A map ~ defined on a domain D ⊂ X i.e ~ : D ⊂ X → R is said to satisfy
Lipschitz condition if |~(x)−~(y)| ≤ K|x−y| where Kis known as the Lipschitz constant. The class
of K-Lipschitz functions defined on D is denoted by ~ ∈ (D,K) (see (Khan & Ebadullah, 2011)).

Definition 1.14. A convergence field of I-covergence is a set

F(I) = {x = (xk) ∈ `∞ : there exists I − lim x ∈ R}.

The convergence field F(I) is a closed linear subspace of `∞ with respect to the supremum
norm, F(I) = `∞ ∩ cI (see (Khan & Ebadullah, 2011; Tripathy & Hazarika, 2011)).

Define a function ~ : F(I) → R such that ~(x) = I − lim x, for all x ∈ F(I), then the function
~ : F(I) → R is a Lipschitz function (see (Khan & Ebadullah, 2011)). The following Lemmas
will be used for establishing some results of this article.

Lemma 1.1. Let E be a sequence space. If E is solid then E is monotone (see (Kamthan & Gupta,
1981), page 53).

Lemma 1.2. Let K∈ £(I) and M⊆N. If M<I, then M∩N <I (see (Tripathy & Hazarika, 2009, 2011)).

Lemma 1.3. If I ⊂ 2N and M⊆N. If M <I, then M∩N <I (see (Tripathy & Hazarika, 2009, 2011)).

The idea of modulus was structured in 1953 by Nakano (See (Nakano, 1953)). A function
f : [0,∞) −→ [0,∞) is called a modulus if (1) f (t) = 0 if and only if t = 0,
(2) f (t + u) ≤ f (t) + f (u) for all t, u ≥ 0,
(3) f is nondecreasing, and
(4) f is continuous from the right at zero.

Ruckle (Ruckle, 1968, 1967, 1973) used the idea of a modulus function f to construct the
sequence space

X( f ) = {x = (xk) :
∞∑

k=1

f (|xk|) < ∞}.

This space is an FK space, and Ruckle (Ruckle, 1973) proved that the intersection of all such X( f )
spaces is φ, the space of all finite sequences. The space X( f ) is closely related to the space `1 which
is an X( f ) space with f (x) = x for all real x ≥ 0. Thus Ruckle (Ruckle, 1968, 1967, 1973) proved

that, for any modulus f , X( f ) ⊂ `1 and X( f )α = `∞, where X( f )α = {y = (yk) ∈ ω :
∞∑

k=1
f (|ykxk|) <

∞}. The space X( f ) is a Banach space with respect to the norm ||x|| =
∞∑

k=1
f (|xk|) < ∞.(See[31]).
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Spaces of the type X( f ) are a special case of the spaces structured by Gramsch in (Gramsch, 1971).
From the point of view of local convexity, spaces of the type X( f ) are quite pathological. Therefore
symmetric sequence spaces, which are locally convex have been frequently studied by Garling
(Garling, 1966, 1968), Köthe (Köthe, 1970) and Ruckle (Ruckle, 1968, 1967, 1973). After then
Kolk (Kolk, 1993, 1994) gave an extension of X( f ) by considering a sequence of modulii F = ( fk)
and defined the sequence space X(F) = {x = (xk) : ( fk(|xk|)) ∈ X}.(See[22-23]).

(c.f (Dems, 2005; Gurdal, 2004; Khan et al., 2012b,a, 2013; Šalát, 1980; Tripathy & Hazarika,
2009, 2011)).

Recently Khan and Ebadullah in (Khan et al., 2013) introduced the following classes of se-
quences ZI( f ) = {(xk) ∈ ω : {k ∈ N : f (|xk − L|) ≥ ε, for some L∈ C } ∈ I}, ZI

0( f ) = {(xk) ∈ ω :
{k ∈ N : f (|xk|) ≥ ε} ∈ I},ZI

∞( f ) = {(xk) ∈ ω : {k ∈ N : f (|xk|) ≥ M, for each fixed M>0} ∈ I}.
We also denote by mI

Z
( f ) = ZI

∞( f ) ∩ZI( f ) and mI
Z0

( f ) = ZI
∞( f ) ∩ZI

0( f ).

In this article we introduce the following class of sequence spaces:

ZI(F) = {(xk) ∈ ω : {k ∈ N : fk(|xk − L|) ≥ ε, for some L∈ C } ∈ I},

ZI
0(F) = {(xk) ∈ ω : {k ∈ N : fk(|xk|) ≥ ε} ∈ I},

ZI
∞(F) = {(xk) ∈ ω : {k ∈ N : fk(|xk|) ≥ M, for each fixed M>0} ∈ I}.

We also denote by mI
Z

(F) = ZI
∞(F) ∩ZI(F) and mI

Z0
(F) = ZI

∞(F) ∩ZI
0(F).

2. Main Results

Theorem 2.1. For a sequence of modulii F = ( fk), the classes of sequencesZI(F),ZI
0(F),mI

Z
(F)

and mI
Z0

(F) are linear spaces.

Proof. We shall prove the result for the space ZI(F). The proof for the other spaces will follow
similarly.
Let (xk), (yk) ∈ ZI(F) and let α, β be scalars. Then

I − lim fk(|xk − L1|) = 0, for someL1 ∈ C;

I − lim fk(|yk − L2|) = 0, for someL2 ∈ C;

That is for a given ε > 0, we have

A1 = {k ∈ N : fk(|xk − L1|) >
ε

2
} ∈ I, (2.1)

A2 = {k ∈ N : fk(|yk − L2|) >
ε

2
} ∈ I. (2.2)

Since fk is a modulus function, we have

fk(|(αxk + βyk) − (αL1 + βL2) ≤ fk(|α||xk − L1|) + fk(|β||yk − L2|) ≤ fk(|xk − L1|) + fk(|yk − L2|).

Now, by (2.1) and (2.2), {k ∈ N: fk(|(αxk + βyk) − (αL1 + βL2)|) > ε} ⊂ A1 ∪ A2. Therefore
(αxk + βyk) ∈ ZI(F) HenceZI(F) is a linear space.
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We state the following result without proof in view of Theorem 2.1.

Theorem 2.2. The spaces mI
Z

(F) and mI
Z0

(F) are normed linear spaces, normed by

||xk||∗ = sup
k

fk(|xk|). (2.3)

Theorem 2.3. A sequence x = (xk) ∈ mI
Z

(F) I-converges if and only if for every ε > 0 there exists
Nε ∈ N such that

{k ∈ N : fk(|xk − xNε
|) < ε} ∈ mI

Z
(F) (2.4)

Proof. Suppose that L = I − lim x. Then Bε = {k ∈ N : |xk − L| < ε
2 } ∈ mI

Z
(F). For all ε > 0. Fix

an Nε ∈ Bε .Then we have |xNε
− xk| ≤ |xNε

− L| + |L − xk| <
ε
2 + ε

2 = ε which holds for all k ∈ Bε .
Hence {k ∈ N : fk(|xk − xNε

|) < ε} ∈ mI
Z

(F).
Conversely, suppose that {k ∈ N : fk(|xk − xNε

|) < ε} ∈ mI
Z

(F). That is {k ∈ N : (|xk − xNε
|) <

ε} ∈ mI
Z

(F) for all ε > 0. Then the set Cε = {k ∈ N : xk ∈ [xNε
− ε, xNε

+ ε]} ∈ mI
Z

(F) for all ε > 0.
Let Jε = [xNε

− ε, xNε
+ ε]. If we fix an ε > 0 then we have Cε ∈ mI

Z
(F) as well as C ε

2
∈ mI

Z
(F).

Hence Cε ∩C ε
2
∈ mI

Z
(F). This implies that Jε ∩ J ε

2
, φ that is {k ∈ N : xk ∈ J} ∈ mI

Z
(F) that is

diamJ ≤ diamJε where the diam of J denotes the length of interval J.
In this way, by induction we get the sequence of closed intervals Jε = I0 ⊇ I1 ⊇ ... ⊇ Ik ⊇ ...
with the property that diamIk ≤

1
2diamIk−1 for (k=2,3,4.....) and {k ∈ N : xk ∈ Ik} ∈ mI

Z
(F)

for (k = 1, 2, 3, ...). Then there exists a ξ ∈ ∩Ik where k ∈ N such that ξ = I − lim x. So that
fk(ξ) = I − lim fk(x), that is L = I − lim fk(x).

Theorem 2.4. Let ( fk) and (gk) be modulus functions for some fixed k that satisfy the 42-condition.
If X is any of the spacesZI ,ZI

0,m
I
Z

and mI
Z0

etc, then the following assertions hold.
(a) X(gk) ⊆ X( fk.gk),
(b) X( fk) ∩ X(gk) ⊆ X( fk + gk).

Proof. (a) Let (xn) ∈ ZI
0(gk). Then

I − lim
n

gk(|xn|) = 0. (2.5)

Let ε > 0 and choose δ with 0 < δ < 1 such that fk(t) < ε for 0 < t < δ.
Write yn = gk(|xn|) and consider lim

n
fk(yn) = lim

n
fk(yn)yn<δ + lim

n
fk(yn)yn>δ. We have

lim
n

fk(yn) ≤ fk(2) lim
n

(yn). (2.6)

For yn > δ, we have yn <
yn
δ
< 1+

yn
δ

. Since fk is non-decreasing, it follows that fk(yn) < fk(1+
yn
δ

) <
1
2 fk(2) + 1

2 fk(
2yn
δ

) Since fk satisfies the 42-condition, we have fk(yn) < 1
2 K yn

δ
fk(2) + 1

2 K yn
δ

fk(2) =

K yn
δ

fk(2).
Hence

lim
n

fk(yn) ≤ max(1,K)δ−1 fk(2) lim
n

(yn). (2.7)
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From (2.5), (2.6) and (2.7), we have (xn) ∈ ZI
0( fk.gk). Thus ZI

0(gk) ⊆ ZI
0( fk.gk). The other

cases can be proved similarly.
(b) Let (xn) ∈ ZI

0( fk) ∩ZI
0(gk). Then I − lim

n
fk(|xn|) = 0 and I − lim

n
gk(|xn|) = 0.

The rest of the proof follows from the following equality lim
n

( fk + gk)(|xn|) = lim
n

fk(|xn|) +

lim
n

gk(|xn|).

Corollary 2.1. X ⊆ X( fk) for some fixed k and X =ZI ,ZI
0,m

I
Z

and mI
Z0

.

Theorem 2.5. The spacesZI
0(F) and mI

Z0
(F) are solid and monotone.

Proof. We shall prove the result forZI
0(F). Let (xk) ∈ ZI

0(F). Then

I − lim
k

fk(|xk|) = 0. (2.8)

Let (αk) be a sequence of scalars with |αk| ≤ 1 for all k ∈ N.
Then the result follows from [9] and the following inequality fk(|αkxk|) ≤ |αk| fk(|xk|) ≤ fk(|xk|) for
all k ∈ N. That the spaceZI

0(F) is monotone follows from the Lemma 1.20. For mI
Z0

(F) the result
can be proved similarly.

Theorem 2.6. The spacesZI(F) and mI
Z

(F) are neither solid nor monotone in general.

Proof. Here we give a counter example. Let I = Iδ and fk(x) = x2 for some fixed k and for
all x ∈ [0,∞). Consider the K-step space XK( fk) of X defined as follows. Let (xn) ∈ X and let
(yn) ∈ XK be such that

(yn) =

{
(xn), if n is even,

0, otherwise.

Consider the sequence (xn) defined by (xn) = 1 for all n ∈ N. Then (xn) ∈ ZI(F) but its K-
stepspace preimage does not belong to ZI(F). Thus ZI(F) is not monotone. Hence ZI(F) is not
solid.

Theorem 2.7. The spacesZI(F) andZI
0(F) are sequence algebras.

Proof. We prove thatZI
0(F) is a sequence algebra. Let (xk), (yk) ∈ ZI

0(F). Then I− lim fk(|xk|) = 0
and I − lim fk(|yk|) = 0. Then we have I − lim fk(|(xk.yk)|) = 0. Thus (xk.yk) ∈ ZI

0(F) is a sequence
algebra. For the spaceZI(F), the result can be proved similarly.

Theorem 2.8. The spacesZI(F) andZI
0(F) are not convergence free in general.

Proof. Here we give a counter example. Let I = I f and fk(x) = x3 for some fixed k and for all
x ∈ [0,∞). Consider the sequence (xn) and (yn) defined by xn = 1

n and yn = n for all n ∈ N.
Then (xn) ∈ ZI(F) and ZI

0(F), but (yn) < ZI(F) and ZI
0(F). Hence the spaces ZI

0(F) and ZI
0(F)

are not convergence free.

Theorem 2.9. If I is not maximal and I , I f , then the spacesZI(F) andZI
0(F) are not symmetric.
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Proof. Let A ∈ I be infinite and fk(x) = x for some fixed k and for all x ∈ [0,∞). If

xn =

{
1, for n ∈ A,
0, otherwise,

then by lemma 1.22 (xn) ∈ ZI
0(F) ⊂ ZI(F).

Let K ⊂ N be such that K < I and N−K < I. Let φ : K → A and ψ : N−K → N−A be bijections,
then the map π : N→ N defined by

π(n) =

{
φ(n), for n ∈ K,
ψ(n), otherwise,

is a permutation on N, but xπ(n) < Z
I(F) and xπ(n) < Z

I
0(F). Hence ZI(F) and ZI

0(F) are not
symmetric.

Theorem 2.10. ZI
0(F) ⊂ ZI(F) ⊂ ZI

∞(F).

Proof. Let (xk) ∈ ZI(F). Then there exists L ∈ C such that I − lim fk(|xk − L|) = 0. We have
fk(|xk|) ≤ 1

2 fk(|xk − L|) + fk
1
2 (|L|). Taking the supremum over k on both sides we get (xk) ∈ ZI

∞(F).
The inclusionZI

0(F) ⊂ ZI(F) is obvious.

Theorem 2.11. The function ~ : mI
Z

(F) → R is the Lipschitz function, where mI
Z

(F) = ZI
∞(F) ∩

ZI(F), and hence uniformly continuous.

Proof. Let x, y ∈ mI
Z

(F), x , y. Then the sets

Ax = {k ∈ N : |xk − ~(x)| ≥ ||x − y||∗} ∈ I,

Ay = {k ∈ N : |yk − ~(y)| ≥ ||x − y||∗} ∈ I.

Thus the sets,
Bx = {k ∈ N : |xk − ~(x)| < ||x − y||∗} ∈ mI

Z
(F),

By = {k ∈ N : |yk − ~(y)| < ||x − y||∗} ∈ mI
Z

(F).

Hence also B = Bx ∩ By ∈ mI
Z

(F), so that B , φ. Now taking k in B,

|~(x) − ~(y)| ≤ |~(x) − xk| + |xk − yk| + |yk − ~(y)| ≤ 3||x − y||∗.

Thus ~ is a Lipschitz function. For the space mI
Z0

(F) the result can be proved similarity.

Theorem 2.12. If x, y ∈ mI
Z

(F), then (x.y) ∈ mI
Z

(F) and ~(xy) = ~(x)~(y).

Proof. For ε > 0
Bx = {k ∈ N : |xk − ~(x)| < ε} ∈ mI

Z
(F),

Bx = {k ∈ N : |yk − ~(y)| < ε} ∈ mI
Z

(F).

Now,

|xkyk − ~(x)~(y)| = |xkyk − xk~(y) + xk~(y) − ~(x)~(y)| ≤ |xk||yk − ~(y)| + |~(y)||xk − ~(x)|. (2.9)

As mI
Z

(F) ⊆ ZI
∞(F), there exists an M ∈ R such that |xk| < M and |~(y)| < M.

Using eqn[10] we get |xkyk − ~(x)~(y)| ≤ Mε + Mε = 2Mε For all k ∈ Bx ∩ By ∈ mI(F). Hence
(x.y) ∈ mI

Z
(F) and ~(xy) = ~(x)~(y). For the space mI

Z0
(F) the result can be proved similarity.
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Abstract
As the dynamical systems that model processes issued from engineering, economics or physics are extremely complex, of

great interest is to study the solutions of differential equations by means of associated evolution families. In this paper we em-
phasize some notions of asymptotic stability for skew-evolution semiflows on Banach spaces, such as exponential and polynomial
stability, in a nonuniform setting. Examples for every concept and connections between them are also presented, as well as some
characterizations.
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1. Preliminaries

The theory of asymptotic properties for evolution equations has witnessed lately an explosive develop-
ment. We intend to emphasize in our paper a framework which enables us to obtain characterizations in
a unitary approach for the asymptotic stability on Banach spaces. The notion of skew-evolution semiflow,
introduced in (Megan & Stoica, 2008), is more appropriate for the study in the nonuniform case. They de-
pend on three variables, making thus possible the generalization for skew-product semiflows and evolution
operators, which depend only on two. Hence, the study of asymptotic behaviors for skew-evolution semi-
flows in the nonuniform setting arises as natural, relative to the third variable. The notion has proved itself
of interest in the development of the stability theory, in a uniform as well as in a nonuniform setting, being
already adopted by some researchers, as, for example, A.J.G. Bento and C.M. Silva (see (Bento & Silva,
2012)), P. Viet Hai (see (Hai, 2010) and (Hai, 2011)) and T. Yue, X.Q. Song and D.Q. Li (see (Yue et al.,
2014)), which have contributed to the expansion of the concept of skew-evolution semiflows and deepened
the study of their asymptotic behaviors and applications. Some properties for skew-evolution semiflows are
defined and characterized in (Stoica, 2010).
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The definitions of various types of stability are illustrated by examples and the connections between
them are emphasized. Our aim is also to give some integral characterizations for them. We present a
concept of nonuniform exponential stability, given and studied by L. Barreira and C. Valls in (Barreira &
Valls, 2008), which we call ”Barreira-Valls exponential stability”. In this paper, some generalizations for
the results obtained in the uniform setting in (Stoica & Megan, 2010) are proved in the nonuniform case.

2. Skew-evolution semiflows

This section gives the notion of skew-evolution semiflow on a Banach space, defined by means of an
evolution semiflow and of an evolution cocycle.

Let (X, d) be a metric space, V a Banach space and V∗ its topological dual. Let B(V) be the space of all
V-valued bounded operators defined on V . The norm of vectors on V and on V∗ and of operators on B(V)
is denoted by ‖·‖. I is the identity operator. Let us denote Y = X × V and T =

{
(t, t0) ∈ R2

+ : t ≥ t0
}
.

Definition 2.1. A mapping ϕ : T × X → X is said to be evolution semiflow on X if following properties are
satisfied:

(es1) ϕ(t, t, x) = x, ∀(t, x) ∈ R+ × X;
(es2) ϕ(t, s, ϕ(s, t0, x)) = ϕ(t, t0, x), ∀(t, s), (s, t0) ∈ T, ∀x ∈ X.

Definition 2.2. A mapping Φ : T × X → B(V) is called evolution cocycle over an evolution semiflow ϕ if
it satisfies following properties:

(ec1) Φ(t, t, x) = I, ∀t ≥ 0, ∀x ∈ X;
(ec2) Φ(t, s, ϕ(s, t0, x))Φ(s, t0, x) = Φ(t, t0, x),∀(t, s), (s, t0) ∈ T,∀x ∈ X.

Let Φ be an evolution cocycle over an evolution semiflow ϕ. The mapping

C : T × Y → Y, C(t, s, x, v) = (ϕ(t, s, x),Φ(t, s, x)v) (2.1)

is called skew-evolution semiflow on Y .

Example 2.1. Let us denote C = C(R,R) the set of all continuous functions x : R → R, endowed with the
topology of uniform convergence on compact subsets of R. For every x, y ∈ C, we define

dn(x, y) = sup
t∈[−n,n]

|x(t) − y(t)|.

The set C is metrizable with respect to the metric

d(x, y) =

∞∑
n=1

1
2n

dn(x, y)
1 + dn(x, y)

.

We consider for every n ∈ N∗ a decreasing function

xn : R+ →

(
1

2n + 1
,

1
2n

)
, with the property lim

t→∞
xn(t) =

1
2n + 1

.

We denote
xs

n(t) = xn(t + s), ∀t, s ≥ 0.
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Let X be the closure in C of the set {xs
n, n ∈ N∗, s ∈ R+}. The mapping

ϕ : T × X → X, ϕ(t, s, x) = xt−s, where xt−s(τ) = x(t − s + τ), ∀τ ≥ 0,

is an evolution semiflow on X. Let us consider the Banach space V = Rp, p ≥ 1, with the norm∥∥∥(v1, ..., vp)
∥∥∥ = |v1| + ... + |vp|. Then the mapping

Φ : T × X → B(V), Φ(t, s, x)v =

(
eα1

∫ t
s x(τ−s)dτv1, ..., eαp

∫ t
s x(τ−s)dτvp

)
,

where (α1, ..., αp) ∈ Rp is fixed, is an evolution cocycle over the evolution semiflow ϕ and C = (ϕ,Φ) is a
skew-evolution semiflow on Y .

Example 2.2. For X = R+, the mapping ϕ : T × R+ → R+, ϕ(t, s, x) = x is an evolution semiflow. For
every evolution cocycle Φ over ϕ, we obtain that the mapping EΦ : T → B(V), EΦ(t, s) = Φ(t, s, 0) is an
evolution operator on V .

Example 2.3. If C = (ϕ,Φ) denotes a skew-evolution semiflow and α ∈ R a parameter, then Cα = (ϕ,Φα),
where

Φα : T × X → B(V), Φα(t, t0, x) = eα(t−t0)Φ(t, t0, x), (2.2)

is also a skew-evolution semiflow, called the α-shifted skew-evolution semiflow.

3. Exponential stability

In this section we consider several concepts of exponential stability for skew-evolution semiflows. Some
connections between these concepts are established. We will emphasize that they are not equivalent.

The nonuniform exponential stability is given by

Definition 3.1. A skew-evolution semiflow C = (ϕ,Φ) is exponentially stable (e.s.) if there exist a mapping
N : R+ → [1,∞) and a constant α > 0 such that, for all (t, s) ∈ T , following relation takes place:

‖Φ(t, t0, x)v‖ ≤ N(s)e−αt ‖Φ(s, t0, x)v‖ , ∀(x, v) ∈ Y. (3.1)

A concept of nonuniform exponential stability, which we will name ”Barreira-Valls exponential stabil-
ity”, is given by L. Barreira and C. Valls in (Barreira & Valls, 2008) for evolution equations.

Definition 3.2. A skew-evolution semiflow C = (ϕ,Φ) is Barreira-Valls exponentially stable (BV.e.s.) if
there exist some constants N ≥ 1, α > 0 and β such that, for all (t, s), (s, t0) ∈ T , the relation holds:

‖Φ(t, t0, x)v‖ ≤ Ne−αteβs ‖Φ(s, t0, x)v‖ , ∀ (x, v) ∈ Y. (3.2)

The asymptotic property of nonuniform stability is considered in

Definition 3.3. A skew-evolution semiflow C = (ϕ,Φ) is stable (s.) if there exists a mapping N : R+ →

[1,∞) such that, for all (t, s), (s, t0) ∈ T , the relation is true:

‖Φ(t, t0, x)v‖ ≤ N(s) ‖Φ(s, t0, x)v‖ , ∀ (x, v) ∈ Y. (3.3)

Let us remind the property of exponential growth for skew-evolution semiflows, given by
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Definition 3.4. A skew-evolution semiflow C = (ϕ,Φ) has exponential growth (e.g.) if there exist two
mappings M, ω : R+ → [1,∞), ω nondecreasing, such that, for all (t, s), (s, t0) ∈ T , we have:

‖Φ(t, t0, x)v‖ ≤ M(s)eω(s)(t−s) ‖Φ(s, t0, x)v‖ , ∀ (x, v) ∈ Y. (3.4)

Remark. The relations concerning the previously defined asymptotic properties for skew-evolution semi-
flows are given by

(BV.e.s.) =⇒ (e.s.) =⇒ (s.) =⇒ (e.g.) (3.5)

The reciprocal statements are not true, as shown in what follows.

The following example presents a skew-evolution semiflow which is exponentially stable but not Barreira-
Valls exponentially stable.

Example 3.1. Let X = R+. The mapping ϕ : T × R+ → R+, ϕ(t, s, x) = x is an evolution semiflow on R+.
Let us consider a continuous function u : R+ → [1,∞) with

u(n) = en·22n
and u

(
n +

1
22n

)
= e4.

We define
Φu(t, s, x)v =

u(s)es

u(t)et v, where (t, s) ∈ T, (x, v) ∈ Y.

As following relation
‖Φu(t, s, x)v‖ ≤ u(s)ese−t ‖v‖

holds for all (t, s, x, v) ∈ T × Y , it results that the skew-evolution semiflow Cu = (ϕ,Φu) is exponentially
stable.

Let us now suppose that the skew-evolution semiflow Cu = (ϕ,Φu) is Barreira-Valls exponentially
stable. Then, according to Definition 3.2, there exist N ≥ 1, α > 0, β > 0 and t1 > 0 such that

u(s)es

u(t)et ≤ Ne−αteβs, ∀t ≥ s ≥ t1.

For t = n + 1
22n and s = n it follows that

en(22n+1) ≤ Nen+ 1
22n +4e−α

(
n+ 1

22n

)
eβn,

which is equivalent with

en(22n−β) ≤ Ne
1

22n +4−α
(
n+ 1

22n

)
.

For n→ ∞, a contradiction is obtained, which proves that Cu is not Barreira-Valls exponentially stable.

There exist skew-evolution semiflows that are stable but not exponentially stable, as results from the
following

Example 3.2. Let us consider X = R+, V = R and

u : R+ → [1,∞) with the property lim
t→∞

u(t)
et = 0.
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The mapping

Φu : T × R+ → B(R), Φu(t, s, x)v =
u(s)
u(t)

v

is an evolution cocycle. As |Φu(t, s, x)v| ≤ u(s)|v|, ∀(t, s, x, v) ∈ T ×Y , it follows that Cu = (ϕ,Φu) is a stable
skew-evolution semiflow, for every evolution semiflow ϕ.

On the other hand, if we suppose that Cu is exponentially stable, according to Definition 3.1, there exist
a mapping N : R+ → [1,∞) and a constant α > 0 such that, for all (t, s), (s, t0) ∈ T , we have

‖Φu(t, t0, x)v‖ ≤ N(s)e−αt ‖Φu(s, t0, x)v‖ , ∀ (x, v) ∈ Y.

It follows that
u(s)
N(s)

≤
u(t)
eαt .

For t → ∞ we obtain a contradiction, and, hence, Cu is not exponentially stable.

Following example gives a skew-evolution semiflow that has exponential growth but is not stable.

Example 3.3. We consider X = R+, V = R and

u : R+ → [1,∞) with the property lim
t→∞

et

u(t)
= ∞.

The mapping

Φu : T × R+ → B(R), Φu(t, s, x)v =
u(s)et

u(t)es v

is an evolution cocycle. We have |Φ(t, s, x)v| ≤ u(s)et−s|v|, ∀(t, s, x, v) ∈ T × Y . Hence, Cu = (ϕ,Φu) is a
skew-evolution semiflow, over every evolution semiflow ϕ, and has exponential growth.

Let us suppose that Cu is stable. According to Definition 3.3, there exists a mapping N : R+ → [1,∞)
such that u(s)et ≤ N(s)u(t)es, for all (t, s) ∈ T . If t → ∞, a contradiction is obtained. Hence, Cu is not
stable.

4. Polynomial stability

In this section, we introduce a new concept of nonuniform stability for skew-evolution semiflows, given
by the next

Definition 4.1. A skew-evolution semiflow C = (ϕ,Φ) is called polynomially stable (p.s.) if there exist a
mapping N : R+ → [1,∞) and a constant γ > 0 such that:

‖Φ(t, s, x)v‖ ds ≤ N(s)(t − s)−γ ‖v‖ , (4.1)

for all t > s ≥ 0 and all (x, v) ∈ Y .

Remark. If a skew-evolution semiflow C is exponentially stable, then it is polynomially stable.

(e.s.) =⇒ (p.s.)

The reciprocal statement is not true, as shown in
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Example 4.1. Let X = R+, V = R and the mapping u : R+ → R given by u(t) = t + 1. The mapping
ϕ : T × R+ → R+, where ϕ(t, s, x) = x is an evolution semiflow on R+. We consider

Φu : T × R+ → B(R), Φu(t, s, x)v =
u(s)
u(t)

v.

Then, as we have

|Φu(t, s, x)v| ≤
s2

t
|v| = s

s
t
|v|, ∀t ≥ s ≥ 1 = t0, ∀(x, v) ∈ Y,

it follows that C = (ϕ,Φ) is a Barreira-Valls polynomially stable skew-evolution semiflow.
If we suppose that C is exponentially stable, according to Definition 3.1, there exist N : R+ → [1,∞)

and α > 0 such that
s + 1
t + 1

≤ N(s)e−αt, ∀t ≥ s ≥ t0,

which is equivalent with
eαt

t + 1
≤

N(t0)
t0 + 1

, ∀t ≥ t0,

and which, for t → ∞, leads to a contradiction. Hence, C is not exponentially stable.

Remark. For α ≥ β in Definition 3.2, a Barreira-Valls exponentially stable skew-evolution semiflow C is
polynomially stable.

(B.V.e.s.) =⇒ (p.s.)

Example 4.2. Let us consider X = R+, V = R and the mapping u : R+ → R given by u(t) = t2 + 1. The
mapping ϕ : T × R+ → R+, where ϕ(t, s, x) = t − s + x is an evolution semiflow on R+. We define

Φu : T × R+ → B(R), Φu(t, s, x)v =
u(s)
u(t)

v.

Then, as the relation

|Φu(t, s, x)v| ≤ (s2 + 1)(t − s)−2|v|, ∀t > s ≥ 0, ∀(x, v) ∈ Y

holds, it follows that C = (ϕ,Φ) is a polynomially stable skew-evolution semiflow. On the other hand, C is
not Barreira-Valls exponentially stable.

A similar concept to the nonuniform exponential growth can be considered the following nonuniform
asymptotic property, given by

Definition 4.2. A skew-evolution semiflow C = (ϕ,Φ) has polynomial growth (p.g.) if there exist two
mappings M, γ : R+ → R∗+ such that:

‖Φ(t, s, x)v‖ ≤ M(s)(t − s)γ(s) ‖v‖ , (4.2)

for all t > s ≥ 0 and all (x, v) ∈ Y .

Remark. If a skew-evolution semiflow C has polynomial growth, then it has exponential growth.

(p.g.) =⇒ (e.g.)
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In order to obtain an integral characterization for the property of nonuniform polynomial stability for
skew-evolution semiflows, we introduce the following concept, given by

Definition 4.3. A skew-evolution semiflow C = (ϕ,Φ) is said to be ∗-strongly measurable (∗ − s.m.) if for
every (t, t0, x, v∗) ∈ T × X × V∗ the mapping defined by s 7→ ‖Φ(t, s, ϕ(s, t0, x))∗v∗‖ is measurable on [t0, t].

A particular class of ∗-strongly measurable skew-evolution semiflows is given by the next

Definition 4.4. A ∗-strongly measurable skew-evolution semiflow C = (ϕ,Φ) is called ∗-integrally stable
(∗ − i.s.) if there exists a nondecreasing mapping B : R+ → [1,∞) such that:∫ t

s

∥∥∥Φ(t, τ, ϕ(τ, s, x))∗v∗
∥∥∥ dτ ≤ B(s)

∥∥∥v∗
∥∥∥ , (4.3)

for all (t, s) ∈ T , all x ∈ X and all v∗ ∈ V∗ with ‖v∗‖ ≤ 1.

Theorem 4.3. Let C = (ϕ,Φ) be a ∗-strongly measurable skew-evolution semiflow with polynomial growth.
If C is ∗-integrally stable, then C is stable.

Proof. Let us consider the function

γ1 : R+ → R+, γ1(t) =
1

1 + γ(t)
,

where the mapping γ is given by Definition 4.2. We remark that for t ≥ s + 1 we have∫ t

s
(τ − s)−γ(s)dτ =

∫ t−s

0
u−γ(s)du ≥

∫ 1

0
u−γ(s)du = γ1(s).

Hence, it follows that
γ1(s)| < v∗,Φ(t, s, x)v > | ≤

≤

∫ t

s
(τ − s)−γ(s)

∥∥∥Φ(t, τ, ϕ(τ, s, x))∗v∗
∥∥∥ ‖Φ(τ, s, x)v‖ dτ ≤

≤ M(s) ‖v‖
∫ t

s

∥∥∥Φ(t, τ, ϕ(τ, s, x))∗v∗
∥∥∥ dτ ≤ M(s)B(s) ‖v‖

∥∥∥v∗
∥∥∥ ,

where the existence of function M is assured by Definition 4.2. We obtain

‖Φ(t, s, x)v‖ ≤ M1(s) ‖v‖ , ∀t ≥ s + 1 > s ≥ 0, ∀(x, v) ∈ Y,

where we have denoted
M1(s) =

M(s)B(s)
γ(s)

, s ≥ 0.

On the other hand, for t ∈ [s, s + 1), we have

‖Φ(t, s, x)v‖ ≤ M(s)(t − s)γ(s) ‖v‖ ≤ M(s) ‖v‖ ,

and, hence, it follows that

‖Φ(t, s, x)v‖ ≤ [M(s) + M1(s)] ‖v‖ , ∀(t, s) ∈ T, ∀(x, v) ∈ Y,

which proves that the skew-evolution semiflow C is stable.
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The main result of this section is the following

Theorem 4.4. Let C = (ϕ,Φ) be a ∗-strongly measurable skew-evolution semiflow with polynomial growth.
If C is ∗-integrally stable, then C is polynomially stable.

Proof. As the skew-evolution semiflow C = (ϕ,Φ) is ∗-integrally stable, according to Theorem 4.3, it
follows that there exists a mapping M2 : R+ → R+ such that

| < v∗,Φ(t, s, x)v > | = | < Φ(t, τ, ϕ(τ, s, x))∗v∗,Φ(τ, s, x)v > | ≤

≤ ‖Φ(τ, s, x)v‖
∥∥∥Φ(t, τ, ϕ(τ, s, x))∗v∗

∥∥∥ ≤ M2(s) ‖v‖
∥∥∥Φ(t, τ, ϕ(τ, s, x))∗v∗

∥∥∥ .
By integrating on [s, t] we obtain for (x, v) ∈ Y and v∗ ∈ V∗ with ‖v∗‖ ≤ 1

(t − s)| < v∗,Φ(t, s, x)v > | ≤ M2(s) ‖v‖
∫ t

s

∥∥∥Φ(t, τ, ϕ(τ, s, x))∗v∗
∥∥∥ dτ ≤

≤ M2(s)B(s) ‖v‖
∥∥∥v∗

∥∥∥ ,
which implies

(t − s) ‖Φ(t, s, x)v‖ ≤ M2(s)B(s) ‖v‖ .

Hence, following relation
‖Φ(t, s, x)v‖ ≤ M2(s)B(s)(t − s)−1 ‖v‖

holds for all (t, s) ∈ T and all (x, v) ∈ Y .
Finally, it results that the skew-evolution semiflow C = (ϕ,Φ) is polynomially stable.

Remark. In (Stoica & Megan, 2010), a variant of Theorem 4.4 for the case of uniform exponential stability
is proved, as a generalization of a well known theorem of E.A. Barbashin, given in (Barbashin, 1967) for
differential systems and of a result obtained in (Buşe et al., 2007) by C. Buşe, M. Megan, M. Prajea and P.
Preda for evolution operators. We remark that, in the nonuniform setting, the property of ∗-integral stability
only implies the polynomial stability.

Remark. The reciprocal of Theorem 4.4 is not true. The skew-evolution semiflow given in Example 4.2 is
polynomially stable but not ∗-strongly measurable. If we suppose that C is ∗-strongly measurable, we have∫ t

s

τ2 + 1
t2 + 1

dτ =
t − s
t2 + 1

(
1 +

t2 + ts + s2

3

)
≤ N(s).

For t → ∞, a contradiction is obtained.
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Timişoara.

Stoica, C. and M. Megan (2010). On uniform exponential stability for skew-evolution semiflows on banach spaces. Nonlinear Anal.
72(3–4), 1305–1313.

Yue, T., X. Q. Song and D. Q. Li (2014). On weak exponential expansiveness of skew-evolution semiflows in Banach spaces. J.
Inequal. Appl. DOI: 10.1186/1029-242X-2014-165, 1–6.



Theory and Applications of Mathematics & Computer Science 4 (2) (2014) 230–239

Common Fixed Points of Fuzzy Mappings in Quasi-Pseudo Metric and
Quasi-Metric Spaces

V. H. Badshaha, Chandraprakash Wadhwanib,∗

aProf.& Head, School of Studies in Mathematics, Vikram University, Ujjain (M.P), India.
bDept.of Applied Mathematics, Shri Vaishnav Institute of Technology& Science, Indore (M.P), India.

Abstract
In this paper, we prove common fixed point theorems for fuzzy mappings satisfying a new inequality initiated by Constantin

(1991) in complete quasi-pseudo metric space and we also obtain some new common fixed point theorems for a pair of fuzzy
mappings on complete quasi-metric space under a generalized contractive condition. Our results generalized many recent fixed
point theorems.
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1. Introduction

It is a well known fact that the results of fixed points are very useful for determining the existence and
uniqueness of solutions to various mathematical models. Over the period of last forty years the theory of
fixed points has been developed regarding the results which are related to finding the fixed points of self
and non-self nonlinear mappings. In 1922, Banach proved a contraction principle which states that for a
complete metric space (X, d), the mapping T : X → X satisfying the following contraction condition

d(T x,Ty) ≤ αd(x, y) for all x, y ∈ X, where 0 < α < 1

has a unique fixed point in X. Banach contraction principle plays a fundamental role in the emergence of
modern fixed point theory and it gains more attention because it is based on iteration, so it can be easily
applied using computer. Initially Zadeh (1965) introduced the concept of Fuzzy Sets in 1965, has been an
attempt to develop a mathematical framework in which two system or phenomena which due to intrinsic
indefiniteness-as distinguished from mere statistical variation can’t themselves be characterized precisely.
The classical work of Zadeh (1965) stimulated a great interest among mathematicians, engineers, biologists,
economists, psychologists and experts in other areas who use mathematical method in their research.
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The notion of fixed points for fuzzy mappings was introduced by Weiss (1975) and Butnariu (1982).
Fixed point theorems for fuzzy set valued mappings have been studied by Heilpern (1981) who introduced
the concept of fuzzy contraction mappings and established Banach contraction principle for fuzzy mappings
in complete metric linear spaces which is a fuzzy extension of Banach fixed point theorem and Nadler (1969)
theorem for multi-valued mappings. Park & Jeong (1997) proved some common fixed point theorems for
fuzzy mappings satisfying in complete metric space which are fuzzy extensions of some theorems in Beg
& A. (1992); Park & Jeong (1997).

Motivated and inspired by the works of Arora & V. (2000), Constantin (1991) and Park & Jeong (1997)
the purpose of this paper is to prove some common fixed point theorems for fuzzy mappings satisfying new
contractive-type condition of Constantin (1991) in complete quasi-pseudo metric space. Our results are
the fuzzy extensions of some theorems in Beg & A. (1992); Iseki (1995); Popa (1985); Singh & Whitfield
(1982) . Also, our results generalize the results of Arora & V. (2000), Heilpern (1981), and Park & Jeong
(1997).

Recently Chen (2011, 2012) considered a new type contraction ψ contractive mapping in complete quasi
metric space. The aim of this paper is to introduced a new class of fuzzy contraction mappings, which will
be call fuzzy ψ contractive mappings in complete quasi metric space and to prove the existence of common
fixed point for these contractions.

2. Basic concepts

For this purpose we need the following definitions and Lemmas.

Definition 2.1. Sahin et al. (2005) A quasi-pseudo metric on a non-empty set X is a non-negative real
valued function d on X × X such that, for all x, y, z ∈ X:

(i) d(x, x) = 0, and
(ii) d(x, y) ≤ d(x, z) + d(z, y).

A pair (X, d) is called a quasi-pseudo metric space, if d is a quasi-pseudo metric on X. A quasi-pseudo
metric d such that x = y whenever d(x, y) = 0 is a quasi metric so that a quasi pseudo metric space we do
not assume that d(x, y) = d(y, x) for every x and y. Each quasi-pseudo metric d on X induces a topology τ(d)
which has base the family of all d balls Bε(x), where Bε(x) = {y ∈ X : d(x, y) < ε} If d is a quasi-pseudo
metric on X, then the function d−1 defined on X × X by d−1(x, y) = d(y, x) is also quasi-pseudo metric on X.
By d ∧ d−1 and d ∨ d−1 we denote min{d, d−1} and max{d, d−1} respectively.

Definition 2.2. Gregori. & Pastor (1999) Let (X, d) be a quasi-pseudo metric space and let A and B be
non-empty subsets of X. Then the Hausdroff distance between subsets of A and B is defined by

H(A, B) = max{supa∈Ad(a, B), supb∈Bd(b, A)}

where d(a, B) = in f {d(a, x) : x ∈ B}.

Note that: H(A, B) ≥ 0 with H(A, B) = 0 if and only if closure of A is equal to closure of B, H(A, B) =

H(B, A) and H(A, B) ≤ H(A,C) + H(C, B) for any non-empty subset A, B and C of X when d is a metric on
X, clearly H is the usual Hausdroff distance.

Definition 2.3. Gregori. & Pastor (1999) Let (X, d) be a quasi-pseudo metric space. The families W∗(X)
and W′(X) of fuzzy sets on (X, d) are defined by

W∗(X) = {A in IX : A1 is non-empty, d - closed and d−1-compact},

W′(X) = {A in IX : A1 is non-empty, d - closed and d-compact}.
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As per Heilpern (1981), the family W(X) of fuzzy sets on metric linear space (X, d) is defined as follows:
A ∈ W(X) if and only if Aα is compact and convex in X for each α ∈ [0, 1] and supA(x) = 1 for x ∈ X.
If (X, d) is a metric linear space, then we have

W(X) ⊂ W∗(X) = W′(X) = {A ∈ IX : A1 is non-empty and d-compact } ⊂ IX .

Definition 2.4. Gregori. & Pastor (1999) Let (X, d) be a quasi-pseudo metric space and let A, B ∈ W∗(X) or
A, B ∈ W′(X) and α ∈ [0, 1]. Then we define

pα(A, B) = In f {d(x, y) : x ∈ Aα, y ∈ Bα},

δα(A, B) = sup{d(x, y) : x ∈ Aα, y ∈ Bα},

Dα(A, B) = H(Aα, Bα),

where H is the Hausdroff distance deduced from the quasi-pseudo metric d on X, p(A, B) = S up{pα(A, B) :
α ∈ [0, 1]}, δ(A, B) = S up{δα(A, B) : α ∈ [0, 1]}, D(A, B) = S up{ Dα(A, B) : α ∈ [0, 1]}. It is noted that pα
is non-decreasing function of α.

Definition 2.5. Gregori. & Pastor (1999) Let X be an arbitrary set and Y be any quasi-pseudo metric space.
G is said to be a fuzzy mapping if G is a mapping from the set X into W∗(Y) or W′(Y). This definition is
more general than the one given in Heilpern (1981). A fuzzy mapping G is a fuzzy subset on X × Y with
membership function G(x)(y). The function G(x)(y) is the grade of membership of y in G(x).

Definition 2.6. Sahin et al. (2005) A point x is a fixed point of the mapping G : X → IX , if {x} ⊆ G(x).

Note that : If A, B ∈ IX , then A ⊂ B means A(x) ≤ B(x) for each x ∈ X.
The following Lemmas were proved by Gregori. & Pastor (1999).

Lemma 2.1. Let (X, d) be a quasi-pseudo metric space and let x ∈ X and A ∈ W∗(X) and {x} be a fuzzy set
with membership function equal to a characteristic function of the set {x}. Then {x} ⊂ A iff pα(x, A) = 0, for
each α ∈ [0, 1].

Lemma 2.2. Let (X, d) be a quasi-pseudo metric space and let A ∈ W∗(X). Then pα(x, A) ≤ d(x, y)+pα(y, A)
for any x, y ∈ X and α ∈ [0, 1].

Lemma 2.3. Let (X, d) be a quasi-pseudo metric space and let {x0} ⊂ A. Then pα(x0, B) ≤ Dα(A, B) for
each A, B ∈ W∗(X) and α ∈ [0, 1].

Above Lemmas were proved by Heilpern (1981) for the family W(X) in a metric linear space.

Proposition 1. Let (X, d) be a complete quasi-pseudo metric space and G : X → W∗(X) be a fuzzy mapping
and x0 ∈ X. Then there exists x1 ∈ X such that {x1} ⊂ F(x0).

Proposition 2. Let (X, d) be a quasi-pseudo metric space and A, B ∈ CP(X) and a ∈ A, then there exists
b ∈ B such that d(a, b) ≤ H(A, B).

Now we shall use the notations as in Isufati & Hoxha (2010).
In the following, the letter Γ denotes the set of positive integers.
If A is a subset of a topological space (X, τ), we will denote by clτA the closure of A in (X, τ).
A quasi-metric on a non-empty set X is a non-negative real-valued function d on X × X such that for all
x, y, z ∈ X :
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(i) d(x, y) = d(y, x) = 0⇔ x = y,
(ii) d(x, y) ≤ d(x, z) + d(z, y).

A pair (X,d) is called a quasi-metric space, if d is a quasi-metric on X.
Each quasi-metric d on X induces a T0 topology T (d) on X, which has a base, the family of all d− balls
{Bd(x, r) : x ∈ X, r > 0}, where, Bd(x, r) = {y ∈ X : d(x, y) < r}.

If d is a quasi-metric on X, then the function d−1 defined on X × X by d−1(x, y) = d(y, x) is also quasi
metric on X. By d ∧ d−1 we denote min {d, d−1} and also we denote ds the metric on X by ds(x, y) =

max{d(x, y), d(y, x)} for all x, y ∈ X.
A sequence (xn)n∈Γ in a quasi metric space (X, d) is called left k− Cauchy Reilly et al. (1982) if for

each ε > 0 there is a nε ∈ Γ such that d(xn, xm) < ε for all n,m ∈ Γ with m ≥ n ≥ nε. Let (X, d) be
a quasi-metric space and let K s

0(X) be the collection of all non-empty compact subset of the metric space
(X, ds). Then the Hausdroff distance Hd on K s

0(X) is defined by

Hd(A, B) = max{ sup d(a, B) : a ∈ A, sup d(A, b) : b ∈ B} whenever A, B ∈ K s
0(X).

A fuzzy set on X is an element of IX where I = [0, 1]. If A is a fuzzy set in X, then the number A(x) is
called the grade of membership of x in A. The α- level set of A, denoted by Aα, and defined by Aα = {x ∈
X : A(x) ≥ α} for each α ∈ (0, 1] and A0 = {x : A(x) > 0} where the closure is taken in (X, ds).

Definition 2.7. Gregori & Romaguera (2000) Let (X, d) be a quasi-metric space. A fuzzy set A in quasi-
metric space (X, d) will be called an approximate quantity. The family A(X) of all fuzzy sets on (X, d) is
defined byA(X) = {A ∈ IX : Aα is ds -compact for each α ∈ [0, 1] and supA(x) = 1 : x ∈ X}.

Definition 2.8. Gregori & Romaguera (2000) Let A, B ∈ A(X) then A is said to be more accurate than B,
denoted by A ⊂ B if and only if A(x) ≤ B(x) for all x ∈ X.

Definition 2.9. Gregori & Romaguera (2000) Let (X, d) be a quasi-metric space and let A, B ∈ A(X) and
α in [0, 1]. Then we define pα(A, B) = In f {d(x, y) : x ∈ Aα, y ∈ Bα} = d(Aα, Bα), Dα(A, B) = Hd(Aα, Bα),
p(A, B) = sup{Pα(A, B) : α ∈ [0, 1]}, D(A, B) = sup{Dα(A, B) : α ∈ [0, 1]}, for x ∈ X, we write pα(x, A)
instead of pα({x}, A). We denote that pα is a non-decreasing function of α and D is metric onA(x).

Definition 2.10. Gregori & Romaguera (2000) A fuzzy mapping on a quasi-metric space (X, d) is a function
F defined on X, which satisfies the following two conditions

(i) F(x) ∈ A(X) for all x ∈ X,
(ii) If a, z ∈ X such that (F(z))(a) = 1 and p(a, F(a)) = 0 then (F(a))(a) = 1.

We need the following lemmas for our main result which was given by Gregori & Romaguera (2000).

Lemma 2.4. Gregori & Romaguera (2000) Let (X, d) be a quasi-metric space and let A, B ∈ A(X) and
x ∈ A1. There exist y ∈ B1 such that d(x, y) ≤ D1(A, B).

Lemma 2.5. Gregori & Romaguera (2000) Let (X, d) be a quasi-metric space and let A ∈ A(X) and y ∈ A.
Then p(x, A) ≤ d(x, y) for each x ∈ X.

Lemma 2.6. Gregori & Romaguera (2000) Let x ∈ X, A ∈ A(X) and {x} be a fuzzy set with membership
function equal to a characteristic function of the set {x}, then {x} ⊂ A if and only if pα(x, A) = 0 for each
α ∈ [0, 1].
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Lemma 2.7. Gregori & Romaguera (2000) Let (X, d) be a quasi-metric space and A ∈ A(X). Then
pα(x, A) ≤ d(x, y) + pα(y, A).

Lemma 2.8. Gregori & Romaguera (2000) Let (X, d) be a quasi-metric space and let A ∈ A(X) and x ∈ A.
Then pα(x, B) ≤ Dα(A, B) for each B ∈ A(X) and each α ∈ [0, 1].

Lemma 2.9. Gregori & Romaguera (2000) Let A and B be non-empty compact subset of a quasi-metric
space (X, d) if a ∈ A, then there exists b ∈ B, such that d(a, b) ≤ H(A, B).

Lemma 2.10. Gregori & Romaguera (2000) Let (X, d) be a complete quasi metric space and let F be a
fuzzy mapping from X intoA(X) and x0 ∈ X. Then there exists x1 ∈ X such that {x1} ⊂ F(x0).

We consider the set of function Ψ = {ψ : R+5 → R+} satisfying the following conditions

(i) ψ strictly increasing, continuous function in each coordinate and
(ii) for all g ∈ R+ such that ψ(g, g, g, 0, 2g) < g, ψ(g, g, g, 2g, 0) < g, ψ(0, 0, g, g, 0) < g and ψ(g, 0, 0, g, g) <

g.

Example 2.11. Let ψ : R+5 → R+5 denote by ψ(g1, g2, g3, g4, g5) = k max(g1, g2, g3,
g4
2 ,

g5
2 ) for k ∈ (0, 1)

then ψ satisfies above conditions (i) and (ii).

3. Main Result

Following Constantin (1991) we consider the set G of all continuous functions g : [0,∞)5 → [0,∞) with
the following properties:

(1) g is non-decreasing in the 2nd, 3th, 4th and 5th variable,
(2) if u, v ∈ [0,∞) are such that u ≤ g(v, v, u, u + v, 0) or u ≤ g(v, u, v, 0, u + v) then u ≤ qv where 0 < q < 1

is a given constant,
(3) if u ∈ [0,∞) is such that u ≤ g(u, 0, 0, u, u) then u = 0.

Now we are ready to prove our main theorems.

Theorem 3.1. Let X be a complete quasi-pseudo metric space and let G1 and G2 be fuzzy mappings from
X into W∗(X). If there is a g ∈ G such that for x, y ∈ X

D(G1(x),G2(y)) ≤ g(d(x, y), p(x,G1(x)), p(y,G2(y)), p(x,G2(y)), p(y,G1(x)))

then there exists z ∈ X such that {z} ⊂ F1(z) and {z} ⊂ F2(z).

Proof. Let x0 ∈ X. Then by Proposition 2.1 there exists an x1 ∈ X such that {x1} ⊂ G1(X0). From
Proposition 2.1 there exists x2 ∈ (G2(x1))1. Since (G1(x0))1, (G2(x1))1 ∈ CP(X) then by Proposition 2.2 we
obtain,

d(x1, x2) ≤ D1(G1(x0),G2(x1)) ≤ D(G1(x0),G2(x1)) ≤ g(d(x0, x1), p(x0,G1(x0)), p(x1,G2(x1)),

p(x0,G2(x1)), p(x1,G1(x0))) ≤ g(d(x0, x1), d(x0, x1), d(x1, x2), d(x0, x1) + d(x1, x2), 0)

therefore, d(x1, x2) ≤ qd(x0, x1). Following similar process we obtain, d(x2, x3) ≤ qd(x1, x2). By induction,
we produce a sequence (xn) of points of X such that for each k ≥ 0 {x2k+1} ⊂ G1(x2k), and {x2k+2} ⊂

G2(x2k+1), d(xn, xn+1) ≤ qd(xn−1, xn) ≤ · · · ≤ qnd(x0, x1). Furthermore, for m > n,

d(xn, xm) ≤ d(xn, xn+1) + d(xn+1, xn+2) + · · · + d(xm−1, xm)

≤ {qn + qn+1 + · · · + qm−1}d(x0, x1) ≤
qn

(1 − q)
d(x0, x1).
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It follows that (xn) is a Cauchy sequence in X. Since X is complete, there exists z ∈ X such that lim
n→∞

xn = z.
Next, we show that {z} ⊂ Gi(z), i = 1, 2. Now by Lemma 2.2 p0(z,G2(z)) ≤ d(z, x2n+1) + p0(x2n+1,G2(z)).
Then by Lemma 2.3,

p(z,G2(z)) ≤ d(z, x2n+1) + D(G1(x2n),G2(z)) ≤ d(z, x2n+1) + f (d(x2n, z), p(x2n,G1(x2n)),

p(z,G2(z)), p(x2n,G2(z)), p(z,G1(x2n)))

≤ d(z, x2n+1) + g(d(x2n, z), d(x2n, x2n+1), p(z,G2(z)), p(x2n,G2(z)), d(z, x2n+1)).

As n → ∞, we obtain from above inequality that p(z,G2(z)) ≤ g(0, 0, p(z,G2(z)), p(z,G2(z)), 0), so by
properties of g we have p(z,G2(z)) = 0. by (2). So by Lemma 2.1, we get {z} ⊂ G2(z). Similarly, it can be
shown that {z} ⊂ G1(z).

As corollaries of Theorem 3.1, we have the following:

Corollary 3.2 (Park & Jeong (1997); Theorem 3.1 ). Let X be a complete quasi-pseudo metric space and
let G1 and G2 be fuzzy mappings from X into W∗(X). If there exists a constant α, 0 ≤ α < 1, such that
for each x, y ∈ X, D(G1(x),G2(y)) ≤ α ·max{d(x, y), p(x,G1(x)), p(y,G2(y)), [p(x,G2(y))+p(y,G1(x))]

2 } then there
exists z ∈ X such that {z} ⊂ G1(z) and {z} ⊂ G2(z).

Proof. We consider the function g : [0,∞)5 → [0,∞) defined by g(x1, x2, x3, x4, x5) = α·max{x1, x2, x3,
(x4+x5)

2 }.

Since g ∈ G we can apply Theorem 3.1 and obtain Corollary 3.1.

Corollary 3.3 (Park & Jeong (1997); Theorem 3.2). Let X be a complete quasi-pseudo metric space and let
G1 and G2 be fuzzy mappings from X into W∗(X). satisfying D(G1(x),G2(y)) ≤ k[p(x,G1(x)) · p(y,G2(y))]

1
2 ,

for all x, y ∈ X and 0 < k < 1. Then there exists z ∈ X such that {z} ⊂ G1(z) and {z} ⊂ G2(z).

Proof. We consider the function g : [0,∞)5 → [0,∞) defined by g(x1, x2, x3, x4, x5) = k[x2 · x3]
1
2 . Since

g ∈ G we can apply Theorem 3.1 and obtain Corollary 3.2.

Corollary 3.4 (Park & Jeong (1997); Theorem 3.4). Let X be a complete quasi-pseudo metric space and
let G1 and G2 be fuzzy mappings from X into W∗(X), such that

D(G1(x),G2(y)) ≤ α ·
p(y,G1(y))[1 + p(x,G2(x))]

1 + d(x, y)
+ βd(x, y)

for all x , y, α, β > 0 and α + β < 1. Then there exists z ∈ X such that {z} ⊂ G1(z) and {z} ⊂ G2(z).

Proof. We consider the function g : [0,∞)5 → [0,∞) defined by g(x1, x2, x3, x4, x5) = α · x3(1+x2)
(1+x1) + βx1.

Since g ∈ G we can apply Theorem 3.1 and obtain Corollary 3.3.

Corollary 3.5 (Arora & V. (2000); Theorem 3.2). Let X be a complete quasi-pseudo metric space and let
G1 and G2 be fuzzy mappings from X into W∗(X). If there exists a constant r, 0 ≤ r < 1, such that for each
x, y ∈ X, D(G1(x),G2(y)) ≤ r ·max{d(x, y), p(x,G1(x)), p(y,G2(y)), p(x,G2(y)), p(y,G1(x))} then there exists
z ∈ X such that {z} ⊂ G1(z) and {z} ⊂ G2(z).

Proof. We consider the function g : [0,∞)5 → [0,∞) defined by g(x1, x2, x3, x4, x5) = r·max{x1, x2, x3, x4, x5}.

Since g ∈ G we can apply Theorem 3.1 and obtain corollary 3.4.

The following Corollary is a fuzzy version of the fixed point theorem for multi-valued mappings of Iseki
(1995).
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Corollary 3.6. Let X be a complete quasi-pseudo metric space and let G1 and G2 be fuzzy mappings from X
into W∗(X). If for each x, y ∈ X , such that D(G1(x),G2(y)) ≤ α[p(x,G1(x)) + p(y,G2(y))] + β[p(x,G2(y)) +

p(y,G1(x))] + γd(x, y) where α, β, γ are non-negative and 2α+ 2β+ γ < 1. Then there exists z ∈ X such that
{z} ⊂ G1(z) and {z} ⊂ G2(z).

Proof. We consider the function g : [0,∞)5 → [0,∞) defined by g(x1, x2, x3, x4, x5) = α[x2 + x3] + β[x4 +

x5] + γx1. Since g ∈ G we can apply Theorem 3.1 and obtain corollary 3.5.

The following Corollary is a fuzzy version of the fixed point theorem for multi-valued mappings of
Singh & Whitfield (1982).

Corollary 3.7. Let X be a complete quasi-pseudo metric space and let G1 and G2 be fuzzy mappings from
X into W∗(X). If there exists a constant α, 0 ≤ α < 1, such that for each x, y ∈ X, D(G1(x),G2(y)) ≤
α · max{d(x, y), [p(x,G1(x))+p(y,G2(y))]

2 ,
[p(x,G2(y))+p(y,G1(x))]

2 } then there exists z ∈ X such that {z} ⊂ G1(z) and
{z} ⊂ G2(z).

Proof. We consider the function g : [0,∞)5 → [0,∞) defined by g(x1, x2, x3, x4, x5) = α·max{x1,
[x2+x3]

2 , [x4+x5]
2 }

Since g ∈ G we can apply Theorem 3.1 and obtain Corollary 3.6.

Remark. If there exists a function g ∈ G such that for all x, y ∈ X

δ(G1(x),G2(y)) ≤ g(d(x, y), p(x,G1(x)), p(y,G2(y)), p(x,G2(y)), p(y,G1(x))),

then the conclusion of Theorem 3.1 remains valid. This result is considered as special case of Theorem 3.1
because ( see, Hicks (1997); page 414) D(G1(x),G2(y)) ≤ δ(G1(x),G2(y)). Moreover, this result generalize
Theorem 3.3 of Park & Jeong (1997).

The following theorem extends Theorem 3.1 to a sequence of fuzzy mappings:

Theorem 3.8. Let X be a complete quasi-pseudo metric space and let {Gn : n ∈ Z+} be fuzzy mappings
from X into W∗(X). If there is a g ∈ G such that for all x, y ∈ X

D(G0(x),Gn(y)) ≤ g(d(x, y), p(x,G0(x)), p(y,Gn(y)), p(x,Gn(y)), p(y,G0(x)))

then there exists a common fixed point of the family {Gn : n ∈ Z+}.

Proof. From Theorem 3.1, we get a common fixed point xi, i = 1, 2, . . . , for each pair (G0,Gi), i = 1, 2, . . ..
Applying Lemma 2.2, one can have that pα(xi,G0xi) = Pα(xi,Gi(xi)) = 0, for all i = 1, 2, . . . . Thus one can
deduce form Lemma 2.3, for i , j, that

d(xi, x j) = pα(xi,G j(x j)) ≤ Dα(Gi(xi),G j(x j)) ≤ D(Gi(xi),G j(x j))

≤ g(d(xi, x j), p(xi,Gi(xi)), p(x j,G j(x j)), p(xi,G j(x j)), p(x j,Gi(xi)))

= g(d(xi, x j), 0, 0, d(xi, x j), d(xi, x j)).

Therefore d(xi, x j) = 0, i.e., xi = x j for all i, j ∈ N.

Corollary 3.9. (Arora & V. (2000);Theorem (3.4)) Let X be a complete quasi-pseudo metric space and let
{Gn : n ∈ N+} be fuzzy mappings from X into W∗(X). If for each x, y ∈ X, and r ∈ (0, 1

2 ), n = 1, 2, , ...,
such that D(G0(x),Gi(y)) ≤ rmax{d(x, y), p(x,Go(x)), p(y,Gi(y)), p(x,Gi(y)), p(y,G0(x))}. Then there exists
a common fixed point of the family {Gn : n ∈ N+}.
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Theorem 3.10. Let (X, d) be a complete quasi-metric space, let T1,T2 : X → A(X) be fuzzy ψ contractive
mappings satisfies D(T1x,T2y) ≤ ψ{(d(x, y), p(x,T1x), p(y,T2y), p(x,T2y), p(y,T1x)} then there exists z ∈ X
such that {z} ⊂ T1(z) and {z} ⊂ T2(z).

Proof. Let x0 ∈ X then by Lemma 2.10 there exists an element x1 ∈ X such that {x1} ⊂ T1(x0) for x1 ∈

T2(x1))1 is non-empty compact subset of X. Since (T1(x0))1, (T2(x1))1 ∈ CP(X) and x1 ∈ (T1(x0)1), then by
lemma 2.9 asserts that there exists x2 ∈ (T2(x1))1 such that d(x1, x2) ≤ D1(T1(x0),T2(x1)) so, from Lemma
2.6 and properties of ψ function, we have

d(x1, x2) ≤ D1(T1(x0),T2(x1)) ≤ D(T1(x0),T2(x1))

≤ ψ(d(x0, x1), p(x0,T1x0), p(x1,T2x1), p(x0,T2x1), p(x1,T1x0))

≤ ψ(d(x0, x1), d(x0, x1), d(x1, x2), d(x0, x1) + d(x1, x2), 0)

and

d(x2, x1) ≤ D1(T2(x1),T1(x0)) ≤ D(T2(x1),T1(x0))

≤ ψ(d(x1, x0), p(x1,T2x1), p(x0,T1x0), p(x1,T1x0), p(x0,T2x1))

≤ ψ(d(x1, x0), d(x1, x2), d(x0, x1), 0, d(x0, x1) + d(x1, x2))

by induction, we have a sequence (xn) of points such that for all n ∈ R+ ∪ {0} we have {x2n+1} ⊂ T1(x2n) and
{x2n+2} ⊂ T2(x2n+1) then

d(xn, xn+1) ≤ ψ(d(xn−1, xn), d(xn−1, xn), d(xn, xn+1), d(xn−1, xn) + d(xn, xn+1), 0) (3.1)

and

d(xn+1, xn) ≤ ψ(d(xn, xn−1), d(xn, xn+1), d(xn−1, xn), 0, d(xn−1, xn) + d(xn, xn+1)) (3.2)

so, by the properties of the ψ function we have that for each n ∈ R+ d(xn, xn+1) ≤ d(xn−1, xn) and
d(xn+1, xn) ≤ d(xn, xn−1). The sequence (bm)m∈R+ , such that bm = d(xm, xm+1) is a non-increasing sequence
and bounded below. Thus it must converges to some b ≥ 0. By the inequality 3.1 and 3.2 we have

b ≤ bm ≤ ψ(bm−1, bm−1, bm, bm−1 + bm, 0) < b (3.3)

passing to the limit, as m −→ ∞, and by properties of the ψ function we have b ≤ b ≤ ψ(b, b, b, 2b, 0) < b
which is contradiction. Hence b = 0. Thus, the sequence (xn)n∈R+ must be a Cauchy sequence.

Similarly, the sequence (cn)n∈R+ such that cn = d(xn+1, xn) is a non-increasing sequence and bounded
below. Thus, it must converges to some c ≥ 0.
By the inequality 3.1 and 3.2 we have

c ≤ cn ≤ ψ(cn−1, cn−1, cn, cn−1 + cn, 0) < b (3.4)

passing to the limit, as n −→ ∞, and by properties of the ψ function we have c ≤ c ≤ ψ(c, c, c, 2c, 0) < c
which is possible if and only if c = 0.

We next claim that to prove that for each ε > 0, there exists n0(ε) ∈ R+, such that for all m > n > n0(ε)

d(xm, xn) < ε. (3.5)
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Suppose that 3.5 is false then, there exists some ε > 0 such that for all k ∈ R+, there exists the smallest
number mk, such that mk, nk ∈ R+ with mk > nk ≤ k satisfying d(xmk , xnk ) ≥ ε so,

ε ≤ d(xmk , xnk ) ≤ D(T xmk−1,T xnk−1)

≤ ψ(d(xmk−1, xnk−1), p(xmk−1,T xmk−1), p(xnk−1,T xnk−1), p(xmk−1,T xnk−1), p(xnk−1,T xmk−1)

≤ ψ(d(xmk−1, xnk−1), d(xmk−1, xmk ), d(xnk−1, xnk ), d(xmk−1, xnk ), d(xnk−1, xmk )

≤ ψ(cmk−1 + d(xmk , xnk ) + cnk−1, cmk−1, cnk−1, cmk−1 + d(xmk , xnk ), d(xmk , xnk ) + cnk−1).

Letting k → ∞ we have ε ≤ ψ(ε, 0, 0, ε, ε) < ε which is a contradiction. It follows from 3.5 that (xn) is a
Cauchy sequence since (X, d) is a complete quasi-metric space,then there exists z ∈ X such that limn→∞xn =

z.
Next we show that {z} ⊂ T2(z).
By Lemmas 2.7 and 2.8 we get pα(z,T2z) ≤ d(z, x2n+1) + pα(x2n+1,T2z) ≤ d(z, x2n+1) + Dα(T1xn,T2z) for
each α ∈ [0, 1]. Taking supremum on α in the last inequality, we obtain from the properties of ψ that

pα(z,T2z) ≤ d(z, x2n+1) + pα(x2n+1,T2z) ≤ d(z, x2n+1) + Dα(T1x2n,T2z)

≤ d(z, x2n+1) + ψ(d(x2n, z), p(x2n,T1x2n), p(z,T2z), p(x2n,T2z), d(z, x2n+1))

≤ d(z, x2n+1) + ψ(d(x2n, z), d(x2n, x2n+1), p(z,T2z), p(x2n,T2z), d(z, x2n+1)).

As n → ∞, we have p(z,T2z) ≤ ψ(0, 0, p(z,T2z), p(z,T2z), 0) < p(z,T2z). It yields that p(z,T2z) = 0. So,
we get from Lemma 2.10 that {z} ⊂ T2z. Similarly we prove that {z} ⊂ T1z.

Corollary 3.11. Let (X, d) be a complete quasi metric space and let T : X → A(X) be a fuzzy ψ contraction
mapping then there exists z ∈ X such that {z} ⊂ T (z).

Proof. If put T1 = T2 = T in theorem 3.3 we get the conclusion of corollary 3.8.

Corollary 3.12. Let (X, d) be a complete quasi metric space and let T : X → A(X) be a fuzzy ψ contraction
mapping, such that for all x, y ∈ X D(T1x,T2y) ≤ ψ(d(x, y), p(x,T1x), p(y,T2y), p(x,T2y)

2 ,
p(y,T1 x)

2 ) then there
exists z ∈ X such that {z} ⊂ T1z and {z} ⊂ T2z.

Proof. We consider the function ψ : R+5 → R+5 denoted by ψ(t1, t2, t3, t4, t5) = k max{t1, t2, t3, t4
2 ,

t5
2 } for

k ∈ (o, 1). Since ψ ∈ Ψ we can apply theorem 3.3 and obtain Corollary 3.9.

Remark. As examples of the main results we can taking theorems in which the contractions conditions are
compatible with the condition (i) and (ii).
Remark. If there is a ψ ∈ Ψ such that for all x, y ∈ X

δ(T1x,T2y) ≤ ψ(d(x, y), p(x,T1x), p(y,T2y), p(x,T2y), p(y,T1x))

then the conclusion of Theorem 3.3 remains valid. This result is considered as a special case of Theorem
3.3 because D1(T1x,T2y) ≤ δ(T1x,T2y) for all x, y ∈ X. The following theorem generalizes Theorem 3.3 to
a sequence of fuzzy contractive mappings.

Theorem 3.13. Let (Tn : n ∈ (0,∞) ∪ {0}) be a sequence of fuzzy mappings from a complete quasi metric
space X intoA(X) . If there is a ψ ∈ Ψ such that for all x, y ∈ X

D(T0x,Tny) ≤ ψ(d(x, y), p(x,T0x), p(y,Tny), p(x,Tny), p(y,T0x))

for all n ∈ (0,∞) ∪ {0}, then there exists a common fixed point of the family (Tn : n ∈ (0,∞) ∪ {0}).

Proof. Putting T1 = T0 and T2 = Tn for all n ∈ N in Theorem 3.3 then there exists a common fixed point of
the family (Tn : n ∈ (0,∞) ∪ {0}).
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4. Conclusion and future work

Fuzzy sets and mappings play an important role in the fuzzification of systems. In particular, in the
recent years the fixed point theory for fuzzy mappings has been developed largely. We generalize, extend
and unify several known results of metric spaces, into a weaker and generalize setting of quasi-pseudo
metric space and quasi metric space for fuzzy mappings. We use a more generalize contractive condition
than the existing ones, also we prove our results in quasi-pseudo metric space, quasi metric space and so
as to obtain better results under weaker conditions. We conclude this paper with an open problem: Is it
possible to prove the results of this paper in the setting of b-metric and partial metric spaces?
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