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Abstract

This article introduces associated near sets of a collecticsets. The proposed approach introduces a means
of defining as well as describing arapproach merotopy in terms of the members of associatsdéebllections
that are sfficiently near. A characterization for continuous functiemestablished using associated near sets. This
article also introducep-containment considered in the context of near sets. Ani@gifun of the proposed approach
is given in terms of digital image classification.
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1. Introduction

For any real-valued functioh of a real variable, the associated set$ ¢Agronsky, 1982 are
the sets

E“(f) = {x: f(X) < a} andE,(f) = {x: f(X) > a},

wherea € R (the set of all real numbers). Many classes of functions eachlaracterized in terms
of their associated sets. The study of associated sets n€adn started in 19223oblg 1922 and
elaborated infahorskj 195Q Bruckner 1967 Agronsky, 1982 Petrakiey2009. For example, a
function is continuous, if and only if, all of its associatts are open, a function is approximately
continuous if, and only if, all of its associated sEtsets with the property that every point of an
associated set is a point of Lebesgue density of that sete gemerally, A. Bruckner&ruckney
1967, p. 228) has shown that ifis a class of functions characterized in terms of an assatiat
setP andh is a homeomorphism, then the associated sets of the furitkohare all members
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of Pandho f € k. S. Agronsky Agronsky, 1982 p. 767) has observed that an associated set
for a function in M; must be ‘more dense’ near each of its members than an assbekgttfor a
function in M;_;.

In this paper, associated sets defined in terms-approach merotopies are considered. In
particular, we consider associated sets containing mesrthat are sfliciently near each other
relative toe-approach merotopies. Carrying forward the idea of defirand characterizing a
function in terms of an associated set, it is possible to dedimd characterize an approach mero-
topy in terms of an associated set of collections. Using timeept of associated sets, an equivalent
condition for continuous functions is obtained.

2. Preliminaries

Let X be a nonempty ordinary set. The power seXois denoted byP(X), the family of
all collections of subsets @(X) is denoted byP?(X). We denote by, the first infinite cardinal
number, by an arbitrary index set, and| is the cardinality ofA, whereA c X. ForA, 8 € P3(X),
we sayAvV B ={AUB: Aec A, B e B}, A corefinesB (written asA < B), if and only if, for
all A € A, there existB € B such thatB € A. ForA < P(X), stacKA) = {AC X : B C
A, forsomeB € A} andsedA) ={BC X: AnB=# 0, foralAe A} ={BC X: X-B¢
stack(A)}. Observe that sé¢A) = stack(A), for all A € P?(X). A filter on X is a nonempty subset
¥ of P(X) satisfying:0 ¢ 7; if Ae ¥ andA C B, thenB € ¥; and if A € ¥ andB € ¥, then
AN B e F. Amaximal filter onX is called arultrafilter on X. A grill on X is a subseg of £(X)
satisfying:0 ¢ G; if A€ GandA C B,thenB e G; andifAUB € G,thenAe GorB € G.
Note that for anyx € X,x = {A € X : x € A} is an ultrafilter onX, which is also a grill onX.
There is one-to-one correspondence between the set otalsfdnd the set of all grills oK by
the relation:# is a filter onX if and only if secf) is a grill onX; andgG is a grill onX if and only
if, sec@) is a filter onX.

In its most basic form, an approach merotopy is a measureeofi¢hrness of members of a
collection. For collectionsA, 8 € P2(X), a functiony : P?(X) x P?(X) :— [0, o] satisfying a
number of properties is a called arapproach merotopy. A pair of collections are near, pravide
v(A, B) = 0. Fore € (0, ], the pairA, B aresyfficiently near providedv(A, B) < &.

Let cl be a Kuratowski closure operator ¢t Then the topological spac&(cl) is called a
symmetric topological spageand only if x € cl({y}) = y € cl({x}), for all x,y € X.

Definition 2.1. A functions : XxP(X) — [0, o] is called a distance oX (Lowen, 1997 Lowen
et al, 2003 if for any A, B € X andx € X, the following conditions are satisfied:

(D.1) s(x, {x}) = O,

(D.2) 6(x,0) = co,

(D.3) 6(x, AU B) = min{6(x, A), 6(x, B)},

(D.4) 6(x, A) < 5(x, AY) + a, for all @ € [0, o], whereA® = {x e X : 5(x, A) < a}.

The pair K, 6) is called an approach space.

Definition 2.2. A generalized approach spacg §) (Peters & Tiwarj 2011, 2012 is a nonempty
setX equipped with a generalized distance funciornP(X) x £(X) — [0, o], if and only if, for
all nonempty subset, B, C € P(X), p satisfies properties (A.1)-(A.5)e.,
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(A.1) p(A,A) =0,

(A.2) p(A,0) = oo,

(A.3) p(A, BUC) = min{p(A, B), p(A, C)},

(A.4) p(A,B) = p(B, A),

(A.5) p(A,B) < p(A B@) + «, for everya € [0, o], whereB@ = {x € X : p({x}, B) < a}.

It has been observed that the notion of distance in an apiprsgace is closely related to the
notion of nearneskhare & Tiwari, 2012 201Q Tiwari, Jan. 201 In particular, consider the
Cech distance between sets.

Definition 2.3. Cech Distance(Cech 1966). For nonempty subsets, B € £(X), p(a, b) is the
standard distance betweane A,b € B and theCech distanc®,, : P(X) x P(X) — [0, o] is
defined by

inf {p(a,b) :a€ A be B}, if AandB are notempty

0, if AorBisempty

Remark.Observe thatX, D,) is a generalized approach space. The dist&n¢a, B) is a variation
of the distance function introduced by@ech in his 1936-1939 seminar on topolo@g¢h 1966
(see, also,Beeret al, 1992 Hausdoft, 1914g; Leader 1959).

3. Approach merotopic spaces

Definition 3.1. Let & € (0, ]. Then a functionv : P?(X) x P2(X) — [0, =] is ane-approach
merotopy onX, if and only if, for any collectionsA, B, C € P?(X), the properties (AN.1)-(AN.5)
are satisfied.

(AN.1) A < B = v(C, A) < v(C,B),

(AN.2) A£0,8%0and A N(NB) 0 = v(A,B) <&,
(AN.3) v(A, B) = v(B, A) andv(A, A) = 0,

(AN.4) A £ 0 = v(0, A) = oo,

(AN.5) v(C, AV B) > v(C, A) A v(C, B).

The pair , v) is termed as an-approach merotopic space

For ane-approach merotopic spack, {), we define:cl,(A) = {x € X : v({{x}}, {A}) < &}, for
all A c X. Thencl, is aCech closure operator of

Letcl,(A) = {cl,(A) : A € A}. Then ans-approach merotopy on X is called are-approach
nearnes®n X, if the following condition is satisfied:

(AN.6) v(cl,(A), cl,(B)) = WA, B).
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In this casecl, is a Kuratowski closure operator o

Lemma 3.1. Lete € (0, o], and let(X, v) and (Y, ') be e-approach nearness spaces. Then f
(X,v) — (Y,V) is a contraction if and only if
v(f1(A), fYB)) = v (A, B), for all A, B € PY).

Example 3.1. Let D, be a gap functional. Then the functiep, : P*(X) x P*(X) — [0, 0]
defined as
vp, (A, B) = sup D,(A B); vp, (A A) =supD,(A A) =0,

AcA,BeB AcA
is ane-approach merotopy oK. Definecl,(A) = {x € X : p({x},A) < &}, Ac X Thencl, is a
Cech closure operator o0& Further, ifp(cl,(A), cl,(B)) = p(A B), for all A,B C X thencl, is a
Kuratowski closure operator o and we callp as ans-approach functioron X; and (X, p) is an
g-approach spaceln this caseyp, is ane-approach nearness o

So, there are many instancessepproach nearness dhjust as there are many instances of
g-approach spaces@wen 1997 and metric spaces ok

Definition 3.2. Near and Almost Near Collections

For collectionsA, 8 € P?(X), assume that the function: P?(X) x P?(X) :— [0, o] is ane-
approach merotopy. A pair of collections arear, providedv(A, B) = 0. Fore € (0, ], the
pair A, B aree-near (almost neay, providedv(A, B) < ¢ (Peters & Tiwarj 2011). Otherwise,
collectionsA, B are far,i.e., syficiently apart providedv(A, B) > .

4. Associated collections

It is possible to characterigeapproach merotopies in terms of associated collections.

Definition 4.1. Associated Collections of ag-Approach Merotopy

Let X denote an ordinary nonempty set and@te P2(X) denote collections of subsets Xf
Suppose that € (0, o] andv be ans-approach merotopic space. The upper associated sét of
with respect tor is defined by

E*(A) = {B € P*’(X) : v(A, B) > &}.
and the lower associated set#@fwith respect to is defined by
E.(A) = {B e PX): v(A, B)< &l

Example 4.1.Let D, be a gap functional. Fafi, 8 € P*(X), the functionvp, : P2(X) xP*(X) —
[0, 0] is defined by

vp,(A,B) = sup D,(A B); vp, (A A) =supD,(A A) =0.
AcA

AceA,BeB

From Def.4.1, E.(A) is the lower associated set gt for a givene € R. Similarly, obtain the
upper associated sef(A) of A as a collectior € P*(X), providedvp, (A, B) > «.
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Additional examples of lower and upper associated coldestare given next.

Example 4.2. Let (X, v) be ans-approach nearness dfir < £ < oo ande’ < &. Then

(ASet1) Associated set&?(A), E.(A) of A with respect ta/; : P?(X) x P3(X) — [0, o] such
that
o, fOeAorde B,

r, otherwise

Vl(ﬂ’ B) = {

is defined by:
if 0 € A, E*(A) = P*(X) andE,(A) = 0,
if 0 ¢ A, E(A) = (AecP?X):0 e B}andE,(A) = (A e P*(X): 0 ¢ B).
(ASet?2) Associated set&?(A), E,(A) of A with respect tas, : P?(X) x P3(X) — [0, o] such
that

(A.8) 00, foeAorde B,
VoA, B) = 1. .
2 inf {v(A, B), e}, otherwise

is defined by:
if 0 € A, E*(A) = P*(X) andE,(A) = 0,
if 0 g A E(A) ={AecP’(X):0e B)andE.(A) = {Ac P}(X): 0 ¢ B).

Proposition 1. A collection in the lower associated set#@fwith respect to the-approach mero-
topyv is syficiently nearA.

Proof. AssumeB € E.(A), the lower associated set &t with respect to.. From Def.3.2, A, B
are stficiently near. O

Proposition 2. A collection in upper associated set@fwith respect to the-approach merotopy
v are syficiently apart.

Proof. Immediate from from Def4.1and Def.3.2 O
We now present a characterization for continouous funstion

Theorem 4.1. Let vx and vy be g-approach merotopies on X and réspectively. A mapping
f : X — Y is continuous, if and only ifd € E,(X) = f(A) € E.(f(X)), for all A € P?(X) and
forall x e X.

Proof. Let f : X — Y be continuousx € X andA € P?(X). Suppose tha#i € E.(X). Then
v(A, {{x}}) < &, which givesy({A}, {{x}}) < &, for all A € A. Thatis,x € cl,, (A), for all A € A.
Consequentlyf(x) € f(cl,,(A) < cl,, (f(A), for all A € A. Hence, f(A) € E.(f(X). The
converse is obvious. O

Definition 4.2. Finite Strong Containment Property (Agronsky, 1982.

Let p be a property defined for sets of real numbers with respeetsocentaining them. W c B,

thenA is p-contained inB (written A c B), providedA has the property with respect tdB. Put
p

k € [0, ). Thenp is a finite strong containment property, provided
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(p.1) If Ac Bc F andpis defined forA c F, thenA c F,
P P
(p.2) fAcBcF,thenAcCF,
P P
k k
(p.3) If, foreachne N, E, c F,, thenJ E, c U F.
p n=1 P n=1

Example 4.3. Strong Containment of Sficiently Near Collections
Pute € (0, 0]. Let (X, v) be ans-approach nearness ohandp = ‘sufficiently near’ defined for
A, B € P(X) such thatv(A, B) < . From Examplet.2, assumeA, B € E.(v,) andA c B, then
A C B.
p
Proof.
(p-1) AssumeA, B,C € E.(v,). By definition, A c 8. AssumeB c C, thenA c B c C. Since
p p

B,C € E.(v,), thenA % C.

(p-2) AssumeA, B,C € E.(v,) and thatA c 8 c C. By definition, A c 8 c C and by
p
assumptionA c C. SinceA, C € E.(v2), thenA c C.
p

(p.-3) The proof of this strong containment property followsrbgthematical induction.

5. Description-based neighbourhoods

For N. Bourbaki, a set is a neighbourhood of each of its paftand only if, the set is
open Bourbaki 1971, §1.2) Bourbakj 1966 §1.2, p. 18). A seAisopen if and only if, for each
x € A, all pointssyficiently neat x belong toA.

For a Hausddf neighbourhood (denoted V), syficiently gy
nearis explained in terms of the distance between poprasdx p(Xo, 3 < I
being less than some radiugHausdoff, 1914, §22). In other ] 0.

words, a Hausddif neighbourhood of a point is an open set such
that each of its points is fiiciently close to its centre.

Traditionally, nearness of points is measured in terms ef th
location of the points. Lep : X x X :— [0, =] denote the Figure 1: Nbd N;(xo)
standard distanédetween points iXX. Forr € (0, o], a neighbourhood of, € X is the set of all
y € X such thajp(x,y) < r (see,e.g, Fig. 1, where the distance(x, y) between each paig, y is
less tharr in the neighbourhood). In that case, a neighbourhood isatalh open balEngelking
1989 §4.1) or spherical neighbourhooddcking & Young 1988 §1-4). In the plane, the points
in a spherical neighhourhood (nbd) are contained in theiortef a circle.

Next, an alternative to a spherical neighbourhood is calletsual neighbourhood (denoted
nbd,), which stems from recent work on descriptively near sdtsrfipally & Peters2013 Peters
2013 Peters & Naimpally2012).

L..tous les points assez voisins d’un poirfBourbakj 1971, p. TG 1.3)
2i.e, forx,ye X c,p(xy) = [X—Yl.
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Definition 5.1. Visual Neighbourhood

A visual nbg of a pointx, (denoted\;,) is an open sef such that the visual information values
extracted from all of the points in A are figiently near the corresponding visual information
values atx. Let¢ denote a probe function used to extract visual informatiomfa point in nbg
Suficient nearness of points in a visual plisidefined in terms of boung, a real number. That
IS, pointsxg, X € A are sifficiently nearj.e., provided

Ps(X0,Y) = [p(X0) — (V)| < Ty

Example 5.1. Visual Neighbourhood in a Drawing

In its simplest form (sees.g, Fig. 2), a nbq (denoted byN;,) is defined in terms of a real-valued
probe functiony used to extract visual information from the pixels in a digitnage, reference
pointX, (notnecessarily the centre of the npdnd ‘radius’r, such that

X = {drawing visual pixels x,y € X,
¢ . X — [0, 0], (probe functiong.g, probe¢(x) = pixel x intensity),

Ps(X0,Y) = 16(X0) — é(y)l, (visual distance),
Xo € X,(nbd, reference point),

ry € (0, 00], (sufficient nearness bound),
Nr, (X0) = {y € X : ps(Xo.Y) < I4}, (visual nbg).

At this point, observe that the appearance of a visual neigtitood can be quitefierent from
the appearance of a spherical neighbourhood. For thismezsis called areference poin{not a
centre) in anbd,. A visual neighbourhood results from a consideration offdaures of a point
in the neighbourhood and the measurement of the distanegbetneighbourhood poirtsFor
examplep(Xo) in Fig. 2 is a description okg (probeg is used to extract a feature value fronn
the form of pixel intensity). Usually, a complete descptof a pointxin anbd, is in the form of
a feature vector containing probe function values extdhifttam x (seee.g, (Henry, 201Q §4), for
a detailed explanation of the near set approach to perdegiijext description). Observe that the
membersy € Ny, (Xo) in the visual neighbourhood in Fig.have descriptions that asefficiently
nearthe description of the reference pomat

For example, each of the points in the green shaded regidfigi@ have intensities that are
very close to the intensity of the poirg. By contrast, many points in the purple shaded region
have higher intensities.€., more light) than the pixel aty, For example, consider the intensities
of the points in the visual nbd represented by the green webigped region and some outlying
green circular regions and the poiatin the purple region in Figz, where

r, = 5 low intensity diference,

3|t is easy to prove that visual neighbourhood is an open set
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..... iy
. P A Ty

.. : : : Y 4
wmy - o) L e

4 oo X2) <Tg -
y i Py(X0,X3) < Ty
Pp(Xo, X1) < Ty '

Figure 2: Sample Visual NbdN;, (Xo) in a Drawing

Ps(X0, X1) = [#(Xo) — p(X1)| < 1y,

Ps(X0, X2) = [#(X0) — p(X2)| < 1y,

Py(%o, X3) = 1p(Xo) — ¢(X3)| < Ty, bt

Py(X0, Xa) = |¢(Xo) — ¢(Xa)| > 1y, Whereg(xs) = high intensity (white).

In the case of the point, in Fig. 2, the intensity is high (close to white)e., ¢(x4) ~ 255.
By contrast the poinky has low intensity (less lightg.g, ¢(X) ~ 20. Assume, = 5. Hence,
l6(X0) — ¢(Xa)l > 1. As in the case of C. Monet's paintinfgshe distance between probe function
values representing visual information extracted fromgenpixels can be shiciently near a cen-
tre X, (perceptually) but the pixels themselves canfdreapart, i.e., not suficiently near, if one
considers the locations of the pixels.

Remark.Filters and Grills
In Fig. 2, observe tha¥; = J; c J, c Jsis afilter. Again, observe that, = {J4, J6, Jg}is a
filter. It can be shown that the sgt= {34, J¢, Tg} is a grill.

Proof. Let A = J4, B = 34 in Fig. 2. From¥,, we know thatis c 34, and3J, c G. ThenB € G.
Observe thafis U 35 € G, thenJs € G or 35 € G.

4A comparison between Z. Pawlak’s and C. Monet's waterscismgsen inPeterg2011).



James Peters et al. Theory and Applications of Mathemati&sComputer Science 3 (1) (2013) 12 9

In addition, letX denote the set of regions shown in F&y.Obviously,¥ = {34, 36, g} is a
filter, if and only if, se€¥) is a grill G, on X. Further,G; = {34, 35, 33} is a grill, if and only if,
sedGs) is afilter. O

Example 5.2. Sample Associated Sets
LetD,, be a gap functional such that

inf {ps(a,b) : ac A be B}, if AandB are notempty

D B) =
po(AB) = {oo, if AorBis empty

Then the functionvp, : £*(X) x P*(X) — [0, oo] defined as

vp,, (A, B) = sup D, (A B); VD%(?{, A) = supD,, (A, A) =0,
AcA,BeB AcA

is ane-approach merotopy oK. In terms of the labelled set$;, J,, I3, T4, Is, Jg in Fig. 2,

we can identify the following lower associated $€tin (Assoc.1) and upper associatéd in

(Assoc.2) with respect tep,, -

(Assocl) E.(3,1) = {J,, T3, T4, Is, T}, where

VD%(Sl, 8,) <gforie {2, 3,5, 6},

e, forae J;,b e J;,i # 1, ps(a,b) < &, since the colours of all of the pixels are
similar in each se¥; € E.(J1) in Fig. 2. The sets irE.(J,) are suficiently neard;.
(Assoc2) E?(3,4) = {J7}, where
VD%(84, J7) > &,

i.e, fora e J4,b € I7, pg(a,b) > &, due to the fact that the green colour of each the

pixels in J, is dissimilar to the purple or white colour of the pixelsdn in Fig. 2. In
effect, the sets ile?(J,4) are far apart fron¥f, with respect top,, -

Example 5.3. Stficiently Near Strong p-Containment

After a manner similar to Examplé.3, let (X,v,,) be ans-approach nearness ofiandp ==
‘sufficiently near’ defined fofA}, {B} € #(X) such that,,({A}, {B}) < &. Considerds, 3, Iz in
Fig. 2. It is a straightforward task to verify that

(p.1) 3, % I, c JzimpliesJ; % Y3,

(p.2) 3, 9, % I3 impliesJ, % I3,

(p.3) Considering only¥,, 35, 33,

2
31 ¢ Jgandy, ¢ Jsimplies | |9 c T,
p p 01 p
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3.1: Monet meadow 3.2: NbdNy,

Figure 3: Sample Monet Meadow nU\sIr¢grey, withrg, =10

Example 5.4. Visual Neighbourhood in a Digital Image
Consider visual neighbourhoods in digital images, wheh gmint is an image pixel (picture
element). A pixel is described in terms of its feature valuBsxel features include grey level
intensity and primary colours red, green, and blue with wengths 700 nm, 546.1 nm and 435.8
nm, respectively) texture, and shape information. Visual information (featvalues) is extracted
from each pixel with a variety of probe functions.

For example, consider a ¥bcentury, St. Martin, Vetheuil landscape by C. Monet renda®
a greyscale image in Fi§.L Letgge(X) denote a probe that extracts the greylevel intensity from
a pixelx and letr, ., = 10. This will lead to the single visual neighbourhood repreed by the
green-shaded regions shown in B2 To obtain the visual nbd in Fi@.2, replace the greylevel
intensity of each point dticiently near the intensityg.,(Xo) with a green colour. The result is
green-coloured visual nk,,  in Fig.3.2 This set of intensities in the visual nbd showrNp,
is an example of an open set contain numbers representesities that are siiciently nearx.
To verify this, notice that the pixel intensities for largegions of the sky, hills and meadow in
Fig. 3.1 are quite similar. This is the case with the sample pixelsnggsoof light) Xg, X1, X2 in
Fig. 3.2, where the ifggrey(X0) — Pgrey(X0)| < Isyey ANA|@grey(X0) — Bgrey(X2)| < Tpyrey-

In summary, the lower associated §e{{{x;}}) is the set of all visual neighbourhoods of the
pixel x; in Fig. 3.2 that are descriptivelg-near each other. In addition, one can also observe

5The amounts of red, green and blue that form a particulanc@re calledristimulusvalues. LeR, G, B denote
red, green, blue tristimulus values, respectively, withegr almost in the middle of the wavelengths of the visual
spectrum, which is at 568 nm. Then define the following pralmefions to extract the colour components of a pixel.

__R G
“R+ic+B Y RiceB

b=1-r-g.


meadow-g.eps
nbd-meadow.eps
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w y1 = Eo({{x}})

Y2

Yk
Figure 4: f(X) = |[E.({{x}})| >0

that the upper associated $£i({{x;}}) contains all visual neighbourhoods that are descriptivel
dissimilar tox;.

Example 5.5. Bipartite Graph for Associated Sets

Although this example continues the discussion of paistinige proposed bipartite graph rep-
resentation of associated sets is easily extended to membany pair of nonempty sets. For
example, consider classifying paintings by a particuléisby collecting together nonempty as-
sociated lower sets of fliciently near neighbourhoods extracted from pairs of pegurTo see
this, let X denote a set of query images and Yetlenote a set of test imagese(, X contains
pictures showing paintings, where each paintingiis compared with the paintings in the set of
sample paintingy¥).

The goal is to collect together those picture¥ioontaining neighbourhoods of pointsyire Y
that are sfficiently similar to neighbourhoods of points in a pictwe X. LetN; € X, N, € Y
denote neighbourhoods that ardfsiently near. Then construct the lower associatedEs@,) =
{Nb,...}. Aquery image is similar to a test image if, and only&f(N,) > O.

Given approach spacex,@%grey),(Y, V%grey)’ consider a functiorf : X — Y defined by
f(X) = |E.(X)|, wherex € X. Then the relation between a particular painting and one aem
associated lower sets can be represented by a bipartite (gap Fig4). The image set

O =1{f(x):ie and|f(x)| > O}

can be extracted from Figl. The setO has interest, since two of its members reveal the least
similar and most similar paintings in relation to a partazuduery image. That is, if®}, sugO}
function values correspond to the least similar and mostaiwf the paintings that are ficiently
near the query imagee X.

Similarly, one can determine the collection of those paggidissimilar to a given query pic-
ture with a nonempty associated upper set containing vigighbourhoods taken from the query
image and a test image.
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Abstract

The task of unsupervised detection of peculiar images has immediate applications to numerous scientific disci-
plines such as astronomy and biology. Here we describe a simple non-parametric method that uses multi-order image
transforms for the purpose of automatic unsupervised detection of peculiar images in image datasets. The method is
based on computing a large set of image features from the raw pixels and the first and second order of several com-
binations of image transforms. Then, the features are assigned weights based on their variance, and the peculiarity of
each image is determined by its weighted Euclidean distance from the centroid such that the weights are computed
from the variance. Experimental results show that features extracted from multi-order image transforms can be used
to automatically detect peculiar images in an unsupervised fashion in different image datasets, including faces, paint-
ings, microscopy images, and more, and can be used to find uncommon or peculiar images in large datasets in cases
where the target image of interest is not known. The performance of the method is superior to general methods such
as one-class SVM. Source code and data used in this paper are publicly available, and can be used as a benchmark to
develop and compare the performance of algorithms for unsupervised detection of peculiar images.

Keywords: Outlier detection, peculiar images, image analysis, image transform, multi-order transforms.
2010 MSC: 68T10, 62H35, 68T45, 62H30 .

1. Introduction

Unsupervised detection of peculiar images is the ability of a computer system to automatically
detect images that are different from the other “regular” images in an image dataset. While in tasks
such as image classification the system can be trained in a supervised fashion using “ground truth”
samples, in unsupervised detection of peculiar images the algorithm cannot rely on data samples
or models that reflect the “regular” images or the target images of interest.

The problem of detecting data points significantly different from the other data is often referred
to as outlier detection (Hodge & Austin, 2004). Many established algorithms consider outlier

*Corresponding author
Email address: 1shamir@mtu.edu (Lior Shamir)
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detection as a by-product of clustering algorithms by searching for background noise samples that
do not belong in a cluster (Aggarwal & Yu, 2000; Guha, Rastogi & Shim, 2001). Other methods
are based on searching for samples that do not belong in a cluster and are also not background
noise, but are substantially different from the other samples in the dataset (Breunig et al., 2000;
Knorr & Ng, 1999; Fan et al., 2006). While many of the outlier detection algorithms were designed
and tested using lower dimensionality, other methods aim at automatic outlier detection in higher
dimensionality data (Aggarwal & Yu, 2001; Roth, 2005; Fan, Cehn & Lin, 2005; Lukashevich,
Nowak & Dunker, 2009). Applications of outlier detection include credit card fraud, network
intrusion detection, surveillance, financial applications, cell phone fraud, safety critical systems,
loan application processing, defect detection in factory production lines, and sensor networks
(Zhang et al., 2007).

While outlier detection has been studied in the context of a broad range of applications, less
work has yet been done on unsupervised detection of peculiar images in image datasets. Here we
describe a generic method that can be used for automatic detection of peculiar images in image
datasets based on a large set of image content descriptors extracted from the raw pixels, image
transforms, and compound image transforms. Applications include, for instance, the search for
peculiar cells or tissues in large datasets of microscope images, which can be used to detect phe-
notypes of particular scientific interest (d‘Onofrio & Mango, 1984; Carpenter, 2007; Jonesa et al.,
2009).

When the target image is known, the task of detecting a peculiar image can be related to the
problem of Content-Based Image Retrieval, and numerous effective methods of measuring simi-
larities between images in the context of CBIR have been proposed (Bilenko, Basu, & Mooney,
2004; Kameyama et al., 2006). However, since in this study the detection of a peculiar image in
an image dataset should be done automatically in an unsupervised manner, no assumptions can be
made neither about the target image nor about the context of the images in the data base. That is,
the computer system should automatically characterize the “typical” image in the dataset, and de-
tect images that are different from it. Since no pre-defined model of the data can be used, effective
systems for unsupervised automatic detection of peculiar images need to extract different image
features that will cover different aspects of the image content, and thus be able to characterize and
analyze a broad spectrum of image data.

Here we use a large set of image content descriptors extracted from the raw images, image
transforms, and multi-order transforms, and apply a statistical analysis to weight the different
image features by their ability to reflect the data and detect peculiar images. The primary advantage
of the method is its generality, which makes it effective for the analysis of a broad variety of image
datasets without the need for tuning or adjustments. In Section 2 we briefly describe the set of
image features and multi-order transform model used in this study, in Section 3 we describe the
unsupervised detection of the peculiar images, in Section 4 the performance evaluation method of
the proposed algorithm is discussed, and in Section 5 the experimental results are presented.

2. Image features

The set of image content descriptors used in this study is based on the feature set used by the
wndchrm algorithm, which is a large set of numerical image content descriptors that cover a broad
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range of aspects of the visual content (Shamir et al., 2008a; Orlov et al., 2008; Shamir et al., 2010).
Basically, the wndchrm feature set includes several generic image features such as high-contrast
features (object statistics, edge statistics, Gabor filters), textures (Haralick, Tamura), statistical
distribution of the pixel values (multi-scale histograms, first four moments), factors from poly-
nomial decomposition of the image (Chebyshev statistics, Chebyshev-Fourier statistics, Zernike
polynomials), Radon features, and fractal features. A detailed description of these image con-
tent descriptors and the way they are used in the context of the wndchrm feature set is available
in (Shamir et al., 2008a; Orlov et al., 2008; Shamir et al., 2010; Shamir, 2008; Shamir et al.,
2009). The reason for using a large set of features is that the search for peculiar images is unsuper-
vised, and no assumptions can be made regarding the possible difference between the peculiar and
non-peculiar images. Therefore, it is important that the set of image content descriptors is com-
prehensive enough so that at least some of the image features will be likely to sense differences
between a regular and a peculiar image in a given image dataset.

As will be discussed in Section 5, a key contributor to the ability of the method proposed
in this paper to detect peculiar images in an unsupervised fashion is the extraction of the image
content descriptors not just from the raw pixels, but also from image transforms and compound
image transforms. The extraction of image features from compound image transforms has been
shown to contribute significantly to the performance of general-purpose image classifiers (Shamir
et al., 2008a; Orlov et al., 2008; Shamir et al., 2010, 2009), and can therefore be effective for
peculiar image detection in cases where the differences between the typical and the peculiar im-
age should be determined automatically, without using “ground truth” samples or any other prior
knowledge about the data. The image transforms include the Fourier, Chebyshev, Wavelet, and the
edge-magnitude transform, as well as multi-order transform combinations. The combinations of
transforms include the Fourier transform of the Chebyshev transform, the wavelet transform of the
Chebyshev transform, the Fourier transform of the wavelet transform, the wavelet transform of the
Fourier transform, the Chebyshev transform of the Fourier transform, and the Fourier and Cheby-
shev transforms of the edge magnitude transform. A detailed description of the tandem transform
combinations can be found in (Shamir et al., 2010; Shamir, 2008), and the total number of images
features extracted using these transforms is 2659 (Shamir et al., 2008a; Shamir, 2008). The length
of the chain of transforms is limited to the first and second order of the image transforms, as ex-
periments showed that using compound transforms with order higher than two typically does not
contribute to the informativeness of the image analysis system (Shamir et al., 2009). The effect
of using the multi-order image transforms on the ability of the algorithm to automatically detect
peculiar images will be discussed in Section 5.

For color images we used a color transform, which is based on transforming the RGB pixels
into the HSV space, followed by classification of the HSV triplets into one of 16 color classes
using fuzzy logic modeling of the human perception of these colors (Shamir et al., 2006). Then,
the Fourier, Chebyshev, and wavelet transforms of the color transform are computed, and the set
of image features is extracted as described in (Shamir et al., 2010). When the color transform is
also used, the total number of image features is 3658 (Shamir et al., 2010). Figure 1 illustrates the
paths of the transforms and compound transforms used by the feature set.
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Figure 1. Paths of multi-order image transforms.

3. Automatic detection of peculiar images

In order to automatically detect peculiar images, it is first required to characterize the “typical”
image in the dataset. Since many image features are used without prior knowledge about the
dataset, it can be assumed that not all content descriptors are relevant to the image dataset at hand,
and might represent noise. Therefore, it is required to select the image features that are the most
informative, and can potentially discriminate between peculiar and non-peculiar images.

In the first stage of the algorithm, all image features are normalized to the interval [0, 1], so that
the differences between the values of different image features can be compared without introducing
anumerical bias. For instance, if the values of one image feature are in the range of [0, 1000] while
the values of another are in the range of [0, 10], a numerical difference of 5 between the values
of the first feature extracted from two different images can be considered small, while the same
numerical difference can be much more substantial for the second feature, in which it is half of the
entire range.

In the next step, the mean, median, and variance of each image feature are computed. To char-
acterize the “typical” feature values of an image in the dataset, the highest 5% and the lowest 5%
of the values of each image feature are ignored when computing the mean and standard deviation,
so that extreme values that results from noise, artifacts, or peculiar images will not affect the mean
and variance of the “typical” images.

After these values are computed, each image in the dataset is compared to the “typical” image
using Equation 3.1

D= ) (1-op Uﬂ (3.1)

feF

where D; is the dissimilarity value of image i from the “typical” image in the dataset, fis a
feature in the feature set F, f is the median of the values of feature f in the given image dataset,
fi is the value of the feature f computed from the image i, s is the standard deviation of feature
f, and k 1s a constant value set to 25. The value of k will be thoroughly discussed in Section 5.
The D; dissimilarity value can be conceptualized as the sum of Z scores computed for each fea-
ture separately, such that each score‘s contribution to the total distance is inversely dependent on
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the standard deviation. That is, features that have lower standard deviation are considered more
“representative” features, while feature that their values are more sparsely distributed are assumed
to provide a weaker representation of the “typical” image and are therefore assigned with a lower
score and have a weaker affect on the dissimilarity value.

Clearly, image features that their values are constant across the dataset (and therefore o= = 0)
cannot provide any useful information in this model, and can therefore be safely ignored without
affecting the performance. On the other hand, the values of some of the other features can be
sparsely distributed across the image dataset, and therefore the median of these values cannot be
considered as a value that reliably represents the typical image. For that reason, the effect of each
image feature is weighted by its standard deviation, which is used as an assessment of the feature‘s
informativeness and its ability to characterize the typical image.

While in Equation 3.1 the effect of features that their values are sparsely distributed is weak-
ened by using the standard deviation as a measurement of their informativeness, it can be assumed
that many of the features will not be informative for a given image dataset at hand, and therefore
the high number of irrelevant features can add noise to the analysis and negatively affect the per-
formance. In order to reduce the effect of non-informative features, 90% of the features with the
highest o~ are ignored, and the remaining 10% are used by Equation 3.1 to compute the distance
between a given image and the “typical” image in the dataset. Since the image features are also
weighted by their standard deviation, the performance of this method is not highly sensitive to
small changes in the number of features that are used, as will be discussed in Section 5. This
approach of combining feature selection and feature weighting is conceptually similar to the ap-
proach of the feature selection in the wndchrm image classifier (Shamir et al., 2008a; Orlov et al.,
2008; Shamir et al., 2010).

In many cases, using o to assess the informativeness of the features and their ability to differ-
entiate between a peculiar and a typical image might not be optimal and can lead to the sacrifice
of some of the information. For instance, if the values of a certain image feature range between
0 and 0.8 for most images in the dataset, but is always 1 for a certain peculiar image, this feature
could have been effectively used to detect the peculiar image, but will be assigned with a low score
due to the sparse distribution of the values. On the other hand, features can be assigned with high
scores due to the consistency of their values, while these image features might have little ability
to differentiate between a typical and a peculiar image. Since the goal of the method described in
this paper is to detect peculiar images in an unsupervised fashion, no assumptions or prior knowl-
edge about the data can be used, and therefore the image content descriptors cannot be selected or
scored based on a target peculiar image. However, by using a large set of image features, it can be
expected that some of the features that are assigned with high scores will be able to differentiate
between a peculiar and a typical image. This will be demonstrated in Section 5.

In summary, the following pseudo code summarizes the outlier detection algorithm:

Step 1: Compute image features for all images.
Step 2: Reject the lowest and highest 5% values of each feature.

Step 3: Compute the mean M of the values of each feature f.
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Step 4: Compute the o ¢ of the values of each feature f.

Step 5: Reject 90% of the features with the lowest o

Step 6: Compute d for each image I such that d = \/ 2 (L=opk- %
Step 7: Sort the images in the dataset by d.

The computational complexity of the algorithm is O(F - I log I), where I is the number of im-
ages and F' is the number of features computed for each image. The computational complexity is
determined by the complexity of sorting all values of each feature, which is the most computation-
ally demanding task in the algorithm described above. The bottleneck of the process, however,

is the computational complexity of the Wndchrm feature set, which is much more complex as
described in (Shamir et al., 2008a, 2009).

4. Performance evaluation

In order to test the performance of the proposed method, several different image datasets were
used. These datasets include the Brodatz texture album (Brodatz, 1966), the COIL-20 object
image collection (Nene, Nayar & Murase, 1996), JAFFE and AT&T face datasets (Samaria &
Harter, 1994; Lynos et al., 1998), the MNIST handwritten digit collection (LeCun et al., 1998;
Liu et al., 2003), and a dataset of digitized paintings of Van Gogh, Monet, Dali, and Pollock
Shamir et al. (2010). Since the MNIST dataset contains a large number of images, a subset of 100
images from the first two classes (0 and 1) were used in the experiment. For microscopy images
we used the CHO (Chinese Hamster Ovary) dataset (Boland & Murphy, 2001), consisting of
fluorescence 512x382 microscopy images of different sub-cellular compartments, and the Pollen
dataset (Duller et al., 1999), which is a dataset of 25X25 images of geometric features of pollen
grains. The CHO dataset might not be considered a perfect representation of biological content
(Shamir et al., 2011), but it is used in this study for general-purpose outlier detection. These
two datasets are available for download as part of the [ICBU-2008 benchmark suite at http:
//ome.grc.nia.nih.gov/iicbu2008 (Shamir et al., 2008b), and sample images of the different
classes are shown by Figures 2 and 3. The image datasets used in this study are listed in Table 1.

Figure 2. Sample images of class “obj_198” (top) and “obj_212” (bottom) taken from
the pollen dataset.
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Table 1. Image datasets used for the experiments.

dataset typical class peculiar class 1mages per class
Pollen obj_198 obj_212 45
CHO giantin hoechst 69
JAFFE KA KL 22
AT&T 1 2 10
Painters 1 Pollock Dali 30
Painters 2 Monet Van Gogh 30
Brodatz 1 Bark Brick 4
Brodatz 2 Wood Wool 4
MNIST 0 1 100
COIL-20 obj1 obj2 71

Figure 3. Sample images of giantin (left) and hoechst (right) taken from the CHO
dataset.

As the table shows, these datasets were used such that two classes from each dataset were
selected: one class was used as the “typical” class and the other as a pool of “peculiar” images.
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In each run the tested dataset included all images from the typical class, and one image from the
peculiar class. The experiment was repeated for each image in the peculiar class, such that in each
run a different image from the peculiar class served as the peculiar image. For instance, the AT&T
face dataset has 10 images in each class, and therefore it was tested 10 times such that in each run
all 10 images of person / were used and one image of person 2 (a different image in each of the 10
runs). The goal of the algorithm was to automatically detect the single image of person 2 among
the dataset of 11 images (10 images of person / and one image of person 2).

The performance was evaluated by the number of times the algorithm correctly detected the
peculiar image in the set (which included the “typical” images and the one “peculiar” image),
divided by the total number of images in the peculiar class. Another performance metrics used in
this study is the rank-10 detection accuracy, which was measured as the percentage of the cases in
which the peculiar image was among the first 10 candidates with the highest dissimilarity value as
determined by Equation 3.1.

5. Results

The performance of the automatic detection of peculiar images was evaluated as described in
Section 4, and the rank-1 and rank-10 detection accuracies for each of the tested datasets are listed
in Table 2.

Table 2. Rank-1 and rank-10 accuracy of the detection of the peculiar image.

Dataset Rank-1 accuracy Rank-10 accuracy

Pollen 29/45 34/45
CHO 57/69 69/69
Jaffe 16/22 22/22
AT&T 10/10 10/10
Painters 1 26/30 30/30
Painters 2 0/30 18/30
Brodatz 1 4/4 4/4
Brodatz 2 4/4 4/4
MNIST 29/100 92/100
COIL-20 38/71 71/71

As the table shows, in almost all cases the proposed algorithm was able to automatically detect
the peculiar images in accuracy significantly better than random. For instance, with the Pollen
dataset the algorithm was able to automatically find the peculiar image in 29 times out of 45
attempts (each attempt with a different image), and the rank-10 detection was accurate in 34 times.
The noticeable exception is the second datasets of painters, which consists of paintings of Monet
and Van Gogh. In that case, the proposed method was not able to automatically detect any of the
tested Van Gogh paintings in a set of Monet paintings, and the rank-10 accuracy was 60%. Since
Monet and Van Gogh were inspired from each other, their artistic styles are similar to each other,
and it usually requires knowledge in art to differentiate between the works of the two painters.
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The other painter dataset that was tested demonstrated a much higher detection accuracy since
the two painters, Jackson Pollock and Salvador Dali, belong in different schools of art (Abstract
Expressionism and Surrealism, respectively) and the differences between their styles are highly
noticeable even without any previous knowledge or training in art.

The results specified in Table 2 demonstrate the generality of the method and its ability to
handle very different image datasets in a fully automatic fashion, and without the need to select or
tune parameters. The generality of the method can also be demonstrated by the different classes
of the Pollen dataset. While the results in Table 2 are based on obj_198 as the “typical” class and
“obj_212” as the peculiar class, the pollen dataset includes seven classes (Shamir et al., 2008b).
Table 3 shows the rank-1 detection accuracy of all combinations of the seven classes in the pollen
dataset, such that each cell is the detection accuracy when the row the “typical” class and the
column is the “peculiar” class. As the table shows, the detection accuracy is significantly higher
than random in all combinations of “typical” and “peculiar” classes, demonstrating the generality
of the proposed method.

Table 3. Rank-1 detection accuracy (%) of all combinations of typical and peculiar
classes using the pollen dataset.

Regular\Peculiar [ 198 212 216 360 361 405 406

198 - 64 51 67 53 69 67
212 55 - 55 65 58 67 67
216 63 67 - 63 58 64 64
360 61 64 67 - 64 72 69
361 57 67 65 67 - 72 69
405 66 71 73 69 67 - 71
406 63 59 65 69 69 6l -

As discussed in Section 3, 90% of the image features with the highest o are ignored. Changing
the number of features that are rejected and not used by the image dissimilarity evaluation of
Equation 3.1 can change the dissimilarity value determined by the Equation for each image, and
consequently affect the performance of the algorithm. Figures 4 and 5 show the rank-1 and rank-10
detection accuracy of the peculiar images when the number of used features is changed.

As the graphs show, while the peculiar image detection accuracy of some image datasets peaks
when 10% of the features are used, in other datasets such as MNIST or COIL-20 the detection
accuracy peaks when 40% of the features are used. In the case of MNIST, the rank-1 detection
accuracy was elevated from 29% when 10% of the features were used to 94% with 40% of the
image features. This shows that the detection of peculiar images can be optimized if the number
of used image features is adjusted for the specific dataset. However, since the detection of the
peculiar image is unsupervised, and in many cases the target peculiar image is unknown, adjusting
the parameters for optimizing the performance based on sample target peculiar images might not
be possible, and it is therefore required to use a general pre-defined parameter setting as was done
for the performance figures reported in Table 2.

Another value that was determined experimentally is the K values in Equation 3.1. Figures 6
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Figure 4. The rank-1 detection accuracy of the peculiar image as a function of the
amount of features used.

and 7 show the rank-1 and rank-10 detection accuracy of the peculiar image as a function of the
value of this parameter. In all cases, 10% of the image content descriptors were used as described
in Section 3.

As the graphs show, the detection accuracy of the CHO dataset drops as the value of K in-
creases, and the detection of a Dali painting in a set of Jackson Pollock paintings also peaks when
the value of K is low. However, in most cases the detection accuracy of the peculiar image reaches
its maximum when the value of K is around 25. In some of the tested image datasets, such as
the Brodatz texture datasets and the rank-10 of the Painters I and COIL-20 datasets, the detection
accuracy of the peculiar image remained perfect regardless of the value of K.

A single peculiar image is expected to be detected more easily among a smaller dataset of
regular images. That is, finding a peculiar image hidden in a dataset of millions of images is
expected to be a more difficult task than finding a peculiar image in a dataset of just a dozen regular
images. On the other hand, the presence of a large number of regular images allows the algorithm
to find the image features that can discriminate between peculiar and regular images, and better
estimate the weights of the features by their informativeness and ability to discriminate between
a regular and a peculiar image as described in Section 3. To study the effect of the number of
the regular images in the dataset we used the MNIST dataset, which provides a sufficient number
of images of handwritten digits “0” and “1”. Figure 8 shows the rank-1 and rank-10 detection
accuracy of a peculiar image when changing the number of regular images in the dataset using
1000 images of the handwritten digit “0”.

As the graph shows, the detection accuracy generally drops as more regular images are added
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Figure 5. The rank-10 detection accuracy of the peculiar image as a function of the
amount of features used.

to the dataset. Clearly, this is due to the lower difficulty of finding a peculiar image in a dataset of
50 images compared to correctly finding a single peculiar image among a dataset of 1000 regular
images. However, while the rank-10 accuracy decreases as the number of regular images gets
higher, the rank-1 detection accuracy drops to ~30% at around 80 regular images, but marginally
changes when more regular images are added to the dataset. This can be due to the effect of
the better weights assigned to the image features when the number of non-peculiar images in the
dataset increases, which improve the ability of the algorithm to characterize the “typical” image
in the dataset and differentiate it from peculiar images.

It should be noted, however, that while a higher number of regular images improves the feature
weights, it also increases the probability that one the regular images in the dataset will be assigned
with a high dissimilarity value computed by Equation 3.1. Since the algorithm aims to detect
the irregular images in an unsupervised fashion, any difference between one of the images in
the dataset and the “typical” image might lead to the detection of that image as “peculiar”. For
instance, in the MNIST dataset of the handwritten digit “0” the 10 most common images that were
detected by the proposed algorithm as peculiar are shown in Figure 9.

As the figure shows, some of these handwritten digits are noticeably different from a standard
handwritten digit “0”. For instance, the top left digit has a black dot near it, while other images of
handwritten “0” feature incomplete circles or thick lines. These images can confuse the algorithm
since they are different from the typical image of the digit “0”. Repeating the same experiment
with a dataset of 100 manually selected “0” images that seemed relatively uniform led to perfect
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Figure 7. The rank-10 detection accuracy of the peculiar image as a function of K.
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Figure 9. The 10 most different images in the dataset of 1000 regular images of hand-
written “0” digit.

detection accuracy of the “1” images.

Similarly, the most peculiar images of the CHO dataset and the AT&T dataset are shown
in Figures 10 and 11, respectively. As the figures show, in the AT&T dataset the images are
relatively similar to each other, and it is difficult to identify specific images that are significantly
more different from the rest of the images. However, in the CHO dataset the peculiar images are
noticeably different from the “typical” giantin images showed in Figure 3.

As showed by Figure 5, the detection of an image of the handwritten digit “1” in a large set
of images of the handwritten digit “0” can be improved when using 40% of the image features.
Figure 12 shows the detection accuracy when 40% of the image content descriptors are used.

As the figure shows, when using 40% of the features the detection accuracy also drops as the
number of regular images gets larger, but the detection accuracy is significantly higher compared
to the detection accuracy when using just 10% of the image content descriptors. The rank-10
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Figure 10. The 10 most different images in the AT&T dataset. The leftmost image is
the most peculiar.

-

Figure 11. The 10 most different images in the CHO (giantin) dataset. The upper left
image is the most peculiar and the lower right image is the least peculiar
of the 10 samples.

accuracy, however, remains steady at 100% regardless of the number of regular images among
which the peculiar image should be detected.

A key element in the proposed algorithm is the use of the large set of image features extracted
from the raw pixels, but also from image transforms and compound transforms. To test the con-
tribution of the features extracted from transforms and compound transforms, the performance of
the proposed method was tested using features extracted from the raw pixels only, raw pixels and
transforms, and raw pixel, transforms, and transforms of transforms. Table 4 shows the rank-1 and
rank-10 detection accuracy when using image features computed using the raw pixels alone, and
Table 5 shows the performance of the method when using also the image features extracted from
the first-order image transforms. Table 2 shows the detection performance when using the raw
pixels, image transforms, and transforms of transforms.

As the tables show, the use of image features extracted from transforms and multi-order image
transforms has a significant effect on the performance of the method, and demonstrates the infor-
mativeness of standard image features extracted not just from the raw pixels, but also from image
transforms and compound transforms (Rodenacker & Bengtsson, 2003; Gurevich & Koryabkina,
2006; Shamir et al., 2010, 2009).

5.1. Comparison the previous methods

The performance of the peculiar image detection method was also compared to the perfor-
mance of one-class SVM (Scholkopf et al., 2001). The experiments were done with the LibSVM
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Figure 12. Rank-1 and rank-10 accuracy as a function of the number of regular images
using the MNIST handwritten digits image dataset using 40% of the image
features.

Table 4. Rank-1 and rank-10 accuracy of the peculiar image detection when using
image features extracted from the raw pixels only.

Dataset Rank-1 accuracy Rank-10 accuracy

Pollen 11/45 19/45
CHO 21/69 36/69
Jaffe 9/22 14/22
AT&T 4/10 10/10
Painters 1 16/30 23/30
Painters 2 0/30 14/30
Brodatz 1 4/4 4/4
Brodatz 2 4/4 4/4
MNIST 9/100 56/100
COIL-20 11/71 44/71

support vector machine library using the “one-class” option with RBF (y=5) and polynomial (d=5)
kernels, where nu was set to 0.5 (Scholkopf et al., 2001; Fan, Cehn & Lin, 2005). The value K
in Equation 3.1 was set to 25. Figure 13 shows the rank-1 detection accuracies using the method
described in this paper and the one-class SVM with the two kernels.

As the graph shows, the detection using weighted distances from the means as described in this
paper is substantially better compared to one-class SVM. The better performance when using the
weighted distances from the means can be explained by the ability of the weighted feature space to
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Table 5. Rank-1 and rank-10 accuracy of the peculiar image detection when using
image features extracted from the raw pixels and image transforms.

Dataset Rank-1 accuracy Rank-10 accuracy

Pollen 18/45 25/45
CHO 39/69 53/69
Jaffe 13/22 22/22
AT&T 8/10 10/10
Painters 1 22/30 26/30
Painters 2 0/30 17/30
Brodatz 1 4/4 4/4
Brodatz 2 4/4 4/4
MNIST 29/100 92/100
COIL-20 38/71 68/71

H Weighted distance M Polynomial kernel = RBF kernel
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100
90
80
70
60
50
40
30
20
10
0

Pollen  CHO Jaffe AT&T Painters Painters Brodatz Brodatz MNIST COIL-20
1 2 1 2

Figure 13. Detection accuracy using the proposed method and one-class SVM using
the image feature set.

work efficiently when the variance in the informativeness of the different image features is large.
These results are in agreement with previous experiments of automatic image classification using
the large image feature set used in this study (Shamir et al., 2010), which also indicated that SVM
classifiers have difficulty to effectively handle the strong variance in the informativeness of the
image features included in the large feature set. The significant effect of assigning weights to the
features compared to using a non-weighted feature space is also discussed in (Orlov et al., 2008;
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Shamir et al., 2010).

6. Conclusions

This paper describes a method that applies multi-order image transforms to unsupervised de-
tection of peculiar images in image datasets. The detection of the peculiar images is done in an
unsupervised fashion, without prior knowledge that can be used to define the peculiarity of an
image in the context of the given image analysis problem at hand. This approach can be useful in
cases where it is required to detect unusual images, in the absence of a clear definition of what an
unusual image is or how a “peculiar” image is different from a “typical” image in the dataset. For
instance, screens in Cell Biology might result in microscopy images of very many cells, and the
researcher might be interested in detecting the irregular and uncommon phenotypes (d‘Onofrio &
Mango, 1984). In many cases the phenotypes of the highest scientific interest can be “new” types
of cells, which the researcher has never seen before, and therefore cannot characterize or use pre-
vious samples to train a machine vision system to detect. Other examples can include automatic
search for peculiar astronomical objects in image datasets acquired by autonomous sky surveys
driven by robotic telescopes, or uncommon ground features in datasets of satellites images of the
Earth or other planets. Future work will include the application of the proposed system to practical
tasks in biology, astronomy, and remote sensing.

The experiments described in this paper show that the detection accuracy of the peculiar image
can in some cases be improved if the parameters are adjusted for a specific dataset. However, the
pre-defined parameter settings used in this study demonstrated detection accuracy significantly
better than random, and showed that in some cases the rank-10 detection accuracy can be as high
as 100%. This shows that image features extracted from multi-order image transforms can be used
to automatically detect peculiar images in image datasets without using any prior knowledge about
the regular images, but more importantly, without any prior knowledge about the target peculiar
images.

One limitation of this method is that since the detection of the peculiar image is done in an
unsupervised fashion, the feature representation of the regular images should be similar to each
other so that the algorithm can differentiate between them and the peculiar image. That is, the
variation among the regular images should be smaller than the difference between the peculiar
images and the regular images.

Another downside of the method described in this paper is its relatively high computational
complexity. Since no prior knowledge about the images can be used, a large and comprehensive
set of image features is computed for each image in order to cover many different aspects of
the visual content, and then select the most informative features that can differentiate between a
regular and a peculiar image. Computing the full set of image content descriptors and transforms
can be a computationally expensive task. For instance, computing the feature set for a single
256x256 image takes ~100 seconds using a 2.6GHZ AMD Opteron with 2 GB of RAM. A more
comprehensive analysis of the response-time as a function of the image size is available in (Shamir
et al., 2008a).
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1. Introduction

Let A denote the class of functions of the form
fQ =2+ az", (1.1)
n=2

which are analytic in the open unit disk U = {z € C : |z] < 1}. Suppose that f and g are analytic
in U. We say that the function f is subordinate to g in U, or g superordinate tof in U , and we
write f < g or f(z) < g(z) (z € U), if there exists an analytic function w in U with w (0) = 0 and
|w (z)| < 1, such that f(z) = g(w (z)) (z € U). If g is univalent in U, then the following equivalence
relationship holds true, see (Miller & Mocanu, 1981) and (Miller & Mocanu, 2000):

f(2) <g(z) = f(0)=¢g(0) and f(U)cg().

Let S be the subclass of A consisting of univalent functions. Let ¢ (z) be an analytic function
with positive real part on ¢ with ¢ (0) = 1, ¢ (0) > 0 which maps the unit disk U onto a region
starlike with respect to 1 which is symmetric with respect to the real axis. Let S*(¢) be the class
of functions in f € § for which

zf (@)
/@

<¢(), (1.2)

*Corresponding author
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and C(¢) class of functions in f € S for which

Zf ()
f()

These classes were introduced and studied by (Ma & Minda, 1992). (Ravichandran et al., 2005)
defined classes S;, (¢) and Cy, (¢) of complex order defined as follows :

<¢(2). (1.3)

S* (4 b)—{feﬂ 1+ (Z;((i)—1)<¢(z) (be(C*:(C\{O})} (1.4)
and
C(#; b)—{feﬂ 1+%ij @ s (beC*)}. (1.5)

From (1.4) and (1.5), we have
feC(p;b) = zf €S ($:b).
Now, we introduce a more general class of complex order 7 (¢; A, b) as follows:

Definition 1.1. Let ¢ (z) be an analytic function with positive real part on ¢ with ¢(0) =

¢ (0) > 0 which maps the unit disk U onto a region starlike with respect to 1 which is sym-
metric with respect to the real axis. Then the class 7 (¢; A, b) consists of all analytic functions
f € A satisfying:

zf (@) /1(1+Zf (Z))_1

[( Vo e

<¢() beC;A120). (1.6)

‘We note that

(@) 7 (¢;0,b) = S*(¢;b) and T (¢; 1,b) = C(¢; b) (Ravichandran et al., 2005);
@) T (¢;0,1)=8"(¢p) and T (¢; 1, 1) = C(¢) (Ma & Minda, 1992);

1+(1-2
(ii) T(M;o, b) = S’ (b) and T(
—Z
(Frasin, 2006);

1+ -2z

I l,b):Ca(b)(0£0/<1;b€C*)
-2

1 1+Qb—1
(iv) fr(l—”;o, b) - fr(¥ 0, 1) = S (b) (b € C*) (Nasr & Aouf, 1985) and (Wia-
—Z —Z
trowski, 1970);
1+@b—1

1
()'r( +§1b)—7’(
trowski, 1970);

] ks 1, ) C(b) (b € C*) (Nasr & Aouf, 1982) and (Wia-
-z
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1 1 1-2
1-z2 1-z
1 1 1-2
and‘T(—l LRI —a) - 7'(—+ (1 2z, 1,1) = C(a)(0 < @ < 1) (Robertson, 1936);
—Z —Z

1 | 1 |
(vii) T(l—”;o, be cosy) — S7(b) and ‘7‘(1—+Z; l,be"ycosy) - C(b) (l)/l < g,b e (C*)
—Z Z

(Al-Oboudi & Haidan, 2000) and (Aouf et al., 2005).

Motivated essentially by the aforementioned works, we obtain certain necessary and sufficient
conditions for the unified class of functions 7 (¢; A, b) which we have defined. The motivation of
this paper is to generalize the results obtained by (Ravichandran et al., 2005), (Aouf et al., 2005),
(Srivastava & Lashin, 2005) and also (Obradovic et al., 1989).

2. Main Results

Unless otherwise mentioned, we assume throughout the sequel that b € C*, A > 0 and all pow-
ers are understood as principle values. To prove our main result, we need the following lemmas.

Lemma 2.1. (Ruscheweyh, 1982) Let ¢ be a convex function defined on U, ¢ (0) = 1. Define F(z)

by
F() =z exp(f ‘W)t_ 1dt). @.1)
0

Let p(z) =1+ piz+ pzzz + ...be analytic in U. Then
29 (2)
q(2)

if and only if for all |s| < 1 and |t| < 1, we have
p (12) - sF (t2)
p(sz) tF(s7)

Lemma 2.2. (Miller & Mocanu, 2000) Let q(z) be univalent in U and let ¢ (z) be analytic in a
zq (2)
q(z

1+

< ¢ () (2.2)

(2.3)

domain containing q (U). If is starlike, then

2 @De(P@)<2q @¢qR),
then p(z) < q(z) and q(z) is the best dominant.
Theorem 2.1. Let ¢ (2) and F (2) be as in Lemma 2.1. The function f € T (¢; A, b) if and only if

forall |s| <1 and |t| < 1, we have

[(sf (tz))l_l(f' (t2) )Ar - sF (t2)

tf (s2) 1 (s2) tF (s2)° (2.4)
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Proof. Define the function p(z) by

ro (F oV
p(z)—[ . (f(z))] (zeU). (2.5)
Taking logarithmic derivative of (2.5), we get
zp (2) 1 2f (2) ( zf (z)) ]
1 =1+-|(1-2 A1 - 1.
T b [( o T\ e
Since f € T (¢; A, b), then we have
14+ 3P (2) <6
p(2)
and the result now follows from Lemma 2.1. ]

Putting 4 = 0 in Theorem 2.1, we obtain the following result of (Shanmugam et al., 2009).

Corollary 2.1. Let ¢ (z) and F (z) be as in Lemma 2.1. The function f € S* (¢; b) if and only if for
all |s| < 1 and |t] £ 1, we have

(s f (tz))” L sF@) (2.6)

tf (s2) tF (sz)°

For A = 1 in Theorem 2.1, we obtain the following result of (Shanmugam et al., 2009).

Corollary 2.2. Let ¢ (z) and F (z) be as in Lemma 2.1. The function f € C(¢; b) if and only if for
all |s| < 1 and |t| £ 1, we have

(f’ (m))i L sF @)
1 (s2) tF (sz)°

Theorem 2.2. Let ¢ (z) be starlike with respect to 1 and F(z) given by (2.1) be starlike. If f €
T (¢; A, b), then we have

2.7

[Q (& @Y (m)
. (f(z)) < - . (2.8)
Proof. Let p(z) be given by (2.5) and ¢ (z) be given by
F
q(2) = g (zel). (2.9)

After a simple computation we obtain

wp ()

1 -
* p ()

1
l+-|(1-2
+b( )

zf (@) of @)
10 +/1(1+ zf'(z)) 1].
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and ) )
zq (z) _z2F (@)

9 F(@©

l=¢(k-1

Since f € T (¢; A, b), we have
P @) 4 Q@
r@ 9@
The result now follows by an application of Lemma 2.2. ]

Putting A = 0 in Theorem 2.2, we obtain the following results of (Shanmugam et al., 2009).

Corollary 2.3. Let ¢ (z) be starlike with respect to 1 and F(z) given by (2.1) be starlike. If f €
S* (¢; b), then we have

< Z

I1+A
¢ (-1 < B<A<1)inTheorem 2.2, we get the following corollary.

Taki =
aking ¢ (2) = ;-

I1+A
Corollary 2.4. If f € T(%;A, b) (-1 £ B< A < 1), then we have
Z

1 (A-B)b
) <(l+Bz B (B#0).

f@ (zf’ (2)
z \ f@

1
For ¢.2) = 7—
1989), and (Srivastava & Lashin, 2005).

and A = 0 in Theorem 2.2, we get the following result of (Obradovic et al.,

Corollary 2.5. If f € 8" (b), then we have

UG (1-2% .
Z

. 1+
Putting ¢ (z) = 1

-z

al., 1989), and (Srivastava & Lashin, 2005).

and A = 1 in Theorem 2.2, we get the following result of (Obradovic et

Corollary 2.6. If f € C(b), then we have

f@ <=7,

1+ )
For ¢ (z) = 1—_2, A = 0 and replacing b by be™ cosy (lyl < 7_2r’ be (C*) in Theorem 2.2, we

get the following result of (Aouf er al., 2005).
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Corollary 2.7. If f € 87 (b), then we have
f @)

_2be™
- < (1 _Z) 2be™" cosy )

1 .
Taking ¢ (z) = 1—+Z, A =1 and replacing b by be™ cosy (lyl < g, be C*) in Theorem 2.2, we

get the following result of (Aouf er al., 2005).

Corollary 2.8. If f € C” (b), then we have

f’ (Z) < (1 _ Z)—Zbeﬂy cosy
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Abstract

In this work we establish a theoretical relation betweemibigons of scale and a discrete Finsler-Haantjes curva-
ture. Based on this connection we demonstrate the apdiigaifithe interpretation of scale in terms of curvature, to
signal processing in the context of analysis and segmentafitextures in images. The outcome of this procedure is
a novel scheme for texture segmentation that is based oedsgadtric curvature. The presented method proves itself
to be dficient even when the multiscale analysis is done up to scél&8 and more. Our main conclusions are that
the discrete curvature calculated on sampled images carugian indication on the local scale within the image, and
therefore can be used for many additional tasks in imagesisal

Keywords: Wavelets, scale-space, Finsler-Haantjes curvaturajreesegmentation.
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1. Introduction

Several tasks in image and signal processing require ticelaibn and usage of scale. De-
termining the typical scale at some image location can bfilfsg de-convolution, detection and
recognition tasks. The popular image registration alporg, SIFT Lowe, 1999 and SURF Bay
et al., 2006 account for the scale at image locations as a pre-progessp for calculating scale
invariant key points, that are used in turn for matching.

Typical approaches to calculate scale in the signal praags®mmunity rely on analyzing a
multi scale representation of the images, via the scaleesppproach or the wavelet transform.
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Email addressest1iap@ee.technion.ac.il (Eli Appleboim),gwavelet gwavelet@gmail.com (Yedidya
Hyams),gwavelet gwavelet@gmail.com (Shai Krakovski)chen@sagivtech.com (Chen Sagiv),
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The versatility and adaptability of scale space theory aadelets for a variety of tasks in Image
Processing and related fields is too well established indiemsfic community, and the bibliogra-
phy pertaining to it is far too extensive, to even begin toeenit here.

On the other hand, the concept of curvature is well estaddish the field of computational
geometry. Intuitively, scale and curvature are relatedghHsurvature account for phenomenon
that happen at smaller scales than those that are related tocurvature. This relation is further
stressed analytically and formally in the smooth categasythe curvature of a smooth curve at
some point is defined to be the inverse of the squared radihe @flsculatory circle at that point so
specifically making curvature a function of scale. Curvatecreases as the inverse of the square
root of scale Petersen1998.

The multiresolution property of wavelets has been alreguplied in determining the cur-
vature of planar curvesAptoine & Jaques2003 and to the intelligence and reconstruction of
meshed surfaces (see, e.gonsberyet al,, 1997, (Valette & Prost2004), amongst many oth-
ers). Moreover, the intimate relation between scale afidréntiability in natural images has also
been stressedFloracket al,, 1992).

An intriguing issue is whether one can replace the intuitreele-df between scale and cur-
vature, by a formal concept afavelet curvaturgin particular in cases such as the Stromberg
wavelets Stromberg 1983 that are based on piecewise-linear functions, and if so,thevhat
extent this can be further extended to the moif&alilt case of Haar wavelets that are not even
piecewise linear and to what extent this can be made general.

Apparently, this can be done by usingetric curvaturegBlumenthal & Menger1970 (and
(Saucan2006 for a short presentation). It turns out that the best caatdidor the desired metric
curvature is thé-insler-Haantjes curvaturedue to its adaptability to both continuous and discrete
settings (see, e.gSaucan & Appleboim2009, (Saucan & Appleboin2009).

We have first introduced a formal relation between discrateature and scale irBaucaret
al., 2010. In the present paper, that represents a continuationrgbr@vious, above mentioned
article, we suggest that a simple curvature calculatiorreplace the tedious work of convolving
images with a large number of multi scaled filters. We show Boale and curvature are related
to each other, for a variety of families of wavelets. Afterdawe present the Finsler-Haantjes
curvature measure for images and develop a novel schemextore separation. Our main goal
is, however, more far-reaching, namely to try and bridgéeadt partly, the the gap between the
two basic, largely non-intersecting, approaches prevatelmage Processing and related fields:
The geometric one, that is closely related to the Graphiosneonity philosophy; and the more
classical, Fourier Analysfg/avelets driven one.

The paper is organized as follows: First, we introduce théhamaatical background needed
and discuss the notion of scale in Sectioh 2Ve then elaborate on the Finsler-Haantjes curvature
in Section 22 and introduce the Fisler-Haantjes curvature of waveladsar images in Section 3.
In section 4 we suggest a scheme for texture analysis in isthgeis based on our discrete scaled
curvature measure. In addition to texture segmentatiome isea huge variety of further possible
applications to the ideas and methods presented hereirelbasmopen issues for further research.
Some of those are mentioned in Section 5 in which we summtr&paper.
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2. Mathematical Background

In this section we present both the notion of scale and th#teFinsler-Haantjes Curvature.
While these two components are derived from completdlfgdint worlds, we show that they are
strongly related to each other.

2.1. The Notion of Scale

The notion of scale is fundamental in many mathematical @mpliGative discussions. Scale
is one of these terms that has a clear intuitive meaning,sbodiid to be defined mathematically.
The question of finding a measure for calculating the localesm signals and images has been
addressed in the past in the context of scale space anahdiwavelets transform. It plays a
significant role in the framework of image matching and regtgon, where scale invariant de-
scriptors are desired. Evaluating the dominant scale withage data is highly important for real
life applications. For a computer vision system analyzingiaknown scene, there is no way to
know a priori what scales are appropriate for describingitleresting structures in the image
data. Hence, the only reasonable approach is to considenigtéans at multiple scales in order to
be able to capture the unknown scale variations that mayo8cale-space theory is a formal the-
ory for handling image structures afti@irent scales, by representing an image as a one-parameter
family of smoothed images, the scale-space representalitois representation is parameterized
by the size of the smoothing kernel used for suppressingsitaée structures.

In the early eighties WitkinWitkin, 19833, (Witkin, 19830 proposed to consider scale as a
continuous parameter and formulated the principal rulesadern scale-space theory relating im-
age structures represented dfatient scales. Since then, scale-space representatiotsgdp-
erties have been extensively studied and important catiitis have been made by Koenderink
(Koenderink 1984, Lindeberg Lindeberg 1998 and Florack Floracket al, 1992. In many
cases it is necessary to select locally appropriate scatdsrther analysis. This need for scale
selection originates from the need to process real-worjdotd that may have fierent sizes and
because the distance between the object and the camerargahh@seminal work of Lindenberg
(Lindeberg 1998 dealt with the issue of automatic scale selection. TheveEsto determine the
characteristic scale for which a given function attains @neenum over scales. The name char-
acteristic is somewhat arbitrary as a local structure cast ek a range of scales and within this
range there is no preferred scale of perception. Howevegla san be named characteristic, if it
conveys more information comparing to other scales. In lokwLindenberg noted that a highly
useful property of scale-space representation is thatemagresentations can be made invariant
to scales, by performing automatic local scale selecti@@th@n local maxima (or minima) over
scales of normalized derivatives.

This work served as the basis for tasks such as blob detectamer detection, ridge detection
and edge detection. Scale space theory is fundamental tiectoey invariant features within sig-
nals and images that can be used for various tasks such aga#&gn, detection and recognition
among others. Multi-scale representation of data is ctdiereextracting local features used for
determining regions of interest for subsequent detecti@cale-invariant interest points for com-
puting image descriptors, most notable are the SIEGwg, 1999 and SURF Bay et al., 2009
frameworks.
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Both the SIFT and the SURF algorithms rely on Scale-spacerest detection, where the first
stage of computation searches over all scales and imaggologa It is implemented by using
a Laplacian-of-Gaussian or afiirence-of-Gaussian function to identify potential ing¢f@oints
that are invariant to scale and orientation.

A common practice for scale determination relies on the ctution of the data with a bank
of functions that have ¢lierent scales. The characteristic scale usually correspianthe local
extremum of the convolution results, taken over scales.chiaeacteristic scale is related to struc-
ture. The common methodology for finding this exterma valnegale space involves analysis of
the behavior of the Laplacian of Gaussi&ay et al., 2006, Difference of Gaussiahgwe, 1999
and the Hessian matrix to name a few. There are strong netabetween scale-space theory
and wavelet theory, although these two notions of multlescgpresentation have been developed
from somewhat dierent premises. Wavelets are multi scaled versions of afgpemwther func-
tion, thus when convolving them with data, one can explatgsbale contents of that data, in a
very similar way that the frequency contents of data can Ipesssed using the Fourier transform.
A strong response to a wavelet function with a certain supgd scale, suggests that there is
significant information at that scale at that image location

2.2. The Finsler-Haantjes Curvature

The most intuitive definition for curvature is the amount byieh a geometric object deviates
from being flat, or straight in the case of a line. It is nattioadefine the curvature of a straight line
to be identically zero. The curvature of a circle of radiushi@wdd be large if R is small and small
if R is large. Thus the curvature of a circle is defined to beréogprocal of the squared radius(
Carmq 1979.

The following metric definition for curvature is due to Hajast following an idea of Finsler
(Blumenthal & Menger1970:

Definition 2.1. Let (M,d) be a metric space, letd = [0, 1] — M be a homeomorphism, and let
p,qg.r € c(l), g,r # p. Denote bygr the arc of ¢l) between g and r, and by gr the segment from
g to r. We say that c hasinsler-Haantjes curvaturgy (p) at the point pf:

%P (d(a,r))
where “I(qr)” denotes the length, in intrinsic metric induced by d gof- see Figure 1. (Here we
assume the curveglg is rectifiable hence that, in particular, the amgr has finite length.)

(2.1)

This definition of curvature represents, indeed, a propaptadion, for an extensive class
of curves in quite general metric spaces, of the classicammf curvature, as proven by the
following

Theorem 2.1.Let ¢ € C3(1) be a smooth curve k3, and let pe ¢ be a regular point. Then
ke (P) exists and, moreovetyH(p) = K(p) — the classical (dferential) curvature of ¢ at p.

Remark.Originally the Finsler-Haantjes curvature is defined W(tit) appearing in the denomi-
nator instead ofi(g, r), ((Blumenthal & Menger1970). We have opted for the above definition
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gr

Figure 1. A (metric) arc and its corresponding chord (metric segment)

for practicality reasons. Moreover, in the setting of thekv(and, in fact, in a much more general
context) the above theorem still holds with our modified d&én, therefore the definition used
herein is interchangeable with the original one (see, ad@dumenthal & Menger1970).

3. Finsler-Haantjes Curvature for Wavelets and Images

In this section we consider a semi-discrete (or semi-caotis) version of the Finsler-Haantjes
curvature, and then introduce this curvature measure indke of a wavelet function.

3.1. Semi-discrete Finsler-Haantjes Curvature

Consider a typical piecewise-linear wavetgtsuch as the one depicted in Figure 2 A&t be
the arc of curve between the poitaandE, and letd(A, E) is the length of the line-segmeAE.
Then
I(AE) =a+b+c+d ;d(AE)=e+f. (3.1)

The following discretization of formul&2(1) is, therefore, natural:

K2 (9) = 24[@+b+c+d) - (e+ )]/(e+ ). (3.2)

In addition to the total curvature of the waveletone can also compute the “local” curvatures of
the partial waveletg, = ABCandy, = CDE, that is the curvatures at the “peak®’andD:

k2, (B) = 24(@+b-¢)/€’, (3.3)
and
k2, (D) = 24C+d - f)/f3, (3.4)
as well as the mean curvature of these peaks:
Hen(AE) = [ken(B) + ken(D)]/2. (3.5)

Even though these variations may prove to be useful in cedpplications, we believe that
the correct approach, in the sense that it best corresporitie scale of the wavelet, would be to
compute the total curvature ¢f However, had the definition of Finsler-Haantjes curvateen
limited solely to piecewise-linear wavelets, its applitibwould have also been diminished. We
show, however, that it is also definable for the “classicadaHwavelets, in a rather straightforward
manner.


chord-arc.eps

Eli Appleboim et al/ Theory and Applications of Mathemati&sComputer Science 3 (1) (2013) I& 43

Figure 2. A typical piecewise-linear wavelet (red), part of the Meyavelet Meyer,
1993 (blue and red).

Remark.In the sequel we will therefore omit the dieient V24 for convenience.

3.2. Finsler-Haantjes curvature of Haar Wavelets

For everys € Z let j = 25, and let¥; denote the Haar wavelet at scaland with zero shift,
where¥; = ¥ is the mother wavelet of Haar basis, considered in the abavwaele. Ther?; can
be presented as:

it xe(0dy;
Yi=9 -t xe(d); (3.6)
0 otherwise

Then, in the notations of Figutewe have thaf = 0, E = j, so we have tha(AE) = 4- 1+,
andd(AE) = |, therefore for these wavelets the Finsler-Haantjes cureaatisfies:

4.1+ )) -] ._
KEH(‘PJ):( st D bog (3.7)

The Finsler-Haantjes curvature is certainly invariantemshifts therefore the same depen-
dency ofKgy in scale is the same for shifted Haar wavelets as well.

3.3. Finsler-Haantjes curvature of Walsh Basis
Let Rs be the Rademacher function which takes the vaJud.bn the dyadic intervalsgiq, ;sz ,
j=0,1,..., 2% of the unit interval. Figur& shows the first four Rademacher functions.
Then for anyk € N, if we take the binary expansion &fas a sum of powers of X =
2Pt 4 2P2 4 ... 4 2P and define thé&, Walsh function as §eauchampl975):

W = R,, - Ry, - <Ry, (3.8)
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Figure 3. First four Rademacher functions.

Again, in the notations of Figur2we have thatA = 0, E = 1, (AE) = 2-25+ 1, d(AE) = 1 which

results with
(2-22+1)-1

13
Although the Walsh basis is not a wavelet basis (8sa(champl975), we can easily regard
the functionWs as a function in a specific scale whichjis: ;11 hence the curvature of the Walsh
function at scalqg is 21

For a smooth wavele¥, compactly supported, we can of course define its Finsl@mrtjes,
Ken by takingl(AE) to be the usual arc length given @Gppw V1+ P2,

2 (W) = 25, (3.9)

3.4. Curvature vs. Scale

By an analysis similar to those in Sectid®i? and3.3, we will be able to compute a specific
dependency of the Finsler-Haantjes curvature as a funofieoale, for every family of piecewise
constant wavelets. Moreover, with only a limited amount @dlifonal dfort, this goal is also
achievable for the families of piecewise linear waveletsisTcorrelation most probably depends
on the specific family under consideration. Indeed, as dyreated above, Haar wavelets behave
differently from the Walsh basis as far as the curvature vs. socatespondence is concerned. To
obtain a similar relation in the case of smooth wavelets, sirauld recall that if¥; is a smooth
wavelet function at some scajethen it can be approximated, for instance, in thenorm, by a
sequence of Haar functions. More precisely, for evesy0, there exist& = k(j, €) € N, such that

k
¥, - ) Haarf<e. (3.10)
LUij Z
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Combining the inequality above with Equatio®.]) we obtain that the Finsler-Haantjes cur-
vature of¥ will display a scale-curvature relation similar with thdtserved for the Haar wavelet.
Here, by “similar” we mean that it will decrease as curvatureases. However, we probably
cannot expect in this case a simple analytic expression acabfe with the one displayed in the
case of Haar wavelets. The precise behavior, if can be dkatall, is left as an open question
at this point. It would be reasonable to assume that it dependhe specific wavelet family,
as well as on the proximity factar. Nevertheless, this behavior is indeed demonstrated in the
numerical tests that were applied on a variety of waveleatsli@s. For each type of wavelets,
Haantjes curvature was computed for the wavelets familiesferent scales. The general be-
havior is similar in all diferent families and are shown in Figutelt is shown that, as expected,
curvature decreases as scale increases. As indicated layi&@y(.7), we see that the decrease
of curvature as a function of scale for the Haar waveletfietgnt then the one of classicatter-
ential geometry of smooth manifolds, where the decrease haagnitude of¢cale -2, while for
the Haar wavelet it was shown to be in a magnitudesofi(§*. The diference evidently follows
from the fact that we compute the Finsler-Haantjes cureatua global way rather than locally,
as usually curvature is computed in the classicfiedential geometric setting.

K(s)

12

os

06

04

02
Step signal +
curve fitting

[) [ 1 15 2 25 3 £ 4
Scale

Figure 4. Curvature as a function of scale for a number of standard le&zeThe
Haar wavelets, db2 wavelets, sym2 wavelets, the Meyer wtsjehs well
as the step signal.

3.5. Curvature for images

From the definition of Finsler-Haatjes for curves we canlgasfine a discrete version of
curvature for surfaces in general, and for images in pdaic&or say, a poirk on a surfac&, the
most natural thing to do is to consider Fisler-Haantjes atume in any of the directions emanating
from x, then find the maximal and minimal curvatures, and then tédkerethe mean of these two


CurvatureDecay.ps

46 Eli Appleboim et al/ Theory and Applications of Mathemati&sComputer Science 3 (1) (2013) I5-

values so to obtain a Finsler-Haantj@gan curvaturer, alternatively take the multiplication of
these two in order to obtain a Finsler-Haantjes version @fZhussian curvaturat x. We adopt
this concept to images while we consider an image as a suefabedded in somg&". A gray
scale image, for example, can naturally be considered adaceunR?. In this case the Finsler-
Haantjes curvature is computed at each pixel in fotfiedent directions and then the average of
these four curvatures is taken. This is done in the framewmakwas defined in Equaticdh3 of
localized curvature, where for images the localizationdselby considering a window of some
sizen x n centered at the pixel. Each of the images shows the resuttsngputing this version of
mean curvature as computed for window sizes &f8 5x 5 and 7x 7.

Before we proceed further, let us briefly discuss a limit cdéa signal (image) displays a
unique scale, e.g. for periodic signals, for which there diract correlation between scale and
the periodT, one expects that to observe that the graph of the curvaincion is the smoothest
precisely in windows of siz&. That this is indeed the case is illustrated in Figure 5.

window size is:7  window size is:9 window size is:11 window size is:13
0.1 B 0.1 0.1 0.1
0.05 0.05 0.05 h 0.05
I w f
y URLE _mw'
i
0 : 1] ! 0 L 0 :
0 100 200 0 100 200 0 100 200 0 100 200
window size is:15  window size is:17  window size is:19 window size is:21
0.1 0.1 0.1 0.1
0.05 0.05 0.05 0.05
0 1] . 0 B ] [
0 100 200 0 100 200 0 100 200 0 100 200

Figure 5. Left: A test image, consisting of twein signals of diferent periods (11
pixels — left, and 15 pixels — right). Right: As expected, be windows
corresponding to the period of the signal (image) the cureagraph is the
most smooth. (Notice the highlighted “windows”.)

We clearly can see how Haanjes-Finsler curvature perfomasmadge detector. This result is
expected, since curvature, even its metric, abstrachgetitill has qualities similar to those of a
second derivative. This is clearly illustrated in FigureTais is further emphasized in the more
challenging example in Figure 7, of a satellite image of thg# pyramids at Giza, as they lie
against the background of sand dunes and opposed to theeadjaighbourhood of Cairo. It
should be noted that, curvature map in itself can serve aga g@an made detection tool in arial
and satellite images.
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Figure 6. Haantjes-Finsler curvature of an image with respect téedint scales.
From top left in clockwise direction: original imageX3, 7X7 and X5
window size.

4. Texture segmentation

As a possible application of the proposed method of indigasicale via curvature we look
at the problem of image texture segmentation. The novel satation scheme yielded from this
approach is outlined below.

1. At each pixel Haantjes-Finsler curvatures are computediféerent scales and fikerent
orientations. For each window, curvatures are computed direttions, horizontal ver-
tical and two diagonal directiong,, «y, k4,, kg,- Finally, the averagea,g = (kmax(PiX) —
kmin(P1X))/kmax(PiX) of these four obtained curvatures is taken as the curvatutee pixel
in the relevant scale. (The specific average consideredvwasanspired by the standard
Image Processing definition of the contr@gt) of an imagel, C(l) = (Imax — Imin)/Imax-)
This approximates the average curvature at each scale. ufbenoe of this step is a vector
of lengthmwheremis the number of dferent scales/(pix, scalg wherepix denotes pixel,
and each entry of the vector represents the average cusatttive corresponding scale.

2. Next, at each pixel, the gradient, with respect to s¥algeV, of this curvature vector is
computed, and we look for the scales at which the gradierdesica predefined threshold.
(Note that, at this point, curvature and scale are alreattydhangeable.) Afterwards, all
scales which fulfill the threshold criteria are averagedrofeo to get a scalar value for each
pix. The average scale is the outcome of this step. We considesdale as the scale of
important information at the relevant pixel.
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Figure 7. Haantjes-Finsler curvature of a satellite image with respe diferent
scales. From top to bottom: original image, curvature ayeuiaon X3
windows, curvature averaged oX7 windows.

3. The output of previous step is a matrix in the same size @asntlage size, each entry of
which is the scale of information at the relevant pixel. A sxth@d version of this matrix
is obtained by a linear filtering at size which is compatibiéhvihe amount of localized
information one wishes to obtain. Segmentation to smalutess will require small filtering
support.

4. We segment the image according to the smoothed informatiale computed in the previ-
ous step. Pixels with similar scales are grouped togeth#arto different segments. The
segmentation is done after curvature values are quantizeeveral levels. In the experi-
ments shown herein quantization is taken into seven levels.
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The procedure detailed above is summarized as Algorithmhighwis divided into its four
main constituent parts:

Input : Grayscale imagé
Output: VectorV(pix, scalg of lengthm = number of scales
foreach pixel pix in I do
foreachwindow of size< mdo
computexy(pix), kv (PixX), kg, (PIX), kg, (PIX) @and findkpax(PiX), kmin(PIX);
computex(pix) = kavg(PiX) = %
end
end

Input: V(pix, scalg
Output: Matrix M(l) — The average scale matrix
foreach pixel pixin | do

COMPUtEV g4V,

choose scale threshodg;

select scales for which V(pix, scalg > s;

computesayg = Savg(PIX) = m;
end
Input: M(I)

Output: Matrix M(1) — Smoothed version dfl(l)
choose window sizel = Wy(texture;
apply linear filter at sizevo;

Input: M(1)
Output: Segmented imagie
choose maximal number of quantization levgjs
foreach pixel pixin I do
| compute the quantized valusg,(pix);, j =1,...,qo;
end
group pixels in segments(j) = {Pix| Sag(PiX) = Saug(PIX);

Algorithm 1: Segmentation algorithm.

In the following figures, first results of the proposed methoel shown for dierent images.
Figure 8 shows the original synthetic image which is comprised of thifferent textures, the
second image in the figure shows the gradient ve;s@,;V(scale pixel) of the scaled curvature
vectorV, while in the third image we see the gradient vector fieldrastaoothing with a filter
of size 3x 3, and in the fourth image the outcome segmentation is shdé®&n guantization of
the smoothed gradient into 4 levels. In the segmented ima&gee® intermediate texture around
the internal circle. When one looks at the original image ae clearly see that this is caused
by those pixels that are in the intersection of the twibedlent ares of the images and indeed we
cannot associate specific texture to these pixels.
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Figure 8. Segmentation of two synthetic textures: From top to bottowh faom left
to right: Original image, averaged information scales, sthed gradient of
the scaled curvature, the outcome of the segmentation gg@feer quanti-
zation into 4 levels.

In Figure 9 from top to bottom we see the original image, averaged inébion scales as
depicted in the second step of the algorithm described ahogehe outcome of the segmenta-
tion process after smoothed bX3 window and quantized to 7 levels. Notice the sensitivity of

segmentation to texture.

Figure 9. Segmentation of mandrill image. From left to tight: Oridiimage, av-
eraged information scales, the outcome of the segmentptiocess after
smoothed by X3 window and quantized to 7 levels.

Figure 10 shows similar phenomena on an image of fabric with sevexalites. The figure
shows the original image and the segmented outcome of tlregsoWe can see good separation
between the dierent textures.

The dficiency of the proposed the segmentation algorithm is higitdid on what might be
called the "semi -synthetic” (due to the regularity and dyeesiodicity of this natural image) of
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the stairs — see Figufel.

Figure 10. Segmentation of fabric image, window size and quantizaliémel as in
Figure 9. Although filter size is small one can easily see gtifidrentia-
tion between dierent structures along the fabric.

Figure 11. Segmentation of the stairs image: Original image (leftyvature com-
puted using X3 windows (middle), detail of the segmented image using
the same window size (right).

Finally, in Figurel2the zebras are distinguished from the background of theeratgr their
texture is segmented and separated from the texture of tkgitzaund.

We conclude this Section with some preliminary comparissults. The briefness of this part
is a direct consequence of the main goal of this paper, asdsiatthe introduction, and which
we reiterate here briefly: Our essential objective is to iomet and further develop the theoretical
framework proposed inSaucaret al., 2010, that, in our opinion, allows, perhaps for the first
time, to integrate, in a unique setting, the two common ggrad of Image Processing, namely the
Harmonic Analysi8Navelets and the Geometric (Graphics related) ones. Tdrerethe present
endeavor should be viewed rather as a feasibility chedkerdhat a bourn per se.

Nevertheless, some first comparisons were made, and we gagetethod by likening it with
an established method for texture segmentat@moX & Weickert 2006 in conjunction with the
use of the classical Gabor wavelets. Some of these resalfgasented in Figurk3.
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Figure 12. The zebras are extracted from the background of the origimade. Ex-
traction is based on the proposed texture segmentation.

5. Summary

The concept of scale is important for several image prooggssks. The calculation of scale
on real life data usually relies on the convolution of theadaith multi scale filter, where Gaussian
derivatives are widespread. In this work we explored thati@h between the concept of scale,
to curvature. We have used the discrete definition propogétilantjes, and have established the
theoretical exponential relation that is expected fromngetoy.

In addition, we propose to use the simpler curvature calicui@as a means for automatic scale
selection. In that respect, we show two interesting usgfplieations of the concept of curvature:
as edge detectors and for the task of texture segmentation.

As we have noted in the introduction, scale and curvaturesemn@ly two manifests of the
same physical phenomenon, it should evidently be that ssadecurvature calculation can be
inter-changed to accomplish the same tasks. However, vidnlscale only practical, intuitive,
but not fully formalized definitions are given even in the madassical textbooks and other such
authoritative sources, curvature — even metric one — isssicial, fully established and technical
mathematical notion. We propose, therefore, in view of #mark above, to formally define
scale by means of the Finsler-Haantjes curvature, at laasiei purely theoretical setting. This
is more relevant in the context of 2-dimensional (as welcairse, as higher dimensional ones),
nonseparable signals, where a proper notion of scale isdanhtuitive then in the 1-dimensional,
classical, case.

Moreover, we suggest, to use this idea, not only for texteggrgentation, but also in many
other applications that make use of scale analysis of Sgn@eneral and of images in particular.
Due to the éiciency of the computation of Haantjes curvature relativddoinstance, wavelets
and Gabor functions computations in many scales, we camdégaapplications both in image
processing, as well as machine vision, where usudligiency is essential. Just to name a few,
we suggest the following,

a Compression and compress sensing.
b Detection of key points in images and registration.

c Scale space representation.
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Figure 13. Texture segmentation: Gabor wavelets based segmentationd) versus
curvature based segmentation (below).

d Adaptive edge detection.

e Object recognition.

As for further possible research issues we believe that wieahave presented in this paper is
actually the tip of an iceberg as far the scale-curvatur@eotion is concerned. Again, to name a
few we can mention the following directions,

a Automatic scale selection in the sense of pointing outraatally a scale up to which one can
apply analysis-synthesis process with a guaranteed amcura

b Use additional information which is obtained during thegass for additional tasks. As the
curvature is computed we gain information about all scai@ghch, the curvature jumps above
a predefined threshold. The method presented herein onlgsnede of the average of all these
scales however one can employ this information for an adagtale selection making use of
the relevant information of each of these.

¢ In addition to the above, there is also information aboatvéirious directions at which curva-
ture is computed, which is obtained during the process aisdriformation can certainly be
exploited for a variety of implementations such as thosetioead above.

d Can we use the curvature-scale relation in order to gagrmdtion about the “adequacy” of a
certain wavelet family to a given signal? For instance, dften asked, is it beneficial, in any
way, to decompose say, a natural image using a specific wavaitaily over the others, say, for
obtaining sparse representation? We hope that some ansavet® given for this challenging
guestion, via the scale-curvature analysis. We suggesttmat for e.g., the exponential decay
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of curvature as a function of scale, for the given signal, thieth looking for the wavelet family
with most similar behavior. In fact this particular questiwas the one that motivated this line
of research.
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Abstract

This paper deals with a class of third order boundary value problem with integral condition at resonance. Some
existence results are obtained by using the coincidence degree theory of Mawhin.
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1. Introduction

Let us consider the following third-order differential equation:

X" =f(t,x@®,x @®),0<r<1, (1.1)
subject to the following nonlocal conditions
2
X(0)=X"(0)=0,x(1)=—2f x(0)ydt,n €(0,1), (1.2)
T Jo

where f : [0,1] x R? — R is a Carathéodory function, and r € (0, 1). We say that the boundary
value problem (1.1), (1.2) is a resonance problem if the linear equation Lx = x”’, with the boundary
value conditions (1.2) has a non-trivial solution i.e., dimker L > 1.
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The research of ordinary differential equations with nonlocal conditions plays a very impor-
tant role in both theory and applications. It is widely used in describing a large number of physi-
cal, biological and chemical phenomena. Moreover, the theory of boundary-value problems with
integral boundary conditions arises in different areas of applied mathematics and physics. For
example, heat conduction, chemical engineering, underground water flow, thermo-elasticity, and
plasma physics can be reduced to the nonlocal problems with integral boundary conditions. In
recent years, the multi-point boundary value problems at resonance for second order, third or-
der ordinary differential equations have been extensively studied and many excellent results have
been obtained, for instance, see (Feng & Webb, 1997a), (Feng & Webb, 1997b), (Gupta, 1995),
(Gupta & Tsamatos, 1994), (Liu & Yu, 2002), (Liu, 2003), (Liu & Zhao, 2007), (Kosmatov, 2006),
(Du, 2008), (Du & Ge, 2005), (Ma, 2005), (Nagle & Pothoven, 1995), (Xue & Ge, 2004). (see,
also, (Y. Liu, 2005), (X. Lin, 2009), (H Zhang & Chen, 2009)). However, to our knowledge,
the corresponding results for third-order with integral boundary conditions, are rarely seen (see,
for example, (X. Lin & Meng, 2011), (Karakostas & Tsamatos, 2002), (Yang, 2006); (A. Yang,
2011) and references therein). (Meng & Du, 2010) studied the following second-order multi-point
boundary value problem at resonance:

X'()=ft,x(@),x @) +e(),te,1),
x(0)= 3 (@), ¥ (1) = 3 Byx(m;),
= Jj=

where f : [0, 1] x R> — R is a Carathéodory function, e € L' [0,1],0 < & < ... < &, < 1,
aieR,i=12,.mm>2and0 < n; < ..... <m<1,B€R,j=1,.nn > 1. By using
coincidence degree of Mawhin the authors obtain many excellent results about the existence of

solutions for the above problem under the resonance conditions ), ; = >, 8; = 1 and }} ;& = 0.
i=1 =1 i=1

By using coincidence degree of Mawhin (Lin & Meng, 2011), established the existence of
solutions for the following third-order multi-point boundary value problem at resonance

X" =ftx@®),x@®,x"®),0<t<1
(0= Lo €, ¥ ©O)=0,x(D)= % px(n),
i= Jj=

where 0 < & < ... <&, <L, eR,i=1,.mm>1and0 < n < ... <n, <1,B;€R,
j=1,..n,n>2,and f: [0,1] x R* = R is a continuous function.
More recently, (X. Zhang & Ge, 2009) studied the following nonlocal boundary value problem:

{ X0 = f(t,x (D), X 0) +e ), €(0,1)
X O) = [ h@ox @Odx (1) = [ g0 x @,

where f, g € C([0, 1], [0, 00)). Especially by using the coincidence degree of Mawhin, and un-
der the resonance conditions fol h(t)dt = 1, and fol g(®)dt = 1, the authors proved at least one
solution.of the boundary value problem.

The purpose of this paper is to study the existence of solutions for nonlocal boundary value

problem (1, 1), (1, 2) at resonance and establish an existence theorem . Our method is based upon
the coincidence degree theory of (Mawhin, 1979).
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2. Main results

We first recall some notation and an abstract existence result (Mawhin, 1979).

Let X, Y be two real Banach spaces and let L : domL € X — Y be a linear operator which
is Fredholm map of index zero and P : X — X, Q : Y — Y be continuous projectors such
that ImP = KerL, KerQ = ImL and X = KerL ® KerP, Y = ImL & ImQ. It follows that
L\gominkerr:domL N KerP — ImL is invertible, we denote the inverse of that map by Kp. Let 2 be
an open bounded subset of X such that domL N Q # (), the map N : X — Y is said to be L-compact
on Q if the map ON (5) is bounded and Kp (I — ON) : Q — X is compact. To obtain our existence
results we use the following fixed point theorem of (Mawhin, 1979).

Theorem 2.1. Let be L a Fredholm operator of index zero and N be L— compact on Q. Assume
that the following conditions are satisfied:

i) Lx # ANx for every (x, A1) € [(domL\KerL) N 0Q] x (0, 1).

ii) Nx ¢ Im L for every x € KerL N 0Q.

iii) deg (ON |kerr, QN KerL,0) # 0, where Q : Y — Y is a projection as above with Im L =
KerQ.

Then the equation Lx = Nx has at least one solution in domL N Q.

In the following, we shall use the classical spaces C [0, 1], C' [0, 1], C?[0, 1] and L' [0, 1] . For
x € C?[0, 1], we use the norm ||x|| = max {||x]|., , ||*’|l} where ||x||., = n[loal)]c |x ()| and denote the
t€|0,

norm in L' [0, 1] by||-||,. We will use the Sobolev space W*! (0, 1) which is defined by W' (0, 1) =
{x:[0,1] = R : x, x’, x”" are absolutely continuous on [0, 1] with x” € L' [0, 1]} .

Let X = C?[0,1], Y = L'[0, 1], L is the linear operator from domL C X to Y with domL =
{xe w0, 1): x(0)=x"(0)=0, x(1) = % ["x()dt} and Lx = x, x € dom L. We define
N : X — Y by setting

Nx=f(t,x(),x (),t€0,1).

Then the BVP (1.1) and (1.2) can be written as Lx = Nx.

Theorem 2.2. Assume that the following conditions are satisfied:
1) There exists functions «, B,y € L' [0, 1], such that for all (x,y) € R?, t € [0, 1] then

lf@x, I <a@|xl+B@ |y +y@). (2.1
2) There exists a constant M > 0, such that for x € domL, if |x" (t)] > M for all t € [0, 1], then

1
f (1 =952 f(s,x(5),x (5))ds — 3%2 f] (n—5) f(s,x(s),x (s))ds # 0. (2.2)
0 0

3) There exists a constant M* > 0, such that for any x(t) = bt € KerL with |b| > M*, either

o .
b f (1—s)zf(s,b(s),b)ds—%fn(n—sff(s,b(s),b)ds <0, (2.3)
LJO 0 |

or else

o ,
b f (1—s)zf(s,b(s),b)ds—%fn(n—sff(s,b(s),b)ds > 0. (2.4)
LJO 0 ]

then BVP (1,1) and (1,2) has at least one solution in C? [0, 1], provided
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1
llefl + 1181l < 5 2.5)

2.1. Proof of Theorem 2.2
For the proof of Theorem 2.2 we shall apply Theorem 2.1 and the following lemmas.

Lemma 2.1. The operator L : domL C X — Y is a Fredholm operator of index zero. Furthermore,
the linear projector operator Q : Y — Y can be definied by

1 2 7
Qy (1) = k[f (1-92y(s)ds - ﬁf (n - S)3y(S)ds] f,
0 = Jo
where k = 60/5 — 2n* and the linear operator Kp : Im L— dom LN Ker P can be written by

1 !
K,y(t) = Ef (t—9)?y(s)ds,¥y € Im L.
0

Furthermore
1K|| < Iyl , ¥y € Tm L.

Proof. 1Itis clear that
kerL={xedomL:x=bt, beR, t€[0,1]} ~R.

Now we show that

1
ImL:{er:f (l—s)zy(s)ds—%fn(n—sfy(s)dszo } (2.6)
0 37 Jo

The problem
X" =y 2.7)

has a solution x (¢) that satisfies the conditions x (0) = x” (0) =0, x(1) = n% fon x (1) dt, if and only
if

1
f‘a—sfyuﬂm——%;fun—m%w@ds:a (2.8)
0 3n* Jo

In fact from (2.7) we have
2 i3 t

x (1) = x” (0) iy )1+ x(0) + 1[ (t—9)2y(s)ds =x (0)1+ 1f (t— )2 y(s)ds.
2 2 0 2 0

According to x (1) = n% fon x (¢) dt,we obtain

1
f(1—s)Zy(s)ds—%fn(n—sfy(s)ds:o.
0 3n° Jo
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On the other hand, if (2.8) holds, setting
l !
x(f) = bt + Ef (t—5)*y(s)ds,
0

where b is an arbitrary constant, then x (¢) is a solution of (2.7). Hence (2.6) holds.

Setting
1 2 7
Ry= [ a-9y0ds- o [ -9y
0 n= Jo

define Qy (t) = k. (Ry) .t, it is clear that dim ImQ = 1. We have

1 2 n
Q% = Q(Qy) = k (k.Ry) (fo (1 - s)* sds - 3 fo (9 SdS)t = (kRy)t = Qy,

which implies that the operator Q is a projector. Furthermore, Im L = kerQ.
Lety =(y— Qy)+Qy, where y—Qy € KerQ = Im L, Qy € ImQ. It follows from KerQ = Im L
and Q%y = Qy that Im Q N Im L = {0}. Then, we have Y = Im L ® Im Q. Since dim KerL = 1 =

dimIm Q = codimIm L = 1, L is a Fredholm map of index zero.
Now we define a projector P from X to X by setting

Px(t) = X' (0)r.

Then the generalized inverse Kp : Im L — domL N KerP of L can be written by

1 !
K, = Efo (t—5)*y(s)ds.

Obviously, Im P = KerL and P>x = Px. It follows from x = (x — Px) + Px that X =
KerP + KerL. By simple calculation, we can get that KerL N KerP = {0}. Then X = KerL® KerP.
From the definitions of P and Kp it is easy to see that the generalized inverse of L is Kp. In fact,

for y € Im L, we have 5
(LK,)y @) = |(K)1]” =y @,

and for x € domL N kerP, we know
72 1 ' 2 ’ 1 2 2
(K,L)x (1) = (K,) X" (1) = 5 | =X (9)ds = x() = x(0) = X O)1 = 23" (O) 7,
0

in view of x € domL N kerP, x(0) = x” (0) = 0 and Px = 0, thus

(K,L)x () = x ().

This shows that K, = (Llgomzrrerr) - Also we have

1 1
&yl < f (1 -9 y(s)lds < f y ()l ds = yll;
0 0
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and from (K,y) () = [ (1 - s)y(s)ds, we obtain
P 0

1 1
(k). < fo (1= 9)ly()lds < fo y (9lds = Iyl

then ||pr|| < |Iyll;- This completes the proof of Lemma 2.1.

]

Lemma 2.2. Let Q| = {x € domL\KerL : Lx = ANx, for some A € [0, 1]}. Then Q, is bounded.

Proof. Suppose that x € Q;, and Lx = ANx. Thus 4 # 0 and QNx = 0, so it yields
1 2 7
f (1 =5 f(s,x(s),x (s))ds — Ff (1 —=5) f(s,x(s),x (s))ds = 0.
0 - Jo
Thus, by condition (2), there exists #, € [0, 1], such that |x" ()] < M . In view of

x (0) = X' (t) — fo X" () dt, x" (t) = x" (0) + f x""(s)ds,
0 0

then, we have

1 1
Ix" (0)] < M + f (f |x"" () dsl) dt =M+ ||xX"|l, = M+ ||Lx||, < M + ||Nx]|, .
0 \Jo

2.9

Again for x € Q;, x € domL\KerL, then (I — P) x € domL N KerP and LPx = 0, thus from

Lemma 3, we know

I = P)xll = ||K,L U = Px)|| < ILUT - Po)ll, = ILxll; < [INxll, .

From (2.9) and (2.10), we have

llxll < IPxll + I = P) xll = |x" (O)] + I( = P) xl| < M + 2[INx]; .

From (2.1) and (2.11), we obtain

, M
Il <2 [IlaHl lIxllo + 18I 11X Nleo + 1I¥Ml; + 3]-

Thus, from ||x||, < ||x|| and (2.12) we have

2 M
lxllo € ———v [nﬁn 161l + 1711, + —].
1—=2lafl, [T )

From ||x’||, < ||x||, and (2.12) and (2.13), one has

21181 2 M
||x’||m[1 - < [nyn N —].
T2l | = T=2fal, "2

(2.10)

2.11)

(2.12)

(2.13)
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Therefore,
1 =2llell; =21|8ll, 1
IIX'IIW[ < 2|yl + M].
1 =2y 1 -2l 21 + M]
1.e.,
2|Ivll, + 4|
x| < =M,. (2.14)
1 =2lell; =218l
From (2.14), there exists M; > 0, such that
X'l < My, (2.15)

thus from (2.15) and (2.13), there exists M, > 0, such that
[[x]leo < M. (2.16)

Hence
lIxIl = max {||xllo , IX'l} < max {M;, M,}.

Again from (2.1), (2.15) and (2.16), we have
1l = IILxlly < [INxlly < llelly Mz + 1Bl M+ iyl -
So Q, 1s bounded. O
Lemma 2.3. The set Q, = {x € KerL : Nx € Im L} is bounded.

Proof. Let x € Q,, then x € KerL = {x e domL : x =bt, b e R, t € [0,1]}, and QNx = 0, there-
fore

1 2 7
f (1 -9 f(s,bs,b)ds — —f (- 5)° f(s,bs,b)ds = 0.
0 3 Jo
From condition (2) of Theorem 2.2, ||x||, = |b] < M, so ||x|]| = |b| £ M, thus £, is bounded. []
Lemma 2.4. If the first part of condition (3) of Theorem 2.2 holds, then

60

b
5-2n3

1
U (l—s)zf(s,b(s),b)ds—%an(n—sff(s,b(s),b)ds]<O, (2.17)
0 0

forall |b| > M*. Let Q3 = {x € KerL : —AJx+ (1 —A) QNx =0, 1€[0,1] } where J : KerL —
Im Q is the linear isomorphism given by J (bt) = bt, Vb € R, t € [0, 1]. Then Q3 is bounded.
Proof. Suppose that x = byt € Q3, then we obtain

60
5-2n3

1
Aby = (1 - ) x(f (1 —S)Qf(s,b(s),b)ds—%Iffn(n_sff(s,b(s),b)ds).
0 0

If A = 1, then by = 0. Otherwise, if |by| > M*, then in view of (2.17) one has /lbé =
1
bo (1 - ) £ x (fo (1= 57 £ (s.b(s).byds - 2 [ (n - s)3f(s,b(s),b)ds) <0,
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which contradicts the fact that /lbé > 0. Then |x| = |bot| < |bg| £ M*, we obtain ||x]| < M~,
therefore Q3 C {x € KerL : ||x|| < M*} is bounded.
If 1 =0, it yields

1
2 1
f (1- s)zf(s,b(s),b)ds— ﬁf (n- s)3f(s,b(s),b)ds =0,
0 = Jo
taking condition (2) of Theorem 2.2 into account, we obtain ||x|| = |b| < M*. [l

Lemma 2.5. If the second part of condition (3) of Theorem 2.2 holds, then

60
5-21

1 o) 1

b [f (1—S)2f(S,b(S),b)dS—ﬁf (n—5) f(s,b(s),b)ds| >0, (2.18)
0 - Jo

forall |b| > M*. Let Q3 = {x € KerL : AJx+ (1 -A)0ONx=0, 1€[0,1] }, here J is defined as

in Lemma 2.4. Similar to the above argument, we can verify that Q3 is bounded.

Now the proof of Theorem 2.2 is a consequence of Theorem 2.1 and the above lemmas.

Proof. of Theorem 2.2. Let Q to be an open bounded subset of X such that U?:lﬁi c Q. By
using the Arzela- Ascoli theorem, we can prove that Kp (I — ON) : Q- Xis compact, thus N is
L-compact on Q. Then by Lemmas 2.2 and 2.3, we have

i) Lx # ANXx pour tout (x, A) € [(domL\KerL) N 9Q] X (0, 1).

ii) Nx ¢ Im L pour tout x € KerL N 0€).

iii) Let H(x,A) = £A4Jx+ (1 — 1) ONx = 0.

According to Lemmas 2.4 and 2.5, we know that H (x, 1) # 0 for every x € KerL N 0. Thus,
by the homotopy property of degree, deg (ON |k, QN KerL,0) = deg(H (-,0),Q N KerL,0)
=deg(H(-,1),QN KerL,0) =deg( = J,QN KerL,0) # 0. Then by Theorem 2.1, Lx = Nx has
at least one solution in domL N ﬁ, so the BVP (1.1), (1,2) has at least one solution in C? [0, 1] .
The proof is complete. O]
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Abstract

Based on the recently introduced (see (Verma, 2012)) major higher order generalizations (G, B, ¢, h(:,), p,
0) - univexities, several second-order parametric duality models for a semiinfinite minimax fractional programming
problem are developed with appropriate duality results under various generalized second-order (G, S, ¢, h(-, ), p, 6)
- univexity assumptions. The obtained results encompass a large variety of investigations on generalized univexities
and their extensions in the literature.

Keywords: Semiinfinite programming, minimax fractional programming, generalized second-order univex
functions, infinitely many equality and inequality constraints, dual problems, duality theorems.
2010 MSC: 49N15, 90C26, 90C30, 90C32, 90C45, 90C47.

1. Introduction

In this paper, we intend to establish some results on second-order duality under various gener-
alized (G, B, ¢, h(-, -), p, 6)-univexity assumptions for the semiinfinite discrete minimax fractional
programming problem of the form:

(P) Minimize max @
1sisp gi(x)

subject to
Gj(x,t) <0 forallreT;, jeg={1,2,---q}

Hi(x,s) =0 forall se€ Sy, ker=1{1,2,---,r},

x € X,

*Corresponding author
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where p, ¢, and r are positive integers, X is a nonempty open convex subset of R" (n-dimensional
Euclidean space), for each j € ¢ = {1,2,...,q}and k € r = {1,2,...,r}, T; and S are compact
subsets of complete metric spaces, for each i € p, f; and g, are twice continuously differentiable
real-valued functions defined on X, for each j € q, z — Gj(z,1) is a twice continuously differ-
entiable real-valued function defined on X for all ¢ € T;, foreach k € r, z = Hi(z, s) is a twice
continuously differentiable real-valued function defined on X for all s € S, for each j € g and
ker, t— Gjx,t)and s — Hi(x, s) are continuous real-valued functions defined, respecﬁvely,
onT;and S for all x € X, and for each i € p, gi(x) > O for all x satisfying the constraints of (P).
The present communication is concerned with the major generalization (G, 3, ¢, h(-, ), p, 6)- uni-
vexity of the second order introduced by Verma (see (Verma, 2012)) that generalizes (¥, 8, ¢, p, 6)-
univexity introduced by Zalmai (see (Zalmai, 2012)) and the first order univexity studied by Zal-
mai and Zhang (see (Zalmai & Zhang, 2007)) with its applications to parametric duality models
in minimax fractional programming. The obtained results not only generalize the work of Zal-
mai on second order univexities, but also generalize other investigations on general invexities,
including the valued-contributions of Jeyakumar (see (Jeyakumar b, 1985)), Liu (see (Liu, 1999)),
Mangasarian (see (Mangasarian, 1975)), Mishra (see (Mishra, 1997), (Mishra, 2000)), Mishra and
Rueda (see (Mishra & Rueda, 2000), (Mishra & Rueda, 2006)), Mond (see (Mond, 1974)) and oth-
ers. Based on Mangasarian’s second-order dual problem, Mond (see (Mond, 1974)) established
some duality results under relatively simpler conditions involving a certain second-order gener-
alization of the concept of convexity, while observed some possible computational advantages of
second-order duality results, and also studied a pair of second-order symmetric dual problems.
Mond’s original notion of second-order convexity was followed by generalizations by other au-
thors in different ways and applied establishing several second-order duality results for several
classes of nonlinear programming problems. Although there exist various second-order duality
results in the related literature for several classes of mathematical programming problems with
a finite number of constraints, we feel our second-order duality results established in this paper
are new and general in nature to the context of semiinfinite programming. For more details on
second order duality results, we refer the reader (see (Aghezzaf, 2003) - (Zalmai & Zhang, 2007)),
but more importantly, (see (Aghezzaf, 2003) - (Jeyakumar b, 1985), (Mond & Weir, 1981-1983),
(Mond & Zhang, 1995) - (Zalmai & Zhang, 2007)).

Note that second-order duality for a conventional nonlinear programming problem is of the
form

(Poy) Minimize f(x) subjectto gi(x) <0, iem, xeR",

where f and g;, i € m, are twice differentiable real-valued functions defined on R", was ini-
tially considered and studied by Mangasarian (see (Mangasarian, 1975)). The idea underlying his
approach to constructing a second-order dual problem was based on taking linear and quadratic
approximations of the objective and constraint functions about an arbitrary but fixed point, leading
to the Wolfe dual of the approximated problem, and then allowing the fixed point to vary. Man-
gasarian (see (Mangasarian, 1975)), more specifically, formulated the following second-order dual
problem for (Py):

(Do) Maximize f()+ L, uigiy) — 3(z | V2FO) + Zity uiV28i0) |2)
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subject to
VAG) + ) Vg + [V + Y uVgi()] = 0,
i=1 i=1

yeR", ueR" u>0, zeR",

where VF(y) and V2F(y) denote, respectively, the gradient and Hessian of the function F : R” — R
evaluated at y and (a, b) denotes the inner product of the vectors @ and b. Then, by imposing
somewhat complicated conditions on f, g;, i € m, and z, he proved weak, strong, and converse
duality theorems for (Py) and (Dy).

We observe that all the duality results established in this paper can easily be modified and
restated for each one of the following classes of nonlinear programming problems, that are special
cases of (P):

(P1) Minimize f](x);
g1(x)

(P2) Minimize {nax fi(x);
<i<p

(P3) Minil%lize fi(x),
X€E

where [ (assumed to be nonempty) is the feasible set of (P), that is,

F={xeR":Gjx,t) <0forallteTj, J€q, Hix,5)=0 forall s € Sy, ker};
(P4) Minimize max @
isizp g,(0)

subject to
Gj(x) <0, jeg, H(x)=0, k er, xeR"

where f; and g;, i € p, are as defined in the description of (P), and G j» J € q,and H, ke r, are
real-valued functions defined on X; a

(PS)  Minimize 28

(P6) Miniglize max fi(x);
X€E!

1<i<p

P7) Miniglize fi(x),
X€!

where G is the feasible set of (P4), that is,

G:{XER”:Gj(x)SO,jEQ, Hy(x)=0, ker}.
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2. Preliminaries

In this section we recall, the recently introduced major generalization (G, S, ¢, h(:,-), p,60)—
univexiity by Verma (see (Verma, 2012)) to the notion of the Zalmai type (7, 3, ¢, p, 6)-univexity
of higher order (See (Zalmai, 2012)) to the context of parametric duality models in semiinfinite
discrete minimax fractional programming. The obtained notion, in fact, reduces to most of the
existing notions of invexities and univexities in the literature.

Recall that a function G : R"* — R is said to be sublinear(superlinear) if

Gx+y) <G+ GV x,yeRY,

and G(ax) = aG(x) for all x € R" and a € R, = [0, 0).
Let x* € X and let us assume that the function f : X — R is twice continuously differentiable
at x*.

Definition 2.1. The function f is said to be (strictly) (G, B, ¢, h(x*, 2), p, 8)-univex at x* of higher
order if there exist functions 8 : X X X — R, \{0} = (0,00), ¢ : R > R, p: XXX - R, 6:
X X X — R”", and a sublinear function G(x, x*;-) : R* — R such that for each x € X(x # x*) and
z€eR?,

P(f(x) = F(xX7) + (2, V. h(x", 2)) = h(x", 2))(>) = G(x, x"3 B(x, X[V A(x", 2)])
+ p(x, X)6Cx, X1,
where /1 : R" x R" — R” is differentiable with respect to the second component.

Definition 2.2. The function f is said to be (strictly) (G, B, ¢, h(x*, 2), p, 0)-pseudounivex at x* if
there exist functions 8: X X X > R, \{0}, ¢ . R-> R, p: XXX >R, 6: XXX > R" anda
sublinear function G(x, x*;-) : R” — R such that for each x € X(x # x*) and z € R",

Gx, x5 Bx, XV (X', 2)]) = —p(x, x)II6(x, x)IP
= ¢(f(x) = f(X) + (2, V:h(x", 2)) = h(x", 2))(>) = 0,

equivalently,

(f(x) = f(xX7) + (2, Vh(x", 2)) = h(x", 2))(£) < 0 =
Gx, X3 Bx, XV (X", 2)]) < =p(x, x)II6Cx, I,

where 1 : R" X R" — R” is differentiable with respect to the second component.

Definition 2.3. The function f is said to be prestrictly (G, B, ¢, h(x", 2), p, 0)-pseudounivex at x* if
there exist functions 8 : X X X > R\{0}, 9 . R-> R, p: XXX >R, 6: XXX —>R" anda
sublinear function G(x, x*;-) : R” — R such that for each x € X(x # x*) and z € R”,

G(x, X3 Bx, x)Vh(x', 2)]) > —p(x, )16, x)IP
= ¢(f(x) = f(x") +(z, V:h(x", 2)) = h(x",2)) > 0,
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equivalently,

d(f(x) = f(X) + (z, V.h(x",2)) — h(x",2)) < 0 =
G(x, x*; B(x, XV h(x*, 2)]) < —p(x, x)|0(x, x|,

where /1 : R" x R" — R” is differentiable with respect to the second component.

Definition 2.4. The function f is said to be (prestrictly (G, 5, ¢, h(x*, 2), p, 0)-quasiunivex at x* if
there exist functions 8 : X X X > R, \{0}, ¢ : R > R, p: XXX >R, 8: XXX —> R" and a
sublinear function G(x, x*;-) : R” — R such that for each x € X and 7 € R”,

P(f(x) = f(x) + (2, V:h(x", 2)) = h(x", 2))(<) <0
= G(x, x"; B(x, x)[Vh(x", 2)]) < —p(x, x)II6(x, x|,
equivalently,
G(x, X3 B(x, X)V:A(x", 2)]) > =p(x, x)I6(x, x| =
P(f(x) = f(x") + (2, V:h(x", 2)) = h(x", 2))(=) > 0,
where /1 : R" x R" — R” is differentiable with respect to the second component.

Definition 2.5. The function f is said to be strictly (G, B, ¢, h(x", 2), p, 0)-quasiunivex at x* if there
exist functions B : XXX - R, \{0}, ¢ : R > R, p: XXX - R, 6: XxX — R", and a sublinear
function G(x, x*;-) : R” — R such that for each x € X and z € R”,

P(f(x) = f(xX7) + (2, V:h(x7, 2)) = h(x",2)) < 0
= G(x, X" B0x, XV, 2)]) < =p(x, X)II6x, X1,
equivalently,
Gx, x5 Bx, XV (X", 2)]) 2 =plx, X916, x)IP =
¢(f(x) = f(x") + (2, VoA(x", 2)) — h(x", 2)) > 0,
where i : R" X R" — R” is differentiable with respect to the second component.

We note that the generalized (G, 8, ¢, h(-, ), p, 6)-univexities (see (Verma, 2012)) at x* of higher
order reduce to the Zalmai type (7, f3, ¢, p, 6)-univexities (see (Zalmai, 2012)) of higher-order if
we set

h(x",2) = (2, Vf(x)) + %(z, V2 f(x")2).

Then, we have
V.h(x',2) = V(X)) + V2 f(x")z
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and

(z, V. h(x",2)) — h(x",z) = %(Z, V2 £(x")z).

We observe some of the implications from the above definitions as follows: if fis (G, 5, ¢, h(-, ), p, 6)-
univex at x*, then it is both (G, 8, ¢, h(-, -), p, )-pseudounivex and (G, B, ¢, h(-, -), p, )-quasiunivex
at x*,if fis (G, B, ¢, h(-, ), p, 6)-quasiunivex at x*, then it is prestrictly (G, 5, ¢, h(-, -), p, 8)-quasiunivex
at x*, and if f is strictly (G,B, ¢, h(-,-), p, 0)-pseudounivex at x*, then it is (G, S, ¢, h(:,-), p, 0)-
quasiunivex at x*.

Note that during the proofs of the duality theorems, sometimes it may be more convenient to
use certain alternative but equivalent forms of the above definitions. We conclude this section by
recalling a set of parametric necessary optimality conditions for (P) based on the following result.

Theorem 2.1. (See (Verma, 2013)) Let x* € IF and " = max, <<, fi(x*)/gi(x"), for each i € p, let
fi and g; be twice continuously differentiable at x*, for each j € g, let the function 7 — G_(z, 1)
be twice continuously differentiable at x* for all t € T;, and for each k € r, let the function
z — Hi(z, s) be twice continuously differentiable at x* for all s € S;. If x* is an optimal solution
of (P), if the second order generalized Abadie constraint qualification holds at x*, and if for any
critical direction y, the set cone

(VG(x",0), (v, V2G(x", 1)) : 1 € Ty(x), j € g)
+ span{(VHk(x*, s), (v, V2 Hy(x", s)y)) cseSyker},

where T (x) ={teT;: Gjx*,t) = 0}, is closed, then there exist u* € U = {u € R? : u >
0, X%, u; = 1} and integers v, and v*, with 0 < vi < v* < n+ 1, such that there exist vj indices j,,
with 1 < j,, < g, together with v; points t" € Tm(x ), me€ E’ V" — v indices ky, with 1 < k,, <r,
together with v* —v; points s™ € Sy, for m € y*\v;, and v* real numbers v,,, with v, > 0 form € vg,
with the property that

* *

vV

P
D VAR - A (Veilx' )]+Z [VG, (", "+ > v VH(x', 8" =0, (2.1)

— m
i=1 m= v0+l

V*

)4
| D w IV A = AV )]+Z W26+ Y VP HGE, sy 2 0. (2.2)

"
i=1 m=vy+1

We shall call x a normal feasible solution of (P) if x satisfies all the constraints of (P), if the
generalized Abadie constraint qualification holds at x, and if the set cone{VG;(x,1) : t € f’j(x), jE€
q} + span{VH(x,s) : s € Sy, k € r}is closed.

"~ The above theorem on the necessary optimality conditions provides us with clear guidelines for
formulating numerous Wolfe-type duality models for (P). From now on, the functions f;, g;, i €
p, 2 — Gj(z, 1), and z = Hi(z, s) are twice continuously differentiable on X forallt € T}, j € ¢,
andall s€ Sy, ker. B
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3. Duality Models

In this section, we consider two duality models with special constraint structures that allow for
a greater variety of generalized (G, 5, ¢, h(x, 2), p, 6)-univexity conditions under which duality can
be established based on the following set:

H= {(y,z,u,v,/l,v,vO,JVO,KV\VO,t',5) tyeX;zeRNuelU; 0y <v<n+l;
vER v >0,1<i<vy; AeR; Jyy =iy Jose-sdw)s 1 < Ji < q; Koy, =
Kygpyr sk ) 1< ki< T=(" 2, ...,0), FeT;; §=(s7",...,8), s' € Sk,.}.
Consider the following two problems:

(DI) sup A
02,1V, 4,90, dv) Koy 1. 5)EH
subject to

p Yo
DIV i3, D) = AV k60 D1+ Y vl Vo p, (0,77, 2)

i=1 m=1
v

£ vl Ve, 057,91 =0, (3.1)

m=vy+1

p
FO) = A0 + Y uilhi(y, 2) = (3, 2) = (& Vo i, 2) = AVo ki, DD 2 0, i€p, (32)

i=1

Gjm(y’ tm) + /’ij(y’ Zm’ Z) - <Za Vzﬂjm(y9 tm’ Z)) 2 0’ m e m’ (33)
Yk, (0, 8™) + Vb, 0, 8™, 2) = {2, Vi Vo Ui, (v, 8™, 2)) 2 0, m € v\vy; (3.4)
(DI) sup A

02,1V, 4,50,y Koy £ 5)EH

subject to (3.2)-(3.4) and

P P ]
Glx.y: D wlVehi(y, 91 = D AV ki, D1 + D vl Ve, (32, 1)]
i=1 i=1 m=1
+ D vulVeu, (0,281 2 0 forall x € F, 3.5)
m=vo+1

where G(x, y; ) is a sublinear function from R” to R.

Note that if we Compare (D/) and (DI), we see that (DI) is relatively more general than (DI)
in the sense that any feasible solution of (DI) is also feasible for (DI), but the converse may not
be necessarily true.
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Lemma 3.1. (See (Zalmai, 2012)) For each x € X,
fi(x) i ui fi(x)
@(x) =max —— =max —,— .
1<izp gi(x)  weU M, u;igi(x)
The next theorem shows that (DI) is a dual problem for primal (P).

Theorem 3.1. (Weak Duality) Let x and w = (y,z,u, v, A, v, v, Jy,, Koy, 1, §) be arbitrary feasible
solutions of (P) and (DI), respectively, and let us assume that any one of the following five sets of
hypotheses is satisfied:

(a) (i) foreachie p, fiis(G.p, &, hi(-,*), pi, 0)-univex and —g; is (G, B, ¢, ki(-, *), pi, 0)-univex
aty, ¢ is superlinear, and ¢(a) > 0 = a > 0;

(ii) the function & — G;, (&,t") is (G, B, s i (-, 2, Pms O)-quasiunivex at y, ¢,, is increas-
ing, and ¢,,(0) = 0 for each m € Yo

(iii) the function & — v, H, (&,5™) is (G, P, Gons Wi+, ), P> O)- quasiunivex at y, ¢y, is in-
creasing, and ¢,,(0) = 0 for each m € v\vo;

(V) p*(5,¥) + X0 VPm(X,Y) + 2oy 1 Pm(X,¥) = 0 where
P (x,y) = X wilpi(x, y) + Api(x, Y)1;
(b) (i) foreachice p, fiis(G.p, &, hi(-, ), pi, 0)-univex and —g; is (G, B, ¢, ki(-, ), pi, 0)-univex

aty, ¢ is superlinear, and ¢(a) > 0 = a > 0;

(ii) the function fA—> 2o VG, (€,1) is (G, B, b, (), P, O)-quasiunivex at y, ¢ is in-
creasing, and ¢(0) = 0;

(iii) the function & — v, Hy (&, s") is (G, B, Gins Wi (-, ), Py 0)-quasiunivex at y, ¢,, is in-
creasing, and $,,(0) = 0 for each m € v\vo;

(iv) p*(xX,¥) + P(x,y) + X cys1 Pm(X,¥) 2 0;

(C) (l) for eachi € £$ ﬁ LS (gaﬁa (Z, hi(', ')$ [)i’ 6)'univex and —&i is (g,ﬁa &,ﬁi’ Ki(" .)9 6)'univex
aty, ¢ is superlinear, and ¢(a) > 0 = a > 0;

(ii) the function & — G;,(£,1") is (G, Bs Bms (> ), Pum» 0)-quasiunivex at y, @, is increas-
ing, and ¢,,(0) = 0 for each m € Yo

(iii) the function & — %) _ . VuH, (€, s™) is (G, B, b, Wn(-, ), p, 0)-quasiunivex at y, ¢ is
increasing, and ¢(0) = 0;

(iv) (X, ) + X VP, y) + px,y) > 0;

(d) (i) foreachice p, fiis(G.p, &, hi(-, ), pi, 0)-univex and —g; is (G, B, ¢, ki(-, ), pi, 0)-univex
aty, ¢ is superlinear, and ¢(a) > 0 = a > 0;
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(ii) the function §A—> o vmG (€17 is (G, s b, tn (-, ), P, 0)-quasiunivex at y, ¢ is in-
creasing, and ¢(0) =

(iii) the function & — Y _. . ViuHy, (&, 5™) is (G, B: ¢, (-, ), B, 0)-quasiunivex at y, ¢ is
increasing, and ¢(0) = 0;

(iv) p*(x,y) + p(x,y) + p(x,y) = 0;

(e) (i) foreachi€ p, fiis(G.p, &, hi(-, ), pi, 0)-univex and —g; is (G, B, ¢, ki(-, -), pi, 0)-univex
aty, ¢ is superlinear, and ¢(a) > 0 = a > 0;

(ii) thefunctzon &— Z vajm(cf t’”)+zx1=VOJrl Vi Hy, (€, s™) is (G, B, <2>, T, P, 0)-quasiunivex
aty, ¢ is increasing, and $(0) =

(iii) p*(x,y) + p(x,y) = 0.
Then ¢o(x) > A.

Proof. (a): Applying (1), we have the following inequality:

P P P
(> wlhi) = FON + (2 ) wVohiy, ) = . wihi(y, 2)
i=1 i=1 i=1
p P P
A wl-gix) + g1 = (2, ) V. ki3, ) + Y uiki(y,2)])
i=1 i=1 i=1

p

> G(x 3 B(x,) Z U V- hi(y, 2) = AV iy, 2)}) + Z wlpi(x,y) + ABi(x INOCE M. (3.6)
i=1

From the primal feasibility of x, dual feasibility of w, and (3.3), we find that
G]m('x’ tm) S 0 S Gjm(y’ tm) + /’l]m(.y’ tm’ Z) - <Z7 VZ l’ljm(y’ tm’ Z))’ m e E’
and hence using the properties of the functions ¢,,, we have

&m(Gjm(-xa lm) - [Gj,,,(y’ tm) + ,Uj,,,(y’ rm? Z) - <Z’ VZ #]m(y’ tm’ Z)>]) < O,

which from (ii) implies that G(x, y; B(x, y)[V. u in, ", 2)]) < —=Pm(x, YIO(x, y)||2. As v, > 0 for
each m € vy, the above inequality yield

)

G 3805 3) D vul@ Vet (0 7, 201) < = D vinb (e WIOCE, VIP- (3.7)
m=1

m=1
Similarly, from the primal feasibility of x, dual feasibility of w, (3.4), and (iii) we deduce (since
v,, > 0 foreachm € Z\E) that

G5 3806y D vVt D) < = > Bl MIOCE VP (3.8)

m=vy+1 m=vy+1
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Now, based on the positivity of B(x, y), sublinearity of G(x,y;-), and (3.1), we conclude that
P Vo
G(xy:B063) D iV hi(y,2) = AV. ki3, D)) + G(%, ¥ B 3) D vl Vept, 057", 2)])
i=1 m=1

+ GxyBEY) D valVey, (", 2)]) 2 0. (3.9)

m=vp+1
Next, applying (3.9) to (3.6), and then combining with (3.7) and (3.8) and using (iv), we have

p

(Zu[f(x) ﬁ(y)]+ ,Zp:u,V h(yz) Zp:u,h(yz)

i=1 i=1
p

14 P
+ uil=gi(x) + &1 - (2 Z V- ki(y, 2)) + Z uiki(y, 2)1)

i=1 i=1 i=

p
G(x.y:B06) D V- hi(y,2) = AV k(3. 9}

i=1

ui[ﬁi(-x’y) + /lﬁi(x’ )’)]”9(% )’)”2 > _[g(x’ )’2/3(35, y) Z Vm[Vz/ij(y’ tm’ Z)])

m=1

v

M-

1l
—_

i
Yo

G 3By D valVetrj, " D) = D vubmCe MIOCEVIP + > il IO WIP
m=vy+1 m=1 m=vy+1
p Yo

Z wi[pi(x,y) + ApiCx, MO, VI = Z VP, MIOCx DI

i=1 m=1

—+

—+

Z P WNOCE MIE + o G, IO, P 2 0.

m=vy+1

But ¢(a) > 0 = a > 0 and hence because of (3.2) the above inequality reduces to

p
Dl fix) = Agi(0] = 0.

i=1

Finally, this inequality using Lemma 3.1 leads to the weak duality inequality as follows:

fi(x) iy Ui fi(X) -

= = max >
PO e S weo
(b) - (e) : The proofs are similar to that of part (a). L]

The following theorem is based on the (G, B, h;(-, -), p;, )-univexities and quasiunivexities.

Theorem 3.2. (Weak Duality) Let x and w = (y, 2, u, v, A, v, v, Jy,, Ko\vy» T, §) be arbitrary feasible
solutions of (P) and (DI), respectively, and let us assume that any one of the following five sets of
hypotheses is satisfied:
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(a) (i) foreachic€ p, f;is(G,pB,hi(,"),p:,0)-univex and —g; is (G, B, (-, *), pi, 0)-univex at y,
(ii) the function & — G, (&,1") is (G, B, tim(-, *), P, 0)-quasiunivex at y, for each m € vo;

(iii) the function & — v, Hy (€, 5™) is (G, B, Ym(-, ), Pm, 0)-quasi univex at y, for each m €
v\vo;

(iv) " (X, ¥) + X0 ViPm(X,Y) + X1 Pm(X,¥) 2 0 where
p*(xa y) = f:] ui[l_)i(x’ Y) + /lﬁi(x9 y)]’

(b) (l) for each i € B’ ﬁ is (gaﬁa hi(" .)9pi’ 0)'univex and —&i is (g’ﬁa Ki(.’ ')’ﬁi’ 9)-I/lniV€X at
y, ¢ is superlinear, and ¢(a) > 0 = a > 0.

(ii) the function &€ = 3°_ v,,G; (£,1") is (G, B, um(:, -), P, 0)-quasiunivex at y.
(iii) the function & — v, H;, (€, s™) is (G, P, ém, U, ), Pm» 0)-quasiunivex at y.
(iv) p"(x, ) + P(x,y) + X)myor1 Pm(X,y) 2 0;
(c) (i) foreachic p, f;is(G,B,hi(:,"),pi,0)-univex and —g; is (G, B, pi, Ki(:, -), 0)-univex at y.
(ii) the function & — G, (&,1") is (G, B, Um(:, *), Pm» 0)-quasiunivex at y.
(iii) the function & — an:mﬂ Vi Hy, (&, 5™) is (G, B, Yn(-, ), P, 0)-quasiunivex at y.
(iv) " (X, ¥) + X0y VP (X, y) + p(x, y) 2 0;
(d) (i) foreachie Ps fi is (G, B, hi(-, ), pi, O)-univex and —g; is (G, B, ki(-, *), Pi, 8)-univex at y.
(ii) the function & — Z:f:l VG, (&, 1) is (G, B, b, (-, ), P, 0)-quasiunivex at y.
(iii) the function & — %) _ .\ vuHy, (&, 5™) is (G, B, &, (-, ), p, 0)-quasiunivex at y.
(iv) p*(x,y) + p(x, y) + p(x, y) 2 0;
(e) (i) foreachic p, f;is(G,B,h(,"),pi,0)-univex and —g; is (G, B, ki(, ), pi, 0)-univex at y.

(ii) the functioné — Z;O:l VG, (€, t’")+Z,Vn:V0Jrl Vi Hy, (€, ™) is (G, B, Tm, P, 0)-quasiunivex
aty.

(iii) p*(x,y) + p(x,y) = 0.
Then ¢(x) > A.
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Proof. (a): Applying (1), we have the following inequality:

P P P
D) = O+ (2 ) uVehi(,2) = > uihi(y,2)

i=1 i=1 i=1

p p p
/1[2 ui[—gi(x) + g(y)] - <Z, Z u; V. ki(y, Z)> + Z uiki(y, )]
i=1

i=1 i=1

V4 P
> G386, y) ) udVahi(3,2) = AV ki3, 2)}) + D il 3) + A5 IO VP (3.10)
i=1 i=1

From the primal feasibility of x, dual feasibility of w, and (3.3), we find that

G, (x, ") <0 <G, (0, ") + pj, 0, 1", 2) =<2, Vo, (0, 1", 2)), m € p.

Then we have G, (x, ") — [G;,(y, ") + pj, (v, 1", 2) = {2,V u;, (v, 1", 2))] < 0, which from (i)
implies that G(x, y; B(x, V[V, (1, 1", 2)1) < =pm(x, MIOCx, YIP. As v, > 0 for each m € vy, the
above inequalities yield

Yo

Gy B ) D vz, Ve sty (3 " ) < = ) v VIO, 9)IP (3.11)

m=1 m=1

Similarly, from the primal feasibility of x, dual feasibility of w, (3.4), and (iii) we deduce that

Glryi By D valVauy, 0. 1) < = D ol VIO VIP, (3.12)

m=vy+1 m=vy+1

Now, based on the positivity of B(x, y), sublinearity of G(x,y;-), and applying (3.1), we conclude
that

g(x y; B(x, Y)Zul V h(y 7) — /lV ki (y, Z)}) +g(x v; B(x, y)va[VZ/ljm(y " 2] )

m=1

+ G(xy: ) Z vl Vo, (2", 2)1) 2 0. (3.13)

m=vo+1

Next, applying (3.13) to (3.10), and then combining with (3.11) and (3.12) and using (iv), we have

p p P
(D ulh® = £+ (2 ) wV-h(y,2) = > wihi(y,2)
i=1 i=1
P P
=) + g0 = (2 Y uVoki(3, ) + D wii(y, 2)1)
i=1

i=1

i=

+ A

M“_

I
—_

i

> (p'Cry) + Z V(X Y) + Z Pl )IOCE P > 0.

m=vy+1
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Hence because of (3.2) the above inequality reduces to

u; fi(x) — Agi(x)] = 0.

p
—

1

Finally, this inequality using Lemma 3.1 leads to the weak duality inequality as follows:

_ filx) _ Yy uifi(x)
o(x) = max o) | max 57w > A

(b) - (e) : The proofs are similar to that of part (a). O

Theorem 3.3. (Strict Converse Duality) Let x* be a normal optimal solution of (P), let w =
(X,2,01, 9, A, 7, V, J50s Korvgs 1 §) be an optimal solution of (DI), and assume that any one of the
following five sets of conditions is satisfied:

(a)

(b)

(c)

The assumptions specified in part (a) of Theorem 3.2 are satisfied for the feasible solution
w of (DI). Moreover, ¢(a) > 0 = a > 0, f; is strictly (G, B, ¢, h(-, "), p;, 0)-univex at X for
at least one i € p with the corresponding component ii; of it positive, or —g; is strictly
(G.B, b, k(-, ), pi, O)-univex at X for at least one i € p with the corresponding component ii;
of it positive (and 1 > 0), or & — G, (& 1) is strictly (G, B, By 1 *), Py O)-pseudounivex at
% for at least one m € ¥y, or &€ — ¥,,H,, (&, 5") is strictly (G, B, > W(:, *), Pm» 0)-pseudounivex
at X for at least one m e V\Vo, or

) v
PO+ D Bl D+ D Tl 5 > 0,
m=1

m:\70+1
where p*(x*, %) = X2 wlpi(x’, %) + Api(x", D).

The assumptions specified in part (b) of Theorem 3.2 are satisfied for the feasible solution
W of (DI). Moreover, ¢(a) > 0 = a > 0, f; is strictly (G, B, &, h(-,-), p;, 0)-univex at X for
at least one i € p with the corresponding component ii; of it positive, or —g; is strictly
(G.B, b, k(-, ), pi, O)-univex at X for at least one i € p with the corresponding component ii; of
it positive (and A > 0), or & — szzl G, (€, 1) is strictly (G, B, &, u(-, ), p, 0)-pseudounivex
at X, or & — V,Hy (€,5") is strictly (G, B, (Z)m, (-, ), Pm, 0)-pseudounivex at X for at least
onem € 2\@, or p*(x*, X) + p(x*, X) + Z;:%H VPm(x*, X) > 0.

The assumptions specified in part (c) of Theorem 3.2 are satisfied for the feasible solution
W of (DI). Moreover, ¢(a) > 0 = a > 0, f; is strictly (G, B, ®, h(-,-), p;, 6)-univex at X for
at least one i € p with the corresponding component ii; of i positive, or —g; is strictly
(G.B, b, k(. ), pi, 0_)—um'vex at X for at least one i € p with the corresponding component ii;
of it positive (and A > 0), or & — G, (&,1") is stric?ly (G, Bs D (-5 *), P> O)-pseudounivex
at X for at least one m € %, or & — 3, _; . VnH,; (£,5") is strictly (G, B, &, u(-, ), p,0)-
pseudounivex at X, or p*(x*, X) + 22:1 VP (X*, X) + V,0(x*, X) > 0.
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(d) The assumptions specified in part (d) of Theorem 3.2 are satisfied for the feasible solution
W of (DI). Moreover, ¢(a) > 0 = a > 0, f; is strictly (G, B, ®, h(-,-), p;, 6)-univex at X for
at least one i € p with the corresponding component ii; of it positive, or —g; is strictly
(G.B, ¢, k(. ), pi, 0)-univex at % for at least one i € p with the corresponding component ii; of
it positive (and A > 0), or & — Zf::l UG, (&, T") is strictly (G, B, b, u(-, ), p, 0)-pseudounivex
at X, or & — 3, ;01 VnHy, (€,37) is strictly (G, B, b, ¥(-, ), P, 0)-pseudounivex at X, or
(X", X) + p(x*, X) + p(x*, X) > 0.

(e) The assumptions specified in part (e) of Theorem 3.2 are satisfied for the feasible solution
w of (DI). Moreover, ¢(a) > 0 = a > 0, f; is strictly (G, B, &, h(-, "), p;, 0)-univex at X for
at least one i € p with the corresponding component ii; of it positive, or —g; is strictly
(G.B, ¢, k(. ), pi, 0)-univex at % for at least one i € p with the corresponding component
it; of ftApositive (and 1 > 0), or & — Zfr?:l G, (E,T") + Z;z%ﬂ VmHy, (€, 5™) is strictly
(G, B, 9, 71(-, ), p, 0)-pseudounivex at X, or p*(x*, X) + p(x*, X) > 0.

Then ¥ = x* and o(x*) = A.

Proof. The proof is similar to that of Theorem 3.2. L

4. Specialization I

In this section, we consider two duality models with special constraint structures that allow
the generalized (G, 3, ¢, h(-, -), p, 8)-univexity reduce to second order generalized (¥ ,p, ¢, p, 6)-
univexity introduced and studied by Zalmai (see (Zalmai, 2012)) under which duality can be es-
tablished.

Consider the following two problems:

(DII) sup A

0uz,u.v, 4,90,y Koy 1,5 EH
subject to

v

)4 Yo
DIV = AV + ) vaVG, (0 ™+ D v VH, (v, 5™
m=1

i=1 m=vgy+1
p ) v
+{ D ulVFG) = AV + > v VG, 000" + D vaVPHy, (8N} =0, (4.1)
i=1 m=1 m=vo+1
1
fi0) = A8 = 5@ [V /() = AV’g0]2) 2 0, i€ p, (4.2)
Gj, (v, ") - %<z, V’G;, (0, "2) 2 0, m € v, (4.3)

1
Vi, (0, 8™) = 5@ vV Hy, (v, 8)2) 2 0, m € y\vo; (4.4)
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(DII) sup A subject to (3.3) and (4.2) - (4.4).

(y,Z,u,V,/l,V,V(),JyO 7Kv\v0 7[_7§)€H

The next theorem shows that (DI1) is a dual problem for (P).

Theorem 4.1. (Weak Duality) Let x and w = (y,z,u, v, A, v, v, Jy,, Ko\, 1, §) be arbitrary feasible
solutions of (P) and (DII), respectively, and assume that any one of the following five sets of
hypotheses is satisfied:

(a) (i) foreachie€ p, fis (F,B, b, pi, 0)-sounivex and —g; is (¥, B, §, pi, 0)-sounivex at y, ¢
is superlinear, and ¢(a) > 0 = a > 0;

(i) the function & — G; (£,1") is (F ., G, Pm» 0)-quasisounivex at y, @, is increasing,
and $,,(0) = 0 for each m € Yo,

(iii) the function & — v, H,;, (&, 5™) is (F, B, Gm» Pm» 0)-quasisounivex at y, ,, is increasing,

m

and ¢,,(0) = 0 for each m € Z\E"

(v) P (X, Y) + 200 VP (X, Y) + 2oy o1 VinPm(X, ) = 0, where
p(x,y) = le ui[pi(x, y) + Api(x, y);

(b) (i) foreachi € p, f;is (F.p, &, pi, 0)-sounivex and —g; is (¥, B, §, pi, 0)-sounivex at y, ¢
is superlinear, and ¢(a) > 0 = a > 0;

(ii) the functiAon & — Z;;’zl VG, (&, 1) is (F, P, (2), D, 0)-quasisounivex at y, & is increas-
ing, and ¢(0) = 0;

(iii) the function ¢ — v, Hy (&, ™) is (F,p, quSm, Pm, 0)-quasisounivex at y, ém is increasing,
and $,,(0) = 0 for each m € v\vo;

(iv) p"(%,3) +P(X, Y) + Xpmyye1 Pm(X,y) 2 0;

(c) (i) foreachie p, f;is(F.B, @, pi, 0)-sounivex and —g; is (¥, B, ¢, p;, 0)-sounivex at y, ¢
is superlinear, and ¢(a) > 0 = a > 0;

(ii) the function & — G, (&,1") is (F, B, G P> 0)-quasisounivex at y, ¢, is increasing,
and $,,(0) = 0 for each m € Yo,

(iii) the function & — 3 _ . viH,, (€, 5™) is (F.p, b, p, 0)-quasisounivex at y, § is in-
creasing, and (}5(0) =0;

(iv) P (X, ¥) + 20 VinPm(x, ) + p(x,y) > 0;

(d) (i) foreachi € p, f;is(F,pB, &, pi, 0)-sounivex and —g; is (F, B, ¢, pi, 0)-sounivex at y, ¢
is superlinear, and ¢(a) > 0 = a > 0;

(ii) the functiAon E— 20 vuGj (&, 1) is (F,PB, b, p, 0)-quasisounivex at y, ¢ is increas-
ing, and $(0) = 0;
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(iii) the function & — 3 _, | vuH, (&, ™) is (F,p, b, p, 0)-quasisounivex at y, ¢ is in-
creasing, and $(0) = 0;

(iv) p*(x,y) +p(x,y) + p(x,y) = 0;

(e) (i) foreachi e P, fi is (F,B, b, pi, 0)-sounivex and —g; is (¥, B, ¢, p;, 0)-sounivex at y, ¢
is superlinear, and ¢(a) > 0 = a > 0;

(ii) the functioné — 3"\ vuG (€, 0"+ 20— 1 VieHi, (€, 5™) is (F, B, b, p, 0)-quasisounivex
aty, ¢ is increasing, and $(0) = 0;

(iii) p*(x,y) + p(x,y) = 0.
Then ¢(x) > A.

Proof. The poof is similar to that of Theorem 3.2. Ol

5. Specializations II

In this section, we consider certain specializations of the (G, 8, ¢, h(-, ), p, 6)-univexity to first
order univexity under which first order duality (see (Zalmai & Zhang, 2007)) can be established.
These duality models have the following forms:

(DIII) sup A
OV, 4,0,y s Koy o1, 5)EH
subject to
p Vo %
ulVO) = 9801+ ) vaVG,, 00"+ Y vaVH, (8" =0, (5.1)
i=1 m=1 m=vo+1
uil fi(y) — 481 20, i€p, (5.2)
Gjm(y’ tm) Z 0’ m € m5 (5.3)
VinHy, (v, s") 2 0, m € y\vy; (5.4)
(DIII) sup Pl

Oy, 4,0,y s Koy o1, 5)EHL
subject to (3.3) and (5.2) - (5.4).
Theorem 5.1. (see (Zalmai & Zhang, 2007)) (Weak Duality) Let x and (y, u, v, 4, v, vo, Jy,, Ky,

t, 5) be arbitrary feasible solutions of (P) and (DIII), respectively, and assume that any one of the
following five sets of hypotheses is satisfied:

(a) (i) foreachi € p, f;is (F.pB, b, pi, 0)-univex and —g; is (F,B, ¢, pi, 0)-univex at y, ¢ is
superlinear, and ¢(a) > 0 = a > 0;
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(ii) the function z — G, (z,t") is (¥, 3, B> P> 0)-quasiunivex at y, ¢,, is increasing, and
&m(O) = 0 for each m € Yo

(iii) the function 7 — vy,Hy (2, ™) is (F, B, Gum» Pm» 0)-quasiunivex at y, @, is increasing,
and ¢,,(0) = 0 for each m € Z\E"

(iv) p* + Z:le VinPm + Z;pvoﬂ VimPm 2 0, where p* = le ui(p; + Ap;);
(b) (i) for eachi € P, fiis (F,B, ¢, pi, 0)-univex and —g; is (F,B, ¢, p;, 0)-univex at y, ¢ is
superlinear, and ¢(a) > 0 = a > 0;

(ii) the fLAtnction 2= 20 G, (2, ") is (F, B, b, p, 0)-quasiunivex at y, ¢ is increasing,
and ¢(0) = 0;

(iii) the function 7 — v, Hy, (2, ™) is (F,B, Gm» Pm» 0)-quasiunivex at y, $,, is increasing,
and (fbm(O) = 0 for eachm € Z\E"

(lV) p* +p + Z;:V0+lﬁm Z O’.

(c) (i) for each i € p, f;is (F,B,,p:,0)-univex and —g; is (F,, ¢, pi, 0)-univex at y, ¢ is
superlinear, and ¢(a) > 0 = a > 0;
(ii) the function z — G, (z,t") is (F,p, B> Pm» 0)-quasiunivex at y, ¢, is increasing, and
bm(0) = O for each m € Yo;

(iii) the function z — Y,
ing, and (ZS(O) =0;

\ VmHy (2, 5™) is (F, B, ¢, P, 0)-quasiunivex at y, ¢ is increas-

v
m=vy+

(iv) ,0* + ZVO_ Vmﬁm + p > 0;
m=1

(d) (i) foreachi € p, f;is (F,p, &, pi, 0)-univex and —g; is (¥, B, d, pi, 0)-univex at y, ¢ is
superlinear, and ¢(a) > 0 = a > 0;

Yo
m=1

(ii) the function z — 3., v,G,, (2, t") is (F, [, b, p, 0)-quasiunivex at y, ¢ is increasing,

and (]Ab(O) =0;

(iii) the function 7 — Y, VuHy, (2, s™) is (F, B, . p, 0)-quasiunivex at y,  is increas-

ing, and (E(O) =0;

%
m=vy+1

(iv) p+p+p >0;
(e) (i) foreachi € p, fiis (F.B, ¢, pi, 0)-univex and —g; is (F,B, ¢, p;, 0)-univex at y, ¢ is
superlinear, and ¢(a) > 0 = a > 0;

(ii) the function z — 30 viuG,, (@ ") + X5y i1 Vi, (2, 8™) is (F . B, . p, 0)-quasiunivex
aty, ¢ is increasing, and $(0) = 0;

(iii) p*+p = 0.
Then ¢(x) > A.
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6. Concluding Remarks

The duality results established in this communication encompass a fairly large number of
second-order dual problems and duality theorems that were investigated previously for several
classes of nonlinear programming problems. Furthermore, the methods utilized in this paper could
lead to extend and generalize results to other classes of mathematical programming problems
based on general univexity assumptions.
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The purpose of this present paper is to derive some inclusion results and coefficient estimates for certain analytic
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1. Introduction and Motivation

let A denote the class of normalized functions f(z) of the from

fR=2+) a7, (1.1)
n=2

which are holomorphic in the open unit disk A = {z : |z] < 1}. Let N denote the subclass of A
consisting of functions f(z) of the form

+00

f@)=z- Z a,7". (a, = 0). (1.2)

n=2

Associated with each f in A is a well defined logarithmic function

+0o0
log@ :ZZ%Z”. z€A. (1.3)
Z n=1
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The numbers 7y, are called the logarithmic coefficients of f(z). See (Girela, 2000). For log @
given by (1.3) and G(z) € N given by
+00
G@) =z- ) b, (1.4)
n=2
the convolution (or Hadamard product) of
F(z) = —(log @) + (1 +2y1)z, (1.5)
and G(z) denoted by F * G, is defined by
+00
HGZ) =F+G =z Z 2y,bn7". (1.6)
n=2
We denote by I1(n, 5) and Q(n, 8) consisting of the functions H(z) = F * G in N which satisfy
H@
H(z)
e - } > B (1.7)
N+ (=1
and
1+ #@
Rel——=9 y5>p, 0<p<1,0<p<1, (1.8)
| + Q@
H'(2)

respectively. Also the functions H(z) in N are said to be in the class A(n, 5, ¢) , if there exists a
function ¥(z) € N such that

zH'(2)
W(2)
; } > B. (1.9
n S+ (=)

For these subclassess we prove some interesting theorems include coefficient bounds, inclusion
results, extreme points and property of convex sets.

Several other interesting subclasses of univalent functions were investigated recently, for ex-
ample, by Ghanim and Darus (Ghanim & Darus, 2008), Prajapat and Goyal (Prajapat & Goyal,
2009), Acu and Owa (Acu & Owa, 2000) and etc. See also (Najafzadeh & Kulkarni, 2006) and
(Najafzadeh & Ebadian, 2009).

2. Main result

Theorem 2.1. If H(z) € A(n,B,¥), then

D [27,b,(1=1B) = B(1 =m)e,] < 1= . 2.1)
n=2
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Proof. Since H(z) € A(n,B,¥), then there exists a function ¥(z) = z — Y,/ ¢,2* € N such
that (1.9) holds true. By putting (1.6) and H'(z) = (F x g) = 1 — X755 2y,b,7" in (1.9) we
get Re| 1—Z;;;(Efi}%bi}‘/:gn—z:]);n)Zn_l} > B. By choosing the values of z on the real axis so that 2(5%();) is
real and letting r — 1~ through real values, we have I_ZL_(ZZ’E;Y"“_ > (3, or equivalently
naa 21ynbn+(1-1)cy)
Yo [2yubn(1 = nB) — B(1 — n)c,] < 1 = B. Now the proof is complete. ]

Theorem 2.2. If H(z) € Q(n,B) , then Y55 2y,b,(1 + n(n — 1) +pn?) <1 -5

=355 2 yubu 2"
I‘ZZ?EZnyn(lm(n—l))zn—l} > . By

Proof. Since H(z) € Q(n,pB) , then by (1.6) and (1.8) we get Re{

2F+G)”
(F+GY

choosing the values of z on the real axis so that
1_22—2 2’lzﬁ’nbn
I_Z;:E 2n7nbn(1+77(n—1))

is real and letting r — 1~ though real values

we have > (. The above inequality gives the required result. [

Definition 2.1. A function H(z) € N is said to be in W(n, ), if there exists a function ¥(z) =
Z— 2% ¢,z such that

(a) The condition (2.1) holds true;

(b) For every n, 2y,b, —c, > 0.

In the next theorem we prove an inclusion property.
Theorem 2.3. W(n,5) € A(n,B,¢).

Proof. Let H(z) € W(n,B) , we must show that H(z) € A(n,5,¢) or equivalently the condition
(1.9) holds. But

AF=G) oo —
0 1= 1= 305 2yubz™”!

P (g L= ESQ@mybe+ (L -ne)

= 1) Xy 5Q2yuby — )"
1 - Z;S(zn’)/nbn + (1 - U)Cn)Z"_l

1] =

(1 =) 2,5Q2yuby — c,)
T 1= 25Qnyab, + (1= 1)ey)
If (a) holds , above fraction is bounded above by 1 — @ and hence (1.9) is satisfied. So H(z) €
A, B ¥). [

Remark. By putting ¥(z) = G(z) , in the last Theorem we obtain I1(,8) € W(n,B) , and also by
putting ¥(z) = G(z) in (2.1) we have Y, % [2y,(1 —nB) — (1 —n)]b, < 1 — B. This is the necessary
and sufficient condition for functions H(z) € N to be in the class I1(, 5) .
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3. Coefficient estimates and Distortion bounds for functions in W(z, §)

In this section we find coefficient bounds and verify distortion Theorem for the class W(n, B).
Remark. If H(z) be in the class W(n, ) , then

+00
1- 1-
Sy, < BB G
£ 2(1-1B)
Proof. From definition of W(n, 8) and taking ¥(z) = z— X5 ¢,2", we have Y,» (1 = nB)(2y,b,) <
1=-B+p(1 —mnec,. Ifc, <+ 1 (¥n), thus we have 3'% v, ns%ﬁ;”). ]
Remark. The function H,(z) = z — %’%mz" is an extremal function for the class W(n, ) .
Theorem 3.1. Let H(z) = F % G be in the class W(n,8) , then for |zl <r <1
2 _
_27BBn g < s 22PP 3.2)
4(1 —np) 4(1 —np)
Proof. Since
+00
H@)=F*G=2-) 27.b, (33)
n=2

soby (2.1) we get 3.7 2y,b,(1-nB)—B(1-1n)c, < 1-p. Since ¢, <1 S<3 we have > 2ny,b,(1-

nB) < B2 11 ﬁorzz > 2ny,by(1-1B) < 2—B—Pn,or 233 Zynb <2305 nyuby < 5EEL
2-B-pn

or Y15 2y,b, < o) From this inequality and (3.3) we have |F * G| < |z + 215 2y,b,lz"
Sr+2ﬁﬁ”2and|F Gl > r— 78052, O

4(1-nB) 4(1-nB)
Theorem 3.2. The class W(n,B) is convex.

Proof. Let Hi(z) and H,(z) be in the class W(n, 8) with respect to functions y(z) = z — X' ¢, 7"
and Yy(z) = z— 2 5 ¢,z For 0 < j < 1 we must show that H(z) = jH(z) + (1 — j)Hy(2)
belongs to W(n,8) with respect to ¥(2) = j1(z) + (1 — )a(2). But Hi(z) = z — Yoo 2yubu?",
Hy(2) = 2= 3,5 2y.b,7", and H(z) = z = 3,5 s.()Z", where s,(j) = 2y,(jb, + (1 = j)b},). Also
U(2) = 2= 2n% ra()Z" where r,(j) = jeu + (1= j)c).

The function H(z) will belong to W(n,B) if

(i) XD =nB8) =B —mr,(NI < 1 -,
(1) s,(j) — r.(j) = 0 for every n.

Since H, and H, are in W(n,5) then 2y,b, — ¢, > 0 and 2y,b;, — ¢, > 0, for all n. With direct
calculation since 0 < j < 1 we have, s5,(j) — r.(j) = 2y,(jb, + (1 = ))b)) — (je, + (1 = j)c,) =
J2Yubn = cn) + (1 = )Q2yub;, — ;) = 0. Also Y, 5 [s,(H)(1 =nB) = B = mra(N] = j Xp5 2¥uba(1 —

nB) = B(L = m)c, + (1= j) X035 2yuby (1 =1B) = (1 = m)cy, < j(1 =)+ (1 = (1 =) = 1 — . Now

the proof is complete. O
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Abstract

In this paper, we introduce and study semitopological vector spaces. The goal is to provide an efficient base
for developing the theory of extrafunction spaces in an abstract setting of algebraic systems and topological spaces.
Semitopological vector spaces are more general than conventional topological vector spaces, which proved to be very
useful for solving many problems in functional analysis. To study semitopological vector spaces, hypermetrics and
hyperpseudometrics are introduced and it is demonstrated that hyperseminorms, studied in previous works of the
author, induce hyperpseudometrics, while hypernorms induce hypermetrics. Sufficient and necessary conditions for
a hyperpseudometric (hypermetric) to be induced by a hyperseminorm (hypernorm) are found. We also show that
semitopological vector spaces are closely related to systems of hyperseminorms. Then defining boundedness and
continuity relative to associated systems of hyperseminorms, we study relations between relative boundedness and
relative continuity for mappings of vector spaces with systems of hyperseminorms and systems of hypernorms.
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1. Introduction

The concept of a real or complex extrafunction essentially extends the concept of a real or
complex function, encompassing, in particular, the concept of a distribution, i.e., distributions are
a kind of extrafunctions (Burgin, 2012). Extrafunctions have many advantages in comparison
with functions and distributions. For instance, integration of extrafunctions is more powerful
than integration of functions allowing integration of a much larger range of functions as it is
demonstrated in (Burgin, 2012).

At the same time, spaces of extrafunctions have a more sophisticated structure in comparison
with spaces of functions, which are topological vector spaces and have a highly advanced theory
(cf., for example, (Bourbaki, 1953-1955); (Robertson & Robertson, 1964); (Riez & Sz.-Nagy,
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1955); (Rudin, 1991); (Grothendieck, 1992); (Kolmogorov & Fomin, 1999)). In particular, it has
been demonstrated that topological vector spaces provide an efficient context for the development
of integration and are very useful for solving many problems in functional analysis in general
(Choquet, 1969); (Edwards & Wayment, 1970); (Shuchat, 1972); (Kurzweil, 2000). In addition,
locally convex topological vector spaces offer a convenient structure for studies of summation,
which is integration of functions on natural numbers (Pietsch, 1965).

In this paper we introduce and study semitopological vector spaces, operators in these spaces
and their mappings. It provides a base for the theory of extrafunction spaces in an abstract setting
of algebraic systems and topological spaces. Semitopological vector spaces are more general than
conventional topological vector spaces. To study semitopological vector spaces, hypermetrics and
hyperpseudometrics are introduced and it is demonstrated that hyperseminorms induce hyperpseu-
dometrics, while hypernorms induce hypermetrics. Norms are special cases of hypernorms, while
seminorms are special cases of hyperseminorms. Sufficient and necessary conditions for a hyper-
pseudometric (hypermetric) to be induced by a hyperseminorm (hypernorm) are found. We also
show that semitopological vector spaces are closely related to systems of hyperseminorms.

An essential property of operators in mathematics is continuity (cf. (Dunford & Schwartz,
1958); (Rudin, 1991); (Kolmogorov & Fomin, 1999)). One of the central results of functional
analysis is the theorem that establishes equivalence between continuity and boundedness for lin-
ear operators. Here we extend the concepts of boundedness and continuity for operators and
mappings of semitopological vector spaces with systems of hyperseminorms and seminorms, dif-
ferentiating between different types of boundedness and continuity and making these concepts
relative to systems of hyperseminorms and seminorms. Then we study these concepts, proving
a series of theorems, which establish equivalence between a type of relative continuity and the
corresponding type of relative boundedness for linear operators in semitopological vector spaces
with systems of hyperseminorms or seminorms. Classical results describing continuous operators
in convex spaces become direct corollaries of theorems proved in this paper. In conclusion, several
problems for further research are formulated.

I would like to express my gratitude to the anonymous reviewer for useful remarks and obser-
vations.

2. Semitopological vector spaces

The concept of a semitopological vector space is an extension of the concept of a topological
vector space.

Definition 2.1. A semitopological vector space L over a field F is a vector space over F with
a topology in which addition is continuous, while scalar multiplication by elements from F is
continuous with respect to L, i.e., the scalar multiplication mapping m : F X L — L is continuous
in the second coordinate.

When the multiplication mapping m : F X L — L is continuous, then L is a topological vector
space over the field F. Some authors (cf., for example, (Rudin, 1991)) additionally demand that
the point 0 in a topological vector space is closed. This condition results in the Hausdorff topology
in topological vector spaces.
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In what follows, F stands either for the field R of all real numbers or for the field C of all
complex numbers or for a subfield of C that contains R, while 0 denotes the zero element of any
vector space.

Semitopological vector spaces are closely related to hypernorms and hyperseminorms.

Let R, be the set of all real hypernumbers and R}, be the set of all non-negative real hyper-
numbers (Burgin, 2012).

Definition 2.2.  a) A mapping ¢ : L — R is called a hypernorm if it satisfies the following
conditions:

N1 . For any x from L, g(x) = 0 if and only if x = 0.
N2 . g(ax) = |a| - g(x) for any x from L and any number a from F.

N3 . (the triangle inequality or subadditivity).

qg(x+y) < qg(x)+q(y) forany x and y from L

b) A vector space L with a norm is called a hypernormed vector space or simply, a hypernormed
space.

¢) The real hypernumber g(x) is called the hypernorm of an element x from the hypernormed
space L.

Note that norms in vector spaces coincide with hypernorms that take values only in the set of
real numbers.

Example 2.1. As it is proved in (Burgin, 2012), the set of all real hypernumbers R, is a hyper-
normed space where the hypernorm || - || is defined by the following formula:
If @ is a real hypernumber, i.e.,a = Hn(a;),c,, with @; € R for all i € w, then ||| = Hn(|a;|)ice-

Note that this hypernorm coincides with the conventional norm on real numbers but it is im-
possible get the same topology by means of a conventional finite norm.

Example 2.2. As it is proved in (Burgin, 2002), the set of all complex hypernumbers C,, of all
complex hypernumbers is a hypernormed space where the hypernorm || - || is defined by the fol-
lowing formula:

If @ is a complex hypernumber,i.e., @ = Hn(a;);e, With @; € C for all i € w, then |la|| =
Hn(la;))ice-

Note that this hypernorm coincides with the conventional norm on complex numbers but it is
impossible get the same topology by means of a conventional finite norm.
There are hypernormed spaces that are not normed spaces.

Example 2.3. The set C(RR, R) of all continuous real functions is a hypernormed space where the
hypernorm || - || is defined by the following formula:
If f: R — R, then ||f|| = Hn(a;);c, Where a; = max{|f(x)|;a; = [, i]}.
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At the same time, it is known that C(R, R) is not a normed space (Robertson & Robertson,
1964).
There are natural relations between hypernorms and semitopological vector spaces.

Theorem 2.1. Any hypernormed space is a Hausdorff semitopological vector space.

Proof. Let us consider a vector space L with a hypernorm ¢. Taking an element x from L and a
positive real number &, we define the neighborhood Oyx of x by the following formula

Owx={y€L; qlx—y) <k}l

At first, we show that the system of so defined neighborhoods determines a topology in L. To do
this, it is necessary to check the following neighborhood axioms (Kuratowski, 1966):

NB1. Any neighborhood of a point x € X contains this point.

NB2. For any two neighborhoods O,x and O,x of a point x € X, there is a neighborhood Ox of x
that is a subset of the intersection O;x N O x.

NB3. For any neighborhood Ox of a point x € X and a point y € Ox, there is a neighborhood Oy
of y that is a subset of Ox.

Let us consider a point x from X.
NB1: The point x belongs to O;x because g(x — x) = g(0) = 0 < k for any positive real number k.

NB2: Taking two positive real numbers k and &, we see that the intersection Ox N Opx = O;x also
is a neighborhood of x where / = min{k, h}.

NB3: Let y € Oyx. Then g(x — y) < k and by properties of real numbers, there is a positive real
number 7 such that g(x —y) < k — t. Then O,x C O;x. Indeed, if z € O,x, then g(y — 2) < t.
Consequently,

gqx-2)=q((x=-)+ Q-2 =<qgx-y)+qy—-2) < (k- +1=k.
It means that z € Oyx.

Thus, we have a topology in L, and this topology is Hausdorff because any hypernorm separates
points, i.e., if x # y, then g(x —y) # 0.

Now we show that addition is continuous and scalar multiplication is continuous in the second
coordinate with respect to this topology.

Let us consider a sequence {x;; i = 1,2, 3, ...} that converges to x, asequence {y;; i = 1,2,3,...}
that converges to y, and the sequence {z; = x; + y;; i = 1,2,3,...}. Convergence of these two se-
quences means that for any k > 0, there are a natural number » such that g(x; — x) < k for any i > n
and a natural number m such that g(y; — y) < k for any i > m. Then by properties of a hypernorm,
we have

qzi—(x+y) =q((xi+y)—(x+y) =q((xi—x) + (i =) < q(xi—x) +q(yi—y) <k+k =2k
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when i > max{n,m}. As k is an arbitrary positive real number, this means that the sequence
{zi=x;+y;i=1,2,3,...}. converges to x + y. Consequently, addition is continuous in L.
In addition, for any number a from F, we have

q(u; — ax) = q(ax; — ax) = q(a(x; — x)) < lalg(x; — x) < |alk

where u; = ax; . As k is an arbitrary positive real number and |a| is a constant, this means that
the sequence {u; = ax;; i = 1,2,3,...} converges to ax. Consequently, scalar multiplication is
continuous in the second coordinate. Theorem is proved. ]

Hypernormed spaces are also hypermetric spaces.
Definition 2.3. a) A mappingd : X X X — R is called a hypermetric (or a hyperdistance
function) in a set X if it satisfies the following axioms:
M1. For any x and y from X, d(x,y) = 0 if and only if x = y.
M2. (Symmetry). d(x,y) = d(y, x) for all x,y € X.
M3. (the triangle inequality or subadditivity).

d(x,y) <d(x,z) +d(z,y)forallx,y,z € X.

b) A set X with a hypermetric d is called a hypermetric space.

¢) The real hypernumber d(x, y) is called the distance between x and y in the hypermetric space
X.

Note that the distance between two elements in a hypermetric space can be a real number, finite
hypernumber or infinite hypernumber. When the distance between two elements of X is always a
real number, d is a metric.

Lemma 2.1.  a) A hypernorm q in a vector space L induces a hypermetric d, in this space.
b) If g is a norm in L, then d, is a metric.

Indeed, if ¢ : X — R is a hypernorm in L and x and y are elements from L, then we can define
d,(x,y) = q(x —y). Properties of a hypernorm imply that d, satisfies all axioms M1- M3. The
statement (b) directly follows from definitions.

Theorem 2.1 and Lemma 2.1 imply the following result.

Corollary 2.1. R, and C,, are hypermetric spaces.

It is interesting to find what hypermetrics in vector spaces are induced by hypernorms and what
metrics in vector spaces are induced by norms. To do this, let us consider additional properties of
hypermetrics and metrics.

Definition 2.4. A hypermetric (metric) in a vector space L is called linear if it satisfies the follow-
ing axioms:
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LM1. d(x +z,y+ z) = d(x,y) forany x,y,z € L.
LM2. d(ax,ay) = |a| -d(x,y) forall x,y € Landa € F.

Example 2.4. Let us take the space of all real numbers R as the space L. The natural metric in
this space is defined as d(x, y) = |x — y|. This metric is linear. Indeed,

dx+z,y+2) =[x+ -+ =|x-y =dx,y)

and
d(ax, ay) = lax — ay| = |a(x — y)| = la| - |x — y| = |a| - d(x, y).

Example 2.5. Let us take the two-dimensional real vector space R? as the space L. The natural
metric in this space is defined by the conventional formula

If x=(x;,x)andy=(y,y), then d(x,y) = V(x| — y1)> + (x — y2).

This metric is also linear. Indeed,

d(x+2,y+2) = V((x1 +21) = 01 + 20))% + (32 + 22) = (2 + 22))? = V(X1 = y1)? + (32 — y2)? = d(x, )

and

d(ax, ay) = y/(ax; —ay))? + (axz — ay,)> = a(x; = y1)* + @*(x, — y,)? =
= lal V(x1 = y1)? + (x2 — 2)? = la| - d(x, ).

Example 2.6. Let us take the two-dimensional real vector space R? as the space L. The natural
metric in this space is defined by the conventional formula

If x = (x;, x) and y = (y1,y2), thend(x,y) = (x; — y1)* + (x2 — y2)°.

This metric is not linear. Indeed, let us take x = (3,3), y = (1, 1), and a = 2. Then d(x,y) = 8,
while d(2x, 2y) = 32.

These examples show that there are linear metrics (hypermetrics) in vector spaces and there
are metrics (hypermetrics) in vector spaces that are not linear. The majority of popular metrics are
induced by norms and thus, they are linear as the following result demonstrates.

Theorem 2.2. A hypermetric d is induced by a hypernorm if and only if d is linear.

Proof. Necessity. Let us consider a vector space L with a hypernorm ¢g. By Lemma 2.1, it induces
the hypermetric d,(x, y) = g(x—y). Then d (x+2z,y+2) = g((x+2)(y+2)) = g(x—y) = d (x, ), i.e.,
Axiom LM1 is true. In addition, d (ax, ay) = g(ax—ay) = gla(x—y)) = |a|-q(x—y) = |a]-d,(x,y),
1.e., Axiom LM2 is also true.

Necessity. Let us consider a vector space L with a linear hypermetric d. We define the hyper-
norm ¢q by the following formula

ga(x) = d(0, x).
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We show that g4 is a hypernorm. Indeed, gq(0) = d(0, 0) = 0. Besides, if g,(x) = d(0, x) = 0,
then x = 0 by Axiom M1. This gives us Axiom N1 for gq.
In addition,

qga(ax) = d(0, ax) = d(a0, ax) = d(a(0,x)) = |al - d(0, x) = |al - ga(x)

by Axiom LM?2. This gives us Axiom N2 for gq.
Likewise, by Axioms M3 and LM1, we have

ga(x +y) = d(0,x +y) <d(0,x) + d(x, x +y) = d(0, x) + d(0,y) = ga(x) + ga(y).

This gives us the triangle inequality (Axiom N3) for gq.
Theorem is proved. ]

Corollary 2.2. A metric d is induced by a norm if and only if d is linear.
Taking only a part of the hypernorm properties, we come to the concept of a hyperseminorm.

Definition 2.5.  a) A mapping g : L — R is called a hyperseminorm if it satisfies the following
conditions:

N2. g(ax) = |a| - g(x) for any x from L and any number a from R.

N3. (the triangle inequality or subadditivity).

g(x +y) < g(x) + g(y) for any x and y from L.

b) A vector space L with a norm is called a hyperseminormed vector space or simply, a hyper-
seminormed space.

¢) The real hypernumber g(x) is called the hyperseminorm of an element x from the hyper-
seminormed space L.

d) A set X C L is called g - bounded if there is a positive real number % such that for any
element a from X, the inequality g(a) < A is true.

e) A setX C Lis called weakly g - bounded if there is a positive real hypernumber « such that
for any element a from X, the inequality g(a) < «a is true.

Note that any seminorm is a hyperseminorm that takes values only in the set of real numbers.

Proposition 2.1. If g : L — R is a hyperseminorm, then it has the following properties:

(1) g(x) >0 forany x € L.

(2) q(x—y) =q(y — x) for any x,y € L.
(3) q(0) =0.

(4) lg(x)g(y)l = g(x —y) for any x,y € L.
(5) q(x) — q(y) < q(x +y) for any x,y € L.



8 Mark Burgin/ Theory and Applications of Mathematics & Computer Science 3 (2) (2013) 1-35

Proof. (1) By Axiom N3, we have

q(x) + q(=x) 2 q(x + (=x)) = q(0).

At the same time, by N2, we have ¢(0) = 0 - g(0) = 0 and g(—x) = g(x). This gives us
q(x) + g(—=x) = g(x) + g(x) = 2g(x) = g(x + (-x)) = q(0) = 0

and thus, g(x) > 0.
(2) By Axiom N2, we have

gx=y)=q(-@—x) =1-1-g(y — x) = g(y — x).
(3) By Axiom N2, we have
q(0) = g(0-0) =10[- g(0) = 0.
(4) By Axiom N3, we have
qg(x) = glx —y+y) < gqlx—y) +qQ).

Thus,
q(x) = q(y) < g(x—y).

As g is symmetric (property (2)), we have
q(y) — q(x) < g(x — ).

Consequently,
lg(x) = g = g(x = y).
Property (5) is a consequence of property (4).
Proposition is proved. O

There are intrinsic relations between hyperseminorms and semitopological vector spaces.

Theorem 2.3. Any hyperseminormed space is a semitopological vector space, which is Hausdorff
if and only if it is a hypernormed space.

Proof. Let us consider a vector space L with a hyperseminorm ¢. Taking an element x from L and
a positive real number k, we define the neighborhood Oy x of x by the following formula

Owx={yeL;q(x—-y) <k}

To show that the system of so defined neighborhoods determines a topology in L, we check the
neighborhood axioms (Kuratowski, 1966).

NB1: The point x belongs to O,x because by Proposition 1, g(x — x) = g(0) = 0 < k for any
positive real number k.
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NB2: Taking two positive real numbers k and s, we see that the intersection Oyx N Oyx = Ox is
also a neighborhood of x where / = min{k, h}.

NB3: Let y € Oyx. Then g(x — y) < k and by properties of real numbers, there is a positive real
number ¢ such that g(x —y) < k — ¢. Then O,x C O;x. Indeed, if z € O,x, then g(y — 2) < t.
Consequently,

gqx-2)=qg((x-N+@-2)<qx-y)+qly-2) < (k-0 +t=k.

It means that z € Oyx.

Now we show that addition is continuous and scalar multiplication is continuous in the second
coordinate with respect to this topology.

Let us consider a sequence {x;; i = 1,2, 3, ...} that converges to x, asequence {y;; i = 1,2,3,...}
that converges to y, and the sequence {z; = x; + y;; i = 1,2,3,...}. Convergence of these two se-
quences means that for any k > 0, there are a natural number n such that g(x; — x) < k for any
i > n and a natural number m such that g(y; — y) < k for any i > m. Then by properties of a
hyperseminorm, we have

qzi—(x+y) =q((xi+y) —(x+y) = qg((xi —x) + (i —¥) < qg(x;i — x) + q(yi —y) < k+ k = 2k,

when i > max{n,m}. As k is an arbitrary positive real number, this means that the sequence
{zi=xi+y;i=1,2,3,...} converges to x + y. Consequently, addition is continuous in L.
In addition, for any number a from F, we have

q(u; — ax) = q(ax; — ax) = q(a(x; — x)) = lalg(x; — x) < lalk,

where u; = ax; . As k is an arbitrary positive real number and |a| is a constant, this means that
the sequence {i; = ax;; 1 = 1,2,3,...} converges to ax. Consequently, scalar multiplication is
continuous in the second coordinate.

By Theorem 2.2, if g is a hypernorm, then the space L is Hausdorff. At the same time, if g is
not a hypernorm, then there are x and y from L such that x # y but g(x — y) = 0. According to
definition, these points x and y cannot be separated in the topology defined above. Thus, the space
L is not Hausdorff.

Theorem is proved. [
Hyperseminormed spaces are also hyperpseudometric spaces.

Definition 2.6. A hyperpseudometric in a set X is a mapping d : X X X — R? that satisfies the
following axioms:

P1. d(x,y) =0if x =y,
1.e., the distance between an element and itself is equal to zero.
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M2. (Symmetry). d(x,y) = d(y, x) for all x,y € X,
i.e., the distance between x and y is equal to the distance between y and x.

M3. (the triangle inequality or subadditivity).

d(x,y) <d(x,2) +d(z,y) forallx,y,z € X.

When the distance between two elements of X is always a real number, d is a pseudometric
(Kuratowski, 1966).

Note that although it would look natural, we do not use terms semimetric and hypersemimet-
ric because according to the mathematical convention, semimetric is defined by a distance that
satisfies only axioms M1 and M2.

Lemma 2.2. a) A hyperseminorm in a vector space L induces a hyperpseudometric in this
space.

b) If q is a seminorm in L, then d, is a pseudometric.

Indeed, if ¢ : X X R is a hyperseminorm in L and x and y are elements from L, then we can
define d,(x,y) = g(x —y). Properties of a hyperseminorm imply that d, satisfies all axioms P1,
M2 and M3. In addition, if g takes values only in R, then the same is true for d, , i.e., d, is a
pseudometric.

It is interesting to find what hyperpseudometrics in vector spaces are induced by hypersemi-
norms and what pseudometrics in vector spaces are induced by seminorms. To do this, let us
consider additional properties of hypermetrics and metrics.

Definition 2.7. A hyperpseudometric (metric) in a vector space L is called linear if it satisfies the
Axioms LM1 and LM2.

Examples 2.4 - 2.6 show that there are linear pseudometrics (hyperpseudometrics) in vector
spaces and there are pseudometrics (hyperpseudometrics) in vector spaces that are not linear. The
majority of popular pseudometrics are induced by seminorms and thus, they are linear as the
following result demonstrates.

Theorem 2.4. A hyperpseudometric d is induced by a hyperseminorm if and only if d is linear.
Proof'is similar to the proof of Theorem 2.2.

Corollary 2.3. A pseudometric d is induced by a seminorm if and only if d is linear. We define the
kernel Ker g of a hyperseminorm q in L as

Kerg = {x € L; g(x) = 0}.

Theorem 2.5. The kernel Ker g of a hyperseminorm q in L is a vector subspace of L.
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Indeed, if g(x) = 0 and a € F, then by Axiom N2,
g(ax) = lal - g(x) =la| -0 =0
i.e., ax € Kerg. In addition, g(x) = 0 and g(y) = 0, then by Axiom N3,

gx+y)<qgx)+q(y)=0+0=0

and g(x + y) = 0 because by Proposition 2.1, g(x +y) > 0.

Theorem 2.5 allows factorization of the hyperseminormed space L by its subspace Ker g, ob-
taining the quotient space L, . The hyperseminorm ¢ induces the hypernorm p, in the space L, .
This gives us the natural projection 7 : L — L,, which preserves the hyperseminorm g.

Example 2.7. Let us consider the set C*(RR, R) of all smooth real functions. The following semi-
norms are considered in is the set C*(R, R). For each point a € R, and f € C*(R, R), we define

a(f) = (f@)* + (F (@) + (f" (@) + ... + (fPa).

The factorization of the space by its subspace Ker g is called the k - th order jet space JX(R, R)
of C*(R, R) at the point a. Jet spaces were introduced by Ehresmann (Ehresmann, 1952, 1953)
and have various applications in the theory of differential equations and differential relations, as
well as in the theory of manifolds (Gromov, 1986), (Krasilshchik et al., 1986).

It is possible to get the same quotient space using the following seminorm

m(f) = max{|f @, If' @), If"@),...,|fPw@l.

Let us consider a Hausdorff space X that is a quotient space of L with the projectionn : L — X,
preserves the hyperseminorm ¢g. Then it is possible to define a projection v : L, — X preserves the
hyperseminorm ¢ and for which n = v, i.e., the following diagram is commutative:

This gives us the following result.

Theorem 2.6. a) L, is the largest Hausdorff quotient space of the topological space L that
preserves the hyperseminorm q.

b) L, is the largest quotient space of the topological space L in which the hyperseminorm q
induces the hypernorm p,.

It is possible to define two basic operators in a vector space L.
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1. If z is an element from L, then the translation operator 7, is defined by the formula:

T,(x)=x+z wherex,z € L.

2. If a # O is an element from F, then the multiplication operator M, is defined by the formula:

M, (x) = ax where x € L.

Proposition 2.2. Operators T, and M, are homeomorphisms of the semitopological vector space
L.

Proof. The axioms of a vector space imply that 7, and M, are one-to-one mappings and their
inverses are 7_, and M_, , respectively. As addition is continuous in L, the operator 7, is also
continuous. As scalar multiplication is continuous with respect to L, the operator M, is also
continuous. Proposition is proved. O]

Corollary 2.4. The topology of a semitopological vector space L is translation-invariant, or sim-
ply invariant, i.e., a subset A from L is open if and only if any its translation A + a is open.

As aresult, such a topology is completely determined by any local base and thus, by any local
base at 0.
Let us consider two subsets K and C of a semitopological vector space L.

Theorem 2.7. If C is compact, K is closed and K N C = &, then 0 has a neighborhood V such
that
(K+V)n(C+V)=2a2.

Proof Proof is similar to the proof of Theorem 1.10 from (Rudin, 1991) because it uses only
the first property of semitopological vector spaces.

As topological vector spaces are special cases of semitopological vector spaces, Theorem 1.10
from (Rudin, 1991) is a corollary of Theorem 2.7.

In a topological space X, the weakest separation axiom is T (Kelly, 1955) where:

Ty (the Kolmogorov Axiom).Vx,y € X (A0x(y ¢ Ox) v ﬂOy(x ¢ Oy)).
Lemma 2.3. In a topological space X, all points are closed if and only if X satisfies the axiom T,.

Proof. Sufficiency. If X satisfies the axiom T, and x is a point from X, then each point from the
complement Cx of x has a neighborhood that does not contain x. Thus, all these neighborhoods
are subsets of Cx. By definition, Cx is an open set (Kuratowski, 1966) and consequently, its
complement x is a closed set.

Necessity. If x,y € X and the point x is closed, then y belongs to the complement Cx of x,
which is open as the complement of a closed set (Kuratowski, 1966). Thus, y has a neighborhood
Oy that is a subset of Cx. Consequently, Oy does not contain x. As points x and y are arbitrary, X
satisfies the axiom T.

Lemma is proved. O]
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We remind (Alexandroft, 1961) that T - spaces, or regular spaces, are topological spaces in
which satisfy Axiom Tj:

T; For every point a and closed set B, there exist disjoint open sets which separately contain a
and B.

It means that points and closed sets are separated.

Note that there are semitopological vector spaces in which not all points are closed. The
space R“ of all sequences of real numbers is an example of such a semitopological vector space.
Moreover, in R®, there are no closed points.

As a point is a compact space, Theorem 2.5 implies the following result.

Corollary 2.5. Every semitopological vector space L in which all points are closed is a regular
space.

Lemma 2.3 and Corollary 2.5 imply the following result.
Corollary 2.6. In semitopological vector spaces, L axiom T implies axiom T;.
As any regular space is a Hausdorff space (Alexandroff, 1961), we have the following result.

Corollary 2.7. Every semitopological vector space L in which all points are closed is a Hausdorff
space.

Lemma 2.3 and Corollary 2.7 imply the following result.
Corollary 2.8. In semitopological vector spaces, L axiom T implies axiom T,.

As both sets K + V and C + V in Theorem 2.7 are open, the closure of K + V does not intersect
C + V, while the closure of C + V does not intersect K + V. As any point a from L is a compact
space, we can take K = {a}. Applying Theorem 2.7 to this situation, we obtain the result, which
has a considerable interest according to (Rudin, 1991).

Corollary 2.9. Any neighborhood O, of any point a in a semitopological vector space L contains
the closure of some neighborhood V, of the same point a.

As topological vector spaces are special cases of semitopological vector spaces, Theorem 1.11
from (Rudin, 1991) is a corollary of Corollary 2.9.

3. Mappings of hyperseminormed vector spaces

Let us consider a hyperseminormed vector space L, i.e., a vector space L with a system of
hyperseminorms Q, a hyperseminormed vector space M with a system of hyperseminorms P, a
hyperseminorm ¢ from Q, a hyperseminorm p from P, and a subset V of the space L.

Vector spaces with systems of hyperseminorms (of hypernorms) will be called polyhypersemi-
normed spaces (polyhypernormed spaces) because vector spaces over R with systems of norms or
seminorms are called polynormed spaces (see (Helemski, 1989); (Dosi, 2011)).
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Definition 3.1.  a) An operator (mapping) A : L — M is called (g, p) - bounded at a point a
from L if for any positive real number £, there is a positive real number /4 such that for any
element b from L, the inequality g(a — b) < k implies the inequality p(A(b) — A(a)) < h.

b) An operator (mapping) A : L — M is called (g, p) - bounded if it is (g, p) - bounded at all
points of L.

¢) An operator (mapping) A : L — M is called V - uniformly (g, p) - bounded if for any positive
real number k, there is a positive real number 4 such that for any element a from V and any
element b from L, the inequality g(a — b) < k implies the inequality p(A(b) — A(a)) < h.

d) An operator (mapping) A : L — M is called uniformly (g, p) - bounded in V if for any
positive real number k, there is a positive real number £ such that for any elements a and b
from V, the inequality g(a — b) < k implies the inequality p(A(b) — A(a)) < h.

Note that when the set V contains only one point (say a), then V - uniform (g, p) - boundedness
coincides with (g, p) - boundedness at the point a.
Definitions imply the following result.

Lemma 3.1. Any uniformly (q, p) - bounded in L operator is L - uniformly (q, p) - bounded and
any L - uniformly (q, p) - bounded operator is (g, p) - bounded.

At the same time, as the following example demonstrates, there are (g, p) - bounded operators
that are not L - uniformly (g, p) - bounded.

Example 3.1. Let us take L = M = R and assume that g and p are both equal to the absolute
value, while A(x) = x*. This mapping (operator) is (g, p) - bounded but not L - uniformly (g, p) -
bounded.

However, for linear operators, the inverse of Lemma 3.1 is also true.
Proposition 3.1. The following conditions are equivalent for a linear operator (mapping) A:
(1) Ais(q,p) - bounded.
(2) A is uniformly (q, p) - bounded in L.
(3) For some point a, A is uniformly (q, p) - bounded at the point a.
(4) Ais L - uniformly (q, p) - bounded.

Proof. Implications (2) = (1) = (3) directly follow from definitions. So, we need to prove only
(3) = (2), namely, if A : L — M is (g, p) - bounded at a point a from L, then it is uniformly
(g, p) - bounded.

Let us consider another point b from L and assume that g(b — ¢) < k for some ¢ from L. Then
taking d = ¢ — (b — a), we have

gla-d)=qgla-(c—(b-a)=qb-c)<k.
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As A is (g, p) - bounded at a, there is a positive real number £ such that p(A(a) — A(d)) < h.
As A is linear operator, we have

P(A(D) = A(c)) = p(A(b = ¢)) = p(Ala = (c = (b — a)) = p(Aa - d)) = p(A(a) — A(d)) < h.

This shows that A is (g, p) - bounded at the point b because c is an arbitrary point for which
q(b — ¢) < k. Thus, A is uniformly (g, p) - bounded in L because for a fixed number k, we have the
same number 4 for all points in L.

In addition, we see that by definition, properties (2) and (4) always coincide.

Proposition is proved. []

Corollary 3.1. A linear operator (mapping) A is (q, p) - bounded if and only if it is (q, p) - bounded
at 0.

The above proof of Proposition 3.1 gives us the following result.

Corollary 3.2. Any (g, p) - bounded linear operator (mapping) A : L — M is L - uniformly
(g, p) - bounded.

These results show that for linear operators, the concepts of a (g, p) - bounded at a point
operator and of a (g, p) - bounded operator coincide.
For operators that are not linear, these results are true as the following examples demonstrate.

Example 3.2. Let us assume that L = M = R,, is the space of all real hypernumbers (cf. Ex-
ample 2.1), while both hyperseminorms q and p are both equal to the absolute value || - || of real
hypernumbers. Actually the absolute value || - || is a norm in the space R, (Burgin, 2012).

For the operator A, we define A(x) = x for all real hypernumbers x but the hypernumber
v = Hn(i);e, and put A(v) = 1. Then [[y—=(v+1)|| = L but |[A(v)—A(v+ D) = [[1-(v+ Dl ==V
and this hypernumber is larger than any positive real number (Burgin, 2012). Thus, operator A is
(g, p) - bounded at any real number but it is not (g, p) - bounded at the hypernumbers v.

This shows that an operator can be (g, p) - bounded at one point and not (g, p) - bounded at
another point of L.

Example 3.3. Let us take L = M = C(R,R), while the space C(R,R) of all continuous real
functions is a hypernormed space (cf. Example 2.1) where the hypernorm || - || is defined by the
following formula:

If f: R — R, then||f|| = Hn(a;)ic, Where a; = max{|f(x)|; a; € [—i,1]}.

We define A(f) = f for all real functions f but the function v(x) = x? and put A(x?) = e(x)
where e(x) = 1 for all x € R. This operator A is (g, p) - bounded at any constant function from L
but it is not (g, p) - bounded at v. At the same time, taking u(x) = x*> + 1, we have ||y — ul| = 1,
while [|[A(v) — A(u)|| = |le — ul| = Hn(i),e, and this hypernumber is larger than any positive real
number (Burgin, 2011).
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This also shows that an operator can be (g, p) - bounded at one point and not (g, p) - bounded
at another point of L.

However, for norms and seminorms, we do not need additional conditions to establish the
result of Proposition 3.1.

Proposition 3.2. If g is a seminorm, then an operator (mapping) A : L — M is (q, p) - bounded if
and only if it is (q, p) - bounded, at least, at one point.

Proof. Let us consider two points a and ¢ from L and assume that an operator A : L — M is
(g, p) - bounded at the point a. Then taking a point b such that g(c — b) < u where u is a positive
real number.

As ¢ is a seminorm, g(a — ¢) is equal to some positive real number w. Thus, by properties of
seminorms, we have

ga-b)y=qla—c+c—-b)<qgla—c)+qglc—b)<w+u.

As the operator A is (¢, p) - bounded at the point @ and g(a —c¢) < w+ 1, we have a positive real
number 4 such that p(A(a) — A(b)) < h and a positive real number k such that p(A(a) — A(c)) < k.

Consequently,
P(A(c) = A(D)) < p(A(a) — A(c)) + p(A(a) — A(b)) <k + h.

As b is an arbitrary point from L, A is (g, p) - bounded at the point c.
As c 1s an arbitrary point from L, the operator A is (g, p) - bounded.

Proposition is proved. []
Proposition 3.2 implies the following results.

Corollary 3.3. The concepts of a (q, p) - bounded at a point operator and of a (q, p) - bounded
operator coincide when q is a seminorm.

Note that Examples 3.2 and 3.3 show this is not true for the general case of hyperseminorms.

Corollary 3.4. When q is a seminorm, an operator (mapping) A is (q, p) - bounded if and only if
it is (q, p) - bounded at 0.

The above proof of Proposition 3.2 gives us the following result.

Corollary 3.5. If q is a seminorm, then any (q, p) - bounded operator (mapping) A : L — M is
L - uniformly (q, p) - bounded.

Proposition 3.3. If g is a seminorm and there is a (q, p) - bounded operator (mapping) A of the
linear space L onto the linear space M, then p is a finite hyperseminorm.
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Proof. Let us take a point u from M. As A is a projection (surjection), there are points a and b such
that A(a) = 0 and A(D) = u. As g is a seminorm, g(b — a) is less than some positive real number w.
As the operator A is (g, p) - bounded, there is a positive real number 4 such that p(A(a) —A(D)) < h

p(u) = p(u—0) = p(A(b) — A(a)) < h.

As u is an arbitrary point from M, the hyperseminorm p is finite.

Proposition is proved. O]

Note that a finite hyperseminorm is not always a seminorm and a finite hypernorm is not always
a norm.

Definition 3.2. (Burgin, 2012). A real hypernumber is called monotone is it has a monotone
representative.

For instance, all real numbers are monotone hypernumbers (Burgin, 2012). At the same time,
all finite monotone real hypernumbers are real numbers (Burgin, 2012). Thus, Proposition 3.3
implies the following result.

Corollary 3.6. If g is a seminorm, there is a (q, p) - bounded operator (mapping)A of the linear
space L onto the linear space M and all values of p are monotone hypernumbers, then p is a
seminorm.

Definitions imply the following results.

Lemma 3.2. [f W C V C L, then any V - uniformly (q, p) - bounded operator is W - uniformly
(g, p) - bounded and any uniformly (q, p) - bounded in V operator is uniformly (g, p) - bounded in
w.

Lemma 3.3. Any V - uniformly (q, p) - bounded operator is (q, p) - bounded in V.

Let us consider a binary relation u between the system of hyperseminorms Q, the system of
hyperseminorms P and a subset V of the space L.

Definition 3.3.  a) An operator (mapping) A : L — M is called (Q, u, P) - bounded at a point a
from L if for any hyperseminorms ¢ and p such that (g, p) € u, the operator (mapping) A is
(g, p) - bounded at the point a.

b) An operator (mapping) A : L — M is called V - uniformly (Q,u, P) - bounded if for any
hyperseminorms ¢ and p with (g, p) € u and any positive real number k, there is a positive
real number £ such that for any element a from V and any element b from L, the inequality
q(a — b) < k implies the inequality p(A(b) — A(a)) < h.

¢) An operator (mapping) A : L — M is called uniformly (Q, u, P) - bounded in V if for any
hyperseminorms g and p with (g, p) € u and any positive real number k, there is a positive
real number £ such that for any elements a and b from V, the inequality g(a — b) < k implies
the inequality p(A(b) — A(a)) < h.
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d) An operator (mapping) A : L — M is called (Q, u, P) - bounded if it is (Q, u, P) - bounded
at all points of L.

It means that an operator (mapping) A is (Q, u, P) - bounded if for any hyperseminorms g and
p such that (g, p) € u, the operator (mapping) A is (g, p) - bounded.

Note that when the set V contains only one point (say a), then V - uniform (Q, u, P) - bound-
edness coincides with (Q, u, P) - boundedness at the point a.

Lemma 3.1 implies the following result.

Lemma 3.4. Any uniformly (Q, u, P) - bounded operator in L is L - uniformly (Q, u, P) - bounded,
while any L - uniformly (Q, u, P) - bounded operator is (Q, u, P) - bounded.

At the same time, taking L = M = R, Q = {g}, P = {p}, and assuming that g and p are both
equal to the absolute value and u = {(q, p)}, we see that Example 3.1 demonstrates that there are
(Q, u, P) - bounded operators that are not L - uniformly (Q, u, P) - bounded.

However, for linear operators, the inverse of Lemma 3.4 is also true because Proposition 3.1
implies the following result.

Proposition 3.4. The following conditions are equivalent for a linear operator (mapping) A:
(1) Ais (Q,u,P) - bounded.
(2) A is uniformly (Q, u, P) - bounded in L.
(3) For some point a, A is uniformly (Q, u, P) - bounded at the point a.
(4) Ais L - uniformly (Q, u, P) - bounded.

Corollary 3.7. A linear operator (mapping) A is (Q, u, P) - bounded if and only if it is (Q, u, P) -
bounded at 0.

Corollary 3.2 implies the following result.

Corollary 3.8. Any (Q, u, P) - bounded linear operator (mapping) A : L — M is L - uniformly
(Q, u, P) - bounded.

These results show that for linear operators, the concepts of a (Q, u, P) - bounded at a point
operator and a (Q, u, P) - bounded operator coincide.

At the same time, taking L = M = R, Q = {q}, P = {p}, and assuming that ¢ and p are both
equal to the absolute value and u = {(q, p)}, we see that Examples 3.2 and 3.3 demonstrate that
there are operators that are (Q, u, P) - bounded at one point and not (Q, u, P) - bounded at another
point.

However, for norms and seminorms, we do not need additional conditions to establish the
result of Proposition 3.4. We remind that the definability domain of the relation u is defined as

Du = {q; there is a pair (g, p) that belongs to u}.

Then Proposition 3.2 implies the following result.
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Proposition 3.5. If all g from the definability domain Du of u are seminorms, then an operator
(mapping) A : L — M is (Q, u, P) - bounded if and only if it is (Q, u, P) - bounded, at least, at one
point.

Proposition 3.5 implies the following result.

Corollary 3.9. The concepts of (Q, u, P) - bounded at a point operators and (Q, u, P) - bounded
operator coincide when all q from the definability domain Du of u are seminorms.

Note that Examples 3.2 and 3.3 show this is not true for the general case of hyperseminorms.

Corollary 3.10. When all q from the definability domain Du of u are seminorms, an operator
(mapping) A is (Q, u, P) - bounded if and only if it is (Q, u, P) - bounded at 0.

The above proof of Proposition 3.2 gives us the following result.

Corollary 3.11. If all q from the definability domain Du of u are seminorms, then any (Q, u, P) -
bounded operator (mapping) A : L — M is L - uniformly (Q, u, P) - bounded.

Proposition 3.3 implies the following result.

Proposition 3.6. If all q from the definability domain Du of u are seminorms and there is a
(Q, u, P) - bounded operator (mapping) A of the linear space L onto the linear space M, then
all p from the range Rg u of u are finite hyperseminorms.

Corollary 3.12. If all q from the definability domain Du of u are seminorms and there is a
(Q, u, P) - bounded operator (mapping) A of the linear space L onto the linear space M, and all
values of all p from the range Rg u are monotone hypernumbers, then all such p are seminorms.

Definitions imply the following results.

Lemma 3.5. I[f W C V C L, then any V - uniformly (Q, u, P) - bounded operator is W - uniformly
(g, p) - bounded and any uniformly (Q, u, P) - bounded in V operator is uniformly (q, p) - bounded
inW.

Lemma 3.6. Any V - uniformly (Q, u, P) - bounded operator is (Q, u, P) - bounded in V.
Let us take a subset V of the space L.

Definition 3.4. a) An operator (mapping) A : L — M is called uniformly (Q, u, P) - bounded at
a point a from L if for any positive real number k, there is a positive real number £ such that
for any hyperseminorms ¢ and p with (g, p) € u, and any element b from L, the inequality
q(a — b) < k implies the inequality p(A(b) — A(a)) < h.

b) An operator (mapping) A : L — M is called u - uniformly (Q,u, P) - bounded if it is
uniformly (Q, u, P) - bounded at all points of L.
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¢) An operator (mapping) A : L — M is called u - uniformly (Q, u, P) - bounded in V if for any
positive real number k, there is a positive real number /4 such that for any hyperseminorms ¢
and p with (g, p) € u, and any elements a and b from V, the inequality g(a — b) < k implies
the inequality p(A(b) — A(a)) < h.

d) An operator (mapping) A : L — M is called uV - uniformly (Q, u, P) - bounded in V if for
any positive real number k, there is a positive real number 4 such that for any hypersemi-
norms ¢ and p with (¢, p) € u, and any elements a from V and b from L, the inequality
q(a — b) < k implies the inequality p(A(b) — A(a)) < h.

Asking whether any (Q, u, P) - bounded at a point operator (mapping) is uniformly (Q, u, P) -
bounded at the same point, we find that the answer is negative.

Example 3.4. Let us take L = M = C(R,RR), while the space C(R,R) of all continuous real
functions. It is possible (Burgin, 2012) for all real numbers x, to define seminorms g, = pp: by
the following formula

dpix(f) = Ppix(f) = | f(X)].

We define A(f) = xf(x) for all real functions f and u = {(gp> Ppix); X € R}. Taking the
function f(x) = x as the point a from L, we see that A(f) = x%. Thus, taking some positive real
number k, e.g., k = 1, the corresponding h from Definition 3.2 always exists but it grows with the
growth of x. For instance, when k = 1, we have

gpn (f — &) < 1 implies p,(A(f) — A(g)) = ppn(xf —xg) < L.

At the same time, gp10(f — g) < 1 does not imply p,10(A(f) — A(g)) < 1. It only implies
Ppiio(A(f) — A(®)) = ppuo(xf — xg) < 10. This means that for any pair (¢, ppx) of seminorms
and a number k, we need to find a specific number # to satisfy Definition 3.3 a. Consequently, the
operator A is (Q, u, P) - bounded at f but it is not uniformly (Q, u, P) - bounded at f.

The same example shows that there are (Q, u, P) - bounded operators that are not uniformly
(O, u, P) - bounded.

It is also possible to ask whether Propositions 3.4 and 3.5 remain true for uniformly (Q, u, P) -
bounded operators. In this case, the answer is positive.

Proposition 3.7. If all g from the definability domain Du of the relation u are seminorms, then
an operator (mapping) A : L — M is uniformly (Q, u, P) - bounded if and only if it is uniformly
(Q, u, P) - bounded, at least, at one point.

Indeed, Proposition 3.7 is a direct corollary of Proposition 3.5 because any uniformly (Q, u, P) -
bounded at a point operator is (Q, u, P) - bounded at the same point and any uniformly (Q, u, P) -
bounded operator is (Q, u, P) - bounded.

Proposition 3.7 implies the following result.

Corollary 3.13. The concepts of uniformly (Q, u, P) - bounded at a point operators and uniformly
(Q, u, P) - bounded operators coincide when all q from the definability domain Du of u are semi-
norms.
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Note that Examples 3.2 and 3.3 show this is not true for the general case of hyperseminorms.

Proposition 3.8. If all g from the definability domain Du of u are seminorms and there is a uni-
formly (Q, u, P) - bounded operator (mapping) A of the linear space L onto the linear space M,
then all p from the range Rg u of u are finite hyperseminorms.

Indeed, Proposition 3.8 is a direct corollary of Proposition 3.6 because any uniformly (Q, u, P) -
bounded operator is (Q, u, P) - bounded.

Corollary 3.14. If all g from the definability domain Du of u are seminorms and there is a uni-
formly (Q, u, P) - bounded operator (mapping) A of the linear space L onto the linear space M,
and all values of all p from the range Rg u are monotone hypernumbers, then all such p are
seminorms.

Definitions imply the following results.

Lemma 3.7.  a) Any uniformly (Q, u, P) - bounded at a point a operator A is (Q, u, P) - bounded
at the point a.

b) Any u-uniformly (Q, u, P) - bounded operator A is ((Q, u, P) - bounded.
Lemma 3.8. Any u-uniformly (Q, u, P) - bounded in L operator is u-uniformly (Q, u, P) - bounded.

At the same time, taking L = M = R, Q = {q}, P = {p}, and assuming that hyperseminorms ¢
and p are both equal to the absolute value and u = {(g, p)}, we see that Example 3.1 demonstrates
that there are u-uniformly (Q, u, P) - bounded operators that are not uniformly (Q, u, P) - bounded
because if Q has only one hyperseminorm ¢, P also has only one hyperseminorm p and u is a
complete relation, then any (Q, u, P) - bounded operator is u-uniformly (Q, u, P) - bounded.

However, for linear operators, this is impossible as Proposition 3.1 allows us to prove the
following result.

Proposition 3.9. The following conditions are equivalent for a linear operator (mapping) A:
(1) A is u-uniformly (Q, u, P) - bounded.
(2) A is u-uniformly (Q, u, P) - bounded in L.
(3) For some point a, A is uniformly (Q, u, P) - bounded at the point a.

Proof. Implications (2) = (1) = (3) directly follow from definitions. So, we need to prove only
3) = (2), namely, if A : L — M is uniformly (Q, u, P) - bounded at a point a from L, then it is
uniformly (Q, u, P) - bounded in L.

Let us consider another point b from L, take two hyperseminorms g and p with (g, p) € u, and
assume that g(b — ¢) < k for some ¢ from L. Then taking d = ¢ — (b — a), we have

ga—d) =qla—-(c—=(b—-a))=qb-c) <k
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As A is uniformly (Q, u, P) - bounded at a, it is also (g, p) - bounded at a. Thus, there is a
positive real number 4 such that p(A(a) — A(d)) < h. As A is linear operator, we have

p(A(D) = A(c)) = p(A(b - ¢)) = p(Ala = (¢ = (b — a)))) = p(Ala — d)) = p(A(a) — A(d)) < h.

This shows that A is (g, p) - bounded at the point b because c is an arbitrary point for which
q(b — ¢) < k and thus, A is u-uniformly (Q, u, P) - bounded because g and p are arbitrary hyper-
seminorms with (¢, p) € u. In addition, A is uniformly (g, p) - bounded in L because for a fixed
number k, we have the same number /4 for all points in L.

Proposition is proved. O]

Corollary 3.15. A linear operator (mapping) A : L — M is u-uniformly (Q, u, P) - bounded if and
only if it is uniformly (Q, u, P) - bounded at 0.

Corollary 3.2 implies the following result.

Corollary 3.16. Any u-uniformly (Q,u, P) - bounded linear operator (mapping) A is u-uniformly
(Q,u, P) - bounded in L.

These results show that for linear operators, different types of uniformly bounded operators
coincide.

Proposition 3.10. If the relation u is finite, then an operator (mapping) A : L — M is uniformly
(Q, u, P) - bounded (at a point a) if and only if it is (Q, u, P) - bounded (at the point a).

Proof. As any uniformly (Q, u, P) - bounded (at a point a) operator is (Q, u, P) - bounded (at the
same point), we need only to show that when the relation u is finite, a (Q, u, P) - bounded (at a
point a) operator A : L — M is uniformly (Q, u, P) - bounded (at the point a). At first, we consider
local boundedness.

Indeed, by Definition 3.3, for any hyperseminorms g and p such that (g, p) € u, the operator
(mapping) A is (g, p)-bounded at the point a, that is, by Definition 3.1, the following condition is
true:

Condition 1. For any positive real number k, there is a positive real number % such that for any
element b from L, the inequality g(a — b) < k implies the inequality p(A(b) — A(a)) < h.

This number £ can be different for different pairs (g, p), but because u is finite, there is only a
finite number of these pairs. So, we can take

| = max{h; h satisfies Condition 1 for a pair (g, p) € u}

and this number / will satisfy the condition from Definition 3.4. Thus, the operator A is uniformly
(Q, u, P) - bounded at the point a.

The global case is proved in a similar way.

Proposition is proved. ]
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Corollary 3.17. If systems of hyperseminorms Q and P are finite, then an operator (mapping) A
is uniformly (Q, u, P) - bounded (at a point a) if and only if it is (Q, u, P) - bounded (at the point
a).

Now let us study different types of continuity in polyhyperseminormed vector spaces.

Definition 3.5.  a) An operator (mapping) A : L — M is called (g, p) - continuous at a point a
from L if for any positive real number k, there is a positive real number /4 such that for any
element b from L, the inequality g(a — b) < h implies the inequality p(A(b) — A(a)) < k.

b) An operator (mapping) A : L — M is called (g, p) - continuous if it is (g, p) - continuous at
all points of L.

¢) An operator (mapping) A : L — M is called uniformly (q, p) - continuous in V C L if for
any positive real number k, there is a positive real number /4 such that for any elements a and
b from V, the inequality g(a — b) < h implies the inequality p(A(b) — A(a)) < k.

d) An operator (mapping) A : L — M is called V - uniformly (q, p) - continuous if for any
positive real number k, there is a positive real number 4 such that for any element a from
V € L and any element b from L, the inequality g(b — a) < h implies the inequality p(A(b) —
A(a)) < k.

Note that when the set V contains only one point (say a), then V - uniform (q, p) - continuity
coincides with (g, p) - continuity at the point a. Besides, to be L - uniformly (q, p) - continuous or
to be uniformly (Q, u, P) - continuous in L means the same for all operators.

Definitions imply the following results.

Lemma 3.9. Forany V C L, any V - uniformly (q, p) - continuous operator is (q, p) - continuous
inV.

Lemma 3.10. Any L - uniformly (q, p) - continuous operator is (q, p) - continuous.

At the same time, as the following example demonstrates, there are (g, p) - continuous opera-
tors that are not L - uniformly (g, p) - continuous.

Example 3.5. Let us take L = M = R and assume that g and p are both equal to the absolute

value, while A(x) = x>. This mapping (operator) is (g, p) - continuous but not L - uniformly

(g, p) - continuous.
However, for linear operators, the inverse of Lemma 3.9 is also true.
Proposition 3.11. The following conditions are equivalent for a linear operator (mapping) A:
(1) Ais(q, p) - continuous.
(2) A is uniformly (q, p) - continuous in L.

(3) For some point a, A is uniformly (q, p) - continuous at the point a.
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(4) Ais L - uniformly (q, p) - continuous.

Proof. Implications (2) = (1) = (3) directly follow from definitions. So, we need to prove only
(3) = (2), namely, if A : L — M is (q, p) - continuous at a point a from L, then it is uniformly
(g, p) - continuous in L.

Let us consider a positive real number k. Then because A is (g, p) - continuous at the point
a, there is a positive real number 4, such that the inequality g(a — b) < h implies the inequality
P(A(b) — A(a)) < k.

Let us take another point b from L and assume that g(b—c) < h for some ¢ from L. Then taking
d = c— (b-a), we have

gla-d)=qa—(c—(b—-a))=qb-c)<h
As A is (g, p) - continuous at a, we have p(A(a) — A(d)) < k. As A is linear operator, we have
P(A(D) — A(c)) = p(A(b - ¢)) = p(A(a — (c — (b — a)))) = p(A(a — d)) = p(A(a) — A(d)) < k.

This shows that A is (g, p) - continuous at the point b because c is an arbitrary point for which
q(b — ¢) < h. Thus, A is uniformly (g, p) - continuous in L because for a fixed number k, we have
the same number /4 for all points in L.

In addition, we see that by definition, properties (2) and (4) always coincide.

Proposition is proved. ]

Corollary 3.18. A linear operator (mapping) A is (g, p) - continuous if and only if it is (q, p) -
continuous at 0.

The above proof of Proposition 3.4 gives us the following result.

Corollary 3.19. Any (q, p) - continuous linear operator (mapping) A : L — M is L - uniformly
(g, p) - continuous.

These results show that for linear operators, the concepts of (g, p) - continuous at a point
operators and (g, p) - continuous operators coincide.

For operators that are not linear, these results are not true as the following examples demon-
strate.

Example 3.6. Let us take L = M = R, (cf. Example 2.1) and assume that ¢ and p are both equal

to the absolute value || - || of real hypernumbers. We define A(x) = x for all real hypernumbers x
but the hypernumber v = Hn(i);c,, and put A(v) = 1. Then ||y —(v+ 1)|| = 1 but [[A(v) —A(v+ 1)|| =
[T = (v+ 1| = |lvll = v and this hypernumber is larger than any positive real number (Burgin,

2012). Thus, operator A is (g, p) - continuous at any real number but it is not (g, p) - continuous at
V.

This shows that an operator can be (g, p) - continuous at one point and not (g, p) - continuous
at another point of L and thus not (g, p) - continuous in L, as well as not L - uniformly (g, p) -
continuous.
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Example 3.7. Let us take L = M = C(R,R), while the space C(R,R) of all continuous real
functions is a hypernormed space (cf. Example 2.1) where the hypernorm || - || is defined by the
following formula:

If f:R — R, then ||f|| = Hn(a;);c, Where a; = max{|f(x)|;a; € [—i,i]}.

We define A(f) = f for all real functions f but the function v(x) = x* and put A(x?) = e(x)
where e(x) = 1 for all x € R. This operator A is (g, p) - continuous at any constant function from
L, but it is not (g, p) - continuous at v. At the same time, taking u(x) = x>+ 1, we have |[v—u|| = 1,
while [[A(v) — A(u)|| = |le — ul| = Hn(i);e, and this hypernumber is larger than any positive real
number (Burgin, 2012).

This also shows that an operator can be (g, p) - continuous at one point and not (g, p) - con-
tinuous at another point of L and thus not (g, p) - continuous in L, as well as not L - uniformly
(g, p) - continuous.

Definitions imply the following result.

Lemma 3.11. I[f W C V C L, then any V - uniformly (q, p) - continuous operator is W - uniformly
(g, p) - continuous.

Now let us consider continuity with respect to a binary relation u between systems of hyper-
seminorms.

Definition 3.6.  a) An operator (mapping) A : L — M is called (Q, u, P) - continuous at a point
a from L if for any hyperseminorms ¢ and p such that (g, p) € u, the operator (mapping) A
is (¢, p) - continuous at the point a.

b) An operator (mapping) A : L — M is called (Q, u, P) - continuous if it is (Q, u, P) - contin-
uous at all points of L.

¢) An operator (mapping) A : L — M is called uniformly (Q, u, P) - continuous in V C L if for
any hyperseminorms ¢ and p such that (g, p) € u and any positive real number k, there is a
positive real number £ such that for any elements a and b from V, the inequality g(a—b) < h
implies the inequality p(A(b) — A(a)) < k.

d) An operator (mapping) A : L — M is called V - uniformly (Q, u, P) - continuous if for any
hyperseminorms ¢ and p such that (g, p) € u and for any positive real number k, there is a
positive real number 4 such that for any element a from V C L and any element b from L,
the inequality g(b — a) < h implies the inequality p(A(b) — A(a)) < k.

Note that to be L - uniformly (Q, u, P) - continuous or to be uniformly (Q, u, P) - continuous in
L means the same for all operators.
Lemma 3.10 implies the following result.

Lemma 3.12. Any uniformly (Q, u, P) - continuous in L operator is (Q, u, P) - continuous.
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At the same time, taking L = M = R, Q = {q}, P = {p}, and assuming that g and p are both
equal to the absolute value and u = {(q, p)}, we see that Example 3.5 demonstrates that there are
(Q, u, P) - continuous operators that are not L - uniformly (Q, u, P) - continuous.

However, for linear operators, the inverse of Lemma 3.12 is also true as Proposition 3.11
implies the following result.

Proposition 3.12. The following conditions are equivalent for a linear operator (mapping) A:
(1) Ais (Q,u,P) - continuous.
(2) A is uniformly (Q, u, P) - continuous in L.
(3) For some point a, A is uniformly (Q, u, P) - continuous at the point a.
(4) Ais L - uniformly (Q, u, P) - continuous.

Corollary 3.20. A linear operator (mapping) A is (Q, u, P) - continuous if and only if it is (Q, u, P) -
bounded at 0.

Corollary 3.19 implies the following result.

Corollary 3.21. Any (Q, u, P) - continuous linear operator (mapping) A : L — M is L - uniformly
(Q, u, P) - continuous.

These results show that for linear operators, the concepts of (Q, u, P) - continuous at a point
operators and (Q, u, P) - continuous operators coincide.

At the same time, taking L = M = R, O = {q}, P = {p}, and assuming that g and p are
both equal to the absolute value of real hypernumbers and u = {(g, p)}, we see that Example 3.6
demonstrates that there are operators that are (Q, u, P) - continuous at one point and not (Q, u, P) -
continuous at another point. A similar situation is also presented in Example 3.7.

Definitions and Lemma 3.10 imply the following result.

Lemma 3.13. I[f W C V C L, then any V - uniformly (Q,u, P) - continuous operator is W -
uniformly (Q, u, P) - continuous.

Lemma 3.9 imply the following result.

Lemma 3.14. For any V C L, any V - uniformly (Q, u, P) - continuous operator is (Q,u, P) -
continuous in V.

Let us study relations between relative continuity and relative boundedness.

Theorem 3.1. A linear operator (mapping) A : L — M is (Q, u, P) - continuous if and only if it is
(Q, u, P) - bounded.



Mark Burgin/ Theory and Applications of Mathematics & Computer Science 3 (2) (2013) 1-35 27

Proof. Sufficiency. Let us consider a (Q,u, P) - bounded linear operator (mapping) A : L —
M and suppose that A is not (Q, u, P) - continuous. It means that for some pair (¢, p) € u of
hyperseminorms ¢ and p, the operator A is not (g, p) - continuous. By Corollary 3.9, A is not
(g, p) - continuous at 0. Consequently, there is a positive real number k such that for any natural
number 7, there is an element x,, from L for which g(x,) < 1/n while p(A(x,)) > k.

Let us consider the set Z = {z,;n =1,2,3,...} where z, = n-x, foralln = 1,2,3,... Then

Q(Zn) = Q(n : xn) =n-: q(-xn) < L

1.e., Z is a g - bounded set. At the same time, as A is a linear operator, we have

p(A(z,) = p(A(n - x,)) = n - p(A(x,)) > kn.

Thus, the image of Z is not a p - bounded set and A is not a (Q, u, P) - bounded operator. This
contradicts our assumption and by reductio ad absurdum, A is (Q, u, P) - continuous.

Necessity. Let us consider a (Q, u, P) - continuous linear operator (mapping) A : L — M and
suppose that A is not (Q, u, P) - bounded. It means that for some pair (¢, p) € u of hyperseminorms
q and p, the operator A is not (g, p) - bounded. By Corollary 3.3, A is not (g, p) - bounded at 0.
Consequently, there is a positive real number k such that for any natural number #n, there is an
element x, from L for which g(x,) < k while p(A(x,)) > n.

Let us consider the setZ = {z,,; n = 1,2,3,...} where z, = (1/n)-x, foralln = 1,2,3,... Then

9(zy) = q((1/n) - x,) = (1/n) - q(x,) < k/n.

It means that the sequence {z,; n = 1,2,3,...} g - converges to 0.
At the same time, as A is a linear operator, we have

P(A(zp)) = p(A((1/n) - x,)) = (1/n) - p(A(x,)) > k.

It means that the sequence {A(z,); n = 1,2,3,...} does not p - converge to 0. This violates
conditions from Definition 3.5 and shows A is not a (Q, u, P) - continuous operator. Thus, we have
a contradiction with our assumption that A is a (Q, u, P) - continuous operator. By reductio ad
absurdum, A is (Q, u, P) - bounded.

Theorem is proved. [

Corollary 3.22. A linear operator (mapping) A : L — M is (q, p) - continuous if and only if it is
(g, p) - bounded.

Corollary 3.22 implies the following result.

Corollary 3.23. A linear operator (mapping) A : L — M is L - uniformly (Q, u, P) - continuous if
and only if it is L - uniformly (Q, u, P) - bounded.

As topology of topological vector spaces is determined by system of seminorms (Rudin, 1991),
Theorem 3.1 gives us the following classical result ((Dunford & Schwartz, 1958); (Rudin, 1991)).
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Corollary 3.24. A linear mapping A of a topological vector space L into a topological vector
space M is continuous if and only if it is bounded.

As for linear operators (mappings) continuity at a point coincides with continuity and bound-
edness at a point coincides with boundedness, we have the following results.

Corollary 3.25. A linear operator (mapping) A : L — M is (g, p) - continuous at a point a if and
only if it is (q, p) - bounded at a.

Corollary 3.26. A linear operator (mapping) A : L — M is (Q, u, P) - continuous at a point a if
and only if it is (Q, u, P) - bounded at a.

Let us take a vector subspace V of L and consider uniform (Q, u, P) - continuity in V.

Theorem 3.2. A linear operator (mapping) A : L — M is uniformly (Q, u, P) - continuous in V if
and only if it is uniformly (Q, u, P) - bounded in V.

Proof. Sufficiency. Let us consider a vector subspace V of L and a uniformly (Q, u, P) - bounded in
V linear operator (mapping) A : L — M and suppose that A is not uniformly (Q, u, P) - continuous
in V. It means that for some pair (g, p) € u of hyperseminorms ¢ and p, the operator A is not
uniformly (g, p) - continuous. Consequently, there is a positive real number k such that for any
natural number 7, there are elements x, and y, from V for which ¢g(x, —y,) < 1/n while p(A(x,) —
A(yn)) > k.

Let us consider two sets Z = {z,; n=1,2,3,...}and U = {u,; n=1,2,3,...} where z, = n- x,
andu, =n-y,foralln =1,2,3,... As Vis a vector subspace of L, then Z and U are subsets of V.
Besides,

Q(Zn _un) = Q(n'xn —”')’n) = Q(n (x, _yn)) = I’Z'Q(Xn _yn) <L

It means that the set {z, —u,,; n = 1,2,3,...} is g - bounded.
At the same time, as A is a linear operator, we have

p(A(Zn - un)) = P(A(”l cXp— R yn)) =n- p(A(xn) - A(yn)) > kn.

It means that the set {A(z, —u,); n = 1,2,3,...} is not p - bounded. Thus, A is not a uniformly
(Q,u, P) - bounded in V operator. This contradicts our assumption and by reductio ad absurdum,
A is uniformly (Q, u, P) - continuous in V.

Necessity. Let us consider a uniformly (Q, u, P) - continuous in V linear operator (mapping)
A : L — M and suppose that A is not uniformly (Q, u, P) - bounded in V. It means that for some
pair (g, p) € u of hyperseminorms g and p, the operator A is not uniformly (g, p) - bounded in V.
By Corollary 3.3, A is not (g, p) - bounded in V at 0 as V is a vector subspace of L. Consequently,
there is a positive real number k such that for any natural number 7, there is an element x, from V
for which g(x,) < k while p(A(x,)) > n.

Let us consider the setZ = {z,; n =1,2,3,...} where z, = (1/n) - x, foralln = 1,2,3,... Then

9(z,) = q((1/n) - x,) = (1/n) - q(x,) < k/n.

It means that the sequence {z,; n = 1,2,3,...} g - converges to 0.
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At the same time, as A is a linear operator, we have

P(A(zn)) = p(A((1/n) - x,)) = (1/n) - p(A(x,)) > k.

It means that the sequence {A(z,); n = 1,2,3,...} does not p - converge to 0. This violates
conditions from Definition 3.5 and shows A is not a uniformly (Q, u, P) - continuous in V operator.
Thus, we have a contradiction with our assumption that A is a uniformly (Q, u, P) - continuous in
V operator. By reductio ad absurdum, A is uniformly (Q, u, P) - bounded in V.

Theorem is proved. O]

Corollary 3.27. For any vector subspace V of L, a linear operator (mapping) A : L — M is
uniformly (q, p) - continuous in 'V if and only if it is uniformly (g, p) - bounded in V.

As before, V is a vector subspace of L and we study V - uniform (Q, u, P) - continuity.

Theorem 3.3. A linear operator (mapping) A : L — M is V - uniformly (Q, u, P) - continuous if
and only if it is V - uniformly (Q, u, P) - bounded.

Proof. Sufficiency. Let us consider a vector subspace V of L and a V - uniformly (Q,u, P) -
bounded linear operator (mapping) A : L — M and suppose that A is not V - uniformly (Q, u, P) -
continuous. It means that for some pair (g, p) € u of hyperseminorms ¢ and p, the operator A is
not V - uniformly (g, p) - continuous. Consequently, there is a positive real number k such that
for any natural number #, there are elements x,, from V and y, from L for which g(x, —y,) < 1/n
while p(A(x,) — A(y,)) > k.

Let us consider two sets Z = {z,; n =1,2,3,...}and U ={u,; n=1,2,3,...} where z, = n - x,
andu, =n-y,foralln =1,2,3,... As Vis a vector subspace of L, then Z is a subset of V. Besides,

q(Zn_un):Q(n'xn_n'yn):q(n'(xn_yn)):n'Q(xn_yn)< L.

It means that the set {z,, — u,; n = 1,2,3,...} is g - bounded.
At the same time, as A is a linear operator, we have

p(A(Zn - un)) = P(A(”l *Xp— R yn)) =n- P(A(Xn) - A(yn)) > kn.

It means that the set {A(z, — u,); n = 1,2,3,...} is not p - bounded. Thus, A is not a V - uni-
formly (Q, u, P) - bounded operator. This contradicts our assumption and by reductio ad absurdum,
A is V - uniformly (Q, u, P) - continuous.

Necessity. Let us consider a V - uniformly (Q, u, P) - continuous linear operator (mapping)
A : L — M and suppose that A is not V - uniformly (Q, u, P) - bounded. It means that for some
pair (¢, p) € u of hyperseminorms g and p, the operator A is not V - uniformly (g, p) - bounded.
By Corollary 3.3, A is not (g, p) - bounded at 0. Consequently, there is a positive real number
k such that for any natural number n, there is an element x, from L for which g(x,) < k while
P(A(xy)) > n.

Let us considerthe setZ = {z,; n = 1,2,3,...} where z, = (1/n)-x, foralln =1,2,3, ... Then

9(z,) = q((1/n) - x,) = (1/n) - q(x,) < k/n.
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It means that the sequence {z,; n = 1,2,3,...} g - converges to 0.
At the same time, as A is a linear operator, we have

P(A(zn)) = p(A((1/n) - x,)) = (1/n) - p(A(x,)) > k.

It means that the sequence {A(z,); n = 1,2,3,...} does not p - converge to 0. This violates
conditions from Definition 3.6 and shows A is not a V - uniformly (Q, u, P) - continuous operator.
Thus, we have a contradiction with our assumption that A is a V' - uniformly (Q, u, P) - continuous
operator. By reductio ad absurdum, A is V - uniformly (Q, u, P) - bounded.

Theorem is proved. L

Corollary 3.28. For any subset V of L, a linear operator (mapping) A : L — M is V - uniformly
(g, p) - continuous if and only if it is V - uniformly (g, p) - bounded.

Let us take a subset V of the space L.

Definition 3.7.  a) Anoperator (mapping) A : L — M is called uniformly (Q, u, P) - continuous
at a point a from L if for any positive real number k, there is a positive real number /4 such
that for any hyperseminorms g and p with (g, p) € u, for any element b from L, the inequality
q(a — b) < h implies the inequality p(A(b) — A(a)) < k.

b) An operator (mapping) A : L — M is called u - uniformly (Q,u, P) - continuous if it is
uniformly (Q, u, P) - continuous at all points of L.

¢) An operator (mapping) A : L — M is called u - uniformly (Q, u, P) - continuous in V if for
any positive real number k, there is a positive real number 4 such that for any elements a
and b from V and any hyperseminorms ¢ and p with (g, p) € u, the inequality g(a — b) < h
implies the inequality p(A(b) — A(a)) < k.

d) An operator (mapping) A : L — M is called uV - uniformly (Q, u, P) - continuous if for any
positive real number £, there is a positive real number / such that for any elements a from V
and b from L, and any hyperseminorms g and p with (g, p) € u, the inequality g(a — b) < h
implies the inequality p(A(b) — A(a)) < k.

Note that to be uL - uniformly (Q, u, P) - continuous or to be u - uniformly (Q, u, P) - continuous
in L means the same for all operators.

It it possible to ask a question how u - uniform (Q, u, P) - continuity is connected to (Q, u, P) -
continuity. The following example and Lemma 3.5 clarify this situation.

Example 3.8. Let us take L = M = C(R,RR), while the space C(R,R) of all continuous real
functions. It is possible (Burgin, 2012) for all real numbers x, to define seminorms g, = pp: by
the following formula

dpix(f) = Ppir(f) = |f(X)].

We define A(f) = xf(x) for all real functions f and u = {(gp, Pprx); X € R}. Taking the
function f(x) = x as the point a from L, we see that A(f) = x2. Thus, taking some positive real
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number k, e.g., k = 1, the corresponding / from Definition 3.2 always exists but it decreases with
the growth of x. For instance, when k = 1, we have

gpn(f — &) < 1 implies p,1(A(f) — A(g)) = ppn(xf —xg) < 1.

At the same time, g,;10(f — g) < 1 does not imply p,10(A(f) — A(g)) < 1. It only implies

Pp1olA(f)—A(8)) = ppno(xf—xg) < 10. To have pp10(A(f)—A(g)) < 1, we need g,n0(f—g) < 0.1,
It means that for any pair (g, pp) of seminorms and a number k, we need to find a specific

number /4 to satisfy Definition 3.7.a. Consequently, the operator A is (Q, u, P) - continuous at f = x
but it is not uniformly (Q, u, P) - continuous at f.

The same example shows that there are (Q, u, P) - continuous operators that are not « - uni-
formly (Q, u, P) - continuous.
Definitions imply the following result.

Lemma 3.15. a) Any uniformly (Q,u, P) - continuous at a point a operator A is (Q,u, P) -
continuous at the point a.

b) Any u - uniformly (Q, u, P) - continuous operator A is (Q, u, P) - continuous.

Lemma 3.16. Any u - uniformly (Q, u, P) - continuous in L operator is u - uniformly (Q, u, P) -
continuous.

For linear operators, the inverse of Lemma 3.15 is also true.
Proposition 3.13. The following conditions are equivalent for a linear operator (mapping) A:
(1) A is u - uniformly (Q, u, P) - continuous.
(2) Ais u - uniformly (Q, u, P) - continuous in L.
(3) For some point a, A is uniformly (Q, u, P) - continuous at the point a.
(4) A is uL - uniformly (Q, u, P) - continuous.

Corollary 3.29. A linear operator (mapping) A is u - uniformly (Q, u, P) - continuous in L if and
only if it is (Q, u, P) - continuous at 0.

Corollary 3.20 implies the following result.

Corollary 3.30. Any u - uniformly (Q, u, P) - continuous linear operator (mapping) A : L — M is
u - uniformly (Q, u, P) - continuous in L.

These results show that for linear operators, the concepts of uniformly (Q, u, P) - continuous
at a point operators and u - uniformly (Q, u, P) - continuous operators coincide.

At the same time, taking L = M = R, QO = {gq}, P = {p}, and assuming that ¢ and p are
both equal to the absolute value of real hypernumbers and u = {(g, p)}, we see that Example 3.6
demonstrates that there are operators that are (Q, u, P) - continuous at one point and not (Q, u, P) -
continuous at another point. A similar situation is also presented in Example 3.7.

Definitions and Lemma 3.9 imply the following result.
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Lemma 3.17. If W C V C L, then any u - uniformly (Q,u, P) - continuous in V operator is
u - uniformly (Q, u, P) - continuous in W.

For finite relations u, different concepts of uniform continuity coincide.

Proposition 3.14. If the relation u is finite, then, an operator (mapping) A : L — M is u -
uniformly (Q, u, P) - continuous (u - uniformly (Q, u, P) - continuous at a point a) if and only if it
is (Q, u, P) - continuous ((Q, u, P) - continuous at a point a).

Proof. As any u - uniformly (Q, u, P) - continuous (« - uniformly (Q, u, P) - continuous at a point
a) operator is (Q, u, P) - continuous ((Q, u, P) - continuous at the same point), we need only to
show that when the relation u is finite, a (Q, u, P) - continuous (at a point a) operator A : L —» M
is uniformly (Q, u, P) - continuous (at the point a). At first, we consider local boundedness.

Indeed, by Definition 3.6, for any hyperseminorms g and p such that (g, p) € u, the operator
(mapping) A is (g, p) - continuous at the point a, that is, by Definition 3.4, the following condition
is true:

Condition 2. For any positive real number k, there is a positive real number £ such that for any
element b from L, the inequality g(a — b) < h implies the inequality p(A(b) — A(a)) < k.

This number £ can be different for different pairs (g, p), but because u is finite, there is only a
finite number of these pairs. So, we can take

[ = min{h : h satisfies Condition 2 for a pair (g, p) € u},

and this number / will satisfy the condition from Definition 3.7 Thus, the operator A is u - uni-
formly (Q, u, P) - continuous at the point a.

The global case is proved in a similar way.

Proposition is proved. ]

Corollary 3.31. If systems of hyperseminorms Q and P are finite, then an operator (mapping) A
is uniformly (Q, u, P) - continuous if and only if it is (Q, u, P) - continuous.

There are connections between uniform with respect to systems of hyperseminorms continuity
and uniform boundedness that are similar to the connections between nonuniform with respect to
systems of hyperseminorms continuity and nonuniform boundedness described in Theorems 3.1 -
3.3. Namely, we have the following results.

Theorem 3.4. A linear operator (mapping) A : L — M is uniformly (Q, u, P) - continuous at a
point a if and only if it is uniformly (Q, u, P) - bounded at a.

Proof is similar to the proof of Theorem 3.1.
Let us take a vector subspace V of the space L.

Theorem 3.5. A linear operator (mapping) A : L — M is u - uniformly (Q, u, P) - continuous in
V if and only if it is u - uniformly (Q, u, P) - bounded in V.

Proof is similar to the proof of Theorem 3.2.

Theorem 3.6. A linear operator (mapping) A : L — M is uV - uniformly (Q, u, P) - continuous if
and only if it is uV - uniformly (Q, u, P) - bounded.

Proof is similar to the proof of Theorem 3.3.
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4. Conclusion

Semitopological vector spaces are introduced and studied. Semitopological vector spaces are
more general than conventional topological vector spaces, which have been very useful for solving
many problems in functional analysis. Thus, we come to the following problems.

Problem 1. Study topology in semitopological vector spaces.

Problem 2. Study applications of semitopological vector spaces.

In addition, hypernorms and hyperseminorms are introduced and studied. In this paper, it is
demonstrated that hyperseminormed and hypernormed spaces are semitopological vector spaces.

These results bring us to the following problems.

Problem 3. Study what kinds of topology it is possible to define with systems of seminorms,
hypernorms or hyperseminorms.

It is proved (cf. (Rudin, 1991)) that systems of seminorms characterize locally convex spaces
and thus, there are topological vector spaces topology in which is not defined by systems of semi-
norms. It is possible to ask if the same is true for semitopological vector spaces. Namely, we have
the following problem.

Problem 4. Is the topology in a semitopological vector space always defined by a system of
seminorms?

In this paper, hypermetrics and hyperpseudometrics are also introduced and it is demonstrated
that hyperseminorms induce hyperpseudometrics, while hypernorms induce hypermetrics. Suffi-
cient and necessary conditions for a hyperpseudometric (hypermetric) to be induced by a hyper-
seminorm (hypernorm) are found. Hyperpseudometrics and hypermetrics define definite topolo-
gies in vector spaces.

Problem 5. Study what kinds of topology it is possible to define with hyperpseudometrics and
hypermetrics.

In this paper, boundedness and continuity are defined relative to systems of hyperseminorms
or hypernorms. Inclusion of hyperseminorm sets is reflected in the strength of corresponding
topologies, namely, the larger is the set Q of hyperseminorms (hypernorms), the weaker topology
it defines. In such a way, we obtain a definite scalability of spaces ((Burgin, 2004); (Burgin, 2006))
with systems of hyperseminorms (hypernorms), coming to the following problem.

Problem 6. Study scalability of topological spaces defined by systems of hyperseminorms and
hypernorms.

Topological vector spaces provide an efficient context for the development of integration (Cho-
quet, 1969); (Edwards & Wayment, 1970); (Shuchat, 1972); (Kurzweil, 2000).

Problem 7. Study integration in semitopological (polyhyperseminormed) vector spaces.

At the same time, integration and hyperintegration in bundles with a hyperspace base are de-
fined and studied in (Burgin, 2010) where the hyperspace is built by means of seminorms. The
goal of this paper is to provide a base for developing the theory of extrafunction spaces in an ab-
stract setting of algebraic systems and topological spaces, where integration plays an important
role (Burgin, 2012). So, we naturally come to the following problem.

Problem 8. Study integration and hyperintegration in bundles with a hyperspace base where
the hyperspace is built by means of hyperseminorms.
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It is possible to define norms and seminorms with values not only in number or hypernumber
spaces but in more general spaces, e.g., operator spaces.

Problem 9. Study vector spaces that have norms or/and seminorms with values in general
spaces.

Problem 10. Study continuity of non-linear operators in (mappings of) polyhyperseminormed
(semitopological) vector spaces.

Here we have proved (Theorem 2.3) that any hyperseminormed vector space is a semitopolog-
ical vector space. It would be interesting to find if a more general statement is also true.

Problem 11. Is any polyhyperseminormed vector space a semitopological vector space?

Thus, the theory of semitopological vector spaces opens many new opportunities for research
in mathematics.
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Abstract
The main aim of this paper is to define the generalized difference double sequence spaces ,W/(M, |l., ..., .||, AnL D),
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1. Introduction

The notion of ideal convergence was introduced first by Kostyrko et-al- (Kostyrko ez al., 2000)
as an interesting generalization of statistical convergence (Khan & Tabassum, 2012) which was
further studied in topological spaces. A family I C 2¥ of subsets of a nonempty set Y is said to be
an ideal in Y if

1. 0 el
2. A,Belimply AUBE€ I,
3. Ael,BCAimply Be I,

while an admissible ideal I further satisfies {x} € I for each x € Y (Kostyrko et al., 2000, 2005;
Savas, 2010).

Given I c 2" be a nontrivial ideal in N. Let X be a normed space. The sequence (x;) in X is said
to be I — convergent to ¢ € X, if for each & > 0 the set A(e) = {j € N : ||x; — &|| > &} belongs to 1
(Khan & Tabassum, 2010).

*Corresponding author
Email addresses: vakhanmaths@gmail.com (Vakeel A. Khan), sabihatabassum@math.com (Sabiha
Tabassum)
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The concept of 2-normed spaces was initially introduced by Gahler (Gihler, 1963) in the mid
of 1960’s as an interesting nonlinear generalization of a normed linear space. Since then, many
researchers have studied this concept and obtained various results, see for instance (Gunawan &
Mashadi, 2001; Khan & Tabassum, 2010; Savas, 2010).

Recall (Khan & Tabassum, 2012) that an Orlicz Function is a function M : [0, c0) — [0, c0)
which is continuous, nondecreasing and convex with M(0) = 0, M(x) > O for x > 0 and M(x) —
oo, as x — oo. If convexity of M is replaced by M(x+y) < M(x)+ M(y), then it is called a Modulus
funtion (Maddox, 1986).

Let w be the space of all sequences. Lindenstrauss and Tzafriri (Lindenstrauss & Tzafiri, 1971)
used the idea of Orlicz sequence space. Let

Iy = {xew: E M(@)<oo, for some p>0}
Jol
k=1

is Banach space with respect to the norm

[ee)

xllyy := inf {p >0: ) M(@) < 1}.
k=1 P
Orlicz function has been studied by V. A. Khan (Khan, 2008a,b) and many others.
Let n € N and X be a real vector space of dimension d, where n < d. An n-norm on X is a

function [|., ..., .]| : X X X X ... X X = R which satisfies the following four conditions:

1. ||lx1, x2, ..., X,|| = 0 if and only if xy, x5, ..., x,, are linearly dependent,
2. ||x1, x2, ..., X,|| 1s invariant under permutation,

3. laxy, X2, .y X, = lll|x1, X2, ...y X,||, for any @ € R,

4. ||x+ X', X0, ey Xull S 1%, X0y ooy Xl + 11X, X2,y 2ens X

The pair (X, ||., ., ..., .]|) is called an n-normed space (Savas, 2011).

Example 1.1. (see (Savas, 2011)). As a standard example of a n-normed space we may take R"
being equipped with the n-norm ||x, x3, ..., X,||z = the volume of the n-dimensional parallelopiped
spaned by the vectors xi, x3, ..., X,—1, X, Which may be given explicitly by the formula

(X1, X2) e (X1, Xp)
121, X2, oo Xalle = |
Ky X1) e Xy X)
where (., .) denotes inner product.
Example 1.2. (see (Savas, 2011)). Let (X, ||, ., ..., .|[) be an n-normed space of dimensiond > n > 2
and {ay, ay, ...,a,} be a linearly independent set in X. Then the following function ||., ., ..., .||« de-

fined by

llx1, X2, ooy X1, Xalloo = max{llxy, xo, ..o Xpops @il 1 i =1,2, ..., n}
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defines an (n — 1)—norm on X with respect to {a;, a, ..., a,}.

Definition 1.1. (see (Savas, 2011)). A sequence (x;) in an n-normed space (X, ||., ., ..., .||) is said to
be converge to some L € X in the n-norm if

lim ||x; = L, x1, ..., Xx,—1]| = 0, for every xi, ..., x,-1 € X.
Jj—oo0
Example 1.3. (see (Khan & Tabassum, 2010)). A sequence (x;) in an n-normed space (X, ||., ., ..., .|)
is said to be Cauchy with respect to the n-norm if
_lkim lx; = x¢, X1, ..., Xpi1ll = O, for every xi, ..., x,-1 € X.
‘]’ —00

If every Cauchy sequence in X converges to some L € X, then X is said to be complete with respect
to the n-norm. Any complete n-normed space is said to be n-Banach space.

Let w, [, c and ¢y denote the spaces of all, bounded, convergent and null sequences x = (x)
with complex terms, respectively, normed by

lIxIl = sup |xl.
k
Kizmaz (Kizmaz, 1981), defined the difference sequences /.,(A), c(A) and cy(A) as follows:

Z(A) = {x = (x) : (Axy) € Z},

for Z = I, ¢ and ¢(, where Ax = (Ax;) = (xy — x341), for all k € N,
The above spaces are Banach spaces, normed by

[Ixlla = 1] + sup |Ax].
k

The notion of difference sequence spaces was generalized by Et. and Colak (Et & Colak, 1995) as
follows:

Z(A") = {x = (%) : (A"xp) € Z},

for Z = I, c and ¢(, where n € N, (A"x;) = (A" 'x; — A" 'x;41) and so that

n - 1 n
A'xe= (=1 (V) Xier-
v=0

In 2005, Tripathy and Esi (Tripathy & Esi, 2006), introduced the following new type of difference
sequence spaces:

ZA) ={x=(p)ew:A,xeZ}, forZ =1,,c and ¢y

where A,,x = (A, xr) = (X — Xgem), for all k € N.
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Later on, Tripathy, Esi and Tripathy (B. C. Tripathy & Tripathy, 2005), generalized the above
notions and unified these as follows:
Let m, n be non negative integers, then for Z a given sequence space we have

ZA)) ={x=(x) ew: (AL xi) € Z}

where A x = (A} x;) = (AZ[lxk - AZ[lkarm) and A7 x; = x; for all k € N. The difference operator
is equivalent to the binomial representation

n C Vv n
Anx =Y (=1 (v) Koy
v=0

A paranorm is a function g : X — R which satisfies the following axioms:
For any x,y, xp € X, 4,4 € C:

(i) g0 =0;
(i) g(x) = g(-x);
(iii) g(x +y) < g(x) +g(»)
(iv) the scalar multiplication is continuous, that is 4 — Ay, x — xo imply Ax — Apxo.

Throughout, a double sequence x = (xj) is a double infinite array of elements x . for j, k € N.
Double sequences have been studied by V. A. Khan and S. Tabassum (Khan & Tabassum, 2012;
V. & Tabassum, 2011; Khan & Tabassum, 2011, 2010), Moricz and Rhoades (Moricz & Rhoades,
1952) and many others.

Definition 1.2. (see (Khan & Tabassum, 2010)). A double sequence space X is said to be Solid
(Normal), if (ajxjy) € X whenever (xj) € X and for all double sequence (aj) of scalars with
laj| < 1forall j k€ N.

2. Main Results

In 2010 E. Savas (Savas, 2010) introduced certain new sequence spaces using ideal conver-
gence in 2-normed spaces. Later on V. A. Khan and S. Tabassum (Khan & Tabassum, 2010)
introduced similar kind of double sequence spaces using difference operator in 2-normed spaces.
In this paper we generalized these sequence spaces in n-normed spaces.

Let p = (pjx) be any bounded sequence of positive numbers, m, n be non-negative integers and
let I be an admissible ideal of N. Let ,W(n — X) be the space of X-valued double sequence spaces

defined over a n-normed space (X, [|., ..., .|[). Then for an Orlicz function M we define the following
sequence spaces:
WM., .. I, AL, p) = {x = (xjx) € 2, W(n - X) : Ve > 0 the set {(j, kye NXN :
. Afnxjk —L Pjk
.lklm (M(' ———— 215225 > Tn—1 )) > s} el, forsomep >0,L € X, 21,20, ..., 201 € X}.
Jk—00 p

WM,y o [l AL, p) = {x = (x) € 2 W(n—X) : Y& > 0 the set{(j, K eNXN:
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A x;
. Jjk
lklin (M(H n;) 5Z15%25 +09 Zn—1
.]’ s

Pjk
)) > 8} € I, forsome p > 0,z1,22, ..., 201 € X}.

WM, ||y ..oy I AL p) = {x = (x3) € ,W(n—X): 3K > 0 sit. {(j, k)€ NN :

Z&n.X'k D jk
sup (M(‘ ";OJ 220205 ees Tnol )) > K} € 1, for some p > 0,21,22, ..., Zn-1 € X}
k=1
where
-1 -1 -1 -1
(Anxj) = (A Xje = N Xjsrke — A Xjgwr + A Xji1 k1)
and

(A2 x;) = xy forall jkeN,
which is equivalent to the following binomial representation:

n

Anmxjk = Z an(_l)uw (Z) (:) X jtmufe+my -

u=0 v=0

and AXj; = Xjx — Xjr1x — Xjke1 + Xjrl kel

The following inequality will be used throughout the paper. Let p;; be a double sequence of

positive real numbers with 0 < py < suppy = H, and let D = max{1,27"'}. Then for the
ik

factorable sequences (a ;) and (bj) in the éomplex plane, we have
laj + bul™ < D(lap|™ + |bjl|**)
Theorem 2.1. If {A}, xj, 21, 22, ..., Zn—1} is a linearly independent set in (X.||., ..., .||) for all but finite

J, k where x = (xj) € ;W(n — X) and ir_1kfpjk > 0, then
Js

P jk
)] =0, for every p > 0,

Jk—o0

. . Al Xk
(i) lim [M(”’T/,ZuZz,-.-,Zn—l

Aﬁx]'k—L

Gi) lim [M(

Jk—o0

Djk
32> 22 eees Tn1 )] < oo, for every p > 0.

Proof. (i). Assume that {A} x i, 21, 22, ..., Z,-1} 1S a linearly independent set in (X.||., ..., .||) for all but
finite j, k. Then we have ||A} x i, 21, 22, ..., 21|l = 0 as j,k — oo.
Since M is continuous and 0 < pjx < sup pjx < oo, for each j, k, we have

n
AL X ji

lim [M( » 215225 voes Ln—1

Jk—o0

P jk
)] =0, for every p > 0.
(ii). Proof of this part is similar to part (i). O

Theorem 2.2. ;W (M, ||., ..., |l AL, p), 2W (M, I, ..., I, AL, p) and s WL (M, ||, ..., .|I, AL, p) are lin-
ear spaces.
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Proof. We prove the assertion for zWé(M, II., ..., .|l, A%, p) the others can be proved similarly. As-
sume that x = (xy) and y = (y) € 2W/(M, |l., ..., .|I, A%, p) and @, B € R, s0

m>

A x; Pk
{(j, k) e NXN : _lkim (M( a jk,zl,ZZ, vees Zne1 )) > 8} € I, for some p; > 0, 2.1
Jk—00 pl
. ) ALY Pk
{(], KENXN: lim (M(| 21 2 s T )) > s} €1, forsomep, >0, (2.2
Jk—00 p2

Since ||., ..., .|| is a n-norm, and M is an Orlicz function the following inequality holds:

n p‘]k
. Am ((yxjk +ﬁyjk)
J,lklinoo (M( W9 L1525 405 Zn—1 ))
Pijk
. lalor Anxji
< DJ’lklinoo [Ialp1+|ﬁ|pz M( o1 0 1525 +e09 n—1 )]
+D Tim [ ez gy i " 2.3)
koo | 1001 +1B2 pr %12 %2s e Tnml '
. Pk
S DF lklin [M( Ar:)“lvjk’ L1532 +++5 An—1 H)]
j’ oo
n,,. pjk
+DF _lkim [M(‘ Ar;zjk’zl’Z%---’Zn—l )]
‘], —00
where
F = max [1 ( il )H ( &l )H] 2.4)
\ap + Blo2/ "\ap; + 1Blp2

From the above inequality, we get

{(j,k)eNxN: lim (M(

Jik—00

Pjk
A axj+An By jk
W,ZDZ% ooy Zn1 ZE

n ... P jk
C {(j, kye Nx N : DF Alkim (M( A’;;’l"",zl,zZ, ces Tnl )) > §} (2.5)
‘/, —00
n.,. Djk
Gk € NxN 2 DF Tim (M(| 42, 21,25,z )] 2 5
Jok—00 P2
The sets on the right hand side belong to 7 and this completes the proof. ]

Theorem 2.3. For any fixed (j,k) € N x N, ;WL(M,||., ..., |l, A%, p) is paranomed space with
respect to the paranorm defined by:

n
AL X ji

Je

Pik\
)) ) s1,vZ1,z2,...,zn_1eX}. (2.6)

Pk
g(x) = mkf {p/f : (sup (M(‘ 5 %1522, ---,Zn—l‘
Js

Jk>1

Proof. (i) x = 6 implies that then ||0, z, 25..., Z,-1]| = 0 since the set containing O is linearly depen-
dent. Also M(0) = 0 implies that g(6) = 0.
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(i) g(x) = g(=x)

(iif) Letx = (xp),y = jp) € 2WL(M, Il.s oo, [l A, )

m?

" Pk
Then there exists p;, p> > 0 such that: sup (M(HA’;T’k, 21,22, ...,zn_l‘ )) <1 and
k=1
Ay Pjk
s]l(’lp (M(’ ijk’Z19Z2’ ey Zn—l )) S 1 (2.7)
=1
for each 71,22, ..., 2,-1 € X.
Let p = p; + p2. Then by convexity of Orlicz function we have:
sup M M’ 215225 o9 Zn—1 < plll-)i-lpz SupM Ail)fjk7Z17Z29“'7Zn—l
jk>1 jk=1 (2.8)
=22 ) sup M(|| 222 71 20,z .
oitpn j’kZPl 0 215825 e Zn—1 | |-
Apxji+Any ;i Pik
Thus sup M( o o 22 eees Zn] ) < 1 and hence
IS p1+p2
. Pjk AT X i Djk
glx+y) < 1]11kf{p1” : sup (M( ’;l’ 3 215225 wees Tn—1 )) < 1}
g k=1
o (xrys pi (2.9)
+1Jr:1kf{,o2 ]S]l(lzpl (M( oy 2215225 e Tn1 )) < 1}.
The arbitrary p; and p, implies that g(x +y) < g(x) + g(y).
(iviLeta > 0and g(x" —x) > 0 (n — o)
) Jo # A ax i Pjk
gax) = 1nf{(m) . sup (M( 21 Zas s T )) < 1}. (2.10)
k=1
O

Theorem 2.4. Let M, M, M,, be Orlicz functions. Then we have

(i) ZWé(Mla ”a (LX) ||, Anm’ p) - ZWé(M © Mla ”’ seey ||’ Azﬂ p)
provided (p ) is such that Hy = inf p . > 0.
(ii) ZWé(Mla ”a ceey ”’ Azp p) N ZWé(M29 ”9 ceey ”a AZp P) - ZWé(Ml + MZ’ ”9 ceesy ”9 A:;, P)

Proof. (i). For given &£ > 0, first choose &y > 0 such that max{sg’ ,8310} < &. Now using the

continuity of M choose 0 < 6 < 1 such that 0 < ¢ < ¢, implies that M(z) < &, Let (x3) €
WMy, |, .II, A, p). Now by definition:

. A} X ji Pjk -
A® ={GR e Nx N Tim (M| =2 2z )) 207} er @)
J, —00
Thus if (j, k) ¢ A(9) then
A%xjk P H .
(Ml( 321522 eves n—1 )) <7, V],kEN. (2.12)
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[l

Hence from above using continuity of M we must have

That is .
A

P jk
5Z15%25 +oe5 An—1 )) < 6a V]ak S N (213)

X jk Pk
M(Ml( 2215225 ooes Tn—1 )) < &, VjkeN (2.14)
Which consequently implies that
Al x; Pk
lim [M(Ml( 220 e Tt ))] < max{ell, ) < . (2.15)
], —00

This shows that

n
Amx]'k

{(j, k) e NXN : _kim [M(Ml( 3215225 w5 Tn-1

‘]’ —00

))]pjk > s} C A) (2.16)

and so belongs to 1. This completes the result.
(ii)' Let -xjk € ZWé(Ml’ ”’ ceey ”, Anma p) N ZWé(MZ’ ”a cees ||a A:lna p)
Then the fact that

" 1273 n Dk
) Alx; . AlLx;
lim [(Ml +M2)( e 21322y wees Zne m <D lim [Ml(H_mxjk,ZlaZZ,--‘,Zn—l )]
koo , il oo g (2.17)
. Al x; / '
+D lklm |:M2(‘ njoxjk’Zl’ZZV“’Zn—l )] .
‘/’ —00

This gives the result. O

Theorem 2.5. The sequence space ;Wi(M, |l., ..., Il AL, p), s WL(M, |I., ..., II, A}, p) are Solid.

m?

Proof. We give the proof for zWé(M, II., ..., .|I, A}, p) only.
Let (x) € ZWé(M, Il., ..., .Il, A}, p) and let (@) be a double sequence of scalars such that
laj| < 1 forall j,k € N. Then we have

A (@ jix jx)

{(j,k)eNxN: lim [M( 215 225 oor T

Jik—00

Pt
I o

s efer

Where E = m%x{l, | jle }. Hence (ajkxji) € zWé(M, II., .Il, A%, p) for all double sequence of scalars
J>

(ajx) with |aj| < 1 for all j,k € N whenever (xj) € zWé(M, II., ... .|, AL, P)- O

A ji
P

c {(j,k)eNxN:E lim [M( 21, 225 s Zne]

Jk—00
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Satellite Constellation Reconfiguration Using the Approximating
Sequence Riccati Equations

Ashraf H. Owis?®
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Abstract

In this work we study the reconfiguration of a constellation of satellite. In this work we consider the non-linear
feedback optimal control of the motion of a spacecraft under the influence of the gravitational attraction of a central
body, the Earth in our case, and we would like to transfer the spacecraft from lower circular orbit to a higher one. Both
orbits around the Earth are assumed to be circular and coplanar. We use both radial and tangential thrust control. The
nonlinear dynamics of the system will be factorized in such a way that the new factorized system is accessible. The
problem is tackled using the Approximating Sequence Riccati Equations (ASRE) method. The technique is based on
Linear Quadratic Regulator (LQR) with fixed terminal state, which guarantees closed loop solution. The method is
tested through GNSS circular constellation.

Keywords: Nonlinear feedback, linear quadratic regulator, approximation sequence Riccati equation, GNSS
satellite.
2010 MSC: 49.

1. Introduction

In some instances, it is desirable to deploy a constellation in stages to gradually expand its
capacity. This requires launching additional satellites and reconfiguring the existing on-orbit satel-
lites (de Weck et al., 2008). Also, a constellation might be re-structured and reconfigured after it
is initially set for operational reasons.

The most common way of raising or lowering the orbit of a spacecraft is the low thrust orbit
rendezvous approach, which is a nonlinear optimal control problem. Historically, there are several
method to solve the nonlinear optimal control problem in both open and closed loop contexts. In
the open loop context the problem can be solved via indirect and then direct method. The indirect
method was developed through Pontryagin Maximum Principle (PMP) (Bryson & Ho, 1975),

*Corresponding author
Email address: aowis@eun.eg (Ashraf H. Owis)
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(Pontryagin et al., 1952). The direct method was developed using the Karush-Kuhn-Tucker(KKT)
algebric equation (Enright & Conway, 1992).

One of the most common methods for solving the nonlinear optimal control problem in the
closed loop context is the State Dependent Riccati Equations (SDRE) (Cimen, 2006), (Owis,
2013). The Approximating Sequence of Riccati Equations (ASRE) (Cimen, 2004) technique is
an iterative approach to solve the nonlinear optimal control problem. The ASRE is developed
(Topputo & Bernelli-Zazzera, 2012) using the state transition matrix. The guidance designed with
these methods is obtained in an open-loop context. In other words, the optimal path, even if mini-
mizing the prescribed performance index, is not able to respond to any perturbation that could alter
the state of the spacecraft. Furthermore, if the initial conditions are slightly varied (e.g. the launch
date changes), the optimal solution needs to be recomputed again. The outcome of the classical
problem is in fact a guidance law expressed as a function of the time, the initial and final time,
and u the control vector, respectively. We develop a closed loop approach. With this approach
the solutions that minimize the performance index are also functions of the generic initial state
Xo; the outcome is in fact a guidance law written as u = u(xo, o, 1), t € [to,t;]. This represents a
closed-loop solution: given the initial conditions (7, xo) it is possible to extract the optimal control
law that solves the optimal control problem. Moreover, if for any reason the state is perturbed
and assumes the new value (té), xé)) = (xo + Ox, ty + Ot), we are able to compute the new optimal
solution by simply evaluating so avoiding the solution of another optimal control problem. This
property holds by virtue of the closed loop characteristics of the control law that can be viewed as
a one-parameter family of solutions. Due to such property, a trajectory designed in this way has
the property to respond to perturbations acting during the transfer that continuously alter the state
of the spacecraft. The optimal feedback control for linear systems with quadratic objective func-
tions is addressed through the matrix Riccati equation: this is a matrix differential equation that
can be integrated backward in time to yield the initial value of the Lagrange multipliers (Bryson &
Ho, 1975). Recently, the nonlinear feedback control of circular coplanar low-thrust orbital trans-
fers has been faced using continuous orbital elements feedback and Lyapunov functions (Chang &
Marsden, 2002) and proved optimal by (Alizadah & Villac, 2011). Later on the problem has been
solved using the primer vector approximation method (Haung, 2012).

The analytical low-thrust optimal feedback control problem is solved, with modulated inverse-
square-distance, in the frame of a nonlinear vector field, the two-body dynamics, supported by
a nonlinear objective function by applying a globally diffeomorphic linearizing transformation
that rearranges the original problem into a linear system of ordinary differential equations and a
quadratic objective function written in a new set of variables with radial thrust (Topputo et al.,
2008). In this work we consider the nonlinear feedback optimal control of the motion of a space-
craft under the influence of the gravitational attraction of a central body, the Earth in our case,
and we would like to transfer the spacecraft from lower to higher orbit. Both lower and higher
orbits around the Earth are assumed to be circular and coplanar. We use both radial and tangential
thrust control. The nonlinear dynamics of the system will be factorized in such a way that the
new factorized system is accessible. The problem is tackled using the Approximating Sequence
Riccati Equation (ASRE) method. The technique is based on Linear Quadratic Regulator (LQR)
with fixed terminal state. The method is applied to GNSS circular constellation Figure 1.
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Constellation A Constellation B

ha > hg Phase 1: Launch Tpg -Tp satellites
Phase 2: Transfer Tp satellites

=fl= T, On-orbit satellites Active orbit
Tg-Ta New launched satellites — — - Abandoned orbit
Tp Abandoned orbital slots

[P}
1

Figure 1. Constellation reconfiguration.

Linear Quadratic Regulator(LQR) with Fixed Terminal State.

Consider the following system with linear dynamics and quadratic performance index as fol-
lows:
X = AX + BU, X(ty) = Xo € R", (1.1)

the following performance index

1 ("
J=X[0pX;+ > f [XT0X + UTRU]dt, (1.2)
to

where A , B, O, and R are constant coefficients matrices of the suitable dimensions. we have
to find the m-dimensional control functions U(t), t € [ty ;] which minimizes the J, which is an
open loop (with #, fixed) optimal control. We optimize the performance index J, by adjoining the
dynamics and the performance index (integrand) to form the Hamiltonian:

HX, AUt = %(XTQX +UTRU) + AT (A)X + B()U),

where the Lagrange multiplier A is called the adjoint variable or the costate. The necessary condi-
tions for optimality are:

1. X = H, = A(HX + B(H)U, X(ty) = Xo,
2. l=-H,=-QX-ATA, Aty = Q/X;,
3. H,=0= RU+B'A1=0= U* = —-R'B"A.
2

To find the minimum solution we have to check for H,, = £y > 0 or equivalently R > 0. Now
we have that X = AX + BU* = AX — BR™'B” A, which can be combined to the the equation of the

costate as follows
X A -BR'BT |[ X
17| -0 -AT Al (1.3)
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which is called the Hamiltonian matrix, it represents a 2n boundary value problem with X () = X,
and, /l(lf) = Qfo.

We can solve this 2n boundary value problem using the transition matrix method as follows.
Let’s define a transition matrix

é11(t1, 1) ¢12(ﬁ,f0)]
$1(t1,10) @ty to) |’

we use this matrix to relate the current values of X and A to the final values X, and A as follows

[ X ] _ [ o1t ty) Gia(t, ty) ] X(ty) ]
1 G (t,tp) Pt ty) [| Ap) |’

so we have X = ¢11(1,19)X(t) + ¢12(t, 1) A(ty) = [d11(t,15) + d12(2, 1) Qf1X(2r), We can eliminate
X(t) to get X = [¢11(t, 1) + d1o(t, 1) Qs 1[P11(to, 1) + dralto, 1) Q) X(19) = X(2, Xo, 19), now we
can find A(7) in terms of X(t) as A(t) = [¢21(2, 15) + ¢ (2, 1) O ¢1X(2f), then we can eliminate X ()
to get A1) = [¢a1(t,17) + Poa(t, 1) Q1[B11(t, 15) + P12(t, 1) Q17 X (1) = $1.X(r). Now we search
a solution for ¢,, . By differentiating A(¢) we get A(t) = ¢, X(t) + ¢, X(f). Comparing the last
equation with the Hamiltonian matrix we get —QX(f) — ATA(f) = . X(f) + ¢, X (1), then we have

i, to) = [

OX() + ATA(1) + P X (1)

= O0X(t)+ATA(t) + ¢, (AX — BR™'BT A(1))

= (Q+¢uAX®) + (A" — ¢, BR™'BNHA()

= (Q+¢uAX®) + (A" — ¢ BR™' BN X(1)
= [0+ ¢nA+AT¢) — . BR'BT ¢, 1X(2).

Since this is true for arbitrary X(¢), ¢,, must satisfy

— (DX (1)

() = Q + ppA + AT — ¢ BR'B ¢y, (1.4)

which is the matrix differential Riccati Equation . We can solve for ¢,, by solving Riccati Equation
backwards in time from ¢, with ¢,,(t;) = Qf . The optimal control is then given by

U* = —R'BTA(t) = —R'B" ¢, X = =K ()X (1, Xy, t0). (1.5)
From 1.5 we notice that the optimal control is a linear full-state feedback control, therefore the
linear quadratic terminal controller is feedback by default.
2. The Approximating Sequence of Riccati Equations(ASRE)

Assume that we have the following nonlinear system

X

f(X,U,1) (2.1)
X)) = Xo, X(tf) = Xf € R" 2.2)
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with performance index

J =Xy, tf) + ffL(X, U, t)dt.

)

This system can be rewritten in the state dependent quasi-linear system as follows

Xi
X(1o)

AXTHX + BXHU!
Xy, X(tp)=XjeR

. . N Y ey ) . . 4 4
J =X} QX7 X} + 5 f X" Q(X™HX' + U RXTHUdr,
4]

103

(2.3)

(2.4)
2.5)

(2.6)

where i represents the iteration step over the time interval [¢; — 1, ;] Figure 2, the technique
is based of the previously introduced Linear Quadratic Regulator with fixed terminal state, which
is a full state feedback and therefore the obtained solution will be a closed loop one, i.e. able to
respond to the unexpected change in the inputs. The technique works as follows: the initial state
is used to compute Ay, and B, and we solve for the first LQR iteration and compute X' and then
used to compute new value of A;, and B, for the second iteration until the final state error reaches

a value below a set threshold.

l||‘I_- Il fz f

"l

i X A Xa 1 n

Time Step 1 | Time Step 2 : Time Step #

uy —— |, ——» sememe | M s—————

Figure 2. Time Interval Disecretization.

3. Optimal Orbit Transfer

The equations of motion are written in polar coordinates (r, 8), in the inertial Earth-Centered
frame. In order to transfer the spacecraft between two circular coplanar orbits two components of

the thrust control are used. The tangential component 7, and the radial component 7.
The equations of motion are:

u

For? =T,- 2
r2

ré+2i’9:T9

3.D
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where y is the gravitational constant of the Earth (3.986005 x 10'4m?/s?) In this system of units
the gravitational constant g is unity, and equations (3.1) are rewritten as:

" 1
P—r0” =T, - —
;
¥ (3.2)
. T,
0+2@ =2
r r

Equations of motion in state variable form, equations (3.2), are then written in state variable form.
The state vector x is chosen to be:

X1 r]
_ X2 _ 0

X = w | =] (3.3)

X4 9 ]

and the control vector is : i
u=| 4= I (3.4)

- 175 - Tg | ) )
Then equation (3.2) can be written in the form :

x = f(x) + B(x)u. (3.5)

Choosing a suitable factorization equation (3.5) is rewritten in the factored state variable form :

X = A(x)x + B(x)u, 3.6)
where :
0 0O 10
0 0 01
A =| 2 --L 00} (3.7)
XX
20 00
1
0 0
0 0
B =1, | (3.8)
o L
x1

4. Factored Controllability

For the factored system (3.6) the controllability is established by verifying that the controlla-
bility matrix M; = [B AB A’B A®B] has a rank equals to n = 4 Vx in the domain.

Since A and B have nonvanishing rows the controllability matrix M, for the System (3.6) is of
rank 4.

Nondimensionalization of the problem in order to simplify the calculation we dimensionalize
the system by removing the units from the equations of motion via multiplying or dividing some
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constants. The two constant we divide by are the radial distance of the initial orbit and the grav-

itational constant u in this case the radius of the initial orbit is unity and velocity is divided by

the circular velocity of the initial orbit f—z and the time is multiplied by _/4. In the first two

0 3
example we would like to make an optimal orbit transfer (i.e. from (r = 1) to (r = 1.2) in time
tr = 4.469,5.2231 (time unit) Figure 3 with an optimal control function of both radial and tan-
gential components Figure 4. The initial angle is (6y = 5) and the final angle is (6; = 37”). o =10

and 7 = 0O for the initial and final orbits. Oy = \/rI3 =1 and é’f = \/;3 = 0.54433105395. In the
0 f

second 0y = Z with t; = 6.866. In both examples the matrices Q and R are the identity matrices:
1 000
0100 10
= R = .
Q 001 0} [ 01 ]
0 0 01
S s - o8 x (Norr?walized) ©-8 ! 1e
Figure 3. Trajectory of orbit transfer in polar coordinates, from [rg = 1, 6y =

n/2,ip =0, 90 =1]to [rf =1.2, Hf =3n/2, Fe= 0, Qf =0.72213]

—radial
—— Tangential

Con trol

b, 1 1 1 1
2'% \5 2 2.5 3 3.5 4 4.5 5
Polaranglefrad)

Figure 4. Control function in polar coordinates, from [ry = 1, 6y = /2, ip =0, by =
1to[rr =12, 6 =3n/2,iy =0, Qf = 0.54433].
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5. Conclusion

The nonlinear feedback optimal control can be solved by factorizing the original nonlinear dy-
namics into accessible (weakly controllable) linear dynamics of state dependent factors. The fac-
torized problem has been solved using the the Approximating Sequence Riccati Equations (ASRE)
method. The technique is based on Linear Quadratic Regulator (LQR) with fixed terminal state,
which guarantees closed loop solution. The method is tested through reconfiguration of a GNSS
circular constellation. The result is valid for any circular orbit transfer.
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Abstract

This article introduces descriptive separation spacefsiLisethe discovery of what are known as motif patterns.
The proposed approach presents the separation axiomsria térdescriptive proximities. Asymmetries arise nat-
urally in the form of the separation of neighbourhoods ofcdipsively distinct points in what are known as Leader
uniform topological spaces. A practical application of fineposed approach is given in terms of visual motif patterns
identification of nearness structures and pattern stahbitinlysis in digital images.

Keywords: Descriptive proximity, near sets, visual motif patterreparation spaces.
2010 MSC:Primary 26A21, Secondary 26A24, 54D35, 54A20, 54E99, 18B30

1. Introduction

This article introduces separation spaces, useful in tdysaf set patterns. Various forms of
separation in topological spaces are defined by what are fkiagvgeparation axioms. The main
purpose of a separation axiom is to make the points and satspace topologically distinguish-
able (Thron 1966 §14.1). The earliest of such spaces comes from F. Hatfsadrere distinct
points belong to disjoint neighbourhooddgusdoft, 1957, §40.11). In this article, traditional
separation spaces are extended to description-basedsepapaces. The practical benefit of
considering descriptive separation spaces is the geoeratimultiple patterns that are descrip-
tively distinguishable. In a Hausd®ispace, for example, a pair of descriptively distinct points
become generators of distinguishable set patterns.

A form of set patternGrenanderl993 §17.5) of particular interest in an approach to pattern
recognition is given in terms of what are known as descrgtnotif patterns. Alescriptive motif
patternis a collection of sets such that each member of the colledsiaescriptively close to a
motif. A motif is a set with members that are near one or more members of sater Motifs
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are a particular form set pattern generators. Visual matifgons are found in pictures, geometric
structures, and digital images. VAsual motif patternis a particular form of descriptive motif
pattern that is a collection of sets such that each membéreotadllection is visually close to a
set that is a motif. Visual motif patterns have a number ofangnt applicationsNaimpally &
Peters2013 Peters2013).

The study of visual patterns includes a consideration ofeader’s uniform topologdyin a
metric spacel(eader 1959 and its extension to descriptive uniform topologies thatme a basis
for new forms of asymmetric spaces.d&scriptive uniform topologig determined by finding the
collection of all sets that are descriptively near a given se

Set descriptions result from the introduction of featuretoes that describe members of sets
such as sets of pixels in digital images. These consideratead in a straightforward way to a
form of topology of digital images with considerable praatimportance in solving image analy-
sis and image classification problems. Since we are ineté@sipatterns in separation spaces, we
introduce stability criteria for the generation of mulg@et patterns. A visual pattern is consid-
eredstable provided the members of the pattern do not wander away fh@npattern generator,
neither spatially nor descriptively.

2. Preliminaries

Let X be a nonempty set of point®(X) the powerset oK, P?(X) the set of all collections
of subsets oK. A single pointx € X is denoted by a lowercase letter, a subset £(X) by an
uppercase letter, collection of subset$#(X) by a round letter such a8 € P?(X). Theclosure
of a subseA € P(X) (denoted by @) is defined by

ClA={xe X:x6A},

i.e, clAis the set of all pointx in X that are neaA. Leté on a nonempty set denote a spatial
nearness (proximity) relation. F@&, B € P(X), A § B (readsA is spatially nearB), provided
A n B # 0, i.e, the intersection oA andB is not empty (cA and cB have at least one point in
common). The spatial proximity (nearness) relatiaa defined by

6 ={(A B) e P(X) x P(X) : clA N cIB # 0}.

A ¢ B (readsA far (remote) fromB), provided cA and cB have no points in common such that
6 = P(X) x P(X) \ 6. Sets that are far from each other relative to the locatidrieepoints in
the sets (the points in one set are not among the points otliee set) are callegpatially remote
sets. The complement of a e £(X) is denoted byC°.

In the study of patterns, a descriptive form of EF-proximgyuseful Peters & Naimpally
2012. Let X be a nonempty set endowed with a descriptive proximity iai,, X € X, A,B €
P(X), and letd = {¢4,..., ¢, ..., dn}, @ set of probe functiong : X — R that represent features

IMetric space uniformity is logically equivalent to EF-pimity and the axioms given by EfremoviE{removig
1951 (see Theorem 1.15, one of the most beautiful results ithestretic topologyNaimpally & Peters2013 §1.11,
p. 27)). Many thanks to Som Naimpally for pointing this out.
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of eachx, whereg;(x) equals a feature value af Let ®(x) denote a feature vector for the object
X, i.e., a vector of feature values that descrihevhere

D(X) = (¢1(X), - - -, #i(X); - - ., (X)) -
A feature vector provides a description of an object. AdB € P(X). LetQ(A), Q(B) denote sets
of descriptions of points i, B, respectively. For example,
Q(A) = {®(a):ac A}.

The expressior 64 B readsA is descriptively near BThe descriptive proximity oA andB is
defined by
Ay B & Q(clA) N Q(cIB) # 0.

Descriptive remotenesd A andB (denoted byA 6, B) is defined by
Aé, B & Q(clA) nQ(cIB) = 0.

Early informal work on the descriptive intersection of digit sets based on the shapes and colours
of objects in the disjoint sets is given by N. RoccRiocchj 1969 p.159). Thedescriptive inter-
sectionQ of AandB is defined by

A n B={xe AUB: ®(x) € Q(clA) andd(x) € Q(cIB)}.

The descriptive intersection will be nonempty, provideeréhis at least one element oRclith

a description that matches the description of a least omaegleof cB. That is, a nonempty
descriptive intersection of sefsandB is a set containing € clA andb € cIB such thaitd(a) =
®(b). Observe thaf andB can be disjoint and yeA Q B can be nonempty. In finding subsets

A, B € P(X) that are descriptively near, one considers descriptitexsection of the closure &
and the closure oB. That is, cA Q cIB implies A 64 B. The descriptive proximity (nearness)

relationdy, is defined by

S = {(A, B) € P(X) x P(X) : olA N clB # @}.

TN || mm | .

P e R O

Figure 1. ® = {colour probe fnk, clA Q clB = {ay, by}, clA Q clC=0.

Example 2.1. Descriptive intersection of disjoint sets

The coloured and white squares in Figdreepresent cells in a weave. &ell in a fabric is that
part of a weave strand that overlaps another weave strangl pdtallel strands of each layer in
a weave are perpendicular to those strands in the other, langdding the cells squardiomas
2009. Choosed to be a set of probe functions representing weave cell celolet the set
of cells X in Figure1 be endowed withy;,. Notice that set®\, B € £(X) are disjoint but the
descriptive intersection is nonempty. That ise\crl? clB = {ayp, by}. Similarly, for B,C € P(X),

ciB Q clC = {by, by, b3, Cq, C5}. [ |



J. Peters, R. Hettiarachiclitheory and Applications of Mathemati&sComputer Science 3 (2) (2013) IB- 39

The descriptive remoteness Afand B (denoted byA ¢, B) such that, = P(X) x P(X) \ d IS
defined by
Aé, B e clA n clB=0.

Example 2.2. Descriptively remote disjoint sets

Choosed to be a set of probe functions representing weave cell celdarFigurel, setsA, C €
P(X) are disjoint. In addition, there are no cells Anwith descriptions that resemble cells in
C. Hence, the descriptive intersection is empty. Tha®ig,, C (A andC are remote), since
clA Q clC =0. |

2.1. Descriptive EF-proximity

A binary relations,, is adescriptive EF-proximityprovided the following axioms are satisfied for
A, B,C € P?(X).

(EFe.1) Adg BimpliesA # 0, B # 0.

(EFe.2) A n B # 0 impliesAé4 B.

(EFe.3) Aoy BimpliesB 64 A (descriptive symmetry).
(EFe.4) Adep (BUC), ifand only if, Ade Bor Adg C.
(EF¢.5) Descriptive EfremoviC axiom:

Aé, BimpliesAg, C andB ¢, C° for someC e P(X).
The structureX, do) is adescriptive EF-proximity spader, briefly,descriptive EF spage

Theorem 2.1.Let(X, 6), (X, o) be spatial and descriptive EF-spaces, respectively, wotiempty
sets ABe P(X), AnB#0. ThenAn BC A n B.

Proof. Let A, B € £(X) and assum@&n B # 0. If x e An B, then, by definition®(x) € Q(A) and
®(x) € Q(B). By assumptioxe AnNBC AUB. Then,x e AQ B. HenceAn BC A Q B. O

Descriptive EF-proximity is useful in describing, anahgiand L
classifying the parts within a single digital image or thetpan
either near or remote sets in separate digital images. T$ie ba
approach to the study of set patterns introduced in thislarti
reflects recent work on descriptively near sets (seg, (Peters
& Naimpally, 2012 Peters 2012 Peterset al, 2013). Ap-
plications of descriptive EF-proximity are numerous (seg,
(Naimpally & Peters2013 Peters201%)).

L =B

Figure 2. Connected points.

2.2. Shape set patterns

Shape descriptors are useful in representing, extractidggaantifying shape information from
images. In general, a digital imagbape descriptois an expression that describes, identifies or
indexes an image region. Shape descriptors are usuallyematital expressions used to extract
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image region shape feature values. In this section, we Ygefisider picture points in terms of
adjacency, connectedness, and edges.

Let p,q e Z x Z be points in a grid. Pointsp andq arespatially adjacentprovided they are
joined by an edgelette & Rosenfeld2004). For example, pairs of magenta pixels in the grid in
Figure2 are spatially adjacent, since each pair of magenta pix@géisd by an edge.

Remark 2.1. Points vs. cells
Points are the standard elements in standard topologiaaksp In some discrete cases, the base
elements areells (indivisible collections of points)Quntsch & Vakareloy2007). [ |

In keeping with an interest in descriptive proximity, p@n, g in a grid aredescriptively
adjacent providedp, g have matching descriptions and there is an edge conngatqguch that
the description of the points on a connecting edge matchebkerigbtions ofp, g. For example, for
the blue lineL c X along the northwest edge of the weave in Fig@jreach pair of pixelp, g € L
are descriptively adjacent but pixels belavare not descriptively adjacent to any pixelinsince
L contains only blue pixels in Figute Let p, g be magenta points, then the descriptive closure of
L is descriptively far fronp, g and the closure of any pointe L is descriptively far from eithep
orq,i.e,

® ={¢ : ¢(X) = colour brightness ok for x € X},
ch)L:{xeX:xQ L;t(Z)},
Clor = {y € X: ®(y) = (1)},
clol 6, {P. 0},

Clor 64 P,
Clor 64 Q.

Descriptive adjacency is the heartbeat (main influencehénstudy of visual motif patterns in
pictures that are descriptive proximity spacesterset al, 2013 Peters2013a,c; Peters & Naim-
pally, 2012 Naimpally & Peters2013 (for the underlying near set theory, see, alseetérs
2013; Henry, 2010).

A 2D digital image (also called a picture) is defined on a finrectangular array of point
samples called grid. An element of a grid is a point sample or pixel. In terms of gitdied
optical sensor value, point samplgbriefly, point) is a single number in a greyscale image or a
set of 3 numbers in a colour imag8rtith, 1995. In a 2D model of an image, a pixel is a point
sample that exists only at a point in the plane. For a coloage each pixel is defined by three
point samples, one for each colour channel.

Let M be a set of grid points in a picture and let

S: po’pl’---,pi—l,pi,...,pn

be a sequence of points M. The sequencs is called apath Further, letp = po, g = p,. Then
M is connectedprovided, for all point, g € M, point p; is adjacent tq;_; in a path betweep
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Figure 3. Sample straight edges.

andqg in M. Maximally connected subsets bf are calledconnected componerni$ M (Klette &
Rosenfeld2004 §1.1.4).

The set of points i in Figure2 are connected and the remainder of the points in this weave
are also connected. Let = L U W, whereW is the set of points in the threads in the weave in
Figure2. The seX is not a connected component, since there are pairs of poiseparate threads
with no path between the points. However, taken separaeyythread W containing pixels with
the same colour is a connected component.

Let M be a grid that is connected and let poipig] € M. A path betweerp andq defines an
edge A path betweerp andq defines astraight edge provided every point in the path has the
same gradient orientation. The penultimate example of m@edge is a straight line segment
such as the edges along the contour of the camera tripodiéggure3. Hence, straight edges in
a picture are distinguished from ridges, valleys and, iregainarcs, where the points in the paths
defining non-straight edges have unequal gradient orientat

A shape set patteris a set pattern that results from the choices of shape gésiused in
comparing descriptions of picture elements. For exampke pairs of points along the diagonal
in the northeast corner of Figuare both spatially adjacent (each pair points along the uppe
northeast diagonal are joined by an edge) and descriptagacent (each pair poingsqalong the
diagonal are joined by an edge containing points that daseely matchp, ). Spatial adjacency
and descriptive adjacency shape descriptors are impantaeparating spatially connected points
from descriptively connected points in a picture and dag\spatial and descriptive set patterns in

pictures.
Aﬂ

N .

Figure 4. SpatialB3(t1) = {t1,t2,t3, a} & descriptivePo(t1) = {t1, ml, ri}.
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Example 2.3. Descriptive penrose tiling shape pattern

Choose® to be a set of probe functions representing shape featurs asiconnected, edge
gradient, and edge gradient orientation as well as colodiirgensity features. Also, for example,
choose tile1 in Figure4 as a shape pattern generatdfile t1 in the penrose tiling in Figuré is
descriptively near tilee1l (in the middle tiling) and1 (in the righthand tiling) as well as a number
of other unlabelled tiles that are descriptively near soaré@ftl. In generating descriptive shape
patterns, we use the descriptive closure of aAseta pictureX (denoted by @A), defined by

CI¢A:{xeX:{x}5¢A, Le.(x) n Aﬂ)}.

In effect, x clpA for x € X meansD(x) € Q(A). Then
Po(tl) = {t1, mLrl,...}.

For example, ¢/tl N cloml # 0, since the gradient orientation of edges along the bordét of
match the gradient orientation of the edges along the barfd®d.. Similarly, chtl N clerl # 0,
andsoon. H

3. Descriptive uniform topology on digital images

It was S. Leader who pointed out in 1959 that it is possibledteamine what he called a
uniform topology in a metric spacé€ader 1959. By introducing a metric on a nonempty set
of points, one obtains a metric space. Then a topology in tseicspace results from observing
which points are close to each given set of points. A printa setX is closeto a setA, provided
the distance betweexandA is zero. Adigital uniform topologyin a metric space on a digital
image is determined by observing which sets of pixels argeclo a given set of pixels.

A useful alternative form of uniform topology (called a diste uniform topology) arises in a
proximity space by defining the nearness of sets in termstohtgsection. A discrete uniform
topology in a proximity space is determined by observingollsets have nonempty intersection
with a given set. In a discrete uniform topology, sets thatcdose to a given set are calladar
sets

A descriptive form of either the Leader form of uniform topgy or discrete uniform topol-
ogy arises when the nearness of sets is based on the deswiptimembers of one set matching
the descriptions of members of another setdéscriptive uniform topologyn a metric space is
determined by finding which sets are descriptively closeaithggiven set. In a descriptive uni-
form topology, nonempty disjoint sets can be descriptivedgr each other. The introduction of a
uniform topology in a metric space or discrete uniform t@gyl or descriptive uniform topology
on a digital image provides a basis for the study of visualgpas in a image. In the sequel, it is
assumed that each of the traditional separation spaceéingdén the context of a discrete uni-
form topology and that each descriptive separation spadefised in the context of a descriptive
uniform topology on a nonempty set. From an application pofaview, the focus in this article is
on the introduction of uniform topologies that provide aibdsr the introduction of asymmetric
spaces on digital images.

2Regular structures known @mttern generatorsn pattern theory, are described in U. Grenand&refiander
1993 1996), in building patterns from simple building blocks.
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4. Antisymmetric spaces

During the 1930s, separation axioms were discovered afetldaennungsaxiomgrennung
is German forseparation by P. Alexandré and H. Hopf @Alexandrdt & Hopf, 1935 58f, §4).
Hence, these axioms are named with a subscriptadT,,n = 0,1, 2, 3,4, 5. Often these axioms
have alternate names such as Haudaormal, regular, Tychorffy and so on and there is no
unanimity in the nomenclature. In this article, we consiolely axiomsTy, T1, T,. Each of these
separation axioms concern the distinctness of points.

Remark 4.1. Distinct points
Let X be a nonempty set endowed with a proximity relatioRointsx, y € X arespatially distinct
provided the closures of andy are not neai.e., cl{x} ¢ cl{y}. [ |

The anti-symmetric axiorii, (discovered by A. Kolmogorov) is defined as follows.

To: (@) For every pair of distinct points, at least one of theffardrom
the other, or

(b) For every pair of distinct points in a topological spacethere ex-
ists an open set containing one of the points but not the qibent
(cf. (Alexandrdt & Hopf, 1935 p. 58)).

The discovery ofly topologies in digital images hinges on what is meant by theeokation
that points are descriptively distinct.

Remark 4.2. Descriptively distinct points

Let ® be a set of probe functions that represent features of pgiimsa nonempty seX. Then
let X be endowed with a descriptive proximity relatiég. Pointsx, y aredescriptively distingt
providedx andy are spatially distinct and the feature vectdrx) and ®(y) are not equal. For
example, point, y in a digital imageX are descriptively distinctdescriptively fa), providedx
andy are spatially distinct and haveftiérent descriptions.,e., X ¢, V. |

Let @ be a set of probe functions representing features of merobarset and let > 0. There
is a descriptive form of, space (denoted bJ). Let adescriptive open neighbourhood,y be
defined by

Nox =y € X: O(X) = O(y) and|x -y < g} .

That is, the description of each point My, matches the description of Due to the spatial
restriction|x — y| < &, No(y is also called @ounded descriptive neighbourho@éeters 2013,
§1.19.3).

T(‘)”: For every pairx, y of descriptively distinct points in a topologic
spaceX, there exists a descriptive open neighbourhood contaimigg

of the points but not the other point.
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Figure 5. Sample visual space.

Example 4.1. T?® Visual space

Let X be represented by the checkerboard in Figuaead letx, y be black and white points iX. It

is easily verified thaX is a topological space. Then I8, be a descriptive open neighbourhood
of x. The pointy is excluded fromNg, since®(x) # ®(y). This is true for every pair of
descriptively distinct points iX. Hence X is aTy space. [ |

T1: Atopological space i3, if, and only if, distinct points are not nearI

T‘ll’: A topological space i§7 if, and only if, descriptively distinct
points are not descriptively near.

Example 4.2. Checkerboarde’ space Choosed to be a set of probe functions that represent
greyscale and colour intensities of points in an image. Liepalogical spac& be represented
by the checkerboard in Figute X is an example of a visudl space. To see this, laty € X be
points in black and white squares, respectively. The poirasdy are descriptively distinct and
Xd4 Y. In general, black and white pixels ¥iare descriptively distinct and not near, descriptively.
Hence, the checkerboard is an example &f’aspace. [ |

Lemma 4.1. A digital image X endowed with a descriptive proximity such that X contains
descriptively distinct points is ajTspace.

Proof. Let X be a digital image (a set of points called pixels) endowet eilescriptive proximity
do. ChooseDd, a set of probe functions that represent features of pairXs Let pointsx,y € X be
descriptively distinct. Them g, y, i.e., X is descriptively not neay. Hence X is aT{ space. [

Hausdoft observed that it is possible for a pair of distinct points &vdndistinct neighbour-
hoods and used this axiom in his work. The correspondingeswétb pairs of distinct points be-
long to disjoint neighbourhood$iausdoft, 1957, §40.11) is now named after him and is called
theT, or Hausdoff space.
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T,: Atopological space i$5, if and only if, distinct points have disjoin

neighbourhoods (distinct points live in disjoimuse$).

There is a descriptive counterpart of a traditiohabpace (denoted bJ;’), introduced in Peters
2013) (see, also,Naimpally & Peters2013). In aT; space, one can observe that descriptively
distinct points belong to disjoint descriptive neighbauwtls.

T5: A topological space iy if, and only if, descriptively distinct
points have disjoint descriptive neighbourhoods.

Example 4.3. AT;" Visual space Chooseb to be a set of probe functions that represent greyscale
and colour intensities of points in an image. Let a topolabgpaceX again be represented by
the checkerboard in Figue X is an example of a visudly space. To see this, laty € X be
points in black and white squares, respectively. Then densi pair of descriptive neighbourhoods
Nox. Nog) Of x andy, respectively. Neighbourhodd, contains only points with descriptions
that match the description of i.e., No(y contains only black points. Similarly, neighbourhood
No(y,) contains only points with descriptions that match the dpson ofy, i.e., Ny contains only

white points. HencelNy(x), No(y) are disjoint. |

i
I~

i
[/

&9
ui‘iﬁ:‘ll

Figure 6. Manitoba dragonfly.

Observe that &3 space is also @;° space, since, by definition, descriptively distinct points
are not near. The dragonfly in FiguBerovides an illustration of a biology-bas&g space (see
Example4.4for details). Also observe that®® space is also @&’ space, since, for every pair of
descriptively distinct points, one can find a descriptiveroget containing of the points and not
containing the other point. The penultimate example d%aspace that is also &’ space is a

4A partition is aT, space if, and only if, every class has no more than one pigéntevery class is single tenant
"house”.
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space where descriptively distinct points belong to opestidetive neighbourhoods. From these
observations, observe thef = T = T;.
Lete € R such that > 0. A bounded descriptive neighbourhood )l of a pointx in a setX
is defined by
Nop = {y € X 1 d(®(X), D(y)) = 0 andx - y| < &},

whered is the taxicab distance between the descriptionsady, i.e.,

d(@(x), D)) = D 6109 - hiY)l : 61 € P.
i=1

Theorem 4.1. A digital image X endowed with a descriptive proximigysuch that X contains
two or more descriptively distinct points is § Bpace.

Proof. Let X be a digital image (a set of points called pixels) endowet widescriptive proximity
do. Choosed, a set of probe functions that represent features of pain%s iLet pointsx,y € X
be descriptively distinct. LelNq (), No) be descriptive neighbourhoods xrfy, respectively. If
a € Ny(y, thend(d(a), d(x)) = 0,i.e., each member dfly(,) must descriptively matck Similarly,
eachb e Ny, descriptively matcheg. Then,Ng N Nog) = 0. Hence X is aTy space. O

Figure 7. Dragonfly edges.

Example 4.4. DragoanyT‘ZI’ Shape space

Choose® to be a set of probe functions that represent the gradieantation of the points in
an image. Let a topological spa&ebe represented by the dragonfly in Figéesndowed with
a descriptive proximity relatiod,. X is an example of a complex visu@l shape space. To
see this, letx,y € X be points along the edges of the filtered dragonfly image inr€ig. The
pointsx andy are descriptively distinct, since these points haiedent gradient orientations. In
addition, points, y are centers of disjoint descriptive neighbourhobigg), No(y), respectively, in
aTy Shape Space.

Proof. We assume thab(x) # ®(y), i.e., x andy have diferent gradient orientations in Figure
The descriptive neighbourhodd,y of point x (with no spatial restriction) is defined by

Nop = {ae X: d(x) = O(a)},
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i.e., the gradient orientation of matches the gradient orientation of each paiit No(. Hence,
y ¢ No(y, Since the gradient orientationptloes not match the gradient orientatiorxoSimilarly,
observe thak ¢ Ngy). ThenNg, No) are disjoint. This is true of every pair of pointsthat
have unequal gradient orientations. HenXés an example of a descriptiig’ shape space. [

Figure 8. T‘ZI’ Shape space.

Remark 4.3. No), Tg’ Implementation details.

A Matlab® 7.10.0 (R2010a) script written by C. Uchime has been useti®driagonfly image in
Figure6 to extract the edges shown in FigufeFrom Examplet.4, we know that the dragonfly
in Figure 7 provides a basis for & shape space. Next, bounded descriptive neighbourhoods
No(x. Nog) Of pointsx,y, respectively, are found by selectixgy, radiuse, and pixel gradient
orientation as the shape descriptor. For simplicity, dfy is shown in Figures.

Using C. Uchime’s Matlab script, the selectionxfy is done manually by clicking on two
points of interest on the dragonfly wings (see Fig8ye Starting withNg(y, for example, the
construction of the shape pattelhy(No(y) is carried out by using Matlab to search through the
image for points (outside the motif neighbourhood) withdyeat orientations that match the gra-
dient orientation ofk. For each pixelk’ ¢ Ny such thatd(x’) = ®(x), a new neighbourhood
is constructed. In practice, only a restricted number ofimeourhoods are found, namely, those
neighbourhoods with centers that are reasonably close tadhif neighbourhood centar [

4.1. Descriptive nearness structures

Herrlich nearness structures are extended to descripgaeess structures in this section. One
begins the study of such structures by choosna set of probe functions that represent features
of members of a nonempty skt Let X be endowed with a descriptive proximity relatidn By
way of illustration, the honey bee in Figu8egrovides a basis for a shape nearness space relative
to the bee image edges shown in Figliegsee Exampld.5for details).
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Figure 9. Bee | Figure 10.&p = {Aq, ..., As}

For descriptive nearness, we use the following notation.

X = nonempty set of points
= {probe functions representing featuresaf X},
A, B denote collections of subsetsXy i.e., A, B € P*(X),
Q(A) ={Q(A) : Ac A},
N, A, or A €n, i.e, members ofA are descriptively near
Q@?{, i.e., members ofA are not descriptively near
An, B=rn,{A B} (Adescriptively neaB),
AVB={AUB: Ac A Be 8},
cl, E ={xe X:{x E} en,} (xdescriptively neak),
cly, A = {c,A: QA) € QA)}.

A descriptive nearness structure (denoted §)yis defined by
o =AcPX): [ JIA:Ac A £0
0]

In the following axioms, letA € &4. It can be shown that the descriptive nearness strugture
satisfies (dN.1)-(dN.5):
(dN.1) ﬂ {A:Ae A} + 0= n,Ais not empty,

(dN.2) 77 A andn B=nAV B),
(dN.3) %ﬂ and, for eaclB ¢ B, thereisamlAe A: AcB=1,8,
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(dN.4) 0e A=n A,
(dN.5) n,(cl,A) = n,A (descriptive Herrlich axiom).

Example 4.5. Descriptive Herrlich nearness
Let the seiX be represented by the set of edge pixels in Figurand letd contain a single probe
function representing pixel orientation. Each member efdbllection of subset#l contains ridge
pixels, where

o = A ={A1, A2, Az, Ay, As},

since each pair of sets A contain pixels with matching orientation. Observe thaterere other
collections of subset® in Figure 10 containing pixels with matching orientations that are not
the same as the pixels orientations in the subseid.irHence &, contains more collections of
descriptively near subsets that are not shown in Figore H

5. Visual patterns in descriptive separation spaces

Visual patterns arise naturally from thef@rent forms of descriptive sep-
aration spaces. We illustrate this in terms of patternslatrally occur in
TP and T3 spaces. Lef?(X) denote the set of collections of subsetsXin
and let pattern € P2(X), motif M € P(X). Let ® be a set of probe func-
tions that represent features of members<adnd letX be endowed with a
descriptive proximitys. For example, the 1870 Punch dancing delivery boy
image in Figurell provides a basis for a visual pattern (see Exanspidor

A =M details). Further, a visual pattefd, is a descriptive motif pattern, provided
Figure 11.T9. | the following axioms are satisfied.

(motif.1) Sets iy, are pairwise disjoint.

(motif.2) Ais descriptively neaM (A 64 M) for eachA € Py.

(motif.3) If there are pairg\, B € B3 that are copies o/, there is an isomethof the plane that
mapsA onto B.

A descriptive motif pattern is an example of what is known adistrete pattern in the study
of patterns in tilings and weaving (seeg, (Grinbaum & Shepardl987). Observing visual
patterns in an image is aided by various forms of image filggrsharpening the features of pixel
neighbourhoods, making it more possible to detect thogs p&an image that are either close or
remote from each other.

SLet A and B be sets of pixels in digital images endowed with metdgsanddy. An isometryis a distance-
preserving mapEeckman & Quarlesl953. For any pair pixelx, y € Awith descriptionsb(x), ®(y) found inB (i.e.,
f(®(X)), f(®(y)) € B), amapf : A — Bis an isometry, provided

dy(F(@(x), (D)) = dx(P(X), D(y))-
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Figure 12.B¢ = {A, B1, B2}.

Example 5.1. Sample descriptive motif pattern

Let sets of point, Y endowed with a proximity relatiot be represented by Figufi2. Choose
® to be a set of probe functions that represent greyscale dadrdeatures of points iX, Y. The
setM in Figurel2 represents a motif in a set pattern. Observe A&, B2 are pairwise disjoint
and each of the ses B1, B2 is descriptively neaM. For exampleM is descriptively neaB1,
sinceM andB1 contain subsets with red and green pixels. Again, for exanvis descriptively
nearA, sinceM and A contain subsets with red pixels. There is also an isometiyden the
descriptions of points ixX and the descriptions of the points Yh From these observation, we
obtain the descriptive motif pattefi, = {A, B1, B2}. [ |

5.1. Visual patterns in descriptive T1 spaces
To find visual patterns in descriptivig spaces, do the following:

(1) Chooseb, a set of probe functions representing features of poirasTifi spacex.

(2) Select a pair of descriptively distinct pointsy € X. By definition, x ¢, y. Hence, theT
space property is satisfied.

(3) Let My, M, denote point sets«}, {y}, respectively.

(4) Determine all subsets &f containing points that descriptively matéh, and then determine
all subsets of points that descriptively matdh.

As aresult of the above steps, we can identify a pair of deseei motif patterng3qs,(My), Bo(M2)
in a Ty spaceX. In addition, each such a motif pattern is a member of a debezi Herrlich
topologyés defined onX.

Let X be endowed with a proximity, such thatX is aT;" space and lem = {x} be a motif
containing a single poink € X, which defines a descriptive motif pattejf,(M). If AB €
Lo(M), thenA Q B # (0. From this, we obtain the following result.

Theorem 5.1. Let (X,5) be a T space with nearness structugg on X and let}34(M) be a
descriptive motif pattern determined by a motif M contagrarsingle point x in X. Thef$o(M) €

£o.
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5.2. Visual patterns in descriptive T2 spaces

To find visual patterns in descriptiie spaces, do the following:

(1) Chooseb, a set of probe functions representing features of poirasTifi spacex.

(2) Select a pair of descriptively distinct pointsy € X. By definition, Ngx 64 Nag), Since the
description of each point in a descriptive neighbourhootthes the description of the point
at the centre of the neighbourhood axd, y). That is, neighbourhoodSy( J, Nogy) are
descriptively disjoint. Hence, tHEY space property is satisfied.

(3) LetM;, M, denote neighbourhoodds,, ¢, Nogy), respectively.

(4) Determine all subsets of that are descriptively ned; and then determine all subsets of X
such that descriptively ned,.

Figure 13. SampIeTg’ visual edge patterns.

As a result of the above steps, we can identify a pair of dees motif patternsfo(M,),
Po(My) in a TP spaceX. In general, each such a motif pattern is not a member of thre sa
descriptive Herrlich nearness structggedefined onX. To see this, consider a pair of neighbour-
hoodsNgx), Ny that are descriptively neddq . We know thatNg de Nocy but it is possible
that No(x) 64 Nax), if, for example, we compare pixel colourlly,y may have a mixture of red
and green colours, wheifd,) has pixels with red colours but no green colours &lyg. has
pixels with green colours but no red colours. In other wordany diferent Herrlich nearness
structures can be found in the same digital image.

Example 5.2. Edge motif pattern inT® space
Let X be the set of edge points in Figut8, extracted from the 1870 Punch image in Figlife
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using the edge function with the Canny fift@vailable in Matlab. Choosé to be a set of probe
functions representing the orientation (gradient dimegtiof edge pixels inX. Observe that if
pixels x,y in X have diferent orientationsi.€., x andy are descriptively distinct), ther ¢, y.
ThenNg(x, No, are descriptively disjoint neighbourhoods. Herés an example of 3 space.

Then letM;, M, denote motif neighbourhood edge point 9€tg,), Noy,) Of pointsx, y, respec-
tively. An indication of the descriptive motif patterf%;(Mi), Po(M2) determined byM;, M, is
suggested by the edge regions containing poihtg. In the pattern representifige(M;), for ex-
ample, notice thax’ is the centre of bounded descriptive neighbourhbiggh containing points
with matching orientations. And thil; edge point neighbourhood is descriptively ndgi(x'),
since the orientation of one or more edgedin, match the orientation of one or more edges in
N¢(X/), ie.,

Noy 0o Now) * M1 = Nox-

Similarly, there is a descriptive neighbourhadsgl, in the edge patteri,(M,) so that
Nay) o Nagy) * M2 = Nagy).

Continuing this process, one can observe many other edgi¢ patterns in this particulaily
space. [ |

Theorem 5.2. A descriptive T space contains distinct descriptive motive patterns.

Proof. Immediate from Lemmad.1and the definition of descriptive motif patterns. O

6. Stability in pattern constructions

A meaningful theory of stable pattern selection requiresiet® of pattern-forming mecha-
nisms that are simple enough to be understood in dédaié (& Langey 1983. An approach to
achieving pattern selection stability in propagating ¢xaus$ in eithef; or T, spaces is introduced
in this section. Basically in this study of descriptive patis in a pair of digital imageA, B, it is
necessary to propagate a pattern in imBgeith some assurance that the pattern generatél in
will belong to the class of images containing the imagend each new set added to a pattern does
not wander or drift away from the pattern generator. Thagigen a pattern generatdd, each
new setA added to patterf3, (M) must be stficiently nearM, spatially.

P.E. Forsseén and D. Lowe observe that shape descripeorslable in detecting maximally
stable extremal regions in digital imagdso(sseén & Lowg2007, 1-8. In this work, descrip-
tive motif set pattern growth is stable, provided the shiagged description of each set added to
the pattern matches the shape-based description of therpatbtif. This interpretation of pattern
stability is comparable to U. Grenander’s notion of confagion transformation stabilityGrenan-
der, 1993 §4.1.1). To arrive at a formal definition of pattern stabijlitye introduce the descriptive
distance between collections in terms of @ech distance between sets.

5The Matlab canny filter is based on J.F. Canny’s approach ge etection introduced in his M.Sc. thesis
completed in 1983 at the MIT Artificial Intelligence Labovag (Canny 1983. For details about this considered in
the context of a topology of digital images, s&e{ers2013, §6.2).
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Let A, B € C be nonempty sets in a spaCend let
D(A,B) =inf{la—bl:ae A be B}

be theCech distance betweévnandB. That s, a configuration transformati®ron a configuration
spaceC is stable, if, for any > 0, there exists a such that

D(A,B) <6 = D(T(A), T(B)) < &.

Let (X, d5) be a descriptive proximity Hausdbispace and lef, B € P, A, B € P3(X). Next,
consider a descriptive form of a Grenander configuratiomsfirmation, namelyl,. That is, the
transformatioriTy = Po : P(X) — P*(X) is defined by

Po(M) =A: M b Bfor Be A,andD(M, B) < &.

Definition 6.1. Pattern stability sufficiently near criterion.

Let Po(M) be a descriptive motif pattern constructed on a nonemgtxse > 0 and letA e
TLo(M). The pattern,(M) is stable, provided the distance requiremB(i¥l, A) < ¢ is satisfied.
That is,Po(M) is stable, provided\ is syficiently near Mfor eachA added t6l34(M). [ |

Let B < A denote the fact tha is aproximal neighbourhooaf A, providedA c B. From
Def. 6.1, we obtain the following result.

Lemma 6.1. Let M c X, a Ty space and lef3,(M) be a descriptive motif pattern. Let B €
Lo (M). Bo(M) is stable, if and only if, DM, A) < £ and B« A implies OM, B) < &.

From Def.6.1and Lemmab.1, we obtain the following result.

Theorem 6.1. Descriptive pattern stability.

Let Py be a pattern configuration transformation used to constreaitections of patterns on
X, a Ty space endowed with a descriptive proximiysuch that® is a set of probe functions
representing shape descriptors, letdMP(X), € > 0. Then the following are equivalent.

(1) Bo(M) is stable.

(2) D(M, A) < ¢ for each Ac By (M).

(3 D(M,A) < £ and B« A implies OM, B) < ¢.

Proof.

(1) © (2): Bo(M) is stable, if and only if, from Def6.1, D(M, A) < ¢ for eachA € By (M).

(1) @ (3): Bo(M) is stable, if and only if, from Lemmé.1, D(M, A) < ¢ andB < A implies
D(M,B) < e.

(2) © (3): D(M, A) < ¢ for eachA € B¢(M), if and only if, B € B¢ (M), providedB <« A. O

Remark 6.1. Pattern stability and clustering stability.

Observe that descriptive pattern generation is a form dftehing. Recall that data clustering is a
natural groupingof a set of patterns or points or objeciigify 2010. Let X be aT; space and let
M € P(X). Then the use o to generate the pattefd,; (M) can be considered a natural grouping
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of sets in the pattern relative to the pattern generitoiThat is,A € Be(M), providedA 5, M.
Hence, an obvious research path in the study of descripéttenmn generation is to consider the
parallel between clustering stabilitg.¢, (Ben-Huret al., 2002 Wang 201Q Reizet 2011)) and
descriptive pattern generation stability. For exampleag been foundBen-Huret al., 2002 that
pairwise similarity between clusterings of sub-samples dataset provides a basis for clustering
stability. A partial guarantee that descriptive patternegation is stable, stems from the fact that
A € PBo(M), if and only if, Ais descriptively neaM. But this is only a partial guarantee of pattern
generation stability, since subset similarity in a dedorgpattern does not prevent subsets from
drifting or wandering awapatially from the pattern generatdv. To achieve full descriptive
pattern generation stability, we consider distance-bas¢tern generation in keeping with recent
work on the stability of distance-based clustering @eg,(Wang 2010). In the distance-based
approach to descriptive pattern stability, we introducedilyficiently nearcriterion in Def.6.1

[

6.1. Multiple pattern generation stability

Since we are interested in constructing multiple patteaness disjoint regions of digital im-
ages that resemble each other iljaspace, we introduce a stability criterion for the generatio
of multiple patterns. Again, the goal is to arrive at a viewstdbility of multiple patterns in a
T space such that patterns do not wander or drift away from etier. LetA, B € P(X) be
collections containing set, B € £(X), respectively. To complete the definition of pattern sta-
bility, we introduce the descriptive distanBg, which a descriptive form of the distance between
sets introduced by ECech Cech 1966 §18.A.2). The distancB, is used to define the descrip-
tive distanceéDq between collections of sets. The descriptive distdbge P(X) x P2(X) — R
between collectionsd, 8 is defined by

De(A, B) = inf {Dg(A, B) : A€ A, B e B}, where
Do(A, B) = inf {d(®(a), P(b)) : a€ A,b e B}.

The descriptive distand®, can be used to measure the distance between descriptiveseioti
patterns, since such patterns are collections of nonerepi\tisat are descriptively near each other.
Let {A}, {B} denote collections, each containing one set. TRens astable descriptive pattern

if, for any £ > 0, there exists & > 0 such that

Do({A}, (B}) <6 = Do(Bo(A), Bo(B)) < &.

Thatis, whenever sefsandB are descriptively near, then the corresponding patiBg(#\), ‘Lo (B)
are descriptively near. This form of set pattern stabilityrke well in comparing regions of pairs
of digital images, where we need to guarantee that the wamstion that produces the descriptive
set patterns in separate image regions is stable.

Definition 6.2. Multiple pattern stability criterion .
Let B4 be a pattern configuration transformation used to constaltgctions of patterns oK, a
TS space endowed with a descriptive proximityand lets > 0,6 > 0. Letx,y € X be distinct



J. Peters, R. Hettiarachiclitheory and Applications of Mathemati®&sComputer Science 3 (2) (2013) I- 55

points and leM;, M, be disjoint neighbourhoods ofy, respectively. Further, lefl, B € P?(X).
Patternsi3o(M,) € A, Po(M,) € B are stable, provided

De(A, B) <6 = Do (Bo(M1), Bo(M2)) < &. u

To achieve stability in comparing image regions in the saméad image regions in pairs
of images, it is necessary to consider pixel features thatbeareliably matched, regardless of
the appearance of the surroundings of a region. In thideytice focus is on constructing motif
set patterns containing neighbourhoods of points definezbhypected point sets that are straight
edges. Neighbourhood selection is determined by the gradiéentation of the focal point of a
pattern motif neighbourhood. The construction of a patteatif (a descriptive neighbourhood of
point) reduces to finding a connected set of points along ge edch that the edge points have
matching gradient orientation. Hence, a gradient oriemtabased motif set pattern results from
finding neighbourhoods of points containing straight edgihk pixel gradient orientations that
match the gradient orientation of the points in the motifjiiourhood of the pattern.

Keeping in mind the underlying descriptive uniform topoldg a Hausdaif T;” spaceX en-
dowed with a descriptive proximit§s, an image pixel belongs to a neighbourhood of poixt
provided the gradient orientation gfmatches the gradient orientation xf Let ® be a set of
shape descriptors that includes pixel gradient orientatio addition, let the descriptive neigh-
bourhoodNy(y be a pattern motiM that is a connected set of points belonging to a straight,edge
I.e., Y € Ngw, providedd(y) = ®(x). Then the patter3,(M) is a collection of straight edges
defined by

PBo(M) = {N‘I’(Y) € P(X) : Noy) oo M}.

Pattern stability is achieved by guaranteeing that onlychiag straight edges belong to the pattern
Po(M). In comparing regions across pairs of digital images,ibtyls achieved by comparing
straight edge patterns. L&ty € X, Y be a pixels in a pair of digital images Y, respectively.
Further, lety4(M1), Bo(M,) be straight edge shape patterns in image¥, respectively, such
that M1 = Ny, M2 = Nggy). Pattern3o(M,) is close to patterf3q,(M,), provided the straight
edges represented by neighbourhoods in the patterns haekinggedge-neighbourhood motifs,
ie.,

PBo(My) 6o Bo(My), if and only if,
Nd)(x) 0o N¢(y), if and only if,
O(x) = D(Y). O

From Def.6.2and Theoren6.1, we obtain the following result.

Theorem 6.2. Multiple pattern generation stability.

Let Py be a pattern configuration transformation used to constreaitections of patterns on
X, a Ty space endowed with a descriptive proximiysuch that®d is a set of probe functions
representing shape descriptors, let N1, € P(X), and lets > 0. Further, letA, 8 € P?(X). Then
the following are equivalent.

(1) Po(M1) € A, Bo(M,) € B are stable.

(2) D(My, A) < &, D(M,, B) < & for each Ac B4(M;) and for each Bz B¢ (My).
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6.2. Comparison with existing clustering stability anadys

One of the most widely used clustering techniques is k-medustering. This is a non-
hierarchical clustering approach, which aims to partiigrdimensional observations inkxlus-
ters k < n) by minimizing a measure of dispersion within the clustémsk-means clustering, the
selection of the number of clusterffects the clustering stability significantlén-Huret al.,
2002. Letk be the true number of clusters in an image. If the number dftets is greater than
k, then some of the true clusters will be split into smalleistdus during clustering. On the other
hand, if the number of clusters is less tHarthen some of the true clusters will be merged into
bigger clusters during clustering. Both cases will leadnstable clusterings. Hence, clustering
stability can be used as a quality measure of the clustetgogithm.

Ben-Hur, Elisseff and Guyon propose distribution of pairwise similarity beém clusterings
of sub-samples of a dataset as a stability measure of aipartiien-Huret al,, 2002. Another
notion of stability as proposed inLéngeet al, 2004 is based on the average dissimilarity of
solutions computed on two fiierent data sets. While the aforementioned approaches @tus
maximizing the within-cluster similarity and within-cles dissimilarity, Wang proposes a new
measure of the quality of clusterings based on the clugienstability from sample to sample
(Wang 2010. On the other hand, Reizer proposes to measure the quélitysiering through
stability from sample to sampl&gizer 2011).

In contrast to the traditional clustering methods, the dp8ee-based pattern generation method
proposed in this article does not require the number of eiggb be pre-determined. The pattern
Lo (M) may grow as long as it satisfies the condition that each new added to patterii;(M)
is suficiently nearM, both spatially and descriptively. However, similar tostkring stability, we
may say that the pattern generation is stable, provideddywes similar patterns on data originat-
ing from the same source. Based on this argument, a defirfidrgattern stability can be derived
from the clustering stability model given iRéizer 2011).

Since we are interested in determining when a generatedrpatt a sample digital image
Y serves as an indicator thatbelongs to the class of digital images represented by arpatte
generated in a query imagé we define pattern stability in terms of the expected deseep
distance betweeft, (M, X) (pattern generated i) andB(M, Y) (pattern generated ivi).

Definition 6.3. Pattern Stability.

Let th > O denote an expectation threshold andHg{ denote the expected value of Further,
let Po(M, X) be a pattern generated b in X and34(M, Y), pattern generated by in Y. The
stability of any description-based pattely, (M) (denoted bys talf’34(M))) is defined by

1, if E[De(Po(M, X), Bo(M,Y))] < th,

StalfPBe(M)) = {0, otherwiseio(M) is unstable.

whereX andY are two independent samples from some unknown distribuatterrtl3s(M) is
stable, provide® tal{’34(M)) = 1. |

Furthermore, given two patterid,(M;) andB34(M,), pattern generation will be stable, pro-
vided My §¢ M, and Stalfl3+(M;)) = StalfP+(My)) = 1. In addition, for any seh, A d, M; and
Ad, My will ensure that sef will always be added to pattefio(M;). This is advantageous in
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achieving pattern stability for the method proposed in #hnigle compared to the traditional clus-
tering methods such as k-means clustering, since pati@ilist, in our case, derives its strength
from the fact that each sétadded to a pattern haescriptive proximityo the pattern generator
M in a descriptive proximity space.
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Abstract

Assessment and improvement of software maintenance m@s@ssmall software companies is very important
because of large costs of maintenance and constraints dfssftevare companies. This study presents an approach
to assessment of software maintenance requests’ progéssrvery small local software company. The approach is
context dependent and uses trend analysis and feedbamsees assessing the current state of maintenance request
processing. The analysis is based on various sources ofdelaas: internal repository of maintenance requests,
company documents, transcribed records of interviews @athpany employees, and transcribed records of feedback
sessions. Monthly trends for maintenance requests, wothkinurs and types of maintenance tasks, by considering
clients and software products are presented in the artidentified trends were discussed during feedback sessions
in the company. Participants in feedback sessions were aoyngmployees and researchers. During discussions
of trends, some directions for further improvement of mamaince requests’ processing were proposed. The article
concludes with implications for practitioners from indystnd researchers, as well as further research directions.

Keywords: software maintenance, process assessment, trend antegsilsack session, very small software
company.

ACM CCS:D.2.7 Distribution, Maintenance, and Enhancement, D.2a&d8ement—Life cycle, K.6.3 Software
Management—Software maintenance.

1. Introduction

Software maintenance includes all activities related ® pgheservation of consistency and
efficiency of complex software systems. Maintenance consunuss af the costs of software
systems (between 40% and 90% of the total costs) in softv@re)icle (Lientz et al, 1978
Kajko-Mattssoret al., 200% Abranet al., 2004. Maintenance costs for systems that are in use
for a very long time usually greatly exceed the costs of dgwelent. Despite that fact, software
maintenance attracts less attention in scientific liteeatomparing to software development.
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Software Maintenance is in literature recognized as theplzese in software life-cycle, which
does not attract enough attention when compared with smdtdavelopment. Developers and
managers consider maintenance requests as short-ternthgtbshould be done as quickly as
it is possible Junioet al, 2011). Research on the maintenance process conducted withepeopl
involved in the process indicates that only 2.7% thougHtttiamaintenance process téeetive,
while 70.2% of them believe that the maintenance proces&fifective Sousal998.

Small companies are dominant in economies across the gRibkardson & von Wangen-
heim 2007. U.S. Census Bureaus "1995 County Business Patternstambihat the vast majority
of software and data processing companies are small, ahthtse with more than 50 employees
comprise only a few percent of the total numbeayadet al,, 2000. Laporteet al. (2006 reported
that in Europe, 85% of IT sector companies have between 1 @uednployees.

Small software companies are typically characterized asa@uically vulnerable with low
budget to perform corrective post delivery maintenanceyelbas with limited resources and the
lack of knowledge and capacities to implement software gge@ssessment and improvement
activities (aporteet al, 2008. According toVasilev (2012, rationalization of processes indi-
rectly afects company business and reduces managerial costs. Sitakre companies have
not adopted assessment directives proposed by softwategzramprovement (SP1) models (Ca-
pability Maturity Model (CMM) and more recently CMMI) or iahational process-related stan-
dards (ISO 15504 and ISO 900Bayad & Laitinen 1997). Because of limitations in scale and
resources, small software companies find software proogsvement a major challenge that
should be supported with short, light and tailored assessmethods Kic Caftery et al., 2007).
Qualitative empirical study about the maintenance pradciiclocal small software companies
(companies from Timisoara and Zrenjanin), with the focusoltecting and processing client re-
guests, revealed that they face many problems, both teadrand organizationaBtojanov 2011
Stojanowet al,, 2011, Stojanoy 2012b). Therefore, software maintenance practice assessment an
improvement in these companies require more attention.

This paper presents an approach to maintenance assessraemtry small software company
based on analyzing trends in available maintenance daati€ assessment is based on a tailored
lightweight approach with frequent feedback, with thedaling phases: initialization, planning,
execution, and final reporting on assessment. Since the fainisgaper is to present the use of
trend analysis as a valuable tool in process assessmesgsasnt phases will not be discussed in
more details.

The research was conducted in a very small software compahyseven employees (classi-
fied as micro enterprise according dmmission2009). This study is a part of a large project
(from 2011 to 2014) with the aim to assess and improve maames practice in the selected
software company. Data collected in the company througbtiseobservation, interviews with
programmers, and analysis of company documents and mamtenrepository provide the ba-
sis for assessment of the maintenance practice. The olgeaftithe paper is to present a light
assessment approach of software maintenance practiod asend analysis.

The paper is organized as follows. Section 2 contains kklatek that presents the use of trend
analysis in software engineering. After that are descrthedcontext of the research in section 3,
and analysis of maintenance trends in section 4. Discusdigasults follows in section 5, while
discussion of treats to validity is in section 6. The lastiisecof the paper contains concluding
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remarks with implications for research community and ptiacters from industry, and further
research directions.

2. Related work

Software maintenance trend analysis requires systematizcabllection over an appropriate
period. This is very important since maintenance requestsraandomly, and cannot be planned
neither technically nor in budget. It is also important teenthat maintenance workload cannot be
managed using project management technigdpsl(, 2010.

Trend analysis can help in analyzing and controlling théviiets and processes, and in as-
sessing thef@iciency of observed processes. Trend analysis is based bemg#&ical data and
provides information of prime importance for organizat{@uglear 200]). A trend can be seen
as an underlying longer-term movement in the observed @ai@ss In addition, trend analysis is
also important for providing evidence on deviations froentts. Trends are generally related to
long-term observation and data collection, although thm tdong terni is based on the subjec-
tive assessmenChatfield 1996. Kanoun & Laprie(1996 argued that trend analyses are usually
applied intuitively and empirically rather than in quamdiand well-defined manner. Results of
trend analyses provide valuable information for assessiaigitenance activities and workload of
maintenance personnel.

In the paper Kenmeiet al., 2008 is proposed a trend analysis approach of change requests
based on time series analysis of data extracted from veesiotnol and bug tracking systems. The
empirical study is based on data from three large-scale sparce software projects (Eclipse,
Mozilla and JBoss). The study proved that time series #ieient tools for modeling change
request density and further trends in receiving new chaegeeasts.

The study Ahmed & Gokhale 2009 presented an approach to modelling the behaviour of
bugs inside Linux kernels. The study included the analysimig distribution, lifetime, and clus-
tering inside the kernel modules, as well as a deeper asatyshe statistical trends in the bug
data from an architectural perspective. The aim of the stwaly to gain insight into the factors
that impact system reliability. The analysis was relatedrends across the three releases of the
kernel, the manner in which bugs were resolved, and on utatheling the impact of bug severities
on the resolution time of the bugs. From the architecturedpective of the kernel, the results of
the study based on the statistical trends suggested thatdtlale dependencies and interactions
have higher impact on the bugs than the individual moduleshgelves.

April (2010 presented trend analysis of software maintenance servid@alysis includes
supply and demand of software maintenance services. Thar@swas conducted as a part of a
process improvement activity in Integratik, an ERP dewvelept firm in Canada. The improve-
ment aim is the implementation of maintenance requestitiggirocess and information system.
This process should ensure that each request would be egtatidpatched and tracked formally,
as well as time recording of maintenance personfielte In addition, this improvement ensured
that the maintenance demands would be properly measurezhahgzed. The author investigated
trends related to distribution of requests per months, teaance personneffert per months,
distribution of requests and worlfert for particular software applications.
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Zhuet al.(201)) proposed an approach for quality evolution monitoringgoiesn the analysis
of deviation trends of dierent modularity views of software. The approach includesitor-
ing the following views: package view that prescribes howetdigpers intentionally group related
source files as modules (packages), structural clusterthatweflects the nature of inter-file de-
pendencies and method invocation relations, and semdustec view that reflects the nature of
vocabulary used and topics involved irffdrent source files and their correlations. The approach
is based on an assumption that the deviation betwe@ereint modularity views can influence
quality evolution. If the views are properly aligned, thevelepers will be able to easily locate
concepts and implement modifications. Deviation betwedieréint trends was measured with
SiMo (Similarity between the Modularity views) metrics. \Ba&tions for individual versions were
computed and analyzed, and after that deviation trends @gaesice of versions were analyzed.
The main activities in the approach are: construction of uhadty views, computation of simi-
larity metrics and analysis of deviation trends. Deviatiend of diferent modularity views is a
combination of three change trends (i.e. rise, drop, hdlthree SiMo metrics, which is totally 27
patterns of deviation trends. Empirical study was condlote three open-source Java systems,
JFreeChart, JHotDraw and Jedit, that are available at 8barge.net Subversion (SVN) reposito-
ries. Presented empirical study confirms that continuousitmang of deviation trends provides
useful feedback.

3. Context

Proper understanding of the assessment approach requoresdetailed insight into the or-
ganizational context where the study is conducted. Thecagpris tailored to a selected small
software company and therefore it is necessary to outlise lfacts about the company.

This research was realized in a very small software compathysg@ven employees (Six pro-
grammers and one technical secretary). Software develajpsne maintenance activities are or-
ganized in the way that one or more programmers are assigmeaah software application. When
a maintenance request (MR) is received from a client, iti&éoded to a programmer from a set
of assigned programmers. Programmers’ assignments twaseftapplications are documented
and available to all employees.

The company maintains over 30 business software applicatised by local clients in Serbia.
Clients are classified in two groups: clients that have sigMi@intenance Service Agreement
(MSA) and pay for maintenance services on the monthly basi$ clients that do not have signed
MSA and pay for each maintenance service after its compietio

3.1. Maintenance request processing

Analysis of trends for a long period of time requires the ense of systematically collected
data, and the process that is implemented and followed bgtalkeholders. All requests are
recorded in the internal software application with the gfuwy for issues tracking (requests,
tasks, work orders). Although a process is usually taildoedhe current request and a user, a
general process is defined and implemented in the comparmypitess includes the following
steps: receiving and recording a request in the internalsiggry, sending a notification email
with the request info to an appropriate programmer, checkiclient’'s status in order to define
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the priority of the request, assigning a programmer to agstjweollecting additional information
that is necessary for understanding and solving a requestdessary), preparing a bid for work
that is supposed to be done for clients that do not have sigi&4&l and solving the request.

The request processing is completed when a client confirmeataess of finished work. In
the repository is recorded who confirms the correctnessldteeand the way of confirming. After
that a working order is printed and sent to a client, and aesqis labeled as closed.

3.2. Internal repository

The repository provides thdfient platform for storing and tracking tasks and mainteean
requests. Practically, maintenance requests includgpabktof requests for maintenance, not only
requests related to modification of software applicatibm&rder to provide support for complete
set of activities related to tracking requests, in the rggposare also stored data about clients,
software applications and work orders that are associateghuests. The repository is managed
through an internal Web based application.

Issue tracking system does not contain only records fontdimaintenance requests, but also
records for all other, non-maintenance, tasks. Howevalyais of all records for the period
from May 2010 to November 2011 provides the evidence thab 188ks of totally 2252 tasks
are related to software maintenance (84%), while 356 tasksetated to other activities (16%).
A period of 19 months that begins two years after introdu¢hegyissue tracking system in the
company is selected for the analysis. Discussions withraragiers in the company confirmed
that they are accustomed in using the system, which ensxir@s&on of more reliable data from
the repository.

3.3. Programmers’ working hours

Working hours spent on solving clients’ requests provide rial basis for charging main-
tenance services. These working hours are hours that agonoger spends on a specific task
associated to a request. In addition, these working hoera grart of a programmer’s daily ac-
tivities. Repository of MRs contains recorded working otor each request. Three types of
working hours exist in the repository: working hours spenthie company, working hours spent
on Internet (activities that require Internet access tentd’ information system), working hours
spent at client side (in client's company). The total nundfexorking hours can be calculated as
a sum of these three types of working hours.

4. Maintenance trends analysis

Two sources of data were used for the trend analysis: comgaoyments containing de-
scription of organizational structure of the company, aathdextracted from the internal repos-
itory by using SQL script. Data about programmers’ assigns& software applications, and
the list of clients with MSA were extracted from company do@nts. Internal repository con-
tains data about users’ requests and other entities thatezmessary to track all activities asso-
ciated to each request. Data was extracted from taldesRequest, Worker (programmers),
SoftwareApplication, User (clients) andiorkOrder. In tablel is presented the monthly dis-
tribution of solved (completed) maintenance requests tdtie analysis in this paper, for clients
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Table 1. Monthly distribution of solved maintenance requests

Month | Clientswith MSA | Clientswithout M SA
5.2010. 43 17
6.2010. 37 29
7.2010. 52 24
8.2010. 57 16
9.2010. 42 18
10.2010. 80 18
11.2010. 94 28
12.2010. 88 41
1.2011. 73 49
2.2011. 85 33
3.2011. 85 44
4.2011. 88 30
5.2011. 57 28
6.2011. 60 35
7.2011. 64 30
8.2011. 83 39
9.2011. 49 30
10.2011. 78 54
11.2011. 70 48
Total 1285 611

with MSA and clients without MSA. The following trends can 8ewn: (1) Clients with MSA
submit more requests, which is expected since the costewfrdguests usually fit the contracted
amount in MSA, and (2) The average number of requests perme®9.79, which practically
means that all clients submit approximately four requesiyzeking day.

These trends do not provide enough information on main@neequests’ processing. Trends
are too general, and therefore not suitable for more detaialysis. However, these trends prove
the high demand for maintenance services. In additiongtlresnds show that clients with MSA
require more maintenance services than clients without MBArder to get deeper insight into
maintenance trends it is necessary to include details gdaoticular software applications that are
maintained, about clients, and about types of maintenastest This analysis enables detection
of trends in demands for maintenance by various clientspséliesy of distribution of requests per
applications, and detection of trends for types of maimeradasks.

4.1. Monthly trends for maintenance requests per client

Previous analysis shows that clients with MSA submit twoesmmore requests. Therefore, it
would be beneficial to find out the distribution of requestsgients, to find out clients with the
highest demand for maintenance and based on that to sugg®stied versions of MSA that will
be tailored to each client or a group of clients. Detailed thiyrtrends with the number of requests
for clients that submit more than five requests per monthémage is presented in figuteNames
of clients’ companies are coded with lett&$,C,D andE in order to preserve their anonymity
according to guidelines for ethical issues in empiricatiss in software engineeringinger &
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Table 2. Total and average number of MRs for clients with MSA

Client A | Client B | Client C | Client D | Client E
Total number 171 170 95 184 142
Average 9.00 8.95 5.00 10.82 9.47

Vinson, 2002. It should be noted that clients D and E have zero requestiseitbeginning of
observed interval because client D started to use softvgaiecations in July 2010 and client E in
September 2010.
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Figure 1. Monthly distribution of MRs for clients that submit more thfive requests
per month in average

Data presented in figurkare related to requests submitted by clients with MSA. Tot@hber
of requests, and the average number of requests per mordineimisA,B,C,D andE are shown in
table2. Other clients with MSA submit smaller number of requests they submit them in each
month.

Clients without MSA submit smaller number of requests thizsants with MSA. In addition,
they do not submit requests regularly. This means that therdonger periods of time without
requests from them. Typical trends for requests submityeclibnts ,M andN) without MSA
are presented in figur2

Trend analysis of the number of MRs for particular clients ba used for the proactive man-
agement of software maintenance activities. In additioesé data can be used also for improve-
ment of policies in MSAs. Since trends for clients with MSA aegular, they could be also used
as parameters for estimating future maintenance act\atiel workload. For clients without MSA
it is very hard to draw any conclusion because of irreguylanitrends.

Analysis of the number of working hours spent for each clemws the real state of the
maintenance workload per client. FiguBeshows the monthly distribution of working hours for
selected clients with MSA.

The average number of working hours for clieA8,C,D andE that have MSA per month,
and the average number of working hours for clidtfgl andN that do not have MSA are shown


figMRMonthlyTrendsPerClient.eps

66 Z. Stojanov et ajTheory and Applications of Mathemati&sComputer Science 3 (2) (2013) 534

10
2 s +—A
s 1L /\
g ST\ .
s \ .. 2 —eClientK
1y
g o0+ X N e e ——
'g' 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
-
Months [May 2010 to November2011]
PR
s
S ¢ '\
o
!
‘S
g 2 —e—ClientM
E W \wa
: 0 T T T
Z 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Months [May 2010 to November2011]

\ —o—ClientN

T T 1

1 2 3 45 6 7 8 9 10111213 14 151617 18 19

s o »

Number of requests
N

Months [May 2010 to November2011]

Figure 2. Typical MRs monthly trends for clients without MSA
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Figure 3. Monthly distribution of working hours for clients with MSAat submit
more than five requests per month in average
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Table 3. Average number of of working hours per month and per requestlients
with MSA that submit more than five requests per month in ayera

Client A | Client B | Client C | Client D | Client E
Average number of working hours per month 15.72 11.21 5.81 14.29 12.93
Average number of working hours per request 1.65 1.30 1.16 1¢,17 1.42

Table 4. Average number of of working hours per month and per requestlients

without MSA
Client K | Client M | Client N
Average number of working hours per month  1.13 2.61 1.76
Average number of working hours per request 0.44 0.92 0.64

in tables3 and4 respectively.

The first insight into the data related to clients and thejuests suggests that clients with
MSA consume more time and resources than clients without Mi3#s is somehow expected,
but directs the thinking towards tailoring appropriatevgss agreements for particular clients that
have not signed agreements yet.

4.2. Monthly trends for maintenance requests per softwppieation

Application portfolio consists of over 30 software apptioas used by local clients. Organi-
zation of maintenance activities is based on assignmemiogfammers to software applications,
which is documented in the company. This means that whenlsotyeeceives a request,/bke
knows who are potential programmers that should solveig.\ery important to know the distri-
bution of MRs and working hours per software applicationsrider to improve the maintenance
practice.

For that purpose was conducted trend analysis that showdidtidution of maintenance re-
guests per applications, and the distribution of workingrsger applications. Analysis disclosed
that 75.84 percent of all requests are related to five sofwegplications (namedppl app2
app3 app4andapp9, while 87.39 percent of all requests are distributed tallpnine software
applications (see figurd).

Table5 shows the average number of working hours per month for fivst inequently used
software applications, and the average number of workingdper request for these five applica-
tions.

4.3. Trends for types of maintenance tasks associated tests)

Classification of maintenance tasks, or maintenance typteeipractice is subjected of sev-
eral studies. From the first typology of software maintergmoposed bypwansor(1976, many
authors have proposedfdrent typologies. General agreement among the reseaaézacti-
tioners is that maintenance types are: corrective, pe&ree@daptive and preventive. However, in
practice, software organizations define their typologee®eding to their need$sfojanoy 20123).
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Figure 4. Monthly distribution of MRs per sotware applications

Table 5. Average number of working hours per month and per requediviermost
frequently used applications

appl | app2 | app3 | app4 | app5
Average number of working hours per month19.05| 33.07| 20.91| 19.99| 9.51
Average number of working hours per requestt.20 | 1.41 | 1.18 | 1.78 | 1.10
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Joneg2010 proposed the list of 23 types of maintenance tasks basekeobetst practice in in-
dustry.

In the selected small company, all maintenance tasks harereeorded in the internal reposi-
tory. Despite of the large experience in industry, leadixjpeets in the company have not proposed
any classification of maintenance tasks based on proposalsilable literature, but rather on their
own experience and needs. In the repository are defined Hbesiiog types of tasks: change (any
type of change on software products), training, mandatbange (changes proposed by regula-
tive and law), and all other tasks (updates, adaptationgyveder, more helpful analysis requires
more detailed classification of maintenance tasks. Forgbgiose, general change tasks were
manually classified by the company leading programmer ingmwaips: corrections tasks related
to fixing detected faults, and enhancements tasks relatettliog new features and other changes
not related to faults. Classification was based on deta#sdription of tasks provided by clients
and programmers.

The new classification schema for maintenance tasks ised@yns, enhancements, training,
mandatory changes and other. Figdr@resents trends for types of maintenance tasks in the
company. The most of maintenance work is related to enhgrsnftware product capabilities
(60.18%), while corrections are related to 23.32% of allntenance works. All other mainte-
nance tasks contribute with about 10% .

M Corrections

M Enhancements

W Training

M Mandatory changes
m Other tasks

Figure5. Trends for maintenance tasks

5. Discussion of resultsin the company

According to assessment plan, feedback meetings (seysvens regularly organized in the
company. Feedback meeting is dfeetive tool that helps in discussing the state of the ass#sm
process, current findings, and further stepPgl{aet al., 2004 Oktaba & Piattinj 2008. Hattie
& Timperley (2007 argued that feedback provides directions for the curresttire assessment,
learning based on the experience, and further performamgmivement.

Company manager and leading programmers participateceifettdback sessions. All ses-
sions were prepared in advance in order to reflect the custat®, discussions were type-recorded,
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and records were later transcribed and analyzed. Sessied laetween 30 and 60 minutes. Prac-
tically, sessions were semi-structured, which means tlsasaion plan and initial discussion had
been prepared in advance, but discussions during the sessmuded many issues that had not
been planed.

Discussions related to the analysis of the average numbesréing hours per clients revealed
the following trends:

e Programmers spend approximately six times more time oragedor the realization of re-
quests submitted by clients with MSA. According to MSA, olig pay for contracted num-
ber of working hours on the monthly basis, and that makes ttoef®el more comfortable
in submitting new requests.

e On the other hand, clients without MSA submits less requdstsaddition, their requests
require less time in average on the monthly basis.

e The next issues that is obvious is that MRs submitted by tdiaith MSA consume more
time comparing to requests originated from clients withd&A. In addition, clients without
MSA are less interested in the improvement of the softwapdiegdions they use.

Discussions related to the analysis of the average numbvesriing hours per software appli-
cations revealed the following trends:

e Software applications labeled wipplto app5are usually installed as comprehensive busi-
ness solution for accounting and management of resourcagamizations. This explains
their dominance regarding the number of requests and cagwuarking hours. Other ap-
plications are not so frequently used and usually are salld@pendent software solutions.
This implies that the package of these applications shoelddmsidered as a candidate for
tailoring a special type of MSA for clients that regularlyeufiem, and to fder this option
also to other clients.

e For software applications that consume less working ha@atstions that will increase their
usability to clients should be identified, which will leaditecrease of associated mainte-
nance activities and, therefore, to increased profit to tmepany. There are few possible
directions for further activities that will help in incraag the profit from software applica-
tions that are not regularly used: include them in integrdétgsiness software solutions, or
retire some of them and introduce substitutions that areerattractive to clients.

Discussions related to the analysis of trends in mainten#asks revealed that the most of
the work is related to enhancements and corrections. Haweaea available in the repository
are not suitable for detailed analysis of trends becausetera@nce tasks have not been properly
differentiated.
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5.1. Improvement directions

Software process assessment is usually considered atliteras the initial phase of a process
improvement Gray & Smith 1998. Assessment leads to the identification of key procesg{pra
tice) elements that need improvements, or towards idestiibic of the strengths and weaknesses
that should be considered during improvements’ plannimog (Wangenheinet al., 2006. Based
on the presented trend analysis, the following improverdesttions are identified:

e Development of fort estimation models that will be useful in planning pragraers’ work-
load. These models will consider monthly distributions @intenance requests per soft-
ware applications and per clients and distribution of resgalities in the company.

e Improvement of planning activities in the company relateddistribution of workloads
among programmers in order to achieve mdfeient and faster processing of maintenance
requests.

e Improvements of service agreements for clients. This tioreéncludes proposing fierent
types of MSA that will include various types of software dpations. This will lead to
portfolio of MSAs that are tailored for special clients’ wise

e Improvements of software applications portfolio managettieat will consider software ap-
plications that are irregularly used, and have very smatiloer of maintenance requests.This
direction includes planning the retirement of unsuccessitiware and introduction of ap-
propriate substitutions.

e Development of more detailed typology of maintenance tés&iswill enable derivation of
trends that will cross data about software applicationsntd, programmers workload, and
maintenance tasks.

6. Limitationsand threatsto validity

Discussion about internal end external validity, and aimgppossible limitation is mandatory
for empirical studiesKitchenhamet al,, 2002.

Internal validity relates to the design of the researchstancy of analysis, and the influence
of unexpected sources of bias. Analysis is based on trergssmgechniques that are easy to im-
plement, but requires deeper understanding of the contebdiull engagement of both researchers
(assessors) and company employees that perform the prddesss accomplished by joint work
on proposing general improvement and assessment goastiselof appropriate techniques and
methods, and joint analysis of all findings during feedbadetimgs in the company. The prob-
lem with the bias is not addressed since the general goakddttidy is practice assessment and
improvement and we assume that company employees will ggaie full assistance in order
to achieve the best results for them. In addition, usingrage data analysis methods based on
traceable data minimized researchers’ bias in the research

The threat to the external validity primarily is related fapécability of this approach in other
industrial settings. The approach assumes deeper unuadirggeof the context and involvement
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of all company employees in all phases of the research framnphg, through collecting and
analysing data, to discussing and presenting researcimd@indiSince very small software com-
panies have the similar problems in their business, theoagprcould be adapted to other small
software companies, by considering specificity of theieiinal organization. The analysis process
presented in this study could be also adapted to other, rpt@jesmall software companies or
small teams. Subsequent applications of this approachdywolide evidence about its validity
and usefulness.

7. Conclusions

In this paper is presented an approach to software maintena@ssessment based on trend
analysis and feedback sessions. The study was conductedeiry amall software company in
Serbia, which is oriented towards local clients. Trend ysialincludes analysis of maintenance
requests’ processing trends with the focus on the numbeoufasts and working hours spent per
clients and software applications, as well as simple arsabfanaintenence tasks’ trends.

The observations and conclusions from trend analysis wilubed as directions for process
improvement activities in the company. Both technical arghoizational issues in the company
are subject of improvement based on the results of treng/sisalFor example, improvement of
client service agreements is the obvious directions foctp@ improvement related to organiza-
tional issues. Improvement of the practice can be achielssdly proposing #ort estimation
models based on the current trends, such as the model prddgrtojanovet al. (2013. The
next direction for practice improvement is related to depetent of more detailed typology of
maintenance tasks that will enable analysis of trends foowa types of tasks regarding software
applications and clients.

The main contribution of the presented approach is relatachplementation of assessment
method based on trend analysis tailored to a very small softwompany. The method is based
on collecting field data from company maintenance repositoralyzing data by using trend anal-
ysis, and identification of relevant conclusions and dioex for further improvements of the
maintenance practice. The next contribution is detailexb@mtation of trend analysis as a part
of assessment method tailored to specific context, whichb&ihelpful for other small software
companies.

The approach is designed for small software companies orseand can be tailored to other
similar settings. Findings of this research contain lessbat can be used by software practitioners
in small software companies in order to assess and imprewadkbcision-making and maintenance
requests’ processing. On the other hand, researchers findldome useful guidelines how to
conductlight maintenance assessment based on trend analysis by carggigen context.

Further work includes developing a formal model of lightesssnent approach for software
maintenance in very small software companies, and adaptatnd implementation of the ap-
proach in other similar settings. This will provide the oppaity to replicate the research in order
to validate usability of presented approach. The next psorgiresearch direction is related to
adapting this assessment approach to other processeslirseftvware companies, or to compa-
nies that are mostly oriented towards outsourcing of prtedacd services.
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Abstract

In this paper, the steady two-dimensional motion of an ingeassible Newtonian fluid between two parallel
plates with heat transfer in the presence of a cosine shdapedsss is studied. The governing equations are trans-
formed into a compatibility and energy equations, whictolsed analytically with the help of the regular perturbatio
technique. The solutions obtained from the present arsafysi given in terms of streamlines, wall shear stress, sep-
aration and reattachment points, pressure and tempeudisri®utions through the stenosed channel. The accuracy
of the results are verified from available literature. Itesifid that the wall shear stress, pressure gradient and tem-
perature increase with the development of the stenosisjrigiaeparation and reattachment points in the region. It is
also observed that even at low velocity, separation océtng ithickness of the stenosis is increased. We present the
results in graphical form.

Keywords: Newtonian fluid, stenosis, heat transfer.
2010 MSC:76-XX.

1. Introduction

The motivation of this study comes from the investigatioalmfiormal blood flow in a stenosed
artery, which may be due to atherosclerotic plaques deedliap various locations in the artery.
Its effect on the flow of blood is discussed by many authors thealgti@xperimentally as well
as numerically. Forrester and Yourigofrester & Young1970 presented the theoretical as well
as experimental results of an axisymmetric, steady flowutdinca converging and diverging tube
with mild stenosis. It is observed that there is an abundaoient of evidence to support the con-
clusion that the abnormal flow conditions developed in adttembstruction can be an important
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factor in the development and progression of arterial dised-urther indicate that even a mild
collarlike stenosis in a small artery can create signifiedortormalities in the flow. Morgan and
Young (Morgan & Young 1974 provided the approximate analytical solution of axisynmce
steady flow of incompressible Newtonian fluid both for mildiaevere stenosis by using an in-
tegral method; basically they presented the extension oEBt@r Forrester & Young1970. It

is observed that even a mild stenosis can cause a radicaltedtein flow characteristics and that
the dfect in general becomes more drastic as the stenosis becomneseavere and the Reynolds
number increases and also wall shearing stress is espegialtted. Analysis of blood flow using
an incompressible Newtonian fluid through an axisymmeteaased artery of cosine shape has
been done by K. HaldaHaldar, 1991). It is shown that for any given Reynolds number or tube
constriction the separation point moves towards the thwbtte tube and the reattachment point
moves downstream with the enlargement of the region of aéiparwhich is physiologically un-
favorable. Layek and Midyd @yek & Midya, 2007) presented the numerical solution of a time
dependent incompressible Newtonian fluid for symmetrinages in a two dimensional channel.
It is noticed that the maximum stress and the length of theadating region associated with
two shear layers of the constriction increase with the imeeeof the area reduction of the con-
striction. It is observed that the critical values for thoeastriction heights = 0.25,0.3,0, 35 are
600, 300, 210 respectively. Chow et alChowet al, 1971) analyzed the steady laminar flow of
an incompressible Newtonian fluid forftérent physical parameters by considering a sinusoidal
boundary. It is observed that by increasing eitRelor ¢, the separation point would move down
towards the throat in the divergent part of the channel withbsequent enlargement of the region
of separation. Lee and Fungde & Fung 1970 solved the flow model of the Newtonian fluid
numerically through locally constricted tube for the lowyRelds number. The constraints in their
numerical procedure restricted the shape of the tube to bd fixd the Reynolds number to be
moderate. HaldaHaldar, 1985 discussed theffect of the shape of constriction on the resistance
of blood flow through an artery with mild local narrowing. #$hown that the resistance to flow
decreases as the shape of the stenosis changes and maxisisiance is attained for symmetric
stenosis. S. Chakravarty and A. Ghosh Chakrav&@hakravarty & Chakravartyl 989 presented
analytical solutions by considering an anisotropicallyséic cylindrical tube filled with viscous
incompressible fluid representing blood having stenodie dnalysis is carried out for an artery
with mild local narrowing in its lumen forming a stenosis. Haldar Kruszewskiet al., 2008
studied the oscillatory flow of blood which behaves as a Nawiofluid having surface roughness
of cosine shape. It is observed that the resistive impedandevall shear stress increases as the
phase lag increases for a particular value of stenosis teigls also observed that impedance
and wall shear stress increases with the increase in thess¢ameight. Newman et aINéwman

et al, 1979 investigated the oscillatory flow numerically in a rigidogiwith stenosis. The pre-
dictions of the numerical results agreed well with the ekpental works. This paper deals with
the problem of oscillatory blood flow through a rigid tube lwé mild constriction under a simple-
harmonic pressure gradient examines tfieat of stenosis on the flow field by considering blood
as a Newtonian fluid. Mehrotra et alMéhrotraet al, 1985 presented analysis by considering
the flow in a stenotic tube where the cross-section is etlipiti is observed that the theoretical
study of pulsatile flow in a stenotic tube confirms the viewt tha fluid dynamics characteristics
of the flow are &ected by the percentage of stenosis as well as the geometrg sfenosis. The
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frequency of oscillation also influences the shearing str&rivastava and Rastodbrfvastava

& Rastogi 2010 investigated the blood flow through narrow catheterizeédrgrwith an axially
nonsymmetrical stenosis. It is found that the flow resistancreases with the catheter size, the
hematocrit and the stenosis size but decreases with the glaaameter. A significant increase in
the magnitude of the impedance and the wall shear stresssoeeen for a small increase in the
catheter size. The shear stress at the stenosis throahdesngith the increasing catheter size. The
abnormal flow conditions developed due to stenosis can bajpartant factor in the development
and progression of arterial diseases. Some of the furthgrmoamplications developed through
these stenosis are the growth of tissues into arterieslapgwent of an intravascular clot and post-
stenotic dilatation. This type of flow also has applicationgarious fields like physiological flows
and polymer science.

In the present paper, théfect of stenosis height and Reynolds number on flow charaeteri
tics, wall shear stress, pressure gradient, separationeatidchment points and heat transfer are
analyzed. The study of the Peclet number and Brinkman nuorbéne temperature distribution
is also presented. It is observed that the general patteftovefis similar to the results given in
(Haldar, 199]) - (Chowet al, 1971). The results of the present investigation indicate thahex
mild collar like stenosis in a small artery can create sigaift abnormalities in the flow includ-
ing the phenomenon of separation. This study presentsehédysttwo-dimensional motion of an
incompressible Newtonian fluid in a cosine shaped stendsadnel with heat transfer. In this
analysis blood is assumed as Newtonian fluid and the geomkthe artery is approximated by
a channel. The layout of the paper is as follows: The basiatémus governing the flow, in the
Cartesian coordinate, are given in section 2. Problem ftation is presented in Section 3. In
Section 4 the method is discussed and section 5 is dedidsesblution for diferent parameters.
Section 6 provides a graphical discussion. A summary isgieection 7.

2. Governing equations

The basic governing equations for steady two dimensionai éilba non-isothermal, incom-
pressible linearly viscous fluid in the absence of body fee

V-V =0, (2.1)
pcij—\: =-Vp+ V7, (2.2)
pCp(il—-It- = kV2T + 0, (2.3)

whereV, T andp are the velocity vector, temperature and constant denfsibyedluid respectively,

p is the dynamic pressure, and« are the specific heat and thermal conductivity parameters
respectivelyV? is the Laplaciang the viscous dissipation function defined¢as 7- VV andd/dt

the material time derivative defined as

d o0 _o0 _o
rrinlen + u8_5<'+ Va_y’ (2.4)
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whereu andV are the velocity components imandy directions, respectively andis the extra
stress tensor defined as follows

T=uAy, (2.5)
whereu is the dynamic viscosity an#l; the first Rivlin-Ericksen tensor defined as
A, =VV + (VV)7, (2.6)

hereT indicates the transpose.

3. Problem formulation

Consider the non-isothermal Newtonian flow through the ok&af infinite length with heat
transfer having stenosis of lengty2. The coordinate system is chosen in such a way that the
arterial system lies in they— plane such thak—axiscoincide with the center line in the direction
of flow andy — axisperpendicular t&X — axis

Consider the boundary of the stenosed region of the fétaddar 1997)

3 A 4ArrX e — 1o
h(?()_ho—z(l+cos( Io‘)) —7<X<7p (3.1)

=h, otherwise

whereh(X) is variable gap between the stenosis, the width of unobstructed channel aadhe
maximum height of stenosis.

«

Figure 1. Geometry of the problem.

Boundary conditions for the present problem are
U=v=0, T=T; at V=h(X,

(3.2)


visc_fig111.eps
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wherevu, is the average velocity an@ the volume flow rate. Assume that the blood behaves
like Newtonian fluid and for steady, homogeneous, inconginésstwo dimensional flow of blood
velocity field is assumed as

V = [@X9).9(X9).0). (3:3)
Introducing the dimensionless parameters as follows
u v X y h2 _ T-T,
u=—, Vv=—, X=—, ==, = , 0= ——, 3.4
Uo Uo lo Y ho P ﬂuolo P Ty —-To ( )

whereT; andT, are temperatures on the boundary of stenosis and fluid riasggc
Substituting equation®(4)-(2.6) in equations2.1) - (2.3) and making use of3(3) and @.4),
nondimensional form of equations becomes

ou ov
—+—=0 3.5
58x - oy (3.5)
ou du ap s
—iv—=|=-LE4+vVv 3.6
Re(duax + Vay) o TV (3.6)
ov ov op 2
Re) | Su— — | = —— +6V~y, 3.7
(U6X+V6y) 6y+ V. (3.7)
8 0 ou\® [(ou _ov\°
— +v—|0=V?%+Br|45*| = — 46— .
Pe(6u8X+v8y)9 0+ r(4<5 (ax) +(8y+68x))’ (3.8)
where o H ) H
o UoNg AUy PCpNolo
=2 Re= Br= —2 e=— 3.9
T R BTy < ©9)

in which Reis the Reynolds numbeBr the Brinkman numbeRethe Peclet number.
Now to convert these equations in single variable, intraaythe stream function defined as

o

_W 3.10
Sy VT % (3.10)

which satisfy the continuity equatio.6) identically. After eliminating pressure gradient term

from momentum equation8.)-(3.7) and making use of3(10, compatibility equation is obtained
of the form

ALY
a(y: %)

whereV? = &£ + 2 is the dimensionless form of the Laplacian. Energy equa8c) in terms
of stream function E,)ecomes

.0 _ g2 (PN (P P
PaSa(y’X) =V + Br(45 (6x6y) + pY: -0 2] | (3.12)

Re = V4, (3.11)
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The dimensionless stenosis profigel) takes the form

€ 1 1
f(x)=1-=(1 4t _Z =
(X) (1 + cos 4rX) <X< =, (3.13)

=1 otherwise

wheref = " ande = £.
Boundary conditions in terms of stream function becomes

W o, y=-% 6=1 at y=t,

oy 2

2 (3.14)
o w=0 Y_0 a y=o0

a0 VTR T y==

Due to non-linearity of§.11) and @3.12), the regular perturbation technique is applied to find the
analytical solution along with the boundary conditionsedi in 3.14).
4. Perturbation method

In this section we shall discuss the perturbation methoddmgidering a linear or nonlinear
differential equation
L(w,0) =0, (4.1)

that depends on the small positive paramétérhe boundary or initial conditions may depend on
6. The reduced or unperturbed problem associated with thagrois obtained by setting= 0
along with its boundary or initial conditions. We expand sldutiony in the perturbation series

Y= i '»l’ndn, (4.2)
n=0

the diference betwees andy, is refereed to as a perturbation on the solutigrof the reduced
problem. Inserting this equation intd.() gives

L(y,6) = L(Z Yo", 8) = 0. (4.3)
n=0

We assume thdt(y, §) can be expanded in a power serieg/iandé. As a result above equation
(4.3) can be expanded in the form of the series

L(w.6) = > LalWn, Yn 1, -1, 00)5" = O, (4.4)
n=0

wherelL, represents dierential operator, which may be linear or nonlinear. Theesé4.2) is also
inserted into the given initial and boundary conditionstfar problem.
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To solve the given problem by means of the perturbation ntkthve put the coicient of 5" in
(4.4) equal to zero and obtain

I—n(wn, 'J’n—l’ o 'wl’ '700) = O’ n= O’ l’ 2’ R (45)

Similarly we equate cdicient of like powers ob in the initial or boundary conditions. This yields
the system of equationd.§) with appropriate boundary conditions that we solve reeatg.
We first solve the reduced equation

LO (lﬂo) = O’ (4 . 6)

with relevant boundary conditions. Ongg is found, then equation fa¥#; with boundary condi-
tions is
Li(¥1, o) =0, (4.7)

is solved and then the equations ffy, 3, - - - with relevant boundary or initial conditions are
solved successively.

5. Solution

To solve the compatibility equation and energy equationgieith boundary condition$(14),
the flow variablegy andé are perturbed as

Y=o+ 01 + 8P+

5.1
0 =0+ 0601 +6%0p + - - -. (1)

wheres is a small parameter.

5.1. Zeroth order problem and its solution

Zeroth order system of equations is obtained by substgysr) in equations 3.11)-(3.12),
(3.14 and equating the cdgcients ofs° as

9o
= 2
5y =0 (5.2)
526, 820, \°
— =-B 5.3
ay? r( ay? ) ’ 53
and corresponding boundary conditions
%:O, Wo=—%, 6o=1 at y=1f,
823; .y (5.4)
o _ - ~0°_ =
a2 - 0, 0o=0, ay 0 at y=0.
The solution of equatiorb(2) along with boundary condition®(4) is given of the form
Ny Yy
Yo = Z(" - 3), where n = T (5.5)
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After substitution of .5) in (5.3) subject to §.4), zeroth order temperature is obtained as

fo = 1— 2 (n* - 1), (5.6)

which indicates that the temperature depends upon theaftieat production by viscous dissipa-
tion to heat transport by conduction.

5.2. First order problem and its solution
For the first order system comparing the fmgents ofs, we get

8o
9"y _ RDB (lﬁo, 6_;//;) (5.7)
ay* ay,x ’
%601 _ Paa (o,00) oBr 0o Py (5.8)
o> T Ay, %) ay? oy? )’ '
and boundary conditions
%:0, lﬂlzo 6,=0 at y:f,
ol (5.9)
%Y B 001 B '
Py =0, y;1=0, a—y_o at y=0.
The solution of equatiorb(7) by making usef.5) and 6.9) becomes
_ 3Refn 4 4 5
V1= ~"T150 (n° = 7n* + 117 - 5). (5.10)

By substitution of .5 and 6.10) in equation $.8) and making use of5(9), the first order tem-
perature profile is obtained of the form

3Bri’ (n? - 1)

b1 = —gooorr— (2Re(90° — 47y + 197" + 19) + Pe(15° - 13" - 837 + 337)} . (5.11)

It is observed that the first order temperature depends upgoratio of heat production by viscous
dissipation and heat transport by convection to heat t@hgy conduction.

5.3. Second order problem and its solution
Comparing the cdécients ofs? to get the second order system as
VG %y
CAT I e BN 9 a2

oy* - e (Y, X) o (Y, X) B ZaXZay ’ (5.12)
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P | 0Wo0) 0Wr )| P00 o |, (0 (#P)
ay? ay. %) a(y. %) 0% oxdy ay? (5.13)
W02 0o P '
dy? 0y? oy?2 0x2 |’
boundary conditions for second order system are
%:0, w2:0, 92:0 at y= f,
oy (5.14)
%Y 06, '
— =0 =0, — =0 at y=0.
Y , Y2=0, By at 'y

Using 6.5 and 6.10 in equation $.12), the solution is obtained by successive integration along
with the boundary conditions defined i5.14) as follows

Y, = CRén | 12(987'° - 1155)° + 4488;° - 8778;" + 8222° - 2875
3p(4f2 - ££7)

) (" - 2> = 1),

(5.15)

~ 117 (3570 - 385" + 1518/ - 3234 + 32797 - 1213 -

which is second order solution for stream lines. To find thewed order temperature, usirtg}§),
(5.10 and 6.19 in equation $.13, with the help of MATHEMATICA, we get

_(:1(772 -1)
==
+2PeR¢8407™° - 6860;° + 11455 + 3139" — 26891 + 56269 + R (2303

—21721% + 63122° — 68086;" + 17183)” + 17183 — 517440013 + 9* - 36)}

0, |-4t2{7Pe (2257"° - 721° - 2207° + 30134;" — 94771 + 238859

+ff” {BBr( 7P€ (225710 — 721% — 2206;° + 30134* — 94771 + 238859)
+2PeR¢g5257" — 5173/ + 14132° — 7120;" — 29065/ + 102609 + 8RE (175"

~1673/ + 5158,° - 7778} + 20597 + 2059) — 206976 71" — 47 - 9) )}] .
(5.16)
5.4. Velocity and temperature fields

The dimensionless velocity componentsxrandy directions are obtained fron8.(10, we
arrive at the axial component of velocity as

U="%"127 1120 40

+CRéE{12(1078;° - 931%° + 22099;" — 21791 + 2879
~Cff”(385)° - 3080;° + 75467 - 86247° + 1213)}} |,

2— ’
(7" -1) 3R (1t 287+ 5) a2 (117 1) (57 - 1)
(5.17)
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and the normal component of velocity is

2 _
V:M [Zf + 2211 (12~ 1) (2 - 5) — 1(74° 2877 +5))

3ff/f” 3f2f” 33
2 2 2 2 ’3 8
w2 (3 - 1) - 2 (- 1) - 35 (6 - )+ RE[CI(1078F (5.18)
—-93172° + 22099;* — 2179%° + 28875) — C,f f'f” (27378 - 24225 + 66207*
—~86267” + 2879) + C 21" (” — 1) (357° — 315" + 853" — 1213)}}].
The temperature distribution up to second order is obtafireed (5.1), we arrive

. Br[3,, 30072 - 1)
9‘1_f2[16('7 _1)_5{ 8960

—-837” + 337))} - 6?|Co(n? - 1) {22 {7P& (225" - 721° - 2206;° + 30134;*

~94771%" + 238859 + 4PeR¢84(0'° - 6860;° + 11455° + 3139 — 26891” + 56269
+2R€ (2303 - 2172%° + 63122,° - 68086;* + 17183 + 17183 - 103488(13;"*

+9r” - 36)}} + £ 17 {3Br{7P€ (2257" - 721;° — 2206;° + 30134;" — 94777 + 238859
+2PeRg5257" - 51737 + 1413%° — 7120 - 29065;” + 102609 + 8RE (175" - 1673;°
+5158,° - 7778;* + 2059 + 2059 - 206976((7;* — 47” - 9)}}||.

(2Re(9n° - 477" + 197% + 19) + Pe(15,° - 13;*

(5.19)

whereC = zpes0  C1 = ssm0300 C2 = T72am00 Dimensionless wall shear stress for viscous
fluid up to second order is given by

ou _ov
Ty =|—+0—
gy  OX)yq

:% L, Ref 62{%6825(40ff”—79f’2)+(2ff”—13f’2)}].

(5.20)

> 359" 10

The points of separation and reattachment are defined asatkeflow at wall, where the wall
shear stress is zero, itg.= 0, then above equation reduces as

40425+ 231(Refs + 6> {10f  (40R€ + 16170 — 2 (79R€ + 105108} = 0. (5.21)

The solution of §.21) in terms of Reynolds numbé&eis

7
~ 5(40f £ - 79f72)

Re

{1651 + 16516512 - (401 £ - 791 (5 - 13522 + 2621 1))

(5.22)
By using equationg.22), our aim is to find graphically the critical Reynolds numbéwhich the
back flow occur.
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5.5. Pressure distribution

To find the pressure distribution along x-axis within therahal, the equations3(6) and @.7)
are converted in terms of stream function and then pert@detiequation by usiné (1) and

P=Po+0py+ &P+, (5.23)
system of equations is obtained as follows.

5.5.1. Zeroth order pressure and solution
Comparing the ca#cients ofs° , we get

Ipo _ %o

TR (5.24)
OPo
— =0. 5.25
oy (5.25)

By integrating the above two equations and making usesd),(the zeroth order pressure is
obtained of the form

3 1 tan 2rx f’
Po = [ 3-8+ 8 tan‘l( )— 16( — 1) — 3¢?
° 321(e-12| Vi_e ( ) Vi_e) 8nf2 { (5.26)
—3e(e — 2) cos(4X)! ] ,
which involves the trigonometric and inverse trigononeetuinction.
5.5.2. First order pressure and solution
Equating the ca@cients ofé , we obtain
2
o _ Puy_ S ) (5.27)
ax R ayx '
‘96_'31 _o, (5.28)

by making use of equation%.5), (5.10 and solving $.27)-(5.28), the first order solution for
pressure is obtained by applying

Y o
—d 5.29
X + oy A (5.29)

of the form

(5.30)

P1

_2Re( 1 1
-~ 140f2\(1-¢€)2  f2)°
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5.5.3. Second order pressure and solution
Comparing the cd&cients ofs? , we arrive at

61/’1 31/’0
%:%_Rea(%’a_y)ﬂ(%a—y) (5.31)
ox  oy? 3 (Y, X) oy, x |’ '

sz _ (93%
By " a0y (5.32)

by integrating the equation8.81)-(5.32 and making use of5(5), (5.10 and 6.19 ,we arrive at
the second order pressure as follows

2
0y = [ 7€ 3(13Re2+8085)tan‘1(tanzrx)

T13475((1— o)} Vi-e
L [404257 52R€ 18865 (c-2)(1RE +8085)
2f2 42 4f(e-1) '

(5.33)

Now one can easily find the pressure up to second order by esjngtions %.26), (5.30 and

(5.33.

6. Graphical discussion

In this section the féect of diferent pertinent parameters on stream lines, wall sheasstre
pressure distribution, separation and reattachment gaimd analysis for heat transfer are pre-
sented graphically. The geometry of the proposed modeli®istudy of the stenosed artery is
depicted in Figure 1. The radii of obstructed and unobstdicegions aré(x) andh,. The point
of separation lies near the throat of the stenosed regidreindnverging section. Separation point
means the point where reverse flow occurs. Figure 2,3 piesiamtehavior of stream lines for
zeroth order in 2(a), first order in 2(b), second order in a¢a) up to second order in 3(b) respec-
tively, for the fixed values oRe= 12 € = 0.2,6 = 0.1, = 0.04. In these figureg — axislies in
the horizontal direction ang— axisperpendicular to it. The zeroth order solution correspdads
the flow with vanishing wall slopes and reduces to the flow leetwparallel plates far= 0. The
stream lines are relatively straight in the center of thendleh The first order solution induces the
clockwise and counterclockwise rotational motion in thevarging and diverging regions, which
indicates the separation point in the converging regionraattachment point in the diverging re-
gion. Figure 3(a) shows the stream lines for second ordatisalreinforce the first order solution
and observe the rotational motion which predicts the séiparand reattachment points. Figure
3(b) presents the stream lines up to second order. It is vddehat the stream lines becomes
relatively straight in the center of the channel as comperdise walls of the channel and similar
to (Chowet al,, 1977).

The distribution of wall shear stress across the stenosibéan described for the variation of
Rein figure 4(a) for fixede = 0.2,6 = 0.1. An increase ifRe wall shear stress increases near the
throat of stenosed region and becomes negative in the @ingeand diverging section of channel
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due to back flow. The adverse shearing in converging andgingsections of channel indicates
that there is point of separation in the upstream region aattachment point in the downstream
region of channel. It is observed that wall shear stresssiolidboth small and largBe

In figure 4(b) éfect ofe on wall shear stress is presented. The straight line ineBdaiat there
is no stenosis and the flow is Poiseuille flow. By the increasewall shear stress increases over
the stenosed region and becomes negative in the convergtigrsof channel due to adverse flow,
which is prediction for the point of separation. The separgboint was considered to be the point
nearest the throat where reversed flow along the wall of adacould be observed. The point
farthest down stream from the throat where back flow occueisdd as reattachment point. It is
expected that the wall shear stress plays an importantdlesiformation of the stenosis and its
further growth. Because the deposit of cholesterol andfpration of connective tissue may be
responsible for the abnormal growth in lumen of artery. ttsial cause may not be known exactly
but its éfect on the cardiovascular system can easily be understostlitlying the blood flow in
its vicinity. One of the practical applications of blood flékrough a membrane oxygenator is the
flow with an irregular wall surface.

—

0.1 02

(@) (b)

Figure 2. The zeroth order stream lines fer= 0.20,Re= 12,6 = 0.1 are shown in
(a) and the first order stream lines are shown in (b).

Figure 5(a) depict the distribution for the point of sep@main converging section of channel
for differente along with fixeds. The separation point lie to the right of minimum point, adly
the purpose for zero wall shear stress is to find the critiegirRlds number where separation
occur. The critical value oRein the converging region fo¢ = 0.6 is 70. The theory that the
critical Re decreases with the increaseadns verified. In figure 5(b) zero wall shear stress is
plotted fore having fixed value ob in diverging section of channel. The aim of investigation is
to determine the critical value &eat which reattachment occurred in the diverging region ef th
channel. As the criticaRereached the reattachment occur in the diverging region axficél and
separation point occur in the upstream region of channes. dbserved that the critical value of
Refor e = 0.6 is 380. It is also observed form figure 6 thateamcreases critical value dRe
decreases.
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Figure 3. The second order stream lines are shown in (a) and the stresntlorrect
up to the second order thare shown in (b).
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Figure 4. The dfect of Reon wall shear stress is shown in (a) and tiffea of e on
wall shear stress is shown in (b).

Figure 6(a) presents thetect for the various values dteon pressure distribution. It may
be noted that with the increase Re leads to increase the pressure gradient over the stenosed
region and becomes negative in the converging and diverggigns, due to the dependencdef
on average velocity. The adverse pressure gradient in tbggms causes back flows as observed
earlier. These back flows predicts the separation pointrireqing region and reattachment point
in diverging region of the channel. It is observed that thgni@de of adverse pressure gradient
in the diverging region is smaller as compared to that in threverging region.

Effect ofe on pressure gradient is studied in figure 6(b). It is obsethatwith the increase
in €, pressure gradient increases over the region having sseand becomes negative in the
upstream and downstream regions of channel due to back floevadiverse pressure gradient in
the converging part of stenosis describing the flow semaratnd reattachment in the diverging
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Figure 5. The separation point in converging region are shown in (d)tae reattach-
ment point in diverging region are shown in (b).
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Figure 6. The pressure distribution féteis shown in (a) and the pressure distribution
for e is shown in (b).

part. The straight line preserve Poiseuille flow as ther@istanosis.

Figure 7(a) depict for various values BEon axial component of velocity. It is observed that
with the increase irRethe axial velocity is maximum over the obstructive regionl f@comes
negative causing back flow in the converging and divergirgi@es of the channel. Figure 7(b)
shows the ffect of e on velocity distribution. It is observed that as théncreases the velocity
increases over the stenosed region and decreases shahgyonverging section and then recover
it in the diverging section of channel. Negative velocitgizates the back flow, due to separation
and reattachment points in the channel.

Figure 8(a) shows thefiect of Pe on temperature distribution. It is observed that with the
increase inPe, temperature increases over the stenosed region and bec@yative in the con-
verging and diverging regions. The adverse temperatuteeinpstream and downstream sections
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Figure 7. The axial velocity distribution foReis shown in (a) and the axial velocity
distribution fore is shown in (b).
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Figure 8. The dfect of Peon temperature distribution is shown in (a) and tffee of
Br on temperature distribution is shown in (b).

describing flow separation and reattachment from the wath abnfirm the results for velocity
and wall shear stress. Temperature distribution acrosstdmsis has been described in figure
8(b) for different values oBr. Temperature increases steeply from its axial axis in tme@ging
section of the stenosis to the peak value at the throat, tregmtd a minimum value downstream
behind the stenosis and again approaches to the axial atkis iegion away from stenosis. The
magnitude of adverse temperature in the diverging regiosteriosis is smaller as compared to
that in the converging section of the stenosis. The adverspérature in these regions cause back
flow as observed earlier in velocity and pressure fields.
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7. Summary

In the present study, steady two-dimensional flow of incaagible Newtonian fluid with heat
transfer between two parallel plates in the presence ofiae€shaped stenosis is presented. The
underlying problem is solved with the help of the regulartpdration method. The results thus
obtained are discussed graphically in terms of stream,limessure gradient, wall shear stress,
separation and reattachment points and temperaturebdistm. It is observed that the general
pattern of streamlines is similar as discussed.ayék & Midya, 2007) - (Chowet al., 1977), wall
shear stress is same as given Mofgan & Young 1974 - (Haldar 1991) and separation and
reattachment points are in agreement wiilaldar, 1991). It is observed that:

e Stream lines for zeroth order and up to second order areagidhile to smald and first and
second order shows rotational motion.

e Increase in Reynolds number increases the wall shear stedssity and pressure gradient.

e Increase in thickness of stenosis increases pressureegtatémperature and wall shear
stress causing separation and reattachment in the channel.

e Increase in the thickness of stenosis decreases the cRigaolds number for separation
and reattachment points, means even at low velocity sepam@tcurs.

e By theincrease in Peclet and Brinkman number increasesiigdrature between the chan-
nel.

e Fore = 0 Poiseuille flow is recovered.
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Appendix 1
List of Mathematical Symbols
V Velocity vector (mis)
\% del operator
p scalar pressureg)

d/dt  material time derivative

Cp specific heat{/kgK)

T temperatureg®)

u,v velocity componentsy/s)

X,y coordinate axisf)

Aq first Rivlin-Ericksen tensor

lo/2 length of stenosis()

h(x) variable width between the stenosig(
ho radius of unobstructed channa)(

Uo average velocity(y/s)

Q volume flow rate®/s)

T1,To temperatures on boundary of stenosis and Tyl (

Re Reynolds number
Br Brinkman number
Pe Peclet number

f(x) boundary profile

extra stress tensor

density

thermal conductivity
viscous dissipation function
dynamic viscosityPa/s)
transpose

maximum height of stenosis
dimensionless temperature
kinematic viscosityf?/s)
stream function

constant

ratio ofy and f

wall shear stress
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Abstract

The purpose of this paper is to investigate the problems of finding the order of starlikeness and the order of
convexity of the products of certain meromorphically p-valent functions belonging to some interesting classes of
B-uniformly p-valent starlike functions and S-uniformly p-valent convex functions in the open unit disk U. The
main results presented in the paper are capable of being specialized suitably in order to deduce the solutions of the
corresponding problems for relatively more familiar subclasses of meromorphically p-valent functions in U.

Keywords: Analytic functions, Meromorphically p-valent starlike functions, Meromorphically p-valent convex
functions, Products of meromorphic functions, Uniformly starlike functions, Uniformly convex functions.
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1. Introduction and definitions

Let A denote the class of all functions f(z) which are analytic in the open unit disk
U={z:2z€eC and |7 <1}

and normalized by
f0)=0 and f0)=1.

A function f(z) € A is said to be uniformly convex (or uniformly starlike) in U if, for every circular
arc I' contained in U, with center at w, also in U, the arc f(I') is convex (or starlike) with respect
to the point f(wyp). The classes of all uniformly convex function in U and all uniformly starlike

*Corresponding author
Email addresses: harimsri@math.uvic.ca (H. M. Srivastava), aylashin@mans.edu.eg (A. Y. Lashin),
bafrasin@yahoo.com (B. A. Frasin)
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functions in U are denoted by UCV and US T, respectively. These analytic function classes UCV
and UST were introduced and studied by Goodman (Goodman, 1991a,h) who showed, among
other things, that

1 (@)
1@

erCV(=>‘R(1+(z—§) )30 (z, € )

and

-0 f' @
f@) - ()
Rgnning (Rgnning, 1993, 1994) and Ma and Minda (Ma & Minda, 1992) gave the following one-
variable characterization of the class UCYV of uniformly convex functions in U.

Theorem A. A function f(z) € A is said to be in the class UCV of uniformly convex functions in
U if it satisfies the following condition:

% (1 Zf"(Z))z
( * @)~

erST«—»%( )go (z,¢ € ).

zf"(2)
1@

(z € D).

Since the Alexander type result that
feUCV < zf'(z) e UST
does not hold true (Rgnning, 1994), the class S, defined by
S, ={f:2f(2) e UCV}

was introduced by Rgnning (Rgnning, 1993). On the other hand, Shams ef al. (Shams et al., 2004)
initiated a study of the class S D(«, 8) of B-uniformly starlike functions of order @ (0 < @ < 1) in
U consisting of functions f(z) € A which satisfy the following inequality:

2f'(@) 2f'(@)
9%( @ © 1'

The class KD(a, 8) of B-uniformly convex of order @ (0 < a < 1) in U is defined as follows:

B20,0Za<1; zel).

cx)>ﬁ

f € KD(a,B) < zf'(z) € SD(a,p).

Motivated by the above-defined function classes S D(a,B) and KD(a,f3), Nishiwaki and Owa
(Nishiwaki & Owa, 2007) introduced the class M D(«a,8) consisting of all functions f(z) € A
which satisfy the following inequality:

%(Z;;ii)_a)<,8'zﬁi§)_1‘ B0, a>1: ze ).

The function class ND(«a, ) may also be considered as a subclass of A consisting of all func-
tions f(z) such that zf'(z) € MD(a, B).
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The class of uniformly convex functions and various other related function classes have been
studied by several authors (see, for example, (Ali & Ravichandran, 2010; Frasin, 2011; Kanas &
Srivastava, 2000; Kanas & Wisniowska, 1999, 2000; Murugusundaramoorthy & Magesh, 2004;
Rgnning, 1991); see also (Srivastava & Owa (Editors), 1992)).

Let X, denote the class of functions of the form:

f@=7"+ Y a2 (peN:=(L23,-)), (LD)
=1
which are analytic and p-valent in the punctured unit disk
U'={z:zeC and O0<|z <1} =01\ {0}.

A function f € ), is said to be in the class XS («) of meromorphically p-valent starlike functions
of order « in U if and only if

%[l(zf'@)]<—a GeU:0<a<1) (12)
p\ f@)

Also a function f € X, is said to be in the class XC,(a) of meromorphically p-valent convex
functions of order e in U if and only if

%[l(uzf"@)] <—a (eU,0<a<l). (1.3)
p /@

It is easy to observe from (1.2) and (1.3) that

f(@) € ZCph(a) =

A ) (1.4)

4

We note that the meromorphically p-valent function classes XS ;(a) and XC,(a) were intro-
duced by Kumar and Shukla (Kumar & Shukla, 1982).

We next denote by XM ,(«) and XN, () the subclasses of the meromorphically p-valent func-
tion class X, which satisfy the following inequalities:

IMy(a) = {f :feX, and R [—% (ZJ{;S))] <a (z€eU; a> 1)}
and .
INy(a) = {f :feX, and R [—i (1 + Z]];(g))] <a (zeU; a> 1)},

respectively. The meromorphically p-valent function classes XM, («) and XN,(a) are analogous,
respectively, to the subclasses M(a) and N(a) of the analytic function class A which were intro-
duced by Owa and Nishiwaki (Owa & Nishiwaki, 2002).
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Recently, Kumar ef al. (Kumar et al., 2005) introduced the following subclass ZS}‘;(a/, B) of
meromorphically p-valent starlike functions f € X, in U, which is similar to the class S D(a, B),
by means of the following inequality:

1@ (2@
%[ p(f(z) )]”‘p(ﬂz))”

(zeU;az20;0=8<1).

+5 (1.5)

Analogously, we define here the subclass XC,(a, 8) of meromorphically p-valent convex functions
in U, which is similar to the class KD(a, ), consisting of all functions f € X, which satisfy the
following inequality:

9%[_l(przf”(z))] >a‘l(1+zf”(z))+1 B (1.6)

p /(@) p /(@)
(zeU;az20;0=8<1).

Similarly, for -1 < @ < 0 and 8 > 1, we let ZM,,(a, 8) be the subclass consisting of all functions
f € X, which satisfy the following inequality:

e 1 (2@

R|[——=—= - 1 1.7

[ p(f(z) )]<“‘p(f<z))+ |+ﬂ (-0
(zeU;, -1<a<0; B> 1).

We also let N, (, B) be the subclass consisting of all functions f € X, which satisfy the following
inequality:
1 4 1 4
%[——(1 + 24 (Z))] < a‘—(l + 2 (Z)) +1
p '@ p '@

(zeU;, -1<a<0; B> 1).

+8 (1.8)

The main purpose of this paper is to investigate the problems of finding the order of starlike-
ness and the order of convexity of certain products of meromorphically p-valent functions be-
longing to some of the above-defined classes of S-uniformly p-valent starlike functions in U and
B-uniformaly p-valent convex functions in U. Our main results in Section 2 (stated as Theorems 1
to 4 and Corollaries 1 to 5) can indeed be specialized suitably in order to deduce the solutions of
the corresponding problems for relatively more familiar subclasses of meromorphically p-valent
functions in U.

2. The main results and their consequences

Our first main result is asserted by Theorem 1 below.

Theorem 1. Let f; € ZS}‘;(yj) (j=1,---,n), where

yii=1-a;20 and @; =20 (G=1,---,n).
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Also let i
k:=1- Zaj = 0.
=1

Then the product F,(z) defined by

n

Fp(z):=27" l_[ {z”fj(z)} (2.1)

=1
is in the class XS () of meromorphically p-valent starlike functions of order k in U.

Proof. Clearly, F,(z) € Z,. By differentiating (2.1) logarithmically with respect to z, we obtain

1 (2F,(2) [ (Zf’(z)) ]
— =-1 1 22
(7)1 Z 7@ *2
which readily yields
1 zF;(z)) (Zf’(Z)) ]
_ =_1 1 - 2.3
: ( - +(1-7) Zl e 2.3)
We thus find that

RS 0. S

Since, by hypothesis, f; € ZS;(yj) (j=1,---,n), we have

1 (2F,(2) -
%L—)( ;,, )]<—(1—Zaj]::/<, (2.5)

J=1

which evidently completes the proof of Theorem 1. ]

Upon setting

fil=f@, yj=y and «a;=a (G=1,---,n)

in Theorem 1, we have the following corollary.

Corollary 1. Let f € 2S;(y) (y:=1-a = 0), where a = 0. Also let 1 — na = 0. Then the
product ©,(z) defined by

0, =" [Zf@]"

is in the class XS (1 — ne) of meromorphically p-valent starlike functions of order 1 — na in U.
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Corollary 2. Let f; € ES,(yvp) (j=1,---,n), where
yi=1l-;20 and ;20 (j=1--.n)

Also let

Then the function ®,(z) defined by

o= [ ]lesiofes
j=1

is in the class XC,(k) of meromorphically p-valent convex functions of order k in U.
Proof. The result asserted by Corollary 2 follows immediately from Theorem 1, since

D,(2) € ZC,(K) = —Zq)l;(Z) = F\(2) € £87(00).

Corollary 3. Let f; € ZC,(y;) (j=1,---,n), where
yii=1l-a;20 and ;20 (G=1,---,n).

Also let

Then the product G ,(z) defined by

n p+1 ’
o i 22)

J=1

is in the class XS (k) of meromorphically p-valent starlike functions of order k in U.

Proof. From the fact that

4

zf1(2) ,
fi(2) € 2Cy(y) = — ; €XSyyy) (=1 ,n),

by replacing f;(z) by —@ in Theorem 1, we are led easily to Corollary 3.

(2.6)

2.7)
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Corollary 4. Let f; € XC,(y;) (j=1,---,n), where
yii=1l-a; 20 and @; 20 (j=1,---,n).

Also let

Then the function ¥ ,(z) defined by

Z o n tp+1f{(t)
\P,,(z):—pfo ! ];[{—( p’ )}dt (2.8)

is in the class XC,(k) of meromorphically p-valent convex functions of order k.

Proof. The result asserted by Corollary 4 follows immediately from Corollary 3, since

\Pl
¥,(2) € 2C,(k) &= )

=: G)(2) € £S (1)

]

By applying the same method and technique as in our proofs of Theorem 1 as well as of Corol-
laries 2, 3 and 4, we can establish Theorem 2 below.

Theorem 2. Let f; € X, (j=1,---,n). Suppose that
yii=1l+a;20 and @; =20 (j=1,---,n).

Also let

Then each of the following assertions holds true:
WIffjeEM,(y;)) (j=1,---,n), then the product F ,(z) defined by (2.1) is in the class ZM (o).
) If f; € EMy(y;) (j = 1,---,n), then the integral operator @, defined by (2.6) is in the class
XN, (o).
() If f; € EN,(y;) (j=1,---,n), then the product G ,(z) defined by (2.7) is in the class ZM (o).
av) If f; € ZNy(y;) (j = 1,---,n), then the integral operator ¥, defined by (2.8) is in the class
XN, (o).
Theorem 3. Let

;=20 and 0=pB<1 (G=1,---,n)

(LB
§:=1 Z(H%).

J=1

and suppose that
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Also let the products F,(z) and G,(z) be defined by (2.1) and (2.7), respectively. Then each of the
following assertions holds true:

() If f; € 283, ) (=1, ,n), then F,(z) € £S5(6).
(i) If f: € SCp(@, B)) (j=1,-++ ,n), then G ,(2) € TS (6).

Proof. By following the lines as in (Kumar et al., 2005), we first prove that

. L (A+H
£S;(4p) € 255 (T4)

1+a)
Indeed, if we let f € £S5, (4, w), then the quantity w defined by

1 (Zf’(z))
f@)

Tp

satisfies the following inequality:
“Rw)—puZAw+1|ZARw+1),

which immediately yields

A+ u
—R > —.
W) =T
We thus have 1
)y hy —.
FeXSi () = fe Sp(lm
Next, since
[i€XS(a;,B) (j=1,---,n),
we have P
) ES* J J .:1,“” ,

The assertion (i) of Theorem 3 now follows readily from an application of Theorem 1.
The proof of the assertion (i1) of Theorem 3 follows similarly by using Corollary 3. [l

Corollary 5. Let
;=20 and 0=B<1 (G=1,---,n)

0:=1- .
j=1

Also let the functions @ ,(z) and ¥ ,(z) be defined by (2.6) and (2.8), respectively. Then each of the

following assertions holds true:

D If fj € ES(a;,B;) (j=1,-++,n), then ®y(z) € ZCp(9).

() If fj € ZCp(aj,B)) (j=1,---,n),then ¥,(z) € ZC,(9).

and suppose that
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Proof. The results asserted by Corollary 5 would follow immediately from Theorem 3, since

2@),(2)
p

D,(2) € 2C,(0) = - =: Fy(2) € S ,(0)

and
¥,(2) € 3C,(6) = —ZWP(Z) = G,(2) € I5°(6).

[]

Finally, if we make use of the same method and technique as in our proofs of Theorem 3 and
Corollary 5, we are led easily to Theorem 4 below.

Theorem 4. Let
-1<a; 20 and Bi>1 (j=1,---,n)

and suppose that

Also let the products F,(2) and G ,(z) be defined by (2.1) and (2.7), respectively, and the functions
®,(z) and ¥ ,(z) be defined by (2.6) and (2.8), respectively. Then each of the following assertions
holds true:

Q) If f; € EMy(a;, ;) (G =1,---,n), then Fp(z) € EM,(v).
i) If f; € ENy(@;u ;) (j=1,--- ,n), then G ,(2) € EM,,(v).
(i) If f; € EMp(@jB) (= 1,--- ,n), then ®,(z) € EN,(v).
(V) If f; € EN(@j,B;)  (j=1,---,n), then ¥ ,(2) € EN,(¥).

3. Concluding remarks and observations

In our present investigation, we have considered several interesting subclasses of the familiar
class of meromorphically p-valent functions in the open unit disk U. Our main purpose has been to
successfully address the problems of finding the order of starlikeness and the order of convexity of
the products of functions belonging to each of the various classes of S-uniformly p-valent starlike
functions and S-uniformly p-valent convex functions in U, which we have introduced here. The
main results (stated as Theorems 1 to 4 and Corollaries 1 to 5) can indeed be specialized suitably in
order to deduce the solutions of the corresponding problems for relatively more familiar subclasses
of meromorphically p-valent functions in U.
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Abstract

In this study we develop a reliable algorithm to control the satellite formation using the Approximating Sequence
of Riccati Equations(ASRE) minimizing the fuel consumption and the deviation of the orbit from the nominal orbit.
The nonlinear Clohessy -Wiltshire(CW) equations of motions are used to describe the motion of the satellite formation
about a virtual reference position maintained at the formation center. The nonlinear dynamics of the system will be
factorized in such a way that the new factorized system is accessible. The problem is tackled using the Approximating
Sequence Riccati Equations(ASRE) method. The technique is based on Linear Quadratic Regulator(LQR) with fixed
terminal state, which guarantees closed loop solution.

Keywords: Nonlinear Feedback, Linear Quadratic Regulator, Approximation Sequence Riccati Equation,
Satellite Formation.

1. Introduction

Satellite formation flying is one of the space dynamics branches which gained much consider-
ation in recent years. Despite the topic evolved two decades ago, the implementation of formation
flying is not yet mature.

A satellite formation consists of two or more satellite flying together in close proximity, coop-
erating together to achieve some space mission such as terrestrial or deep space one. This system of
distributed satellites has several advantages over the single satellite system such as, larger capabil-
ity, reliability, flexibility, and more importantly less cost. Satellite formation in contrast to satellite
constellation in which the satellites are moving independently, the satellites affecting each other
in co orbital motion about a virtual reference position maintained at the formation center. The
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nonlinear Clohessy -Wiltshire equations of motions are used to describe the motion of the satellite
formation. CW equations are developed for rendezvous(Clohessy & Wiltshire, 1960). Later on
the linear inhomogeneous CW are studied(Meirovitch, 1970). CW equations have been solved by
simplifying the nonlinear equations of motion via coordinate transformation of the central gravity
field dynamics in presence of quadratic drag force(Thomas Carter, 2002).

The nonlinear dynamics of the system will be factorized in such a way that the new factorized
system is accessible. The problem is tackled using the Approximating Sequence Riccati Equa-
tions method. The most common way of solving the orbit rendezvous of a satellite is the low
thrust orbit rendezvous approach, which is a nonlinear optimal control problem. In the open loop
context the problem can be solved via indirect and then direct method. The indirect method was
developed through Pontryagin Maximum Principle(PMP) (A. J. Bryson, 1975),(L. Pontryagin &
Mishchenko, 1952) . The direct method was developed using the Karush-Kuhn-Tucker(KKT)
algebric equation(Enright & Conway, 1992).

one of the most common methods for solving the nonlinear feedback optimal control prob-
lem in the is the State Dependent Riccati Equations(SDRE) (Cimen, 2006). The Approximating
Sequence of Riccati Equations (Cimen, 2004) technique is an iterative approach to solve the non-
linear optimal control problem. The ASRE is developed(Topputo & Bernelli-Zazzera, 2012) using
the state transition matrix. By the virtue of the closed-loop nature of this control law, a trajectory
designed in this way has the property to respond to perturbations acting during the transfer that
continuously alter the state of the spacecraft. The optimal feedback control for linear systems with
quadratic objective functions is addressed through the matrix Riccati equation: this is a matrix dif-
ferential equation that can be integrated backward in time to yield the initial value of the Lagrange
multipliers (A. J. Bryson, 1975). Recently, the nonlinear feedback control of circular coplanar
low-thrust orbital transfers has been faced using continuous orbital elements feedback and Lya-
punov functions(Chang & Marsden, 2002) and proved optimal by(Alizadah & Villac, 2011). Later
on the problem has been solved using the primer vector approximation method(Haung, 2012). The
problem is tackled using the Approximating Sequence Riccati Equation(ASRE) method based on
Linear Quadratic Regulator(LQR) with fixed terminal state and the method is applied to GNSS
circular constellation (Owis, 2013). In this work the control of the satellite formation described in
the Earth Centered Earth Fixed Frame Fig. 1 is developed.

Linear Quadratic Regulator(LQR) with Fixed Terminal State
Consider the following system with linear dynamics and quadratic performance
index as follows:

X = AX + BU, X(t)) = Xp € R”, (1.1)

the following performance index

1 (Y
J=X[QXs+ 3 f [XT0X + UTRU]dt, (1.2)
Io

Where A, B, O, and R are constant coefficients matrices of the suitable dimen-
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Figure 1. Satellite Formation Flying in the Earth Centered Earth Fixed Frame

sions. we have to find the m-dimensional control functions U(¢), t € [fy t¢] which
minimizes the J, which is an open loop (with #, fixed) optimal control. We op-
timize the performance index J, by adjoining the dynamics and the performance
index (integrand) to form the Hamiltonian:

HX, A, U1 = %(XT 0X + UTRU) + AT (A)X + B()U),

where the Lagrange multiplier A is called the adjoint variable or the costate. The
necessary conditions for optimality are:
1. X=H,=A0X + B, X(to) = Xo,
2. 1= —-H, = —QX—AT/L /l(l‘f)z Qfo,
3.H,=0=RU+B"A=0= U*=-R"'B"A.
2
To find the minimum solution we have to check for H,, = — > 0 or equivalently

02
R > 0. Now we have that

X = AX + BU* = AX - BR'B" A,
which can be combined to the the equation of the costate as follows
X A -BR'BT|[ X
e T , (1.3)
A -0 -A A
which is called the Hamiltonian matrix, it represents a 2n boundary value problem
with X (7)) = X, and, ﬂ.(l‘f) = Qfo.
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We can solve this 2n boundary value problem using the transition matrix method
as follows. Let’s define a transition matrix

_ | o1t t0) dr12(t1, 1)
P> fo) = [ $21(t1, t0)  Paa(ty, 1) ]’

we use this matrix to relate the current values of X and A to the final values X, and
Ay as follows

[ X ] _ l pu(t.ty) duatty) ” X(ty) ]
A 1 (t, ty) @oa(t,ty) || Alty) |
so we have

X = o1, tp)X(ty) + G122, tp)Aty)
= [on(t, ty) + d12(2, 1) Q1 X(2y),

we can eliminate X(7/) to get

X (6112, 1) + d12(t, 1) O 11 (0, 17) + P12(fo, 1) Q1 X(10)

= X(tv XO’ t())v

now we can find A(7) in terms of X(¢5) as

A1) = [¢a1 (1, t7) + ¢a(2, ) Q1 X (25),

then we can eliminate X(¢5) to get

A(7)

(9212, 1) + I (t, 1) Q111 (2, 1) + Pra(t, 1) Q17 X(0),
= ¢/1xX(t)-

Now we search a solution for ¢,, . By differentiating A(¢) we get

A1) = G X (1) + P X(0).

Comparing the last equation with the Hamiltonian matrix we get

—0X() — ATA(D) = $1.X(1) + P X (D),
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then we have
—pu(DX(1) = OX(1) + ATA(t) + ¢ X(1)
= O0X()+ATA(t) + ¢ (AX — BR'BT A(1))
= (0 + o A)X(1) + (AT — g1 BR7'B")A(r)
= (Q+ ¢ A)X(t) + (AT — ¢.BR™'BN)p. X (1)

= [0+ ¢uA + AT P — daBR™' BT g 1X(0).
Since this is true for arbitrary X(¢), ¢, must satisfy

~pux() = O + A + ATdr — g1 BR™' B s, (1.4)
which is the matrix differential Riccati Equation . We can solve for ¢,, by solving
Riccati Equation backwards in time from 7y with ¢,.(ff) = Q; . The optimal
control is then given by

U* = —-R'BTA(t) = -R"'BT ¢, X = —-K()X(t, X0, 1)). (1.5)

From 1.5 we notice that the optimal control is a linear full-state feedback control,
therefore the linear quadratic terminal controller is feedback by default.

2. The Approximating Sequence of Riccati Equations(ASRE)
Assume that we have the following nonlinear system
X = fX, U0 (2.1)
X(t) = Xo. X(@y)=X;eR' (2.2)

with performance index

J=¢(Xp17) + f " LX. U, pydt (2.3)

This system can be rewritten in the state dependent quasi-linear system as fol-
lows

X = AXTHX + BXTHU! (2.4)

X(t) = X), X(tp) = X} eR" (2.5)
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. . 1y . . . . .
J =X QXHXE + 5 f (X' oxXHx' + U RXYU s, (2.6)
Io

where i represents the iteration step over the time interval [¢; — 1,¢;] Fig. the
technique is based of the previously introduced Linear Quadratic Regulator with
fixed terminal state, which 1s a full state feedback and therefore the obtained so-
lution will be a closed loop one, I.e. able to respond to the unexpected change in
the inputs. The technique works as follows: the initial state is used to compute Ay,
and By and we solve for the first LQR iteration and compute X' and then used to
compute new value of A, and B, for the second iteration until the final state error
reaches a value below a set threshold.

3. Satellite formation control

Consider a satellite in the central gravity field. The eqaution of motion can be
written in the cartesian frame as follows

f
)= —fr+ — 3.1)

r m
Where y is the gravitational constant of the Earth(3.986005 x 10'*m?/s?). In
the rotating coordinate frame along a circular orbit at a constant angular velocity,

the position, velocity, and the acceleration become
r= R+or=R+x)i+yj+zk
r= (x—wy)i+[(y+wR+x)]j+zk (3.2)
P= [¥-2wy—* R+ 0)]i+ [+ 2wx) — w?y]j + 2k

Plugging third equation of (3.2) into equ. (3.1) and substituting r = /[(R + x)? + y2 + 7]
we get

)'C'—Zwy—a)z(R+x) = —%(R+x)+ U,
r
J 4 2wx — wry = —%y+ U, (3.3)
u

r
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If we nondimensionalize the problem by setting the radius of the reference orbit
R =1 and reference time % and in this system of units the gravitational constant
( 1s unity the nondimensionalized equation of motion can be written as

1
¥=2y-(1+x)(z-1)=U,
r
1
y+2k+y(z-D=U, (3.4)
r

L1
i+3z2=U;
r

where r = \/ [(1 + x)? + y? + z2], for simplicity we consider the in plan motion.
We define the state vector of the system

X1 X

I %2 N
=117 % (3.5)

X4 y

U] Tx
NS 6

Then Equation (3.4) can be written in the form :

x = f(x) + B(x)u (3.7)

Choosing a suitable factorization equation (3.7) is rewritten in the factored state
variable form :

X = AX)x + B(xX)u (3.8)
where :
0 010
0 0 01
A®=Iryr 92 (39)
0 T 20
00
00
B(x) = L0 (3.10)
01

whereF:rl—3—1
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4. Factored Controllability

For the factored system (3.8) the controllability is established by verifying that
the controllability matrix

M,, = [B AB A’B A*B]

has a rank equals to n = 4 Vx in the domain.
Since A and B have nonvanishing rows the controllability matrix M_; for the Sys-
tem (3.8) is of rank 4.

Nondimensionalization of the problem In order to simplify the calculation we
dimensionalize the system by removing the units from the equations of motion
via multiplying or dividing some constants. The two constant we divid by are the
radial distance of the initial orbit and the gravitational constant u in this case the
radius of the initial orbit is unity and velocity is divided by the circular velocity

of the initial orbit \/f‘:z and the time 1s multiplied by \/rﬁj In application we would
0

0
like to make an optimal orbit transfer(i.e. from (r = 1) to (r = 1.2) in time

tr = 4.469,5.2231 (time unit) Fig. 2 with optimal velocity Fig. 3 and optimal
control function of both radial and tangential components Figs. 4, 5. The initial
angle is (6p = 7) and the final angle is (6 = 37”). iop = 0 and iy = O for the initial

and final orbits. 6y = [% = 1and 6; = [ = 0.54433105395 . In the second
0 !
0 = 2 with t; = 6.866 .

in example the matrices Q and R are the identity matrices.
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Figure 2. Trajectory of orbit rendezvous manoeuvre in the non dimensional coordinates
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Figure 5. Control Y component in the non dimensional coordinates

5. Conclusion

The nonlinear orbital dynamics of the satellite formation with respect to the
Earth Center Earth Fixed Coordinates are developed. The feedback optimal con-
trol of the satellite formation can be solved by factorizing the original nonlinear
dynamics into accessible (weakly controllable) linear dynamics of state depen-
dent factors. The factorized problem has been solved using the the Approximat-
ing Sequence Riccati Equations(ASRE) method. The technique is based on Linear
Quadratic Regulator(LQR) with fixed terminal state, which guarantees closed loop
solution. A computer simulation verified that the adopted technique is relaible.
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Abstract

In this paper, we use the the Riemann-Liouville fractional integral to develop some new results related to the
Hermite-Hadamard inequality. Our results have some relationships with the paper of M.Z. Sarikaya et al. published
in [Int. J. Open Problems Comput. Math., Vol. 5, No. 3, September, 2012]. Some interested inequalities of this paper
can be deduced as some special cases.
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1. Introduction

Let us consider the famous Hermite-Hadamard inequality (Hadamard, 1893; Hermite, 1883) :

b
f(a2+b)ébzalf(x)dXSw’ (1.1)

where f is a convex function on [a, b].

Many researchers have given considerable attention to (1.1) and a number of extensions and gen-
eralizations have appeared in the literature, see (Belaidi ez al., 2009; Dahmani, 2010; Dragomir &
Pearse, 2000; Florea & Niculescu, 2007; Set et al., 2010; Sarikaya et al., 2012).

The aim of this paper is to present new extensions for a Hermite-Hadamard type inequality involv-
ing log-convex functions and using Euler Functions. Our results have some relationships with the
work of M.Z. Sarikaya et al. (Sarikaya et al., 2012). Some interested results of this reference can
be deduced as particular cases.
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2. Preliminaries

We shall introduce the following definitions and properties which are used throughout this
paper.

Definition 2.1. The Riemann-Liouville fractional integral operator of order @ > 0, for a continu-
ous function on [a, b] 1s defined by:

JUf(r) = % f (t- T)“_lf(T)d‘r; a>0,ast<bh, (2.1)

where I'(@) := fooo e “u”'du.
We give the semigroup property:
JUIPF@) = J"PF(6), @ > 0,8 > 0. (2.2)

For more details, one can consult (Gorenflo & Mainardi, 1997).

3. Main Results

Theorem 3.1. Let f and g be two differentiable positive log-convex functions on I° (the interior
of the interval I and a,b € I°.) Then, for a > 0, the following inequalities hold.

I 2T Qe — 1) (b — a)J** ' fg(b)

_ga-1 ay, £
> J°| g(Dexp(bAy) [exp| FEELELO] o f(b) 3.1)
_ga-1 g,
+Je [f(b)exp(bDb)]exp[%]J"g(b),
o IO ) — B+ g (b)
where Ay := W’Dh = %

Proof. Let us consider:

K() = S22, x e la.fla<t<ba>0.
We remark immediately that, if @ = 1, then K(x) = f(x) and hence, we can obtain the first main
result of (Sarikaya et al., 2012).

Now, let us take @ # 1. We can write

d
logK(x) — logK(y) > EﬂogK(Y))(x = ¥),x,y € [a,1]. (3.2)
Therefore, K@ KO
X
og K0) > K0) (x—y). (3.3)
Hence,

K(x) (1 -a)t =2 fO) + = f' ()
—_— 2 exp(

— . 3.4
KG) = TES I (=) G-
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Consequently,
(=0 f0gx) _ t=N""fMe®) (A -a)t =y 2fO)+ =" f )
T — =y f0) (=) G
Integrating the above inequality with respect to y over [a, t],a < t < b, yields
(t —a)(t = 0" f(x)g(x)
T(e) (3.6)
> g(x) ft @ ,Vl):zal)f(y) exp[(1—a)(t—y)(‘::;(z)l;((;y)“"f’(y) (x - y)]dy
For the right hand side of (3.6) we use Jensen inequality. We obtain
f (t—y" 1f(y) ((1 )t =" )+ =) (r— y))dy
(@) =y f)
(3.7)
t (t=y)1 () [ ey 2f( e D0
= (jt‘l yr(—a)dy)exp[ (fat (= \)lf(n;f(‘)dy) ]
Consequently,
f’ =D)AL )O
. T@ (= f0) 38
> exp[_J(H(x_t)f((f])cz;;n(x_l)f/(t)]Jaf(l).
That is
f (t—y)* 1f(y) ((1 )t =" f )+ =) (x - y))dy
I'(a) =y ) (3.9)
2 expl ZUR Oy 7 0 0 )
Thanks to (3.6) and (3.9), we obtain
(t=a)(t = 0" fx)glx ) . J 7 f () = It f (1) O+ IO 0
ey > ser| gl =V f(g 10)

Then,

—JNf(f) + JUf(F)

I 2@ Q2a - 1)t - a)J fg(t) > J*|g(Oexp(tA,)|exp| 0

Jef@. @1
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where
=+ I ()

A
Jf ()

With the same arguments, we obtain:

—J g (t) + Jg'(¥)

T 2@ Qa — 1)(t - )] fg(t) 2 J°| f(t)exp(tB,)|exp| s, 3.12)

Jog(t)
where
—J*g(t) +J7g' (1)
D[ = .
Jeg(t)
Adding (3.11) and (3.12), yields
—JUF) + JUf (¢
M2 (@) 2a — 1)(t — a)J**" fg(t) 2 J*|g(Dexp(tA,) |exp]| 140 I )]J" £(0)
Jef ()
(3.13)
_ga—1 (P
+J"[f(t)exp(tDt)]exp[—J tit(fg)z't)] 8 (t)]J"g(t).
Taking ¢t = b, we obtain the desired inequality (3.1). ]

Theorem 3.2. Let f and g be two differentiable positive log-convex functions on I° and a,b € I°.
Then, fora > 0,5 > 0,a + B # 1, we have:

2a+2p-3
Qe+ 28— 3)(b - a) 0

Z(a)2(B)
IR f(b) + JUEbf(b) I g b)explbEyD) I ()
> expl - (3.14)
JOB-1f(b) (@+p-1DBap) (a+p-1)B(,p)
roxp( 2l + I Pbg () TN fBexplbLy) T g(b)
b Jotb-lg(b) (@+B-1DB(@p) (a+p~-1)Ba.p)
where
£ e _Ja/+ﬂ—2f(b) + Ja+ﬂ—lf/(b) s _Ja+,3—2g(b) + Ja/+ﬂ—1g/(b)
" JUELf(b) e JoPTg(b) ‘
Proof. We consider:K(x) := S0 f(x) x € [a,1].a <t < b,a> 0.5 > 0.

We remark immediately that if @ = 1,8 = 1, then we obtain the first main result in (Sarikaya
et al., 2012).
To prove Theorem 3.2, we need to take o + 8 # 1. We have

K(x) Q-a =Pt - fG) + =)
ok exp( ) (x=))- (3.15)
Then,
(t =)'t = ) f0)g(x)

[(a)I'(B)
J (= V2 f(y)g(x) ((2 —a =Bt -3 f(y) + (=) P2f(y)
> exp = (x —
C(@)I'(B) (t = y)*P2f(y)

»)).(3.16)
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Integrating the above inequality with respect to y over [a, f],a < t < b, yields

(t — a)(t — )2 f(x)g(x)
H(@)I'(B)

(x=y)|dy. (3.17)

> o(x) f (t =2 f(y) p[(2 —a =B —)FfO) + =)
- L(@)I'(B) (t = y) P2 f(y)

Thanks to Jensen inequality, we can write

f =" f0) p((2 —a+ B =) FfO) + =)L)

—v))d
[T @) P2 0) (e =))dy

(l’ y)oz+ﬁ Zf(y) J: (2—(I—,3)(t—y)”*i;ij)‘ﬁy(g(t—y)“ﬁ’zf'0‘) (.X _ y)dy
[(a)I'(B) )exP[ ! =)™ () ] G.18)
([ o )
By simple calculation, we can state that
f CDO) (@B RO (g,
F(a)I'(B) (t = )2 f(y)
. [_Ja+ﬁ—2tf(t) + Ja+ﬁ—ltf/(t) [—Ja+ﬁ_2f(f) + Ja+,6—1f/(t) Ja+,8—1f(l,) 119
=p JUETE() “ g arp-De@p O
where B(a,8) = %
Thanks to (3.17) and (3.19), we obtain
(t — a)(t = )" f(x)g(x)
[(a)I'(B)
. [_Ja+ﬁ—2tf(t) + Ja/+ﬁ—ll,f/(t) [_Ja+,3—2f(t) + Ja/+ﬁ—1f/(t) ] ( ) Ja+,B—1f(t)
=p JoETE() “ JEf @ B DB@p)’
(3.20)
Then,
J2a+2,6’—3fg(t)
F(2a + 2,8 - 3)(t - a)l"z(Tl"Z(ﬁ)
s exp| 2O + )T P (sWexp| FEFTT ) ety
=P JOrBLf (1) (@ +pB-1)B(a,p) (@ +B-1)B(a,p)
(3.21)

With the same arguments, we obtain
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2a+28-3
FQa +28 -3t - a)'—— 180

P(a)I?(B)
B _ ja+p-2 ) a+p-1 40
N [—J‘H'B_ztg(t) +Ja+'6tg’(t) JotB l(f(t)e)Cp[ J Jﬁé_ﬁém g tt]) _]a+ﬁ—1g(t)
2 ex .
p JoBTg(r) (@ +B - 1)B(a,p) (@ +B - 1)B(a,p)
(3.22)
Adding (3.21) and (3.22), yields
JZa+2,B—3 fg(t)
A°QRa+2-3)t-a0)——————
Qa+28-3) - O Fms
B _ Ja+fp-2 ) a+f-1 "(t)
— I (1) + TP ()07 1(8’(”‘”‘1’[ - ,ﬂtﬁije(t) . tt]) JUPLE @)

> exp|—— 5 @+ B DB@.p) @+ - DB@.p)

@B _Ja+ﬁ—2 () ]m—ﬂ—l /()
. [—Ja"'ﬁ_ztg(t) + Ja+,6’tg/(t) JotB l(f(t)exp[ Ji:ﬁ:g(z) g []) ]a+/3’—lg(t)
ex .
p JoBTg(r) (@ +p - 1DB(@,p) (@ +B - 1DB(a,p)
(3.23)
Taking t = b, we obtain (3.14). Theorem 3.2 is thus proved. ]

Remark. Applying Theorem 3.2 fora =1, # 1 orf = 1,a # 1, we obtain Theorem 3.1.
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Abstract

In mathematics and computer science, an accelerated Toraufpine is a hypothetical computational model
related to Turing machines, which can perform the countaifiieite number of computational steps within a finite
time. But this machine cannot be physically realized from skandpoint of the Heisenberg uncertainty principle,
because the energy required to perform the computatiobe/iéixponentially increased when the computational step
is accelerated and it is considered that it is mere a matheshabncept and there is no possibility for its realization
in a physical world. However, by using superluminal paeticinstead of subluminal particles including photons, it
can be shown that the hypercomputation system which caonpeiffinite steps of computation within a finite time
length and energy can be realized.

Keywords: Turing machine, Zeno machine, hypercomputation, supenlaiparticle, tachyon, halting problem.
2010 MSC68Q05, 81P68, 83A05.

1. Introduction

In mathematics and computer science, an accelerated Tudcgine is a hypothetical com-
putational model related to Turing machines which can perfthe countable infinite number of
computational steps within a finite time. It is also calledea@ machine which concept was pro-
posed by B. Russel, R. Blake and H. Weyl independently, whetiorms its first computational
step in one unit of time and each subsequent step in halfrtieedf the step before, that allows an
infinite number of steps can be completed within a finite wdkof time Ord, 2006, (Hamkins
& Lewis, 2000. However this machine cannot be physically realized fromgtandpoint of the
Heisenberg uncertainty principleE - At =~ h, because the energy to perform the computation
will be exponentially increased when the computationg) sdeaccelerated. Thus it is considered
that the Zeno machine is mere a mathematical concept angl igvap possibility to realize it in
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a physical world. Contrary to this conclusion, the authodstd the possibility to realize it by
utilizing superluminal particles instead of subliminatfees including photons.

2. Computational time required to perform infinite steps of computation by using ordinary
particles

Feynman defined the reversible computer model as shown ifh,Fidpich requires energy per
step given by feynman2000:

-b
(f+b)/2 ~°
wherekg is Boltzmann’s constant, is a temperaturef is a forward rate of computation atds
backward rate.

Supposing that there in no energy supply and paramétarglb are fixed during the compu-
tation, we can consider the infinite computational stepsrylyy:

energy per step ke T——— (2.1)

El:kEO’ EZZkEl,"',En:kEn—l,"', (22)

where we let the initial energy of computation Bg = kgT, k = 2(f — b)/(f + b) andE, is the
energy for then-th step computation.

Forward rate of computation: f

Backward rate of computation: b

Figure 1. Computational steps for the reversible computatieeyfiman2000.

From which, we hav&, = k"Ey, then the energy loss for each computational step becomes:

AE;= Eo—-E; = (1-KE
AE,= E;—E, = (1-KKE

(2.3)

AE,=E,.1 - E = (1 — k)kn_lEQ.

According to the paper byL{oyd, 2000, it is required for the quantum system with average
energyAE to take time at leasit to evolve to an orthogonal state given by:
h


fig1.eps
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From which, the total energy for the infinite steps yielgjsif settingE = AE; in equation (2.4),
then the total time for the computation with infinite stepsdiaes:

: mh < 1
Tn = E At, = E — 2.

As the infinite sum of equation (2.5) diverges to infinity aswsh in Fig. 2, the Feynman model
of computation requires infinite time to complete the caltioh when satisfying & k < 1.

0 l-l-ii""".

0 10 £0 20 20
n

Figure 2. Computational time to complete timeth step of computation by using sub-
luminal particles (for the cask,= 1/2,y = 1.0).

Hence it can be seen that a computer system utilizing submimarticles including photons
requires infinite time to complete infinite steps of compotat

3. Computational time by using superluminal elementary paticles

3.1. Uncertanity Principle for superluminal particles

E. Recami claimed in his papdRécamj 2001) that tunneling photons which travel in evanes-
cent mode can move with superluminal group speed insidedireeb Chu and S. Wong at AT&T
Bell Labs measured superluminal velocities for light ttange through the absorbing material
(Brown, 1995. Furthermore Steinberg, Kwait and Chiao measured theslimgtime for visible
light through the optical filter consisting of the multilayeoating about 1& m thick. Measure-
ment results by Steinberg and co-workers have shown thagittbns seemed to have traveled
at 1.7 times the speed of lighB{einberget al., 1993. Recent optical experiments at Princeton
NEC have verified that superluminal pulse propagation caumiroo transparent medid\anget
al., 2000. These results indicate that the process of tunnelingamtyum physics is superluminal
as claimed by E. Recami. From relativistic equations of gn@nd momentum of the moving
particle, shown as:

£ M (3.1)
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and

MoV
p= ——, (3.2)
V1-v2/c?
the relation between energy and momentum can be showyvas E/c?.
From which, we haveMlusha 2012):
vAp—-pAv AE
T = F ) (3.3)
Supposing thatyv/v? ~ 0, equation (3.3) can be simplified as:
4
Ap~ SAE. (3.4)

This relation is also valid for the superluminal particld@d a tachyon which has an imaginary
masdam, (Musha 2012, the energy and the momentum of which are given by folloveiggations,
respectively.

m,c?
E-__Mm¢ 35
\V2/c2 -1 (3:5)
p= __my (3.6)

According to the paper by M. Park and Y. PaRatk & Park 1996, the uncertainty relation
for the superluminal particle can be given by:

Ap- At ~ (3.7)

9

v—=v
wherey andy’ are the velocities of a superluminal particle after and teetbe measurement. By
substituting equation (3.4) into (3.7), we obtain the utaiaty relation for superluminal particles
given by:

h

AE - Atx —— |
BB -1)

(3.8)
when we let = candg = v/c.

3.2. Computational time required for the superluminal paet

Instead of subluminal particles including photons, theetiraquired for the quantum system
utilizing superluminal particles becomes

° mh < 1
Th = Aty = __ 39
;‘ =" ; Bi(Bj — 1)(1 - k)ki-t (3.9)



124 Takaaki MushdTheory and Applications of Mathemati&sComputer Science 3 (2) (2013) 1228

from the uncertainty principle for superluminal partictggen by equation (3.8), wheg can be
given by:

B m. 2c* ~ 52
B\ e = (3.10)

which is derived from equation (3.6), wheye= m,c?/Ey.

0. &
LN
m
So_al
..‘.".""‘“““‘.“.“"““““.
0.z .
L ]
1 . 1 1 1 1
0 10 20 20 an

T

Figure 3. Computational time to complete timeth step of computation by using su-
perluminal particles (for the case= 1/2 ,y = 1.0).

Hence it is seen that the computation time can be accelesatentding to equation (3.10).

By the numerical calculation, it can be shown that the irgisitm of equation (3.9) converges
to a certain value satisfying©@ k < 1 as shown in Fig.4.

In this figure, the horizontal line is for the parameges m,c?/E, and the vertical line is for the
time to complete infinite step calculations. From theseutaton results, an accelerated Turing
machine can be realized by utilizing superluminal particiestead of subliminal particles for the
Feynman’s model of computation.

Thus, contrary to the conclusion for the Feynman’s modeloofijgutation by using ordinary
particles, it can be seen that superluminal particles gertmé realization of an accelerated Turing
machine.

It is known that an accelerate Turing machines allow us todmeputed some functions which
are not Turing-computable such as the halting probl€ray, 2004, described as "given a descrip-
tion of an arbitrary computer program, decide whether tlogg@m finishes running or continues
to run forever”.

This is equivalent to the problem of deciding, given a pragrand an input, whether the
program will eventually halt when run with that input, or iviin forever.

Halting problem for Turing machines can easily solved by@eterated Turing machine using
the following pseudocode algorithm (as shown in Fig.5). Asiecelerated Turing machines are
more powerful than ordinary Turing machines, they can parfoomputation beyond the Turing
limit which is called hypercomputation, such as to decidg amthmetic statement that is infinite
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Figure 4. Computational time by using superluminal particles.

begin program

write 0 on the first position of the output tape;

begin loop
simulate 1 successive step of the given Turing
machine on the given input;
if the Turing machine has halted, then write 1 on
the first position of the output tape and break out
of loop:;

end loop

end program

Figure 5. Psedocode algorithm to solve the halting probl&xik{pedia 2009.

time decidable. From this result, we can construct an omaeehine yan Melkebeek2000 by
using a superluminal particle, which is an abstract machsesl to study decision problems. It
can be conceived as a Turing machine with a black box, caltentacle, which is able to decide
certain decision problems in a single operation.

4. Human mind from the standpoint of superluminal hyper computation

There are some papers on the hypothesis that the human ndodssted of evanescent tun-
neling photons which has a property of superluminal pasicalled tachyons3eorgiev 2003,
(Musha 2005 2009.

Professor Dutheil proposed his hypothesis in his booldtitiehomme superlumineux’@utheil
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& Dutheil, 2006, that consciousness is a field of superluminal matter lgghgyto the true funda-
mental universe shown in Fig.6, and our world is merely awsmuinhal holographic projection of
it.

He proposed the hypothesis based on superluminal consessishown as follows;

e The brain is nothing more than a simple computer that transfiormation.

e Consciousness, or the mind is composed of a field of tachyossperluminal matter, lo-
cated on the other side of the light barrier in superlumipace-time.

If the human consciousness is consisted of superluminaties as claimed by Prof. Dutheill,
the superiority of the human brain to conventional silicoogessors may be explained because it
can perform infinite steps of computation within a finite time

To further interpret this result, we consider S.Berkoviciggestion of a "cloud computing
paradigm”, in which is given an elegant constructive solutio the problem of the organization
of mind. Within his article, he defines a situation where wlial brains are not stand-alone
computers but collective users whom have shared accessttorpgoof a holographic memory of
the Universe Berkovich 2010. He proposed that the cosmic background radiation (CMB) ha
nothing at all to do with the residual radiation leftoverrfrehe Big Bang.

Subluminal Universe
(Turing computable)

Superluminal Universe
(Non-Turing computable)

Figure 6. Superluminal Universe model proposed by Prof. Dutheil.

Instead, he claimed that CMB is nothing but noise from wgtaperations in the holographic
memory of the Universe. Such holographic write operatioasld/require some type of universal
clocking rate for these operations. Since the virtual dup@nal particle pairs are created and an-
nihilated in the vacuum within a short, finite period of tineearding to the uncertainty principle,
we could logically consider this duration as the clock ratetiese operations (Fig.7).

From this standpoint, the extraordinary capability of a lanbrain such as the enigma of
Srinivasa RamanujarkKénigel 1991), who invented numerous remarkable and mysterious math-
ematical formulas from his inspiration without proofs, dam explained from the capability of
superluminal consciousness which is superior to that of@ational Turing type computer sys-
tems.


fig6.eps

Takaaki MushdTheory and Applications of Mathemati&sComputer Science 3 (2) (2013) 1228 127

Figure 7. Is CBR an activity of zero-point energy fluctuations of vacuwhich re-
lates to the writing operations in the holographic memoryhefUniverse?
(www.computus.org).

5. Conclusion

From the theoretical analysis, it is seen that a hypercoatiomial system which can com-
plete infinite steps of computation within a finite time anegy can be realized by using super-
luminal particles from the standpoint of quantum mechanit¢ris an extraordinary capability of
human consciousness such as intuition compared with theaoydsilicon processors might be ex-
plained if they are composed of superluminal particlesabse they have a capability to function
beyond the ordinary Turing machines.

References

Berkovich, S. (2010). Obtaining inexhaustible clean eydrg parametric resonance under nonlocality clocking.
Technical report. Institute for Time Nature ExploratiorRussian Interdisciplinary Temporology Seminar, M. V.
Lomonosov's Moscow State University.

Brown, J. (1995). Faster than the speed of lighew Scientisd1 April 1995, 26—-30.
Dutheil, R. and B. Dutheil (2006).’homme superlumineuRecherches (Paris. 1985). Sand.
Feynman, R. P. (2000feynman Lectures on Computatidfestview Press.

Georgiev, D. (2003). On the dynamic timescale of mind-briateraction. In: Proceedings Quantum Mind 2003
Conference: Consciousness, Quantum Physics and the Bfagspn, Arizona, Usa

Hamkins, J. D. and A. Lewis (2000). Infinite time Turing maws.J. Symbolic Logi65(2), 567—-604.

Kanigel, R. (1991)The man who knew infinity : a life of the genius Ramanuydashington square press biography.
Pocket books. New York, London, Toronto.

Kieu, Tien D. (2004). Hypercomputation with quantum adigbgrocesses.Theoretical Computer Science
317(13),93 - 104.

Lloyd, S. (2000). Ultimate physical limits to computatidfature406, 1047—-1054.


fig7.eps

128 Takaaki MushdTheory and Applications of Mathemati&sComputer Science 3 (2) (2013) 1228

Musha, T. (2005). Superluminalfect for quantum computation that utilizes tunneling phetdthysics Essays
18(4), 525-529.

Musha, T. (2009). Possibility of high performance quant@mputation by superluminal evanescent photonsin living
systemsBiosystem986(3), 242 — 245.

Musha, T. (2012). Possibility of hypercomputation by usngerluminal elementary particlesdvances in Computer
Science and Engineerirgf1), 57-67.

Ord, T. (2006). The many forms of hypercomputatidpplied Mathematics and Computati®i@g(1), 143 — 153.

Park, M. and Y. Park (1996). On the foundation of the relatizidynamics with the tachyoil. Nuovo Cimento B
1171(11), 1333-1368.

Recami, E. (2001). Superluminal motions ? a bird’s-eye viéthe experimental situatiofroundations of Physics
31(7), 1119-1135.

Steinberg, A. M., P. G. Kwiat and R. Y. Chiao (1993). Measuzahof the single-photon tunneling timehys. Rev.
Lett. 71, 708—711.

van Melkebeek, D. (2000Randomness and Completeness in Computational Comphaityl 950 ofLecture Notes
in Computer Sciencépringer.

Wang, L. J., A. Kuzmich and A. Dogariu (2000). Gain-assigtederluminal light propagatiolNature(6793), 277—
279.

Wikipedia (2009). Zeno machine. httfen.wikipedia.orgwiki/Zenamachine.



	68-244-3-PB
	70-249-1-PB
	1 Introduction
	2 Image features
	3 Automatic detection of peculiar images
	4 Performance evaluation
	5 Results
	5.1 Comparison the previous methods

	6 Conclusions
	7 Acknowledgments

	72-255-1-PB
	1 Introduction
	2 Main Results

	73-259-2-PB
	74-263-3-PB
	1 Introduction
	2 Main results
	2.1 Proof of Theorem 2.2


	75-267-1-PB
	1 Introduction
	2 Preliminaries
	3 Duality Models
	4 Specialization I
	5 Specializations II
	6 Concluding Remarks

	76-271-2-PB
	1 Introduction and Motivation
	2  Main result 
	3 Coefficient estimates and Distortion bounds for functions in W(,)

	77-275-1-PB
	1 Introduction
	2 Semitopological vector spaces
	3 Mappings of hyperseminormed vector spaces
	4 Conclusion

	78-279-2-PB
	1 Introduction
	2 Main Results

	80-283-2-PB
	1 Introduction
	2 The Approximating Sequence of Riccati Equations(ASRE)
	3 Optimal Orbit Transfer
	4 Factored Controllability
	5 Conclusion
	6 Acknowledgments

	81-287-3-PB
	82-291-1-PB
	83-295-2-PB
	84-299-2-PB
	1 Introduction and definitions
	2 The main results and their consequences
	3 Concluding remarks and observations

	85-303-2-PB
	1 Introduction
	2 The Approximating Sequence of Riccati Equations(ASRE)
	3 Satellite formation control
	4 Factored Controllability
	5 Conclusion
	6 Acknowledgments

	86-307-2-PB
	1 Introduction
	2 Preliminaries
	3 Main Results

	87-311-1-PB

