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Abstract

This article introduces associated near sets of a collection of sets. The proposed approach introduces a means
of defining as well as describing anε-approach merotopy in terms of the members of associated sets of collections
that are sufficiently near. A characterization for continuous functionsis established using associated near sets. This
article also introducesp-containment considered in the context of near sets. An application of the proposed approach
is given in terms of digital image classification.
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1. Introduction

For any real-valued functionf of a real variable, the associated sets off (Agronsky, 1982) are
the sets

Eα( f ) = {x : f (x) < α} andEα( f ) = {x : f (x) > α},

whereα ∈ R (the set of all real numbers). Many classes of functions can be characterized in terms
of their associated sets. The study of associated sets of a function started in 1922 (Coble, 1922) and
elaborated in (Zahorski, 1950; Bruckner, 1967; Agronsky, 1982; Petrakiev, 2009). For example, a
function is continuous, if and only if, all of its associatedsets are open, a function is approximately
continuous if, and only if, all of its associated setsF sets with the property that every point of an
associated set is a point of Lebesgue density of that set. More generally, A. Bruckner (Bruckner,
1967, p. 228) has shown that ifκ is a class of functions characterized in terms of an associated
setP andh is a homeomorphism, then the associated sets of the functionh ◦ f are all members

∗Corresponding author
Email addresses:jfpeters@ee.umanitoba.ca (James Peters),au.surabhi@gmail.com (Surabhi Tiwari)

tamcslogo.eps


2 James Peters et al./ Theory and Applications of Mathematics& Computer Science 3 (1) (2013) 1–12

of P andh ◦ f ∈ κ. S. Agronsky (Agronsky, 1982, p. 767) has observed that an associated set
for a function inMi must be ‘more dense’ near each of its members than an associated set for a
function inMi−1.

In this paper, associated sets defined in terms ofε-approach merotopies are considered. In
particular, we consider associated sets containing members that are sufficiently near each other
relative toε-approach merotopies. Carrying forward the idea of definingand characterizing a
function in terms of an associated set, it is possible to define and characterize an approach mero-
topy in terms of an associated set of collections. Using the concept of associated sets, an equivalent
condition for continuous functions is obtained.

2. Preliminaries

Let X be a nonempty ordinary set. The power set ofX is denoted byP(X), the family of
all collections of subsets ofP(X) is denoted byP2(X). We denote byℵ0 the first infinite cardinal
number, byJ an arbitrary index set, and|A| is the cardinality ofA,whereA ⊆ X. ForA,B ∈ P2(X),
we sayA ∨ B ≡ {A ∪ B : A ∈ A, B ∈ B}; A corefinesB (written asA ≺ B), if and only if, for
all A ∈ A, there existsB ∈ B such thatB ⊆ A. ForA ⊆ P(X), stack(A) = {A ⊆ X : B ⊆
A, for someB ∈ A} and sec(A) = {B ⊆ X : A ∩ B , ∅, for all A ∈ A} = {B ⊆ X : X − B <
stack(A)}.Observe that sec2(A) = stack(A), for allA ∈ P2(X). A filter onX is a nonempty subset
F of P(X) satisfying:∅ < F ; if A ∈ F andA ⊆ B, thenB ∈ F ; and if A ∈ F andB ∈ F , then
A∩ B ∈ F . A maximal filter onX is called anultrafilter on X. A grill on X is a subsetG of P(X)
satisfying:∅ < G; if A ∈ G andA ⊆ B, thenB ∈ G; and if A ∪ B ∈ G, thenA ∈ G or B ∈ G.
Note that for anyx ∈ X, ẋ = {A ⊆ X : x ∈ A} is an ultrafilter onX, which is also a grill onX.
There is one-to-one correspondence between the set of all filters and the set of all grills onX by
the relation:F is a filter onX if and only if sec(F ) is a grill onX; andG is a grill onX if and only
if, sec(G) is a filter onX.

In its most basic form, an approach merotopy is a measure of the nearness of members of a
collection. For collectionsA,B ∈ P2(X), a functionν : P2(X) × P2(X) :−→ [0,∞] satisfying a
number of properties is a called anε-approach merotopy. A pair of collections are near, provided
ν(A,B) = 0. Forε ∈ (0,∞], the pairA,B aresufficiently near, providedν(A,B) < ε.

Let cl be a Kuratowski closure operator onX. Then the topological space (X, cl) is called a
symmetric topological spaceif and only if x ∈ cl({y}) =⇒ y ∈ cl({x}), for all x, y ∈ X.

Definition 2.1. A functionδ : X×P(X) −→ [0,∞] is called a distance onX (Lowen, 1997; Lowen
et al., 2003) if for any A, B ⊆ X andx ∈ X, the following conditions are satisfied:
(D.1) δ(x, {x}) = 0,
(D.2) δ(x, ∅) = ∞,
(D.3) δ(x,A∪ B) = min{δ(x,A), δ(x, B)},
(D.4) δ(x,A) ≤ δ(x,A(α)) + α, for all α ∈ [0,∞], whereA(α)

+ {x ∈ X : δ(x,A) ≤ α}.
The pair (X, δ) is called an approach space.

Definition 2.2. A generalized approach space (X, ρ) (Peters & Tiwari, 2011, 2012) is a nonempty
setX equipped with a generalized distance functionρ : P(X)×P(X) −→ [0,∞], if and only if, for
all nonempty subsetsA, B,C ∈ P(X), ρ satisfies properties (A.1)-(A.5),i.e.,
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(A.1) ρ(A,A) = 0,
(A.2) ρ(A, ∅) = ∞,
(A.3) ρ(A, B∪C) = min{ρ(A, B), ρ(A,C)},
(A.4) ρ(A, B) = ρ(B,A),
(A.5) ρ(A, B) ≤ ρ(A, B(α)) + α, for everyα ∈ [0,∞], whereB(α)

= {x ∈ X : ρ({x}, B) ≤ α}.

It has been observed that the notion of distance in an approach space is closely related to the
notion of nearness (Khare & Tiwari, 2012, 2010; Tiwari, Jan. 2010). In particular, consider the
Čech distance between sets.

Definition 2.3. C̆ech Distance(Čech, 1966). For nonempty subsetsA, B ∈ P(X), ρ(a, b) is the
standard distance betweena ∈ A, b ∈ B and theC̆ech distanceDρ : P(X) × P(X) −→ [0,∞] is
defined by

Dρ(A, B) +















inf {ρ(a, b) : a ∈ A, b ∈ B}, if A andB are not empty,

∞, if A or B is empty.

Remark.Observe that (X,Dρ) is a generalized approach space. The distanceDρ(A, B) is a variation
of the distance function introduced by E.C̆ech in his 1936–1939 seminar on topology (Čech, 1966)
(see, also, (Beeret al., 1992; Hausdorff, 1914a; Leader, 1959)).

3. Approach merotopic spaces

Definition 3.1. Let ε ∈ (0,∞]. Then a functionν : P2(X) × P2(X) −→ [0,∞] is an ε-approach
merotopy onX, if and only if, for any collectionsA,B,C ∈ P2(X), the properties (AN.1)-(AN.5)
are satisfied.

(AN.1) A ≺ B =⇒ ν(C,A) ≤ ν(C,B),

(AN.2) A , ∅,B , ∅ and (
⋂

A) ∩ (
⋂

B) , ∅ =⇒ ν(A,B) < ε,

(AN.3) ν(A,B) = ν(B,A) andν(A,A) = 0,

(AN.4) A , ∅ =⇒ ν(∅,A) = ∞,

(AN.5) ν(C,A∨ B) ≥ ν(C,A) ∧ ν(C,B).

The pair (X, ν) is termed as anε-approach merotopic space.

For anε-approach merotopic space (X, ν), we define:clν(A) + {x ∈ X : ν({{x}}, {A}) < ε}, for
all A ⊆ X. Thenclν is aČech closure operator onX.

Let clν(A) + {clν(A) : A ∈ A}. Then anε-approach merotopyν on X is called anε-approach
nearnesson X, if the following condition is satisfied:

(AN.6) ν(clν(A), clν(B)) ≥ ν(A,B).
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In this case,clν is a Kuratowski closure operator onX.

Lemma 3.1. Let ε ∈ (0,∞], and let(X, ν) and (Y, ν′) beε-approach nearness spaces. Then f:
(X, ν) −→ (Y, ν′) is a contraction if and only if
ν( f −1(A), f −1(B)) ≥ ν′(A,B), for all A,B ∈ P2(Y).

Example 3.1. Let Dρ be a gap functional. Then the functionνDρ : P2(X) × P2(X) −→ [0,∞]
defined as

νDρ(A,B) + sup
A∈A,B∈B

Dρ(A, B); νDρ(A,A) + sup
A∈A

Dρ(A,A) = 0,

is anε-approach merotopy onX. Defineclρ(A) = {x ∈ X : ρ({x},A) < ε}, A ⊆ X. Thenclρ is a
Čech closure operator onX. Further, ifρ(clρ(A), clρ(B)) ≥ ρ(A, B), for all A, B ⊆ X, thenclρ is a
Kuratowski closure operator onX, and we callρ as anε-approach functionon X; and (X, ρ) is an
ε-approach space. In this case,νDρ is anε-approach nearness onX.

So, there are many instances ofε-approach nearness onX just as there are many instances of
ε-approach spaces (Lowen, 1997) and metric spaces onX.

Definition 3.2. Near and Almost Near Collections
For collectionsA,B ∈ P2(X), assume that the functionν : P2(X) × P2(X) :−→ [0,∞] is an ε-
approach merotopy. A pair of collections arenear, providedν(A,B) = 0. Forε ∈ (0,∞], the
pairA,B areε-near (almost near), providedν(A,B) < ε (Peters & Tiwari, 2011). Otherwise,
collectionsA,B are far,i.e., sufficiently apart, providedν(A,B) ≥ ε.

4. Associated collections

It is possible to characteriseε-approach merotopies in terms of associated collections.

Definition 4.1. Associated Collections of anε-Approach Merotopy
Let X denote an ordinary nonempty set and letA ∈ P2(X) denote collections of subsets ofX.
Suppose thatε ∈ (0,∞] andν be anε-approach merotopic space. The upper associated set ofA

with respect toν is defined by

Eε(A) + {B ∈ P2(X) : ν(A,B) > ε}.

and the lower associated set ofA with respect toν is defined by

Eε(A) + {B ∈ P2(X) : ν(A,B) < ε}.

Example 4.1.Let Dρ be a gap functional. ForA,B ∈ P2(X), the functionνDρ : P2(X)×P2(X) −→
[0,∞] is defined by

νDρ(A,B) + sup
A∈A,B∈B

Dρ(A, B); νDρ(A,A) + sup
A∈A

Dρ(A,A) = 0.

From Def.4.1, Eε(A) is the lower associated set ofA for a givenε ∈ R. Similarly, obtain the
upper associated setEε(A) ofA as a collectionB ∈ P2(X), providedνDρ(A,B) > ε.
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Additional examples of lower and upper associated collections are given next.

Example 4.2.Let (X, ν) be anε-approach nearness onX, r < ε < ∞ andε′ < ε. Then

(ASet.1) Associated setsEε(A),Eε(A) of A with respect toν1 : P2(X) × P2(X) −→ [0,∞] such
that

ν1(A,B) =















∞, if ∅ ∈ A or ∅ ∈ B,

r, otherwise,

is defined by:
if ∅ ∈ A, Eε(A) = P2(X) andEε(A) = ∅,
if ∅ < A, Eε(A) = {A ∈ P2(X) : ∅ ∈ B} andEε(A) = {A ∈ P2(X) : ∅ < B}.

(ASet.2) Associated setsEε(A),Eε(A) of A with respect toν2 : P2(X) × P2(X) −→ [0,∞] such
that

ν2(A,B) =















∞, if ∅ ∈ A or ∅ ∈ B,

inf {ν(A,B), ε′}, otherwise,

is defined by:
if ∅ ∈ A, Eε(A) = P2(X) andEε(A) = ∅,
if ∅ < A, Eε(A) = {A ∈ P2(X) : ∅ ∈ B} andEε(A) = {A ∈ P2(X) : ∅ < B}.

Proposition 1. A collection in the lower associated set ofA with respect to theε-approach mero-
topyν is sufficiently nearA.

Proof. AssumeB ∈ Eε(A), the lower associated set ofA with respect toν. From Def.3.2,A,B
are sufficiently near.

Proposition 2. A collection in upper associated set ofA with respect to theε-approach merotopy
ν are sufficiently apart.

Proof. Immediate from from Def.4.1and Def.3.2.

We now present a characterization for continouous functions.

Theorem 4.1. Let νX and νY be ε-approach merotopies on X and Y, respectively. A mapping
f : X −→ Y is continuous, if and only if,A ∈ Eε(x) =⇒ f (A) ∈ Eε( f (x)), for all A ∈ P2(X) and
for all x ∈ X.

Proof. Let f : X −→ Y be continuous,x ∈ X andA ∈ P2(X). Suppose thatA ∈ Eε(x). Then
ν(A, {{x}}) < ε, which givesν({A}, {{x}}) < ε, for all A ∈ A. That is,x ∈ clνX(A), for all A ∈ A.
Consequently,f (x) ∈ f (clνX(A)) ⊆ clνY( f (A)), for all A ∈ A. Hence, f (A) ∈ Eε( f (x)). The
converse is obvious.

Definition 4.2. Finite Strong Containment Property (Agronsky, 1982).
Let p be a property defined for sets of real numbers with respect to sets containing them. IfA ⊂ B,
thenA is p-contained inB (written A ⊂

p
B), providedA has the propertyp with respect toB. Put

k ∈ [0,∞). Thenp is a finite strong containment property, provided
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(p.1) If A ⊂
p

B ⊂ F andp is defined forA ⊂ F, thenA ⊂
p

F,

(p.2) If A ⊂ B ⊂
p

F, thenA ⊂
p

F,

(p.3) If, for eachn ∈ N,En ⊂
p

Fn, then
k
⋃

n=1
En ⊂

p

k
⋃

n=1
Fn.

Example 4.3. Strong Containment of Sufficiently Near Collections
Putε ∈ (0,∞]. Let (X, ν) be anε-approach nearness onX andp + ‘sufficiently near’ defined for
A,B ∈ P(X) such thatν(A,B) < ε. From Example4.2, assumeA,B ∈ Eε(ν2) andA ⊂ B, then
A ⊂

p
B.

Proof.
(p.1) AssumeA,B,C ∈ Eε(ν2). By definition,A ⊂

p
B. AssumeB ⊂ C, thenA ⊂

p
B ⊂ C. Since

B,C ∈ Eε(ν2), thenA ⊂
p
C.

(p.2) AssumeA,B,C ∈ Eε(ν2) and thatA ⊂ B ⊂ C. By definition,A ⊂ B ⊂
p
C and by

assumptionA ⊂ C. SinceA,C ∈ Eε(ν2), thenA ⊂
p
C.

(p.3) The proof of this strong containment property follows bymathematical induction.

5. Description-based neighbourhoods

For N. Bourbaki, a set is a neighbourhood of each of its pointsif, and only if, the set is
open (Bourbaki, 1971, §1.2) (Bourbaki, 1966, §1.2, p. 18). A setA is open, if and only if, for each
x ∈ A, all pointssufficiently near1 x belong toA.

x0

y
ρ(x0, y) < r

Figure 1: Nbd Nr (x0)

For a Hausdorff neighbourhood (denoted byNr ), sufficiently
near is explained in terms of the distance between pointsy andx
being less than some radiusr (Hausdorff, 1914b, §22). In other
words, a Hausdorff neighbourhood of a point is an open set such
that each of its points is sufficiently close to its centre.

Traditionally, nearness of points is measured in terms of the
location of the points. Letρ : X × X :→ [0,∞] denote the
standard distance2 between points inX. For r ∈ (0,∞], a neighbourhood ofx0 ∈ X is the set of all
y ∈ X such thatρ(x0, y) < r (see,e.g., Fig. 1, where the distanceρ(x, y) between each pairx0, y is
less thanr in the neighbourhood). In that case, a neighbourhood is called an open ball (Engelking,
1989, §4.1) or spherical neighbourhood (Hocking & Young, 1988, §1-4). In the plane, the points
in a spherical neighhourhood (nbd) are contained in the interior of a circle.

Next, an alternative to a spherical neighbourhood is calleda visual neighbourhood (denoted
nbdv), which stems from recent work on descriptively near sets (Naimpally & Peters, 2013; Peters,
2013; Peters & Naimpally, 2012).

1...tous les points assez voisins d’un point x(Bourbaki, 1971, p. TG I.3)
2i.e., for x, y ∈ X ⊂, ρ(x, y) = |x− y|.
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Definition 5.1. Visual Neighbourhood
A visual nbdv of a pointx0 (denotedNrφ) is an open setA such that the visual information values
extracted from all of the points in A are sufficiently near the corresponding visual information
values atx0. Letφ denote a probe function used to extract visual information from a point in nbdv.
Sufficient nearness of points in a visual nbdv is defined in terms of boundrφ, a real number. That
is, pointsx0, x ∈ A are sufficiently near,i.e., provided

ρφ(x0, y) = |φ(x0) − φ(y)| < rφ.

Example 5.1. Visual Neighbourhood in a Drawing
In its simplest form (see,e.g., Fig. 2), a nbdv (denoted byNrφ) is defined in terms of a real-valued
probe functionφ used to extract visual information from the pixels in a digital image, reference
point x0 (not necessarily the centre of the nbdv) and ‘radius‘rφ such that

X = {drawing visual pixels}, x, y ∈ X,

φ : X→ [0,∞], (probe function,e.g., probeφ(x) = pixel x intensity),

ρφ(x0, y) = |φ(x0) − φ(y)|, (visual distance),

x0 ∈ X,(nbdv reference point),

rφ ∈ (0,∞], (sufficient nearness bound),

Nrφ(x0) = {y ∈ X : ρφ(x0, y) < rφ}, (visual nbdv).

At this point, observe that the appearance of a visual neighbourhood can be quite different from
the appearance of a spherical neighbourhood. For this reason, x0 is called areference point(not a
centre) in anbdv. A visual neighbourhood results from a consideration of thefeatures of a point
in the neighbourhood and the measurement of the distance between neighbourhood points3. For
example,φ(x0) in Fig. 2 is a description ofx0 (probeφ is used to extract a feature value fromx in
the form of pixel intensity). Usually, a complete description of a pointx in anbdv is in the form of
a feature vector containing probe function values extracted from x (see,e.g., (Henry, 2010, §4), for
a detailed explanation of the near set approach to perceptual object description). Observe that the
membersy ∈ Nrφ(x0) in the visual neighbourhood in Fig.2 have descriptions that aresufficiently
near the description of the reference pointx0.

For example, each of the points in the green shaded regions inFig. 2 have intensities that are
very close to the intensity of the pointx0. By contrast, many points in the purple shaded region
have higher intensities (i.e., more light) than the pixel atx0, For example, consider the intensities
of the points in the visual nbd represented by the green wedge-shaped region and some outlying
green circular regions and the pointx4 in the purple region in Fig.2, where

rφ = 5 low intensity difference,

3It is easy to prove thata visual neighbourhood is an open set
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φ(x0)

φ(x1)
φ(x2) φ(x3)

φ(x4)
ρφ(x0, x4) > rφ

ρφ(x0, x3) < rφ
ρφ(x0, x2) < rφ

ρφ(x0, x1) < rφ

ℑ1

ℑ2

ℑ3

ℑ4

ℑ5
ℑ6

ℑ7

ℑ8

Figure 2: Sample Visual NbdNrφ(x0) in a Drawing

ρφ(x0, x1) = |φ(x0) − φ(x1)| < rφ,

ρφ(x0, x2) = |φ(x0) − φ(x2)| < rφ,

ρφ(x0, x3) = |φ(x0) − φ(x3)| < rφ, but

ρφ(x0, x4) = |φ(x0) − φ(x4)| > rφ, whereφ(x4) = high intensity (white).

In the case of the pointx4 in Fig. 2, the intensity is high (close to white),i.e., φ(x4) ∼ 255.
By contrast the pointx0 has low intensity (less light),e.g., φ(x0) ∼ 20. Assumerφ = 5. Hence,
|φ(x0) − φ(x4)| > rφ. As in the case of C. Monet’s paintings4, the distance between probe function
values representing visual information extracted from image pixels can be sufficiently near a cen-
tre x0 (perceptually) but the pixels themselves can befar apart, i.e., not sufficiently near, if one
considers the locations of the pixels.

Remark.Filters and Grills
In Fig. 2, observe thatF1 = ℑ1 ⊂ ℑ2 ⊂ ℑ3 is a filter. Again, observe thatF2 = {ℑ4,ℑ6,ℑ8} is a
filter. It can be shown that the setG = {ℑ4,ℑ6,ℑ8} is a grill.

Proof. Let A = ℑ6, B = ℑ4 in Fig. 2. FromF2, we know thatℑ6 ⊂ ℑ4 andℑ4 ⊂ G. ThenB ∈ G.
Observe thatℑ5 ∪ ℑ6 ∈ G, thenℑ5 ∈ G orℑ6 ∈ G.

4A comparison between Z. Pawlak’s and C. Monet’s waterscapesis given inPeters(2011).
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In addition, letX denote the set of regions shown in Fig.2. Obviously,F = {ℑ4,ℑ6,ℑ8} is a
filter, if and only if, sec(F ) is a grill G2 on X. Further,G3 =

{

ℑ1,ℑ2,ℑ3
}

is a grill, if and only if,
sec(G3) is a filter.

Example 5.2. Sample Associated Sets
Let Dρφ be a gap functional such that

Dρφ(A, B) +















inf {ρφ(a, b) : a ∈ A, b ∈ B}, if A andB are not empty,

∞, if A or B is empty.

Then the functionνDρφ
: P2(X) × P2(X) −→ [0,∞] defined as

νDρφ
(A,B) + sup

A∈A,B∈B
Dρφ(A, B); νDρφ

(A,A) + sup
A∈A

Dρφ(A,A) = 0,

is anε-approach merotopy onX. In terms of the labelled setsℑ1,ℑ2,ℑ3, ℑ4,ℑ5,ℑ6 in Fig. 2,
we can identify the following lower associated setEε in (Assoc.1) and upper associatedEε in
(Assoc.2) with respect toνDρφ

.

(Assoc.1) Eε(ℑ1) = {ℑ2,ℑ3,ℑ4,ℑ5,ℑ6}, where

νDρφ
(ℑ1,ℑi) < ε for i ∈ {2, 3, 5, 6},

i.e., for a ∈ ℑ1, b ∈ ℑi , i , 1, ρφ(a, b) < ε, since the colours of all of the pixels are
similar in each setℑi ∈ Eε(ℑ1) in Fig. 2. The sets inEε(ℑ1) are sufficiently nearℑ1.

(Assoc.2) Eε(ℑ4) = {ℑ7}, where
νDρφ

(ℑ4,ℑ7) > ε,

i.e., for a ∈ ℑ4, b ∈ ℑ7, ρφ(a, b) > ε, due to the fact that the green colour of each the
pixels inℑ4 is dissimilar to the purple or white colour of the pixels inℑ7 in Fig. 2. In
effect, the sets inEε(ℑ4) are far apart fromℑ4 with respect toνDρφ

.

Example 5.3. Sufficiently Near Strong p-Containment
After a manner similar to Example4.3, let (X, νρφ) be anε-approach nearness onX and p +

‘sufficiently near’ defined for{A}, {B} ∈ P(X) such thatνρφ({A}, {B}) < ε. Considerℑ1,ℑ2,ℑ3 in
Fig. 2. It is a straightforward task to verify that
(p.1) ℑ1 ⊂

p
ℑ2 ⊂ ℑ3 impliesℑ1 ⊂

p
ℑ3,

(p.2) ℑ1 ⊂ ℑ2 ⊂
p
ℑ3 impliesℑ1 ⊂

p
ℑ3,

(p.3) Considering onlyℑ1,ℑ2,ℑ3,

ℑ1 ⊂
p
ℑ3 andℑ2 ⊂

p
ℑ3 implies

2
⋃

i=1

ℑi ⊂
p
ℑ3.
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3.1: Monet meadow

φ(x0)

φ(x1)

φ(x2)

3.2: NbdNrφgrey

Figure 3: Sample Monet Meadow nbdNrφgrey
, with rφgrey=10

Example 5.4. Visual Neighbourhood in a Digital Image
Consider visual neighbourhoods in digital images, where each point is an image pixel (picture
element). A pixel is described in terms of its feature values. Pixel features include grey level
intensity and primary colours red, green, and blue with wavelengths 700 nm, 546.1 nm and 435.8
nm, respectively)5, texture, and shape information. Visual information (feature values) is extracted
from each pixel with a variety of probe functions.

For example, consider a xixth century, St. Martin, Vetheuil landscape by C. Monet rendered as
a greyscale image in Fig.3.1. Letφgrey(x) denote a probe that extracts the greylevel intensity from
a pixel x and letrφgrey = 10. This will lead to the single visual neighbourhood represented by the
green-shaded regions shown in Fig.3.2. To obtain the visual nbd in Fig.3.2, replace the greylevel
intensity of each point sufficiently near the intensityφgrey(x0) with a green colour. The result is
green-coloured visual nbdNrφgrey

in Fig.3.2. This set of intensities in the visual nbd shown inNrφgrey

is an example of an open set contain numbers representing intensities that are sufficiently nearx0.
To verify this, notice that the pixel intensities for large regions of the sky, hills and meadow in
Fig. 3.1 are quite similar. This is the case with the sample pixels (points of light) x0, x1, x2 in
Fig. 3.2, where the in

∣

∣

∣φgrey(x0) − φgrey(x1)
∣

∣

∣ < rφgrey and
∣

∣

∣φgrey(x0) − φgrey(x2)
∣

∣

∣ < rφgrey.
In summary, the lower associated setEε({{xi}}) is the set of all visual neighbourhoods of the

pixel xi in Fig. 3.2 that are descriptivelyε-near each other. In addition, one can also observe

5The amounts of red, green and blue that form a particular colour are calledtristimulusvalues. LetR,G, B denote
red, green, blue tristimulus values, respectively, with green almost in the middle of the wavelengths of the visual
spectrum, which is at 568 nm. Then define the following probe functions to extract the colour components of a pixel.

r =
R

R+G+ B
, g =

G
R+G+ B

, b = 1− r − g.

meadow-g.eps
nbd-meadow.eps
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b

b

b

b

b

f (x) = y1

f (x) = y2
f (x) = yk

x

X Y

y1 = Eε({{x}})

y2

yk

·
·
·

Figure 4: f (x) = |Eε({{x}})| > 0

that the upper associated setEε({{xi}}) contains all visual neighbourhoods that are descriptively
dissimilar toxi .

Example 5.5. Bipartite Graph for Associated Sets
Although this example continues the discussion of paintings, the proposed bipartite graph rep-
resentation of associated sets is easily extended to members of any pair of nonempty sets. For
example, consider classifying paintings by a particular artist by collecting together nonempty as-
sociated lower sets of sufficiently near neighbourhoods extracted from pairs of pictures. To see
this, let X denote a set of query images and letY denote a set of test images (i.e., X contains
pictures showing paintings, where each painting inX is compared with the paintings in the set of
sample paintingsY).

The goal is to collect together those pictures inY containing neighbourhoods of points iny ∈ Y
that are sufficiently similar to neighbourhoods of points in a picturex ∈ X. Let Na ∈ X,Nb ∈ Y
denote neighbourhoods that are sufficiently near. Then construct the lower associated setEε(Na) =
{Nb, . . . }. A query image is similar to a test image if, and only if,Eε(Na) > 0.

Given approach spaces (X, νDρφgrey
), (Y, νDρφgrey

), consider a functionf : X → Y defined by
f (x) = |Eε(x)|, wherex ∈ X. Then the relation between a particular painting and one or more
associated lower sets can be represented by a bipartite graph (see Fig.4). The image set

O = { f (xi) : i ∈ and | f (xi)| > 0}

can be extracted from Fig.4. The setO has interest, since two of its members reveal the least
similar and most similar paintings in relation to a particular query image. That is, inf{O}, sup{O}
function values correspond to the least similar and most similar of the paintings that are sufficiently
near the query imagex ∈ X.

Similarly, one can determine the collection of those paintings dissimilar to a given query pic-
ture with a nonempty associated upper set containing visualneighbourhoods taken from the query
image and a test image.
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Unsupervised Detection of Outlier Images Using Multi-Order
Image Transforms
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Abstract
The task of unsupervised detection of peculiar images has immediate applications to numerous scientific disci-

plines such as astronomy and biology. Here we describe a simple non-parametric method that uses multi-order image
transforms for the purpose of automatic unsupervised detection of peculiar images in image datasets. The method is
based on computing a large set of image features from the raw pixels and the first and second order of several com-
binations of image transforms. Then, the features are assigned weights based on their variance, and the peculiarity of
each image is determined by its weighted Euclidean distance from the centroid such that the weights are computed
from the variance. Experimental results show that features extracted from multi-order image transforms can be used
to automatically detect peculiar images in an unsupervised fashion in different image datasets, including faces, paint-
ings, microscopy images, and more, and can be used to find uncommon or peculiar images in large datasets in cases
where the target image of interest is not known. The performance of the method is superior to general methods such
as one-class SVM. Source code and data used in this paper are publicly available, and can be used as a benchmark to
develop and compare the performance of algorithms for unsupervised detection of peculiar images.

Keywords: Outlier detection, peculiar images, image analysis, image transform, multi-order transforms.
2010 MSC: 68T10, 62H35, 68T45, 62H30 .

1. Introduction

Unsupervised detection of peculiar images is the ability of a computer system to automatically
detect images that are different from the other “regular” images in an image dataset. While in tasks
such as image classification the system can be trained in a supervised fashion using “ground truth”
samples, in unsupervised detection of peculiar images the algorithm cannot rely on data samples
or models that reflect the “regular” images or the target images of interest.

The problem of detecting data points significantly different from the other data is often referred
to as outlier detection (Hodge & Austin, 2004). Many established algorithms consider outlier

∗Corresponding author
Email address: lshamir@mtu.edu (Lior Shamir)
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detection as a by-product of clustering algorithms by searching for background noise samples that
do not belong in a cluster (Aggarwal & Yu, 2000; Guha, Rastogi & Shim, 2001). Other methods
are based on searching for samples that do not belong in a cluster and are also not background
noise, but are substantially different from the other samples in the dataset (Breunig et al., 2000;
Knorr & Ng, 1999; Fan et al., 2006). While many of the outlier detection algorithms were designed
and tested using lower dimensionality, other methods aim at automatic outlier detection in higher
dimensionality data (Aggarwal & Yu, 2001; Roth, 2005; Fan, Cehn & Lin, 2005; Lukashevich,
Nowak & Dunker, 2009). Applications of outlier detection include credit card fraud, network
intrusion detection, surveillance, financial applications, cell phone fraud, safety critical systems,
loan application processing, defect detection in factory production lines, and sensor networks
(Zhang et al., 2007).

While outlier detection has been studied in the context of a broad range of applications, less
work has yet been done on unsupervised detection of peculiar images in image datasets. Here we
describe a generic method that can be used for automatic detection of peculiar images in image
datasets based on a large set of image content descriptors extracted from the raw pixels, image
transforms, and compound image transforms. Applications include, for instance, the search for
peculiar cells or tissues in large datasets of microscope images, which can be used to detect phe-
notypes of particular scientific interest (d‘Onofrio & Mango, 1984; Carpenter, 2007; Jonesa et al.,
2009).

When the target image is known, the task of detecting a peculiar image can be related to the
problem of Content-Based Image Retrieval, and numerous effective methods of measuring simi-
larities between images in the context of CBIR have been proposed (Bilenko, Basu, & Mooney,
2004; Kameyama et al., 2006). However, since in this study the detection of a peculiar image in
an image dataset should be done automatically in an unsupervised manner, no assumptions can be
made neither about the target image nor about the context of the images in the data base. That is,
the computer system should automatically characterize the “typical” image in the dataset, and de-
tect images that are different from it. Since no pre-defined model of the data can be used, effective
systems for unsupervised automatic detection of peculiar images need to extract different image
features that will cover different aspects of the image content, and thus be able to characterize and
analyze a broad spectrum of image data.

Here we use a large set of image content descriptors extracted from the raw images, image
transforms, and multi-order transforms, and apply a statistical analysis to weight the different
image features by their ability to reflect the data and detect peculiar images. The primary advantage
of the method is its generality, which makes it effective for the analysis of a broad variety of image
datasets without the need for tuning or adjustments. In Section 2 we briefly describe the set of
image features and multi-order transform model used in this study, in Section 3 we describe the
unsupervised detection of the peculiar images, in Section 4 the performance evaluation method of
the proposed algorithm is discussed, and in Section 5 the experimental results are presented.

2. Image features

The set of image content descriptors used in this study is based on the feature set used by the
wndchrm algorithm, which is a large set of numerical image content descriptors that cover a broad
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range of aspects of the visual content (Shamir et al., 2008a; Orlov et al., 2008; Shamir et al., 2010).
Basically, the wndchrm feature set includes several generic image features such as high-contrast
features (object statistics, edge statistics, Gabor filters), textures (Haralick, Tamura), statistical
distribution of the pixel values (multi-scale histograms, first four moments), factors from poly-
nomial decomposition of the image (Chebyshev statistics, Chebyshev-Fourier statistics, Zernike
polynomials), Radon features, and fractal features. A detailed description of these image con-
tent descriptors and the way they are used in the context of the wndchrm feature set is available
in (Shamir et al., 2008a; Orlov et al., 2008; Shamir et al., 2010; Shamir, 2008; Shamir et al.,
2009). The reason for using a large set of features is that the search for peculiar images is unsuper-
vised, and no assumptions can be made regarding the possible difference between the peculiar and
non-peculiar images. Therefore, it is important that the set of image content descriptors is com-
prehensive enough so that at least some of the image features will be likely to sense differences
between a regular and a peculiar image in a given image dataset.

As will be discussed in Section 5, a key contributor to the ability of the method proposed
in this paper to detect peculiar images in an unsupervised fashion is the extraction of the image
content descriptors not just from the raw pixels, but also from image transforms and compound
image transforms. The extraction of image features from compound image transforms has been
shown to contribute significantly to the performance of general-purpose image classifiers (Shamir
et al., 2008a; Orlov et al., 2008; Shamir et al., 2010, 2009), and can therefore be effective for
peculiar image detection in cases where the differences between the typical and the peculiar im-
age should be determined automatically, without using “ground truth” samples or any other prior
knowledge about the data. The image transforms include the Fourier, Chebyshev, Wavelet, and the
edge-magnitude transform, as well as multi-order transform combinations. The combinations of
transforms include the Fourier transform of the Chebyshev transform, the wavelet transform of the
Chebyshev transform, the Fourier transform of the wavelet transform, the wavelet transform of the
Fourier transform, the Chebyshev transform of the Fourier transform, and the Fourier and Cheby-
shev transforms of the edge magnitude transform. A detailed description of the tandem transform
combinations can be found in (Shamir et al., 2010; Shamir, 2008), and the total number of images
features extracted using these transforms is 2659 (Shamir et al., 2008a; Shamir, 2008). The length
of the chain of transforms is limited to the first and second order of the image transforms, as ex-
periments showed that using compound transforms with order higher than two typically does not
contribute to the informativeness of the image analysis system (Shamir et al., 2009). The effect
of using the multi-order image transforms on the ability of the algorithm to automatically detect
peculiar images will be discussed in Section 5.

For color images we used a color transform, which is based on transforming the RGB pixels
into the HSV space, followed by classification of the HSV triplets into one of 16 color classes
using fuzzy logic modeling of the human perception of these colors (Shamir et al., 2006). Then,
the Fourier, Chebyshev, and wavelet transforms of the color transform are computed, and the set
of image features is extracted as described in (Shamir et al., 2010). When the color transform is
also used, the total number of image features is 3658 (Shamir et al., 2010). Figure 1 illustrates the
paths of the transforms and compound transforms used by the feature set.
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Figure 1. Paths of multi-order image transforms.

3. Automatic detection of peculiar images

In order to automatically detect peculiar images, it is first required to characterize the “typical”
image in the dataset. Since many image features are used without prior knowledge about the
dataset, it can be assumed that not all content descriptors are relevant to the image dataset at hand,
and might represent noise. Therefore, it is required to select the image features that are the most
informative, and can potentially discriminate between peculiar and non-peculiar images.

In the first stage of the algorithm, all image features are normalized to the interval [0, 1], so that
the differences between the values of different image features can be compared without introducing
a numerical bias. For instance, if the values of one image feature are in the range of [0, 1000] while
the values of another are in the range of [0, 10], a numerical difference of 5 between the values
of the first feature extracted from two different images can be considered small, while the same
numerical difference can be much more substantial for the second feature, in which it is half of the
entire range.

In the next step, the mean, median, and variance of each image feature are computed. To char-
acterize the “typical” feature values of an image in the dataset, the highest 5% and the lowest 5%
of the values of each image feature are ignored when computing the mean and standard deviation,
so that extreme values that results from noise, artifacts, or peculiar images will not affect the mean
and variance of the “typical” images.

After these values are computed, each image in the dataset is compared to the “typical” image
using Equation 3.1

Di =
∑
f∈F

(1 − σ f )k ·
| fi − f |
σ f

, (3.1)

where Di is the dissimilarity value of image i from the “typical” image in the dataset, f is a
feature in the feature set F, f is the median of the values of feature f in the given image dataset,
fi is the value of the feature f computed from the image i, σ f is the standard deviation of feature
f, and k is a constant value set to 25. The value of k will be thoroughly discussed in Section 5.
The Di dissimilarity value can be conceptualized as the sum of Z scores computed for each fea-
ture separately, such that each score‘s contribution to the total distance is inversely dependent on
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the standard deviation. That is, features that have lower standard deviation are considered more
“representative” features, while feature that their values are more sparsely distributed are assumed
to provide a weaker representation of the “typical” image and are therefore assigned with a lower
score and have a weaker affect on the dissimilarity value.

Clearly, image features that their values are constant across the dataset (and therefore σ = 0)
cannot provide any useful information in this model, and can therefore be safely ignored without
affecting the performance. On the other hand, the values of some of the other features can be
sparsely distributed across the image dataset, and therefore the median of these values cannot be
considered as a value that reliably represents the typical image. For that reason, the effect of each
image feature is weighted by its standard deviation, which is used as an assessment of the feature‘s
informativeness and its ability to characterize the typical image.

While in Equation 3.1 the effect of features that their values are sparsely distributed is weak-
ened by using the standard deviation as a measurement of their informativeness, it can be assumed
that many of the features will not be informative for a given image dataset at hand, and therefore
the high number of irrelevant features can add noise to the analysis and negatively affect the per-
formance. In order to reduce the effect of non-informative features, 90% of the features with the
highest σ are ignored, and the remaining 10% are used by Equation 3.1 to compute the distance
between a given image and the “typical” image in the dataset. Since the image features are also
weighted by their standard deviation, the performance of this method is not highly sensitive to
small changes in the number of features that are used, as will be discussed in Section 5. This
approach of combining feature selection and feature weighting is conceptually similar to the ap-
proach of the feature selection in the wndchrm image classifier (Shamir et al., 2008a; Orlov et al.,
2008; Shamir et al., 2010).

In many cases, using σ to assess the informativeness of the features and their ability to differ-
entiate between a peculiar and a typical image might not be optimal and can lead to the sacrifice
of some of the information. For instance, if the values of a certain image feature range between
0 and 0.8 for most images in the dataset, but is always 1 for a certain peculiar image, this feature
could have been effectively used to detect the peculiar image, but will be assigned with a low score
due to the sparse distribution of the values. On the other hand, features can be assigned with high
scores due to the consistency of their values, while these image features might have little ability
to differentiate between a typical and a peculiar image. Since the goal of the method described in
this paper is to detect peculiar images in an unsupervised fashion, no assumptions or prior knowl-
edge about the data can be used, and therefore the image content descriptors cannot be selected or
scored based on a target peculiar image. However, by using a large set of image features, it can be
expected that some of the features that are assigned with high scores will be able to differentiate
between a peculiar and a typical image. This will be demonstrated in Section 5.

In summary, the following pseudo code summarizes the outlier detection algorithm:

Step 1: Compute image features for all images.

Step 2: Reject the lowest and highest 5% values of each feature.

Step 3: Compute the mean M f of the values of each feature f.
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Step 4: Compute the σ f of the values of each feature f.

Step 5: Reject 90% of the features with the lowest σ.

Step 6: Compute d for each image I such that d =

√∑
f (1 − σ f )k ·

(I f−M f )
σ f

.

Step 7: Sort the images in the dataset by d.

The computational complexity of the algorithm is O(F · I log I), where I is the number of im-
ages and F is the number of features computed for each image. The computational complexity is
determined by the complexity of sorting all values of each feature, which is the most computation-
ally demanding task in the algorithm described above. The bottleneck of the process, however,
is the computational complexity of the Wndchrm feature set, which is much more complex as
described in (Shamir et al., 2008a, 2009).

4. Performance evaluation

In order to test the performance of the proposed method, several different image datasets were
used. These datasets include the Brodatz texture album (Brodatz, 1966), the COIL-20 object
image collection (Nene, Nayar & Murase, 1996), JAFFE and AT&T face datasets (Samaria &
Harter, 1994; Lynos et al., 1998), the MNIST handwritten digit collection (LeCun et al., 1998;
Liu et al., 2003), and a dataset of digitized paintings of Van Gogh, Monet, Dali, and Pollock
Shamir et al. (2010). Since the MNIST dataset contains a large number of images, a subset of 100
images from the first two classes (0 and 1) were used in the experiment. For microscopy images
we used the CHO (Chinese Hamster Ovary) dataset (Boland & Murphy, 2001), consisting of
fluorescence 512×382 microscopy images of different sub-cellular compartments, and the Pollen
dataset (Duller et al., 1999), which is a dataset of 25×25 images of geometric features of pollen
grains. The CHO dataset might not be considered a perfect representation of biological content
(Shamir et al., 2011), but it is used in this study for general-purpose outlier detection. These
two datasets are available for download as part of the IICBU-2008 benchmark suite at http:
//ome.grc.nia.nih.gov/iicbu2008 (Shamir et al., 2008b), and sample images of the different
classes are shown by Figures 2 and 3. The image datasets used in this study are listed in Table 1.

Figure 2. Sample images of class “obj 198” (top) and “obj 212” (bottom) taken from
the pollen dataset.

http://ome.grc.nia.nih.gov/iicbu2008
http://ome.grc.nia.nih.gov/iicbu2008
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Table 1. Image datasets used for the experiments.

dataset typical class peculiar class images per class
Pollen obj 198 obj 212 45
CHO giantin hoechst 69
JAFFE KA KL 22
AT&T 1 2 10
Painters 1 Pollock Dali 30
Painters 2 Monet Van Gogh 30
Brodatz 1 Bark Brick 4
Brodatz 2 Wood Wool 4
MNIST 0 1 100
COIL-20 obj1 obj2 71

Figure 3. Sample images of giantin (left) and hoechst (right) taken from the CHO
dataset.

As the table shows, these datasets were used such that two classes from each dataset were
selected: one class was used as the “typical” class and the other as a pool of “peculiar” images.
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In each run the tested dataset included all images from the typical class, and one image from the
peculiar class. The experiment was repeated for each image in the peculiar class, such that in each
run a different image from the peculiar class served as the peculiar image. For instance, the AT&T
face dataset has 10 images in each class, and therefore it was tested 10 times such that in each run
all 10 images of person 1 were used and one image of person 2 (a different image in each of the 10
runs). The goal of the algorithm was to automatically detect the single image of person 2 among
the dataset of 11 images (10 images of person 1 and one image of person 2).

The performance was evaluated by the number of times the algorithm correctly detected the
peculiar image in the set (which included the “typical” images and the one “peculiar” image),
divided by the total number of images in the peculiar class. Another performance metrics used in
this study is the rank-10 detection accuracy, which was measured as the percentage of the cases in
which the peculiar image was among the first 10 candidates with the highest dissimilarity value as
determined by Equation 3.1.

5. Results

The performance of the automatic detection of peculiar images was evaluated as described in
Section 4, and the rank-1 and rank-10 detection accuracies for each of the tested datasets are listed
in Table 2.

Table 2. Rank-1 and rank-10 accuracy of the detection of the peculiar image.

Dataset Rank-1 accuracy Rank-10 accuracy
Pollen 29/45 34/45
CHO 57/69 69/69
Jaffe 16/22 22/22
AT&T 10/10 10/10
Painters 1 26/30 30/30
Painters 2 0/30 18/30
Brodatz 1 4/4 4/4
Brodatz 2 4/4 4/4
MNIST 29/100 92/100
COIL-20 38/71 71/71

As the table shows, in almost all cases the proposed algorithm was able to automatically detect
the peculiar images in accuracy significantly better than random. For instance, with the Pollen
dataset the algorithm was able to automatically find the peculiar image in 29 times out of 45
attempts (each attempt with a different image), and the rank-10 detection was accurate in 34 times.
The noticeable exception is the second datasets of painters, which consists of paintings of Monet
and Van Gogh. In that case, the proposed method was not able to automatically detect any of the
tested Van Gogh paintings in a set of Monet paintings, and the rank-10 accuracy was 60%. Since
Monet and Van Gogh were inspired from each other, their artistic styles are similar to each other,
and it usually requires knowledge in art to differentiate between the works of the two painters.
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The other painter dataset that was tested demonstrated a much higher detection accuracy since
the two painters, Jackson Pollock and Salvador Dali, belong in different schools of art (Abstract
Expressionism and Surrealism, respectively) and the differences between their styles are highly
noticeable even without any previous knowledge or training in art.

The results specified in Table 2 demonstrate the generality of the method and its ability to
handle very different image datasets in a fully automatic fashion, and without the need to select or
tune parameters. The generality of the method can also be demonstrated by the different classes
of the Pollen dataset. While the results in Table 2 are based on obj 198 as the “typical” class and
“obj 212” as the peculiar class, the pollen dataset includes seven classes (Shamir et al., 2008b).
Table 3 shows the rank-1 detection accuracy of all combinations of the seven classes in the pollen
dataset, such that each cell is the detection accuracy when the row the “typical” class and the
column is the “peculiar” class. As the table shows, the detection accuracy is significantly higher
than random in all combinations of “typical” and “peculiar” classes, demonstrating the generality
of the proposed method.

Table 3. Rank-1 detection accuracy (%) of all combinations of typical and peculiar
classes using the pollen dataset.

Regular\Peculiar 198 212 216 360 361 405 406
198 - 64 51 67 53 69 67
212 55 - 55 65 58 67 67
216 63 67 - 63 58 64 64
360 61 64 67 - 64 72 69
361 57 67 65 67 - 72 69
405 66 71 73 69 67 - 71
406 63 59 65 69 69 61 -

As discussed in Section 3, 90% of the image features with the highest σ are ignored. Changing
the number of features that are rejected and not used by the image dissimilarity evaluation of
Equation 3.1 can change the dissimilarity value determined by the Equation for each image, and
consequently affect the performance of the algorithm. Figures 4 and 5 show the rank-1 and rank-10
detection accuracy of the peculiar images when the number of used features is changed.

As the graphs show, while the peculiar image detection accuracy of some image datasets peaks
when 10% of the features are used, in other datasets such as MNIST or COIL-20 the detection
accuracy peaks when 40% of the features are used. In the case of MNIST, the rank-1 detection
accuracy was elevated from 29% when 10% of the features were used to 94% with 40% of the
image features. This shows that the detection of peculiar images can be optimized if the number
of used image features is adjusted for the specific dataset. However, since the detection of the
peculiar image is unsupervised, and in many cases the target peculiar image is unknown, adjusting
the parameters for optimizing the performance based on sample target peculiar images might not
be possible, and it is therefore required to use a general pre-defined parameter setting as was done
for the performance figures reported in Table 2.

Another value that was determined experimentally is the K values in Equation 3.1. Figures 6
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Figure 4. The rank-1 detection accuracy of the peculiar image as a function of the
amount of features used.

and 7 show the rank-1 and rank-10 detection accuracy of the peculiar image as a function of the
value of this parameter. In all cases, 10% of the image content descriptors were used as described
in Section 3.

As the graphs show, the detection accuracy of the CHO dataset drops as the value of K in-
creases, and the detection of a Dali painting in a set of Jackson Pollock paintings also peaks when
the value of K is low. However, in most cases the detection accuracy of the peculiar image reaches
its maximum when the value of K is around 25. In some of the tested image datasets, such as
the Brodatz texture datasets and the rank-10 of the Painters 1 and COIL-20 datasets, the detection
accuracy of the peculiar image remained perfect regardless of the value of K.

A single peculiar image is expected to be detected more easily among a smaller dataset of
regular images. That is, finding a peculiar image hidden in a dataset of millions of images is
expected to be a more difficult task than finding a peculiar image in a dataset of just a dozen regular
images. On the other hand, the presence of a large number of regular images allows the algorithm
to find the image features that can discriminate between peculiar and regular images, and better
estimate the weights of the features by their informativeness and ability to discriminate between
a regular and a peculiar image as described in Section 3. To study the effect of the number of
the regular images in the dataset we used the MNIST dataset, which provides a sufficient number
of images of handwritten digits “0” and “1”. Figure 8 shows the rank-1 and rank-10 detection
accuracy of a peculiar image when changing the number of regular images in the dataset using
1000 images of the handwritten digit “0”.

As the graph shows, the detection accuracy generally drops as more regular images are added
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Figure 5. The rank-10 detection accuracy of the peculiar image as a function of the
amount of features used.

to the dataset. Clearly, this is due to the lower difficulty of finding a peculiar image in a dataset of
50 images compared to correctly finding a single peculiar image among a dataset of 1000 regular
images. However, while the rank-10 accuracy decreases as the number of regular images gets
higher, the rank-1 detection accuracy drops to ∼30% at around 80 regular images, but marginally
changes when more regular images are added to the dataset. This can be due to the effect of
the better weights assigned to the image features when the number of non-peculiar images in the
dataset increases, which improve the ability of the algorithm to characterize the “typical” image
in the dataset and differentiate it from peculiar images.

It should be noted, however, that while a higher number of regular images improves the feature
weights, it also increases the probability that one the regular images in the dataset will be assigned
with a high dissimilarity value computed by Equation 3.1. Since the algorithm aims to detect
the irregular images in an unsupervised fashion, any difference between one of the images in
the dataset and the “typical” image might lead to the detection of that image as “peculiar”. For
instance, in the MNIST dataset of the handwritten digit “0” the 10 most common images that were
detected by the proposed algorithm as peculiar are shown in Figure 9.

As the figure shows, some of these handwritten digits are noticeably different from a standard
handwritten digit “0”. For instance, the top left digit has a black dot near it, while other images of
handwritten “0” feature incomplete circles or thick lines. These images can confuse the algorithm
since they are different from the typical image of the digit “0”. Repeating the same experiment
with a dataset of 100 manually selected “0” images that seemed relatively uniform led to perfect
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Figure 6. The rank-1 detection accuracy of the peculiar image as a function of K.
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Figure 7. The rank-10 detection accuracy of the peculiar image as a function of K.
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Figure 8. Rank-1 and rank-10 accuracy as a function of the number of regular im-
ages using the MNIST handwritten digits dataset using 10% of the image
features.

Figure 9. The 10 most different images in the dataset of 1000 regular images of hand-
written “0” digit.

detection accuracy of the “1” images.
Similarly, the most peculiar images of the CHO dataset and the AT&T dataset are shown

in Figures 10 and 11, respectively. As the figures show, in the AT&T dataset the images are
relatively similar to each other, and it is difficult to identify specific images that are significantly
more different from the rest of the images. However, in the CHO dataset the peculiar images are
noticeably different from the “typical” giantin images showed in Figure 3.

As showed by Figure 5, the detection of an image of the handwritten digit “1” in a large set
of images of the handwritten digit “0” can be improved when using 40% of the image features.
Figure 12 shows the detection accuracy when 40% of the image content descriptors are used.

As the figure shows, when using 40% of the features the detection accuracy also drops as the
number of regular images gets larger, but the detection accuracy is significantly higher compared
to the detection accuracy when using just 10% of the image content descriptors. The rank-10
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Figure 10. The 10 most different images in the AT&T dataset. The leftmost image is
the most peculiar.

Figure 11. The 10 most different images in the CHO (giantin) dataset. The upper left
image is the most peculiar and the lower right image is the least peculiar
of the 10 samples.

accuracy, however, remains steady at 100% regardless of the number of regular images among
which the peculiar image should be detected.

A key element in the proposed algorithm is the use of the large set of image features extracted
from the raw pixels, but also from image transforms and compound transforms. To test the con-
tribution of the features extracted from transforms and compound transforms, the performance of
the proposed method was tested using features extracted from the raw pixels only, raw pixels and
transforms, and raw pixel, transforms, and transforms of transforms. Table 4 shows the rank-1 and
rank-10 detection accuracy when using image features computed using the raw pixels alone, and
Table 5 shows the performance of the method when using also the image features extracted from
the first-order image transforms. Table 2 shows the detection performance when using the raw
pixels, image transforms, and transforms of transforms.

As the tables show, the use of image features extracted from transforms and multi-order image
transforms has a significant effect on the performance of the method, and demonstrates the infor-
mativeness of standard image features extracted not just from the raw pixels, but also from image
transforms and compound transforms (Rodenacker & Bengtsson, 2003; Gurevich & Koryabkina,
2006; Shamir et al., 2010, 2009).

5.1. Comparison the previous methods
The performance of the peculiar image detection method was also compared to the perfor-

mance of one-class SVM (Scholkopf et al., 2001). The experiments were done with the LibSVM
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Figure 12. Rank-1 and rank-10 accuracy as a function of the number of regular images
using the MNIST handwritten digits image dataset using 40% of the image
features.

Table 4. Rank-1 and rank-10 accuracy of the peculiar image detection when using
image features extracted from the raw pixels only.

Dataset Rank-1 accuracy Rank-10 accuracy
Pollen 11/45 19/45
CHO 21/69 36/69
Jaffe 9/22 14/22
AT&T 4/10 10/10
Painters 1 16/30 23/30
Painters 2 0/30 14/30
Brodatz 1 4/4 4/4
Brodatz 2 4/4 4/4
MNIST 9/100 56/100
COIL-20 11/71 44/71

support vector machine library using the “one-class” option with RBF (γ=5) and polynomial (d=5)
kernels, where nu was set to 0.5 (Scholkopf et al., 2001; Fan, Cehn & Lin, 2005). The value K
in Equation 3.1 was set to 25. Figure 13 shows the rank-1 detection accuracies using the method
described in this paper and the one-class SVM with the two kernels.

As the graph shows, the detection using weighted distances from the means as described in this
paper is substantially better compared to one-class SVM. The better performance when using the
weighted distances from the means can be explained by the ability of the weighted feature space to
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Table 5. Rank-1 and rank-10 accuracy of the peculiar image detection when using
image features extracted from the raw pixels and image transforms.

Dataset Rank-1 accuracy Rank-10 accuracy
Pollen 18/45 25/45
CHO 39/69 53/69
Jaffe 13/22 22/22
AT&T 8/10 10/10
Painters 1 22/30 26/30
Painters 2 0/30 17/30
Brodatz 1 4/4 4/4
Brodatz 2 4/4 4/4
MNIST 29/100 92/100
COIL-20 38/71 68/71
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Figure 13. Detection accuracy using the proposed method and one-class SVM using
the image feature set.

work efficiently when the variance in the informativeness of the different image features is large.
These results are in agreement with previous experiments of automatic image classification using
the large image feature set used in this study (Shamir et al., 2010), which also indicated that SVM
classifiers have difficulty to effectively handle the strong variance in the informativeness of the
image features included in the large feature set. The significant effect of assigning weights to the
features compared to using a non-weighted feature space is also discussed in (Orlov et al., 2008;
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Shamir et al., 2010).

6. Conclusions

This paper describes a method that applies multi-order image transforms to unsupervised de-
tection of peculiar images in image datasets. The detection of the peculiar images is done in an
unsupervised fashion, without prior knowledge that can be used to define the peculiarity of an
image in the context of the given image analysis problem at hand. This approach can be useful in
cases where it is required to detect unusual images, in the absence of a clear definition of what an
unusual image is or how a “peculiar” image is different from a “typical” image in the dataset. For
instance, screens in Cell Biology might result in microscopy images of very many cells, and the
researcher might be interested in detecting the irregular and uncommon phenotypes (d‘Onofrio &
Mango, 1984). In many cases the phenotypes of the highest scientific interest can be “new” types
of cells, which the researcher has never seen before, and therefore cannot characterize or use pre-
vious samples to train a machine vision system to detect. Other examples can include automatic
search for peculiar astronomical objects in image datasets acquired by autonomous sky surveys
driven by robotic telescopes, or uncommon ground features in datasets of satellites images of the
Earth or other planets. Future work will include the application of the proposed system to practical
tasks in biology, astronomy, and remote sensing.

The experiments described in this paper show that the detection accuracy of the peculiar image
can in some cases be improved if the parameters are adjusted for a specific dataset. However, the
pre-defined parameter settings used in this study demonstrated detection accuracy significantly
better than random, and showed that in some cases the rank-10 detection accuracy can be as high
as 100%. This shows that image features extracted from multi-order image transforms can be used
to automatically detect peculiar images in image datasets without using any prior knowledge about
the regular images, but more importantly, without any prior knowledge about the target peculiar
images.

One limitation of this method is that since the detection of the peculiar image is done in an
unsupervised fashion, the feature representation of the regular images should be similar to each
other so that the algorithm can differentiate between them and the peculiar image. That is, the
variation among the regular images should be smaller than the difference between the peculiar
images and the regular images.

Another downside of the method described in this paper is its relatively high computational
complexity. Since no prior knowledge about the images can be used, a large and comprehensive
set of image features is computed for each image in order to cover many different aspects of
the visual content, and then select the most informative features that can differentiate between a
regular and a peculiar image. Computing the full set of image content descriptors and transforms
can be a computationally expensive task. For instance, computing the feature set for a single
256×256 image takes ∼100 seconds using a 2.6GHZ AMD Opteron with 2 GB of RAM. A more
comprehensive analysis of the response-time as a function of the image size is available in (Shamir
et al., 2008a).
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1. Introduction

LetA denote the class of functions of the form

f (z) = z +

∞∑
n=2

anz n, (1.1)

which are analytic in the open unit disk U = {z ∈ C : |z| < 1}. Suppose that f and g are analytic
in U. We say that the function f is subordinate to g in U, or g superordinate to f in U , and we
write f ≺ g or f (z) ≺ g(z) (z ∈ U), if there exists an analytic function ω in U with ω (0) = 0 and
|ω (z)| < 1, such that f (z) = g(ω (z)) (z ∈ U). If g is univalent in U, then the following equivalence
relationship holds true, see (Miller & Mocanu, 1981) and (Miller & Mocanu, 2000):

f (z) ≺ g(z)⇐⇒ f (0) = g (0) and f (U) ⊂ g (U) .

Let S be the subclass of A consisting of univalent functions. Let φ (z) be an analytic function
with positive real part on φ with φ (0) = 1, φ

′ (0) > 0 which maps the unit disk U onto a region
starlike with respect to 1 which is symmetric with respect to the real axis. Let S∗(φ) be the class
of functions in f ∈ S for which

z f
′ (z)

f (z)
≺ φ (z) , (1.2)
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and C(φ) class of functions in f ∈ S for which

1 +
z f
′′ (z)

f ′ (z)
≺ φ (z) . (1.3)

These classes were introduced and studied by (Ma & Minda, 1992). (Ravichandran et al., 2005)
defined classes S∗b (φ) and Cb (φ) of complex order defined as follows :

S∗ (φ; b) =

{
f ∈ A : 1 +

1
b

(
z f
′ (z)

f (z)
− 1

)
≺ φ (z) (b ∈ C∗ = C\ {0})

}
(1.4)

and

C (φ; b) =

{
f ∈ A : 1 +

1
b

z f
′′ (z)

f ′ (z)
≺ φ (z) (b ∈ C∗)

}
. (1.5)

From (1.4) and (1.5), we have

f ∈ C (φ; b)⇐⇒ z f
′

∈ S∗ (φ; b) .

Now, we introduce a more general class of complex order T (φ; λ, b) as follows:

Definition 1.1. Let φ (z) be an analytic function with positive real part on φ with φ (0) = 1,
φ
′ (0) > 0 which maps the unit disk U onto a region starlike with respect to 1 which is sym-

metric with respect to the real axis. Then the class T (φ; λ, b) consists of all analytic functions
f ∈ A satisfying:

1 +
1
b

[
(1 − λ)

z f
′ (z)

f (z)
+ λ

(
1 +

z f
′′ (z)

f ′ (z)

)
− 1

]
≺ φ (z) (b ∈ C∗; λ ≥ 0) . (1.6)

We note that

(i) T (φ; 0, b) = S∗ (φ; b) and T (φ; 1, b) = C (φ; b) (Ravichandran et al., 2005);

(ii) T (φ; 0, 1) = S∗ (φ) and T (φ; 1, 1) = C (φ) (Ma & Minda, 1992);

(iii) T
(
1 + (1 − 2α) z

1 − z
; 0, b

)
= S∗α (b) and T

(
1 + (1 − 2α) z

1 − z
; 1, b

)
= Cα (b) (0 ≤ α < 1; b ∈ C∗)

(Frasin, 2006);

(iv) T
(
1 + z
1 − z

; 0, b
)

= T

(
1 + (2b − 1) z

1 − z
; 0, 1

)
= S∗ (b) (b ∈ C∗) (Nasr & Aouf, 1985) and (Wia-

trowski, 1970);

(v) T
(
1 + z
1 − z

; 1, b
)

= T

(
1 + (2b − 1) z

1 − z
; 1, 1

)
= C (b) (b ∈ C∗) (Nasr & Aouf, 1982) and (Wia-

trowski, 1970);
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(vi) T
(
1 + z
1 − z

; 0, 1 − α
)

= T

(
1 + (1 − 2α) z

1 − z
; 0, 1

)
= S∗ (α)

and T
(
1 + z
1 − z

; 1, 1 − α
)

= T

(
1 + (1 − 2α) z

1 − z
; 1, 1

)
= C (α) (0 ≤ α < 1) (Robertson, 1936);

(vii) T
(
1 + z
1 − z

; 0, be−iγ cos γ
)

= Sγ (b) and T
(
1 + z
1 − z

; 1, be−iγ cos γ
)

= Cγ (b)
(
|γ| <

π

2
, b ∈ C∗

)
(Al-Oboudi & Haidan, 2000) and (Aouf et al., 2005).

Motivated essentially by the aforementioned works, we obtain certain necessary and sufficient
conditions for the unified class of functions T (φ; λ, b) which we have defined. The motivation of
this paper is to generalize the results obtained by (Ravichandran et al., 2005), (Aouf et al., 2005),
(Srivastava & Lashin, 2005) and also (Obradovic et al., 1989).

2. Main Results

Unless otherwise mentioned, we assume throughout the sequel that b ∈ C∗, λ ≥ 0 and all pow-
ers are understood as principle values. To prove our main result, we need the following lemmas.

Lemma 2.1. (Ruscheweyh, 1982) Let φ be a convex function defined on U, φ (0) = 1. Define F(z)
by

F (z) = z exp
(∫ z

0

φ (t) − 1
t

dt
)
. (2.1)

Let p(z) = 1 + p1z + p2z2 + ...be analytic in U. Then

1 +
zq
′ (z)

q (z)
≺ φ (z) (2.2)

if and only if for all |s| ≤ 1 and |t| ≤ 1, we have

p (tz)
p (sz)

≺
sF (tz)
tF (sz)

. (2.3)

Lemma 2.2. (Miller & Mocanu, 2000) Let q(z) be univalent in U and let ϕ (z) be analytic in a

domain containing q (U). If
zq
′ (z)

q (z)
is starlike, then

zp
′

(z)ϕ (p (z)) ≺ zq
′

(z)ϕ (q (z)) ,

then p(z) ≺ q(z) and q(z) is the best dominant.

Theorem 2.1. Let φ (z) and F (z) be as in Lemma 2.1. The function f ∈ T (φ; λ, b) if and only if
for all |s| ≤ 1 and |t| ≤ 1, we have( s f (tz)

t f (sz)

)1−λ ( f
′ (tz)

f ′ (sz)

)λ
1
b

≺
sF (tz)
tF (sz)

. (2.4)
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Proof. Define the function p(z) by

p (z) =

 f (z)
z

(
z f
′ (z)

f (z)

)λ
1
b

(z ∈ U) . (2.5)

Taking logarithmic derivative of (2.5), we get

1 +
zp
′ (z)

p (z)
= 1 +

1
b

[
(1 − λ)

z f
′ (z)

f (z)
+ λ

(
1 +

z f
′′ (z)

f ′ (z)

)
− 1

]
.

Since f ∈ T (φ; λ, b), then we have

1 +
zp
′ (z)

p (z)
≺ φ (z)

and the result now follows from Lemma 2.1.

Putting λ = 0 in Theorem 2.1, we obtain the following result of (Shanmugam et al., 2009).

Corollary 2.1. Let φ (z) and F (z) be as in Lemma 2.1. The function f ∈ S∗ (φ; b) if and only if for
all |s| ≤ 1 and |t| ≤ 1, we have (

s f (tz)
t f (sz)

) 1
b

≺
sF (tz)
tF (sz)

. (2.6)

For λ = 1 in Theorem 2.1, we obtain the following result of (Shanmugam et al., 2009).

Corollary 2.2. Let φ (z) and F (z) be as in Lemma 2.1. The function f ∈ C (φ; b) if and only if for
all |s| ≤ 1 and |t| ≤ 1, we have (

f
′ (tz)

f ′ (sz)

) 1
b

≺
sF (tz)
tF (sz)

. (2.7)

Theorem 2.2. Let φ (z) be starlike with respect to 1 and F(z) given by (2.1) be starlike. If f ∈
T (φ; λ, b), then we have

f (z)
z

(
z f
′ (z)

f (z)

)λ
≺

(
F (z)

z

)b

. (2.8)

Proof. Let p (z) be given by (2.5) and q (z) be given by

q (z) =
F (z)

z
(z ∈ U) . (2.9)

After a simple computation we obtain

1 +
zp
′ (z)

p (z)
= 1 +

1
b

[
(1 − λ)

z f
′ (z)

f (z)
+ λ

(
1 +

z f
′′ (z)

z f ′ (z)

)
− 1

]
.



36 T. M. Seoudy, M. K. Aouf / Theory and Applications of Mathematics & Computer Science 3 (1) (2013) 32–37

and
zq
′ (z)

q (z)
=

zF
′ (z)

F (z)
− 1 = φ (z) − 1.

Since f ∈ T (φ; λ, b), we have
zp
′ (z)

p (z)
≺

zq
′ (z)

q (z)
.

The result now follows by an application of Lemma 2.2.

Putting λ = 0 in Theorem 2.2, we obtain the following results of (Shanmugam et al., 2009).

Corollary 2.3. Let φ (z) be starlike with respect to 1 and F(z) given by (2.1) be starlike. If f ∈
S∗ (φ; b), then we have

f (z)
z

≺

(
F (z)

z

)b

.

Taking φ (z) =
1 + Az
1 + Bz

(−1 ≤ B < A ≤ 1) in Theorem 2.2, we get the following corollary.

Corollary 2.4. If f ∈ T
(
1 + Az
1 + Bz

; λ, b
)

(−1 ≤ B < A ≤ 1), then we have

f (z)
z

(
z f
′ (z)

f (z)

)λ
≺ (1 + Bz)

(A − B)b
B (B , 0) .

For φ (z) =
1 + z
1 − z

and λ = 0 in Theorem 2.2, we get the following result of (Obradovic et al.,

1989), and (Srivastava & Lashin, 2005).

Corollary 2.5. If f ∈ S∗ (b), then we have

f (z)
z

≺ (1 − z)−2b .

Putting φ (z) =
1 + z
1 − z

and λ = 1 in Theorem 2.2, we get the following result of (Obradovic et

al., 1989), and (Srivastava & Lashin, 2005).

Corollary 2.6. If f ∈ C (b), then we have

f
′

(z) ≺ (1 − z)−2b .

For φ (z) =
1 + z
1 − z

, λ = 0 and replacing b by be−iγ cos γ
(
|γ| <

π

2
, b ∈ C∗

)
in Theorem 2.2, we

get the following result of (Aouf et al., 2005).
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Corollary 2.7. If f ∈ Sγ (b), then we have

f (z)
z

≺ (1 − z)−2be−iγ cos γ .

Taking φ (z) =
1 + z
1 − z

, λ = 1 and replacing b by be−iγ cos γ
(
|γ| <

π

2
, b ∈ C∗

)
in Theorem 2.2, we

get the following result of (Aouf et al., 2005).

Corollary 2.8. If f ∈ Cγ (b), then we have

f
′

(z) ≺ (1 − z)−2be−iγ cos γ .
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Abstract

In this work we establish a theoretical relation between thenotions of scale and a discrete Finsler-Haantjes curva-
ture. Based on this connection we demonstrate the applicability of the interpretation of scale in terms of curvature, to
signal processing in the context of analysis and segmentation of textures in images. The outcome of this procedure is
a novel scheme for texture segmentation that is based on scaled metric curvature. The presented method proves itself
to be efficient even when the multiscale analysis is done up to scales of 19 and more. Our main conclusions are that
the discrete curvature calculated on sampled images can give us an indication on the local scale within the image, and
therefore can be used for many additional tasks in image analysis.

Keywords: Wavelets, scale-space, Finsler-Haantjes curvature, texture segmentation.
2010 MSC:42C40, 68U10, 51K10.

1. Introduction

Several tasks in image and signal processing require the calculation and usage of scale. De-
termining the typical scale at some image location can be useful for de-convolution, detection and
recognition tasks. The popular image registration algorithms, SIFT (Lowe, 1999) and SURF (Bay
et al., 2006) account for the scale at image locations as a pre-processing step for calculating scale
invariant key points, that are used in turn for matching.

Typical approaches to calculate scale in the signal processing community rely on analyzing a
multi scale representation of the images, via the scale space approach or the wavelet transform.
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The versatility and adaptability of scale space theory and wavelets for a variety of tasks in Image
Processing and related fields is too well established in the scientific community, and the bibliogra-
phy pertaining to it is far too extensive, to even begin to review it here.

On the other hand, the concept of curvature is well established in the field of computational
geometry. Intuitively, scale and curvature are related. High curvature account for phenomenon
that happen at smaller scales than those that are related to low curvature. This relation is further
stressed analytically and formally in the smooth category,as the curvature of a smooth curve at
some point is defined to be the inverse of the squared radius ofthe osculatory circle at that point so
specifically making curvature a function of scale. Curvature decreases as the inverse of the square
root of scale (Petersen, 1998).

The multiresolution property of wavelets has been already applied in determining the cur-
vature of planar curves (Antoine & Jaques, 2003) and to the intelligence and reconstruction of
meshed surfaces (see, e.g. (Lounsberyet al., 1997), (Valette & Prost, 2004), amongst many oth-
ers). Moreover, the intimate relation between scale and differentiability in natural images has also
been stressed (Floracket al., 1992).

An intriguing issue is whether one can replace the intuitivetrade-off between scale and cur-
vature, by a formal concept ofwavelet curvature, in particular in cases such as the Strömberg
wavelets (Strömberg, 1983) that are based on piecewise-linear functions, and if so then,to what
extent this can be further extended to the more difficult case of Haar wavelets that are not even
piecewise linear and to what extent this can be made general.

Apparently, this can be done by usingmetric curvatures(Blumenthal & Menger, 1970) (and
(Saucan, 2006) for a short presentation). It turns out that the best candidate, for the desired metric
curvature is theFinsler-Haantjes curvature, due to its adaptability to both continuous and discrete
settings (see, e.g. (Saucan & Appleboim, 2005), (Saucan & Appleboim, 2009)).

We have first introduced a formal relation between discrete curvature and scale in (Saucanet
al., 2010). In the present paper, that represents a continuation of our previous, above mentioned
article, we suggest that a simple curvature calculation canreplace the tedious work of convolving
images with a large number of multi scaled filters. We show howscale and curvature are related
to each other, for a variety of families of wavelets. Afterwards we present the Finsler-Haantjes
curvature measure for images and develop a novel scheme for texture separation. Our main goal
is, however, more far-reaching, namely to try and bridge, atleast partly, the the gap between the
two basic, largely non-intersecting, approaches prevalent in Image Processing and related fields:
The geometric one, that is closely related to the Graphics community philosophy; and the more
classical, Fourier Analysis/Wavelets driven one.

The paper is organized as follows: First, we introduce the mathematical background needed
and discuss the notion of scale in Section 2.1. We then elaborate on the Finsler-Haantjes curvature
in Section 2.2 and introduce the Fisler-Haantjes curvature of wavelets and for images in Section 3.
In section 4 we suggest a scheme for texture analysis in images that is based on our discrete scaled
curvature measure. In addition to texture segmentation there is a huge variety of further possible
applications to the ideas and methods presented herein, as well as open issues for further research.
Some of those are mentioned in Section 5 in which we summarizethe paper.
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2. Mathematical Background

In this section we present both the notion of scale and that ofthe Finsler-Haantjes Curvature.
While these two components are derived from completely different worlds, we show that they are
strongly related to each other.

2.1. The Notion of Scale

The notion of scale is fundamental in many mathematical and applicative discussions. Scale
is one of these terms that has a clear intuitive meaning, but is hard to be defined mathematically.
The question of finding a measure for calculating the local scale in signals and images has been
addressed in the past in the context of scale space analysis and wavelets transform. It plays a
significant role in the framework of image matching and registration, where scale invariant de-
scriptors are desired. Evaluating the dominant scale within image data is highly important for real
life applications. For a computer vision system analyzing an unknown scene, there is no way to
know a priori what scales are appropriate for describing theinteresting structures in the image
data. Hence, the only reasonable approach is to consider descriptions at multiple scales in order to
be able to capture the unknown scale variations that may occur. Scale-space theory is a formal the-
ory for handling image structures at different scales, by representing an image as a one-parameter
family of smoothed images, the scale-space representation. This representation is parameterized
by the size of the smoothing kernel used for suppressing fine-scale structures.

In the early eighties Witkin (Witkin, 1983a),(Witkin, 1983b) proposed to consider scale as a
continuous parameter and formulated the principal rules ofmodern scale-space theory relating im-
age structures represented at different scales. Since then, scale-space representation and its prop-
erties have been extensively studied and important contributions have been made by Koenderink
(Koenderink, 1984), Lindeberg (Lindeberg, 1998) and Florack (Florack et al., 1992). In many
cases it is necessary to select locally appropriate scales for further analysis. This need for scale
selection originates from the need to process real-world objects that may have different sizes and
because the distance between the object and the camera can vary. The seminal work of Lindenberg
(Lindeberg, 1998) dealt with the issue of automatic scale selection. The ideawas to determine the
characteristic scale for which a given function attains an extremum over scales. The name char-
acteristic is somewhat arbitrary as a local structure can exist at a range of scales and within this
range there is no preferred scale of perception. However, a scale can be named characteristic, if it
conveys more information comparing to other scales. In his work, Lindenberg noted that a highly
useful property of scale-space representation is that image representations can be made invariant
to scales, by performing automatic local scale selection based on local maxima (or minima) over
scales of normalized derivatives.

This work served as the basis for tasks such as blob detection, corner detection, ridge detection
and edge detection. Scale space theory is fundamental for detecting invariant features within sig-
nals and images that can be used for various tasks such as registration, detection and recognition
among others. Multi-scale representation of data is crucial for extracting local features used for
determining regions of interest for subsequent detection of scale-invariant interest points for com-
puting image descriptors, most notable are the SIFT (Lowe, 1999) and SURF (Bay et al., 2006)
frameworks.
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Both the SIFT and the SURF algorithms rely on Scale-space extrema detection, where the first
stage of computation searches over all scales and image locations. It is implemented by using
a Laplacian-of-Gaussian or a difference-of-Gaussian function to identify potential interest points
that are invariant to scale and orientation.

A common practice for scale determination relies on the convolution of the data with a bank
of functions that have different scales. The characteristic scale usually corresponds to the local
extremum of the convolution results, taken over scales. Thecharacteristic scale is related to struc-
ture. The common methodology for finding this exterma valuesin scale space involves analysis of
the behavior of the Laplacian of Gaussian (Bayet al., 2006), Difference of Gaussian (Lowe, 1999)
and the Hessian matrix to name a few. There are strong relations between scale-space theory
and wavelet theory, although these two notions of multi-scale representation have been developed
from somewhat different premises. Wavelets are multi scaled versions of a specific mother func-
tion, thus when convolving them with data, one can exploit the scale contents of that data, in a
very similar way that the frequency contents of data can be expressed using the Fourier transform.
A strong response to a wavelet function with a certain support and scale, suggests that there is
significant information at that scale at that image location.

2.2. The Finsler-Haantjes Curvature

The most intuitive definition for curvature is the amount by which a geometric object deviates
from being flat, or straight in the case of a line. It is naturalto define the curvature of a straight line
to be identically zero. The curvature of a circle of radius R should be large if R is small and small
if R is large. Thus the curvature of a circle is defined to be thereciprocal of the squared radius (do
Carmo, 1976).

The following metric definition for curvature is due to Haantjes, following an idea of Finsler
(Blumenthal & Menger, 1970):

Definition 2.1. Let (M,d) be a metric space, let c: I = [0, 1]
∼
→ M be a homeomorphism, and let

p, q, r ∈ c(I ), q, r , p. Denote bŷqr the arc of c(I ) between q and r, and by qr the segment from
q to r. We say that c hasFinsler-Haantjes curvatureκFH(p) at the point p iff:

κ2FH(p) = 24 lim
q,r→p

l(q̂r) − d(q, r)
(

d(q, r))
)3

; (2.1)

where “l(q̂r)” denotes the length, in intrinsic metric induced by d, ofq̂r – see Figure 1. (Here we
assume the curve c(I ) is rectifiable, hence that, in particular, the arĉqr has finite length.)

This definition of curvature represents, indeed, a proper adaptation, for an extensive class
of curves in quite general metric spaces, of the classical notion of curvature, as proven by the
following

Theorem 2.1. Let c ∈ C3(I ) be a smooth curve inR3, and let p∈ c be a regular point. Then
κFH(p) exists and, moreover,κFH(p) = k(p) – the classical (differential) curvature of c at p.

Remark.Originally the Finsler-Haantjes curvature is defined withl(q̂r) appearing in the denomi-
nator instead ofd(q, r), ((Blumenthal & Menger, 1970)). We have opted for the above definition
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q

qr

r

p

qr

Figure 1. A (metric) arc and its corresponding chord (metric segment).

for practicality reasons. Moreover, in the setting of this work (and, in fact, in a much more general
context) the above theorem still holds with our modified definition, therefore the definition used
herein is interchangeable with the original one (see, again(Blumenthal & Menger, 1970)).

3. Finsler-Haantjes Curvature for Wavelets and Images

In this section we consider a semi-discrete (or semi-continuous) version of the Finsler-Haantjes
curvature, and then introduce this curvature measure in thecase of a wavelet function.

3.1. Semi-discrete Finsler-Haantjes Curvature
Consider a typical piecewise-linear waveletϕ, such as the one depicted in Figure 2, let̂AE be

the arc of curve between the pointsA andE, and letd(A,E) is the length of the line-segmentAE.
Then

l(̂AE) = a+ b+ c+ d ; d(A,E) = e+ f . (3.1)

The following discretization of formula (2.1) is, therefore, natural:

κ2FH(ϕ) = 24[(a+ b+ c+ d) − (e+ f )]/(e+ f )3. (3.2)

In addition to the total curvature of the waveletϕ, one can also compute the “local” curvatures of
the partial waveletsϕ1 = ̂ABCandϕ2 = ĈDE, that is the curvatures at the “peaks”B andD:

κ2FH(B) = 24(a+ b− e)/e3 , (3.3)

and
κ2FH(D) = 24(c+ d− f )/ f 3 , (3.4)

as well as the mean curvature of these peaks:

HFH(̂AE) = [κFH(B) + κFH(D)]/2. (3.5)

Even though these variations may prove to be useful in certain applications, we believe that
the correct approach, in the sense that it best corresponds to the scale of the wavelet, would be to
compute the total curvature ofϕ. However, had the definition of Finsler-Haantjes curvaturebeen
limited solely to piecewise-linear wavelets, its applicability would have also been diminished. We
show, however, that it is also definable for the “classical” Haar wavelets, in a rather straightforward
manner.

chord-arc.eps
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Figure 2. A typical piecewise-linear wavelet (red), part of the MeyerWavelet (Meyer,
1993) (blue and red).

Remark.In the sequel we will therefore omit the coefficient
√

24 for convenience.

3.2. Finsler-Haantjes curvature of Haar Wavelets

For everys ∈ Z let j = 2s, and letΨ j denote the Haar wavelet at scalej and with zero shift,
whereΨ1 = Ψ is the mother wavelet of Haar basis, considered in the above example. ThenΨ j can
be presented as:

Ψ j =























j−1 , x ∈ (0, j
2) ;

− j−1 , x ∈ ( j
2, j) ;

0 otherwise.
(3.6)

Then, in the notations of Figure2 we have thatA = 0,E = j, so we have thatl(̂AE) = 4· j−1
+ j,

andd(̂AE) = j, therefore for these wavelets the Finsler-Haantjes curvature satisfies:

κ2FH(Ψ j) =
(4 · j−1

+ j) − j
j3

= 4 · j−4 (3.7)

The Finsler-Haantjes curvature is certainly invariant under shifts therefore the same depen-
dency ofKFH in scale is the same for shifted Haar wavelets as well.

3.3. Finsler-Haantjes curvature of Walsh Basis

LetRs be the Rademacher function which takes the value 1,−1 on the dyadic intervals [j2s+1 ,
j+1
2s+1 ),

j = 0, 1, ..., 2s+1 of the unit interval. Figure3 shows the first four Rademacher functions.
Then for anyk ∈ N, if we take the binary expansion ofk as a sum of powers of 2,k =

2p1 + 2p2 + · · · + 2pm, and define thekth Walsh function as ((Beauchamp, 1975)):

Wk = Rp1 · Rp2 · · ·Rpm (3.8)

PL-Meyer-wavelet.ps
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Figure 3. First four Rademacher functions.

Again, in the notations of Figure2 we have that,A = 0,E = 1, l(̂AE) = 2 ·2s
+1, d(̂AE) = 1 which

results with

κ2FH(Ws) =
(2 · 2s

+ 1)− 1
13

= 2s+1 . (3.9)

Although the Walsh basis is not a wavelet basis (see (Beauchamp, 1975)), we can easily regard
the functionWs as a function in a specific scale which isj = 1

s+1 hence the curvature of the Walsh

function at scalej is 2
1
j .

For a smooth waveletΨ, compactly supported, we can of course define its Finsler-Haantjes,
KFH by takingl(̂AE) to be the usual arc length given by

∫

supportΨ

√
1+ Ψ′2.

3.4. Curvature vs. Scale

By an analysis similar to those in Sections3.2 and3.3, we will be able to compute a specific
dependency of the Finsler-Haantjes curvature as a functionof scale, for every family of piecewise
constant wavelets. Moreover, with only a limited amount of additional effort, this goal is also
achievable for the families of piecewise linear wavelets. This correlation most probably depends
on the specific family under consideration. Indeed, as already noted above, Haar wavelets behave
differently from the Walsh basis as far as the curvature vs. scalecorrespondence is concerned. To
obtain a similar relation in the case of smooth wavelets, oneshould recall that ifΨ j is a smooth
wavelet function at some scalej, then it can be approximated, for instance, in theL2-norm, by a
sequence of Haar functions. More precisely, for everyǫ > 0, there existsk = k( j, ǫ) ∈ N, such that

∫

suppΨ j

|Ψ j −

k
∑

i

Haari |
2 < ǫ . (3.10)
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Combining the inequality above with Equation (3.7) we obtain that the Finsler-Haantjes cur-
vature ofΨ will display a scale-curvature relation similar with that observed for the Haar wavelet.
Here, by “similar” we mean that it will decrease as curvatureincreases. However, we probably
cannot expect in this case a simple analytic expression comparable with the one displayed in the
case of Haar wavelets. The precise behavior, if can be derived at all, is left as an open question
at this point. It would be reasonable to assume that it depends on the specific wavelet familyΨ,
as well as on the proximity factorǫ. Nevertheless, this behavior is indeed demonstrated in the
numerical tests that were applied on a variety of wavelets families. For each type of wavelets,
Haantjes curvature was computed for the wavelets families at different scales. The general be-
havior is similar in all different families and are shown in Figure4. It is shown that, as expected,
curvature decreases as scale increases. As indicated by Equation (3.7), we see that the decrease
of curvature as a function of scale for the Haar wavelet is different then the one of classical differ-
ential geometry of smooth manifolds, where the decrease hasa magnitude of (scale)−2, while for
the Haar wavelet it was shown to be in a magnitude of (scale)−4. The difference evidently follows
from the fact that we compute the Finsler-Haantjes curvature in a global way rather than locally,
as usually curvature is computed in the classical differential geometric setting.

Figure 4. Curvature as a function of scale for a number of standard wavelets: The
Haar wavelets, db2 wavelets, sym2 wavelets, the Meyer wavelets; as well
as the step signal.

3.5. Curvature for images

From the definition of Finsler-Haatjes for curves we can easily define a discrete version of
curvature for surfaces in general, and for images in particular. For say, a pointx on a surfaceΣ, the
most natural thing to do is to consider Fisler-Haantjes curvature in any of the directions emanating
from x, then find the maximal and minimal curvatures, and then take either the mean of these two

CurvatureDecay.ps
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values so to obtain a Finsler-Haantjesmean curvatureor, alternatively take the multiplication of
these two in order to obtain a Finsler-Haantjes version of the Gaussian curvatureat x. We adopt
this concept to images while we consider an image as a surfaceembedded in someRn. A gray
scale image, for example, can naturally be considered as a surface inR3. In this case the Finsler-
Haantjes curvature is computed at each pixel in four different directions and then the average of
these four curvatures is taken. This is done in the frameworkthat was defined in Equation3.3of
localized curvature, where for images the localization is done by considering a window of some
sizen× n centered at the pixel. Each of the images shows the results ofcomputing this version of
mean curvature as computed for window sizes of 3× 3, 5× 5 and 7× 7.

Before we proceed further, let us briefly discuss a limit case: If a signal (image) displays a
unique scale, e.g. for periodic signals, for which there is adirect correlation between scale and
the periodT, one expects that to observe that the graph of the curvature function is the smoothest
precisely in windows of sizeT. That this is indeed the case is illustrated in Figure 5.

Figure 5. Left: A test image, consisting of twosin signals of different periods (11
pixels – left, and 15 pixels – right). Right: As expected, on the windows
corresponding to the period of the signal (image) the curvature graph is the
most smooth. (Notice the highlighted “windows”.)

We clearly can see how Haanjes-Finsler curvature performs as an edge detector. This result is
expected, since curvature, even its metric, abstract setting, still has qualities similar to those of a
second derivative. This is clearly illustrated in Figure 6.This is further emphasized in the more
challenging example in Figure 7, of a satellite image of the Egypt pyramids at Giza, as they lie
against the background of sand dunes and opposed to the adjacent neighbourhood of Cairo. It
should be noted that, curvature map in itself can serve as a good man made detection tool in arial
and satellite images.

2sinsign.ps
2sinsign-curv.ps


Eli Appleboim et al./ Theory and Applications of Mathematics& Computer Science 3 (1) (2013) 38–55 47

Figure 6. Haantjes-Finsler curvature of an image with respect to different scales.
From top left in clockwise direction: original image, 3X3, 7X7 and 5X5
window size.

4. Texture segmentation

As a possible application of the proposed method of indicating scale via curvature we look
at the problem of image texture segmentation. The novel segmentation scheme yielded from this
approach is outlined below.

1. At each pixel Haantjes-Finsler curvatures are computed at different scales and different
orientations. For each window, curvatures are computed in 4directions, horizontal ver-
tical and two diagonal directionsκh, κv, κd1, κd2. Finally, the averageκAvg = (κMax(pix) −
κmin(pix))/κMax(pix) of these four obtained curvatures is taken as the curvatureat the pixel
in the relevant scale. (The specific average considered herewas inspired by the standard
Image Processing definition of the contrastC(I ) of an imageI , C(I ) = (IMax − Imin)/IMax.)
This approximates the average curvature at each scale. The outcome of this step is a vector
of lengthmwherem is the number of different scales,V(pix, scale) wherepix denotes pixel,
and each entry of the vector represents the average curvature at the corresponding scale.

2. Next, at each pixel, the gradient, with respect to scale∇scaleV, of this curvature vector is
computed, and we look for the scales at which the gradient exceeds a predefined threshold.
(Note that, at this point, curvature and scale are already interchangeable.) Afterwards, all
scales which fulfill the threshold criteria are averaged in order to get a scalar value for each
pix. The average scale is the outcome of this step. We consider this scale as the scale of
important information at the relevant pixel.

BP-orig.ps
BP-3x3.ps
BP-5x5.ps
BP-7x7.ps
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Figure 7. Haantjes-Finsler curvature of a satellite image with respect to different
scales. From top to bottom: original image, curvature averaged on 3X3
windows, curvature averaged on 7X7 windows.

3. The output of previous step is a matrix in the same size as the image size, each entry of
which is the scale of information at the relevant pixel. A smoothed version of this matrix
is obtained by a linear filtering at size which is compatible with the amount of localized
information one wishes to obtain. Segmentation to small textures will require small filtering
support.

4. We segment the image according to the smoothed information scale computed in the previ-
ous step. Pixels with similar scales are grouped together toform different segments. The
segmentation is done after curvature values are quantized to several levels. In the experi-
ments shown herein quantization is taken into seven levels.

Giza.ps
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The procedure detailed above is summarized as Algorithm 1, which is divided into its four
main constituent parts:

Input : Grayscale imageI
Output : VectorV(pix, scale) of lengthm= number of scales
foreachpixel pix in I do

foreachwindow of size≤ m do
computeκh(pix), κv(pix), κd1(pix), κd2(pix) and findκMax(pix), κmin(pix);
computeκ(pix) = κAvg(pix) = κMax−κmin

κMax
;

end
end

Input : V(pix, scale)
Output : Matrix M(I ) – The average scale matrix
foreachpixel pix in I do

compute∇scaleV;
choose scale thresholds0;
select scalessi for which V(pix, scale) > s0;
computesAvg = sAvg(pix) =

∑

si

|{si |V(pix,scale)>s0}|
;

end

Input : M(I )
Output : Matrix ˜M(I ) – Smoothed version ofM(I )
choose window sizew0 = w0(texture);
apply linear filter at sizew0;

Input : ˜M(I )
Output : Segmented imagẽI
choose maximal number of quantization levelsq0;
foreachpixel pix in I do

compute the quantized values ¯sAvg(pix) j , j = 1, . . . , q0;
end
group pixels in segmentssl( j) = {pix | s̄Avg(pix) = s̄Avg(pix) j};

Algorithm 1: Segmentation algorithm.

In the following figures, first results of the proposed methodare shown for different images.
Figure 8 shows the original synthetic image which is comprised of twodifferent textures, the
second image in the figure shows the gradient vector∂

∂scaleV(scale, pixel) of the scaled curvature
vectorV, while in the third image we see the gradient vector field after smoothing with a filter
of size 3× 3, and in the fourth image the outcome segmentation is shown after quantization of
the smoothed gradient into 4 levels. In the segmented image we see intermediate texture around
the internal circle. When one looks at the original image we can clearly see that this is caused
by those pixels that are in the intersection of the two different ares of the images and indeed we
cannot associate specific texture to these pixels.
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Figure 8. Segmentation of two synthetic textures: From top to bottom and from left
to right: Original image, averaged information scales, smoothed gradient of
the scaled curvature, the outcome of the segmentation process after quanti-
zation into 4 levels.

In Figure 9 from top to bottom we see the original image, averaged information scales as
depicted in the second step of the algorithm described aboveand the outcome of the segmenta-
tion process after smoothed by 3X3 window and quantized to 7 levels. Notice the sensitivity of
segmentation to texture.

Figure 9. Segmentation of mandrill image. From left to tight: Original image, av-
eraged information scales, the outcome of the segmentationprocess after
smoothed by 3X3 window and quantized to 7 levels.

Figure10 shows similar phenomena on an image of fabric with several textures. The figure
shows the original image and the segmented outcome of the process. We can see good separation
between the different textures.

The efficiency of the proposed the segmentation algorithm is highlighted on what might be
called the ”semi -synthetic” (due to the regularity and quasi-periodicity of this natural image) of

StripesCircle.ps
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the stairs – see Figure11.

Figure 10. Segmentation of fabric image, window size and quantizationlevel as in
Figure 9. Although filter size is small one can easily see gooddifferentia-
tion between different structures along the fabric.

Figure 11. Segmentation of the stairs image: Original image (left), curvature com-
puted using 3X3 windows (middle), detail of the segmented image using
the same window size (right).

Finally, in Figure12 the zebras are distinguished from the background of the image after their
texture is segmented and separated from the texture of the background.

We conclude this Section with some preliminary comparison results. The briefness of this part
is a direct consequence of the main goal of this paper, as stated in the introduction, and which
we reiterate here briefly: Our essential objective is to continue and further develop the theoretical
framework proposed in (Saucanet al., 2010), that, in our opinion, allows, perhaps for the first
time, to integrate, in a unique setting, the two common paradigms of Image Processing, namely the
Harmonic Analysis/Wavelets and the Geometric (Graphics related) ones. Therefore, the present
endeavor should be viewed rather as a feasibility check, rather that a bourn per se.

Nevertheless, some first comparisons were made, and we gagedour method by likening it with
an established method for texture segmentation (Brox & Weickert, 2006) in conjunction with the
use of the classical Gabor wavelets. Some of these results are presented in Figure13.
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Figure 12. The zebras are extracted from the background of the originalimage. Ex-
traction is based on the proposed texture segmentation.

5. Summary

The concept of scale is important for several image processing tasks. The calculation of scale
on real life data usually relies on the convolution of the data with multi scale filter, where Gaussian
derivatives are widespread. In this work we explored the relation between the concept of scale,
to curvature. We have used the discrete definition proposed by Haantjes, and have established the
theoretical exponential relation that is expected from geometry.

In addition, we propose to use the simpler curvature calculation as a means for automatic scale
selection. In that respect, we show two interesting useful applications of the concept of curvature:
as edge detectors and for the task of texture segmentation.

As we have noted in the introduction, scale and curvature aresimply two manifests of the
same physical phenomenon, it should evidently be that scaleand curvature calculation can be
inter-changed to accomplish the same tasks. However, whilefor scale only practical, intuitive,
but not fully formalized definitions are given even in the most classical textbooks and other such
authoritative sources, curvature – even metric one – is a classical, fully established and technical
mathematical notion. We propose, therefore, in view of the remark above, to formally define
scale by means of the Finsler-Haantjes curvature, at least in the purely theoretical setting. This
is more relevant in the context of 2-dimensional (as well, ofcourse, as higher dimensional ones),
nonseparable signals, where a proper notion of scale is far less intuitive then in the 1-dimensional,
classical, case.

Moreover, we suggest, to use this idea, not only for texture segmentation, but also in many
other applications that make use of scale analysis of signals in general and of images in particular.
Due to the efficiency of the computation of Haantjes curvature relative to, for instance, wavelets
and Gabor functions computations in many scales, we can regard for applications both in image
processing, as well as machine vision, where usually efficiency is essential. Just to name a few,
we suggest the following,

a Compression and compress sensing.

b Detection of key points in images and registration.

c Scale space representation.

ZebrasCut1.ps
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Figure 13. Texture segmentation: Gabor wavelets based segmentation (above) versus
curvature based segmentation (below).

d Adaptive edge detection.

e Object recognition.

As for further possible research issues we believe that whatwe have presented in this paper is
actually the tip of an iceberg as far the scale-curvature connection is concerned. Again, to name a
few we can mention the following directions,

a Automatic scale selection in the sense of pointing out automatically a scale up to which one can
apply analysis-synthesis process with a guaranteed accuracy

b Use additional information which is obtained during the process for additional tasks. As the
curvature is computed we gain information about all scales at which, the curvature jumps above
a predefined threshold. The method presented herein only makes use of the average of all these
scales however one can employ this information for an adaptive scale selection making use of
the relevant information of each of these.

c In addition to the above, there is also information about the various directions at which curva-
ture is computed, which is obtained during the process and this information can certainly be
exploited for a variety of implementations such as those mentioned above.

d Can we use the curvature-scale relation in order to gain information about the “adequacy” of a
certain wavelet family to a given signal? For instance, it isoften asked, is it beneficial, in any
way, to decompose say, a natural image using a specific wavelets family over the others, say, for
obtaining sparse representation? We hope that some answerscan be given for this challenging
question, via the scale-curvature analysis. We suggest to account for e.g., the exponential decay

comparison.ps
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of curvature as a function of scale, for the given signal, andthen looking for the wavelet family
with most similar behavior. In fact this particular question was the one that motivated this line
of research.
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Abstract
This paper deals with a class of third order boundary value problem with integral condition at resonance. Some

existence results are obtained by using the coincidence degree theory of Mawhin.
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1. Introduction

Let us consider the following third-order differential equation:

x′′′ (t) = f
(
t, x (t) , x′ (t)

)
, 0 < t < 1, (1.1)

subject to the following nonlocal conditions

x (0) = x′′ (0) = 0, x (1) =
2
η2

∫ η

0
x (t) dt, η ∈ (0, 1) , (1.2)

where f : [0, 1] × R2 → R is a Carathéodory function, and η ∈ (0, 1) . We say that the boundary
value problem (1.1), (1.2) is a resonance problem if the linear equation Lx = x′′′,with the boundary
value conditions (1.2) has a non-trivial solution i.e., dim ker L ≥ 1.
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The research of ordinary differential equations with nonlocal conditions plays a very impor-
tant role in both theory and applications. It is widely used in describing a large number of physi-
cal, biological and chemical phenomena. Moreover, the theory of boundary-value problems with
integral boundary conditions arises in different areas of applied mathematics and physics. For
example, heat conduction, chemical engineering, underground water flow, thermo-elasticity, and
plasma physics can be reduced to the nonlocal problems with integral boundary conditions. In
recent years, the multi-point boundary value problems at resonance for second order, third or-
der ordinary differential equations have been extensively studied and many excellent results have
been obtained, for instance, see (Feng & Webb, 1997a), (Feng & Webb, 1997b), (Gupta, 1995),
(Gupta & Tsamatos, 1994), (Liu & Yu, 2002), (Liu, 2003), (Liu & Zhao, 2007), (Kosmatov, 2006),
(Du, 2008), (Du & Ge, 2005), (Ma, 2005), (Nagle & Pothoven, 1995), (Xue & Ge, 2004). (see,
also, (Y. Liu, 2005), (X. Lin, 2009), (H Zhang & Chen, 2009)). However, to our knowledge,
the corresponding results for third-order with integral boundary conditions, are rarely seen (see,
for example, (X. Lin & Meng, 2011), (Karakostas & Tsamatos, 2002), (Yang, 2006); (A. Yang,
2011) and references therein). (Meng & Du, 2010) studied the following second-order multi-point
boundary value problem at resonance:

x′′ (t) = f (t, x (t) , x′ (t)) + e (t) , t ∈ (0, 1) ,

x (0) =
m∑

i=1
αix (ξi) , x′ (1) =

n∑
j=1
β jx

(
η j

)
,

where f : [0, 1] × R2 → R is a Carathéodory function, e ∈ L1 [0, 1] , 0 < ξ1 < .... < ξm < 1,
αi ∈ R, i = 1, 2, ...m,m ≥ 2 and 0 < η1 < ..... < ηn < 1, β j ∈ R, j = 1, ...n, n ≥ 1. By using
coincidence degree of Mawhin the authors obtain many excellent results about the existence of

solutions for the above problem under the resonance conditions
m∑

i=1
αi =

n∑
j=1
β j = 1 and

m∑
i=1
αiξi = 0.

By using coincidence degree of Mawhin (Lin & Meng, 2011), established the existence of
solutions for the following third-order multi-point boundary value problem at resonance

x′′′ (t) = f (t, x (t) , x′ (t) , x′′ (t)) , 0 < t < 1

x′′ (0) =
m∑

i=1
αix′′ (ξi) , x′ (0) = 0, x (1) =

n∑
j=1
β jx

(
η j

)
,

where 0 < ξ1 < .... < ξm < 1, αi ∈ R, i = 1, ...m,m ≥ 1 and 0 < η1 < ..... < ηn < 1, β j ∈ R,
j = 1, ...n, n ≥ 2, and f : [0, 1] × R3 → R is a continuous function.

More recently, (X. Zhang & Ge, 2009) studied the following nonlocal boundary value problem: x′′ (t) = f (t, x (t) , x′ (t)) + e (t) , t ∈ (0, 1)
x′ (0) =

∫ 1

0
h (t) x′ (t) dt, x′ (1) =

∫ 1

0
g (t) x′ (t) dt,

where f , g ∈ C([0, 1] , [0,∞)). Especially by using the coincidence degree of Mawhin, and un-
der the resonance conditions

∫ 1

0
h (t) dt = 1, and

∫ 1

0
g (t) dt = 1, the authors proved at least one

solution.of the boundary value problem.
The purpose of this paper is to study the existence of solutions for nonlocal boundary value

problem (1, 1) , (1, 2) at resonance and establish an existence theorem . Our method is based upon
the coincidence degree theory of (Mawhin, 1979).
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2. Main results

We first recall some notation and an abstract existence result (Mawhin, 1979).
Let X,Y be two real Banach spaces and let L : domL ⊂ X → Y be a linear operator which

is Fredholm map of index zero and P : X → X, Q : Y → Y be continuous projectors such
that ImP = KerL, KerQ = ImL and X = KerL ⊕ KerP, Y = ImL ⊕ ImQ. It follows that
L |domL∩KerP :domL∩KerP→ ImL is invertible, we denote the inverse of that map by KP. Let Ω be
an open bounded subset of X such that domL∩Ω , ∅, the map N : X → Y is said to be L-compact
on Ω if the map QN

(
Ω
)

is bounded and KP (I − QN) : Ω→ X is compact. To obtain our existence
results we use the following fixed point theorem of (Mawhin, 1979).

Theorem 2.1. Let be L a Fredholm operator of index zero and N be L− compact on Ω. Assume
that the following conditions are satisfied:

i) Lx , λNx for every (x, λ) ∈ [(domL\KerL) ∩ ∂Ω] × (0, 1) .
ii) Nx < Im L for every x ∈ KerL ∩ ∂Ω.
iii) deg (QN |KerL,Ω ∩ KerL, 0) , 0, where Q : Y → Y is a projection as above with Im L =

KerQ.
Then the equation Lx = Nx has at least one solution in domL ∩Ω.

In the following, we shall use the classical spaces C [0, 1] ,C1 [0, 1] ,C2 [0, 1] and L1 [0, 1] . For
x ∈ C2 [0, 1], we use the norm ‖x‖ = max {‖x‖∞ , ‖x′‖∞} where ‖x‖∞ = max

t∈[0,1]
|x (t)| and denote the

norm in L1 [0, 1] by‖·‖1. We will use the Sobolev space W3,1 (0, 1) which is defined by W3,1 (0, 1) =

{x : [0, 1]→ R : x, x′, x′′ are absolutely continuous on [0, 1] with x′′′ ∈ L1 [0, 1]
}
.

Let X = C2 [0, 1] , Y = L1 [0, 1], L is the linear operator from domL ⊂ X to Y with domL ={
x ∈ W3,1 (0, 1) : x (0) = x′′ (0) = 0, x (1) = 2

η2

∫ η

0
x (t) dt

}
and Lx = x′′′, x ∈ dom L. We define

N : X → Y by setting
Nx = f

(
t, x (t) , x′ (t)

)
, t ∈ (0, 1) .

Then the BVP (1.1) and (1.2) can be written as Lx = Nx.

Theorem 2.2. Assume that the following conditions are satisfied:
1) There exists functions α, β, γ ∈ L1 [0, 1] , such that for all (x, y) ∈ R2, t ∈ [0, 1] then

| f (t, x, y)| ≤ α (t) |x| + β (t) |y| + γ (t) . (2.1)

2) There exists a constant M > 0, such that for x ∈ domL, if |x′ (t)| > M for all t ∈ [0, 1], then∫ 1

0
(1 − s)2 f

(
s, x (s) , x′ (s)

)
ds −

2
3η2

∫ η

0
(η − s)3 f

(
s, x (s) , x′ (s)

)
ds , 0. (2.2)

3) There exists a constant M∗ > 0, such that for any x (t) = bt ∈ KerL with |b| > M∗, either

b
[∫ 1

0
(1 − s)2 f (s, b (s) , b) ds −

2
3η2

∫ η

0
(η − s)3 f (s, b (s) , b) ds

]
< 0, (2.3)

or else

b
[∫ 1

0
(1 − s)2 f (s, b (s) , b) ds −

2
3η2

∫ η

0
(η − s)3 f (s, b (s) , b) ds

]
> 0. (2.4)

then BVP (1, 1) and (1, 2) has at least one solution in C2 [0, 1], provided
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‖α‖ + ‖β‖ <
1
2
. (2.5)

2.1. Proof of Theorem 2.2
For the proof of Theorem 2.2 we shall apply Theorem 2.1 and the following lemmas.

Lemma 2.1. The operator L : domL ⊂ X → Y is a Fredholm operator of index zero. Furthermore,
the linear projector operator Q : Y → Y can be definied by

Qy (t) = k
[∫ 1

0
(1 − s)2 y (s) ds −

2
3η2

∫ η

0
(η − s)3 y (s) ds

]
t,

where k = 60/5 − 2η3 and the linear operator KP : Im L→ dom L∩ Ker P can be written by

Kpy (t) =
1
2

∫ t

0
(t − s)2 y (s) ds,∀y ∈ Im L.

Furthermore ∥∥∥Kpy
∥∥∥ ≤ ‖y‖1 ,∀y ∈ Im L.

Proof. It is clear that

kerL = {x ∈ dom L : x = bt, b ∈ R, t ∈ [0, 1]} ' R.

Now we show that

Im L =

{
y ∈ Y :

∫ 1

0
(1 − s)2 y (s) ds −

2
3η2

∫ η

0
(η − s)3 y (s) ds = 0

}
. (2.6)

The problem
x′′′ = y (2.7)

has a solution x (t) that satisfies the conditions x (0) = x′′ (0) = 0, x (1) = 2
η2

∫ η

0
x (t) dt, if and only

if ∫ 1

0
(1 − s)2 y (s) ds −

2
3η2

∫ η

0
(η − s)3 y (s) ds = 0. (2.8)

In fact from (2.7) we have

x (t) = x′′ (0)
t2

2
+ x′ (0) t + x (0) +

1
2

∫ t

0
(t − s)2 y (s) ds = x′ (0) t +

1
2

∫ t

0
(t − s)2 y (s) ds.

According to x (1) = 2
η2

∫ η

0
x (t) dt,we obtain∫ 1

0
(1 − s)2 y (s) ds −

2
3η2

∫ η

0
(η − s)3 y (s) ds = 0.
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On the other hand, if (2.8) holds, setting

x (t) = bt +
1
2

∫ t

0
(t − s)2 y (s) ds,

where b is an arbitrary constant, then x (t) is a solution of (2.7). Hence (2.6) holds.
Setting

Ry =

∫ 1

0
(1 − s)2 y (s) ds −

2
3η2

∫ η

0
(η − s)3 y (s) ds,

define Qy (t) = k. (Ry) .t, it is clear that dim ImQ = 1. We have

Q2y = Q (Qy) = k (k.Ry)
(∫ 1

0
(1 − s)2 sds −

2
3η2

∫ η

0
(η − s)3 sds

)
t = (kRy) t = Qy,

which implies that the operator Q is a projector. Furthermore, Im L = kerQ.
Let y = (y − Qy)+ Qy, where y−Qy ∈ KerQ = Im L, Qy ∈ ImQ. It follows from KerQ = Im L

and Q2y = Qy that Im Q ∩ Im L = {0} . Then, we have Y = Im L ⊕ Im Q. Since dim KerL = 1 =

dim Im Q = co dim Im L = 1, L is a Fredholm map of index zero.
Now we define a projector P from X to X by setting

Px (t) = x′ (0) t.

Then the generalized inverse KP : Im L→ domL ∩ KerP of L can be written by

Kp =
1
2

∫ t

0
(t − s)2 y (s) ds.

Obviously, Im P = KerL and P2x = Px. It follows from x = (x − Px) + Px that X =

KerP + KerL. By simple calculation, we can get that KerL∩KerP = {0}. Then X = KerL⊕KerP.
From the definitions of P and KP it is easy to see that the generalized inverse of L is KP. In fact,
for y ∈ Im L, we have (

LKp

)
y (t) =

[(
Kpy

)
t
]′′′

= y (t) ,

and for x ∈ domL ∩ kerP, we know(
KpL

)
x (t) =

(
Kp

)
x′′′ (t) =

1
2

∫ t

0
(t − s)2 x′′′ (s) ds = x (t) − x (0) − x′ (0) t −

1
2

x′′ (0) t2,

in view of x ∈ domL ∩ kerP, x (0) = x′′ (0) = 0 and Px = 0, thus(
KpL

)
x (t) = x (t) .

This shows that Kp = (L|domL∩kerP)−1 . Also we have

∥∥∥Kpy
∥∥∥
∞
≤

∫ 1

0
(1 − s)2

|y (s)| ds ≤
∫ 1

0
|y (s)| ds = ‖y‖1 ,
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and from
(
Kpy

)′
(t) =

∫ 1

0
(1 − s) y (s) ds, we obtain

∥∥∥∥(Kpy
)′∥∥∥∥
∞
≤

∫ 1

0
(1 − s) |y (s)| ds ≤

∫ 1

0
|y (s)| ds = ‖y‖1

then
∥∥∥Kpy

∥∥∥ ≤ ‖y‖1. This completes the proof of Lemma 2.1.

Lemma 2.2. Let Ω1 = {x ∈ domL\KerL : Lx = λNx, f or some λ ∈ [0, 1]} . Then Ω1 is bounded.

Proof. Suppose that x ∈ Ω1, and Lx = λNx. Thus λ , 0 and QNx = 0, so it yields∫ 1

0
(1 − s)2 f

(
s, x (s) , x′ (s)

)
ds −

2
3η2

∫ η

0
(η − s)3 f

(
s, x (s) , x′ (s)

)
ds = 0.

Thus, by condition (2), there exists t0 ∈ [0, 1], such that |x′ (t)| ≤ M . In view of

x′ (0) = x′ (t0) −
∫ t0

0
x′′ (t) dt, x′′ (t) = x′′ (0) +

∫ t

0
x′′′ (s) ds,

then, we have

|x′ (0)| ≤ M +

∫ 1

0

(∫ 1

0
|x′′′ (s) ds|

)
dt = M + ‖x′′′‖1 = M + ‖Lx‖1 ≤ M + ‖Nx‖1 . (2.9)

Again for x ∈ Ω1, x ∈ domL\KerL, then (I − P) x ∈ domL ∩ KerP and LPx = 0, thus from
Lemma 3, we know

‖(I − P) x‖ =
∥∥∥KpL (I − Px)

∥∥∥ ≤ ‖L (I − Px)‖1 = ‖Lx‖1 ≤ ‖Nx‖1 . (2.10)

From (2.9) and (2.10), we have

‖x‖ ≤ ‖Px‖ + ‖(I − P) x‖ = |x′ (0)| + ‖(I − P) x‖ ≤ M + 2 ‖Nx‖1 . (2.11)

From (2.1) and (2.11), we obtain

‖x‖ ≤ 2
[
‖α‖1 ‖x‖∞ + ‖β‖1 ‖x

′‖∞ + ‖γ‖1 +
M
2

]
. (2.12)

Thus, from ‖x‖∞ ≤ ‖x‖ and (2.12) we have

‖x‖∞ ≤
2

1 − 2 ‖α‖1

[
‖β‖1 ‖x

′‖∞ + ‖γ‖1 +
M
2

]
. (2.13)

From ‖x′‖∞ ≤ ‖x‖ , and (2.12) and (2.13), one has

‖x′‖∞

[
1 −

2 ‖β‖1
1 − 2 ‖α‖1

]
≤

2
1 − 2 ‖α‖1

[
‖γ‖1 +

M
2

]
.
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Therefore,

‖x′‖∞

[
1 − 2 ‖α‖1 − 2 ‖β‖1

1 − 2 ‖α‖1

]
≤

1
1 − 2 ‖α‖1

[
2 ‖γ‖1 + M

]
.

i.e.,

‖x′‖∞ ≤
2
[
‖γ‖1 + M

2

]
1 − 2 ‖α‖1 − 2 ‖β‖1

= M1. (2.14)

From (2.14), there exists M1 > 0, such that

‖x′‖∞ ≤ M1, (2.15)

thus from (2.15) and (2.13), there exists M2 > 0 , such that

‖x‖∞ ≤ M2. (2.16)

Hence
‖x‖ = max {‖x‖∞ , ‖x

′‖∞} ≤ max {M1,M2} .

Again from (2.1), (2.15) and (2.16), we have

‖x′′′‖1 = ‖Lx‖1 ≤ ‖Nx‖1 ≤ ‖α‖1 M2 + ‖β‖1 M1 + ‖γ‖1 .

So Ω1 is bounded.

Lemma 2.3. The set Ω2 = {x ∈ KerL : Nx ∈ Im L} is bounded.

Proof. Let x ∈ Ω2, then x ∈ KerL = {x ∈ domL : x = bt, b ∈ R, t ∈ [0, 1]} , and QNx = 0, there-
fore ∫ 1

0
(1 − s)2 f (s, bs, b) ds −

2
3η2

∫ η

0
(η − s)3 f (s, bs, b) ds = 0.

From condition (2) of Theorem 2.2, ‖x‖∞ = |b| ≤ M, so ‖x‖ = |b| ≤ M, thus Ω2 is bounded.

Lemma 2.4. If the first part of condition (3) of Theorem 2.2 holds, then

b
60

5 − 2η3

[∫ 1

0
(1 − s)2 f (s, b (s) , b) ds −

2
3η2

∫ η

0
(η − s)3 f (s, b (s) , b) ds

]
< 0, (2.17)

for all |b| > M∗. Let Ω3 = {x ∈ KerL : −λJx + (1 − λ) QNx = 0, λ ∈ [0, 1] } where J : KerL →
Im Q is the linear isomorphism given by J (bt) = bt, ∀b ∈ R, t ∈ [0, 1] . Then Ω3 is bounded.

Proof. Suppose that x = b0t ∈ Ω3, then we obtain

λb0 = (1 − λ)
60

5 − 2η3 ×

(∫ 1

0
(1 − s)2 f (s, b (s) , b) ds −

2
3η2

∫ η

0
(η − s)3 f (s, b (s) , b) ds

)
.

If λ = 1, then b0 = 0. Otherwise, if |b0| > M∗, then in view of (2.17) one has λb2
0 =

b0 (1 − λ) 60
5−2η3 ×

(∫ 1

0
(1 − s)2 f (s, b (s) , b) ds − 2

3η2

∫ η

0
(η − s)3 f (s, b (s) , b) ds

)
< 0,
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which contradicts the fact that λb2
0 ≥ 0. Then |x| = |b0t| ≤ |b0| ≤ M∗, we obtain ‖x‖ ≤ M∗,

therefore Ω3 ⊂ {x ∈ KerL : ‖x‖ ≤ M∗} is bounded.
If λ = 0, it yields∫ 1

0
(1 − s)2 f (s, b (s) , b) ds −

2
3η2

∫ η

0
(η − s)3 f (s, b (s) , b) ds = 0,

taking condition (2) of Theorem 2.2 into account, we obtain ‖x‖ = |b| ≤ M∗.

Lemma 2.5. If the second part of condition (3) of Theorem 2.2 holds, then

b
60

5 − 2η3

[∫ 1

0
(1 − s)2 f (s, b (s) , b) ds −

2
3η2

∫ η

0
(η − s)3 f (s, b (s) , b) ds

]
> 0, (2.18)

for all |b| > M∗. Let Ω3 = {x ∈ KerL : λJx + (1 − λ) QNx = 0, λ ∈ [0, 1] } , here J is defined as
in Lemma 2.4. Similar to the above argument, we can verify that Ω3 is bounded.

Now the proof of Theorem 2.2 is a consequence of Theorem 2.1 and the above lemmas.

Proof. of Theorem 2.2. Let Ω to be an open bounded subset of X such that ∪3
i=1Ωi ⊂ Ω. By

using the Arzela- Ascoli theorem, we can prove that KP (I − QN) : Ω → X is compact, thus N is
L-compact on Ω. Then by Lemmas 2.2 and 2.3, we have

i) Lx , λNx pour tout (x, λ) ∈ [(domL\KerL) ∩ ∂Ω] × (0, 1) .
ii) Nx < Im L pour tout x ∈ KerL ∩ ∂Ω.
iii) Let H (x, λ) = ±λJx + (1 − λ) QNx = 0.
According to Lemmas 2.4 and 2.5, we know that H (x, λ) , 0 for every x ∈ KerL ∩ ∂Ω. Thus,

by the homotopy property of degree, deg (QN |KerL,Ω ∩ KerL, 0) = deg (H (·, 0) ,Ω ∩ KerL, 0)
= deg (H (·, 1) ,Ω ∩ KerL, 0) = deg ( ± J,Ω ∩ KerL, 0) , 0. Then by Theorem 2.1, Lx = Nx has
at least one solution in domL ∩ Ω, so the BVP (1.1), (1, 2) has at least one solution in C2 [0, 1] .
The proof is complete.
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Abstract
Based on the recently introduced (see (Verma, 2012)) major higher order generalizations (G, β, φ, h(·, ·), ρ,

θ) - univexities, several second-order parametric duality models for a semiinfinite minimax fractional programming
problem are developed with appropriate duality results under various generalized second-order (G, β, φ, h(·, ·), ρ, θ)
- univexity assumptions. The obtained results encompass a large variety of investigations on generalized univexities
and their extensions in the literature.

Keywords: Semiinfinite programming, minimax fractional programming, generalized second-order univex
functions, infinitely many equality and inequality constraints, dual problems, duality theorems.
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1. Introduction

In this paper, we intend to establish some results on second-order duality under various gener-
alized (G, β, φ, h(·, ·), ρ, θ)-univexity assumptions for the semiinfinite discrete minimax fractional
programming problem of the form:

(P) Minimize max
1≤i≤p

fi(x)
gi(x)

subject to
G j(x, t) ≤ 0 for all t ∈ T j, j ∈ q = {1, 2, · · ·, q},

Hk(x, s) = 0 for all s ∈ S k, k ∈ r = {1, 2, · · ·, r},

x ∈ X,

∗Corresponding author
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where p, q, and r are positive integers, X is a nonempty open convex subset of Rn (n-dimensional
Euclidean space), for each j ∈ q = {1, 2, . . . , q} and k ∈ r = {1, 2, . . . , r}, T j and S k are compact
subsets of complete metric spaces, for each i ∈ p, fi and gi are twice continuously differentiable
real-valued functions defined on X, for each j ∈ q, z → G j(z, t) is a twice continuously differ-
entiable real-valued function defined on X for all t ∈ T j, for each k ∈ r, z → Hk(z, s) is a twice
continuously differentiable real-valued function defined on X for all s ∈ S k, for each j ∈ q and
k ∈ r, t → G j(x, t) and s → Hk(x, s) are continuous real-valued functions defined, respectively,
on T j and S k for all x ∈ X, and for each i ∈ p, gi(x) > 0 for all x satisfying the constraints of (P).
The present communication is concerned with the major generalization (G, β, φ, h(·, ·), ρ, θ)- uni-
vexity of the second order introduced by Verma (see (Verma, 2012)) that generalizes (F , β, φ, ρ, θ)-
univexity introduced by Zalmai (see (Zalmai, 2012)) and the first order univexity studied by Zal-
mai and Zhang (see (Zalmai & Zhang, 2007)) with its applications to parametric duality models
in minimax fractional programming. The obtained results not only generalize the work of Zal-
mai on second order univexities, but also generalize other investigations on general invexities,
including the valued-contributions of Jeyakumar (see (Jeyakumar b, 1985)), Liu (see (Liu, 1999)),
Mangasarian (see (Mangasarian, 1975)), Mishra (see (Mishra, 1997), (Mishra, 2000)), Mishra and
Rueda (see (Mishra & Rueda, 2000), (Mishra & Rueda, 2006)), Mond (see (Mond, 1974)) and oth-
ers. Based on Mangasarian’s second-order dual problem, Mond (see (Mond, 1974)) established
some duality results under relatively simpler conditions involving a certain second-order gener-
alization of the concept of convexity, while observed some possible computational advantages of
second-order duality results, and also studied a pair of second-order symmetric dual problems.
Mond’s original notion of second-order convexity was followed by generalizations by other au-
thors in different ways and applied establishing several second-order duality results for several
classes of nonlinear programming problems. Although there exist various second-order duality
results in the related literature for several classes of mathematical programming problems with
a finite number of constraints, we feel our second-order duality results established in this paper
are new and general in nature to the context of semiinfinite programming. For more details on
second order duality results, we refer the reader (see (Aghezzaf, 2003) - (Zalmai & Zhang, 2007)),
but more importantly, (see (Aghezzaf, 2003) - (Jeyakumar b, 1985), (Mond & Weir, 1981-1983),
(Mond & Zhang, 1995) - (Zalmai & Zhang, 2007)).

Note that second-order duality for a conventional nonlinear programming problem is of the
form

(P0) Minimize f (x) subject to gi(x) ≤ 0, i ∈ m, x ∈ Rn,

where f and gi, i ∈ m, are twice differentiable real-valued functions defined on Rn, was ini-
tially considered and studied by Mangasarian (see (Mangasarian, 1975)). The idea underlying his
approach to constructing a second-order dual problem was based on taking linear and quadratic
approximations of the objective and constraint functions about an arbitrary but fixed point, leading
to the Wolfe dual of the approximated problem, and then allowing the fixed point to vary. Man-
gasarian (see (Mangasarian, 1975)), more specifically, formulated the following second-order dual
problem for (P0):

(D0) Maximize f (y) +
∑m

i=1 uigi(y) − 1
2

〈
z,

[
∇2 f (y) +

∑m
i=1 ui∇

2gi(y)
]
z
〉



Ram U Verma / Theory and Applications of Mathematics & Computer Science 3 (1) (2013) 65–84 67

subject to

∇ f (y) +

m∑
i=1

ui∇gi(y) +
[
∇2 f (y) +

m∑
i=1

ui∇
2gi(y)

]
z = 0,

y ∈ Rn, u ∈ Rm, u ≥ 0, z ∈ Rn,

where∇F(y) and∇2F(y) denote, respectively, the gradient and Hessian of the function F : Rn → R
evaluated at y and 〈a, b〉 denotes the inner product of the vectors a and b. Then, by imposing
somewhat complicated conditions on f , gi, i ∈ m, and z, he proved weak, strong, and converse
duality theorems for (P0) and (D0).

We observe that all the duality results established in this paper can easily be modified and
restated for each one of the following classes of nonlinear programming problems, that are special
cases of (P):

(P1) Minimize
f1(x)
g1(x)

;

(P2) Minimize max
1≤i≤p

fi(x);

(P3) Minimize
x∈F

f1(x),

where F (assumed to be nonempty) is the feasible set of (P), that is,

F = {x ∈ Rn : G j(x, t) ≤ 0 for all t ∈ T j, j ∈ q, Hk(x, s) = 0 for all s ∈ S k, k ∈ r};

(P4) Minimize max
1≤i≤p

fi(x)
gi(x)

subject to
G̃ j(x) ≤ 0, j ∈ q, H̃k(x) = 0, k ∈ r, x ∈ Rn,

where fi and gi, i ∈ p, are as defined in the description of (P), and G̃ j, j ∈ q, and H̃k, k ∈ r, are
real-valued functions defined on X;

(P5) Minimize
x∈G

f1(x)
g1(x)

;

(P6) Minimize
x∈G

max
1≤i≤p

fi(x);

(P7) Minimize
x∈G

f1(x),

where G is the feasible set of (P4), that is,

G = {x ∈ Rn : G̃ j(x) ≤ 0, j ∈ q, H̃k(x) = 0, k ∈ r}.
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2. Preliminaries

In this section we recall, the recently introduced major generalization (G, β, φ, h(·, ·), ρ, θ)−
univexiity by Verma (see (Verma, 2012)) to the notion of the Zalmai type (F , β, φ, ρ, θ)-univexity
of higher order (See (Zalmai, 2012)) to the context of parametric duality models in semiinfinite
discrete minimax fractional programming. The obtained notion, in fact, reduces to most of the
existing notions of invexities and univexities in the literature.

Recall that a function G : Rn → R is said to be sublinear(superlinear) if

G(x + y) ≤ (≥)G(x) + G(y)∀ x, y ∈ Rn,

and G(ax) = aG(x) for all x ∈ Rn and a ∈ R+ = [0,∞).
Let x∗ ∈ X and let us assume that the function f : X → R is twice continuously differentiable

at x∗.

Definition 2.1. The function f is said to be (strictly) (G, β, φ, h(x∗, z), ρ, θ)-univex at x∗ of higher
order if there exist functions β : X × X → R+\{0} = (0,∞), φ : R → R, ρ : X × X → R, θ :
X × X → Rn, and a sublinear function G(x, x∗; ·) : Rn → R such that for each x ∈ X(x , x∗) and
z ∈ Rn,

φ
(
f (x) − f (x∗) + 〈z,∇z h(x∗, z)〉 − h(x∗, z)

)
(>) ≥ G

(
x, x∗; β(x, x∗)[∇zh(x∗, z)]

)
+ ρ(x, x∗)‖θ(x, x∗)‖2,

where h : Rn × Rn → Rn is differentiable with respect to the second component.

Definition 2.2. The function f is said to be (strictly) (G, β, φ, h(x∗, z), ρ, θ)-pseudounivex at x∗ if
there exist functions β : X × X → R+\{0}, φ : R → R, ρ : X × X → R, θ : X × X → Rn, and a
sublinear function G(x, x∗; ·) : Rn → R such that for each x ∈ X(x , x∗) and z ∈ Rn,

G
(
x, x∗; β(x, x∗)[∇zh(x∗, z)]

)
≥ −ρ(x, x∗)‖θ(x, x∗)‖2

⇒ φ
(
f (x) − f (x∗) + 〈z,∇zh(x∗, z)〉 − h(x∗, z)

)
(>) ≥ 0,

equivalently,

φ
(
f (x) − f (x∗) + 〈z,∇zh(x∗, z)〉 − h(x∗, z)

)
(≤) < 0⇒

G
(
x, x∗; β(x, x∗)[∇zh(x∗, z)]

)
< −ρ(x, x∗)‖θ(x, x∗)‖2,

where h : Rn × Rn → Rn is differentiable with respect to the second component.

Definition 2.3. The function f is said to be prestrictly (G, β, φ, h(x∗, z), ρ, θ)-pseudounivex at x∗ if
there exist functions β : X × X → R+\{0}, φ : R → R, ρ : X × X → R, θ : X × X → Rn, and a
sublinear function G(x, x∗; ·) : Rn → R such that for each x ∈ X(x , x∗) and z ∈ Rn,

G
(
x, x∗; β(x, x∗)[∇zh(x∗, z)]

)
> −ρ(x, x∗)‖θ(x, x∗)‖2

⇒ φ
(
f (x) − f (x∗) + 〈z,∇zh(x∗, z)〉 − h(x∗, z)

)
≥ 0,
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equivalently,

φ
(
f (x) − f (x∗) + 〈z,∇zh(x∗, z)〉 − h(x∗, z)

)
< 0⇒

G
(
x, x∗; β(x, x∗)[∇zh(x∗, z)]

)
≤ −ρ(x, x∗)‖θ(x, x∗)‖2,

where h : Rn × Rn → Rn is differentiable with respect to the second component.

Definition 2.4. The function f is said to be (prestrictly)(G, β, φ, h(x∗, z), ρ, θ)-quasiunivex at x∗ if
there exist functions β : X × X → R+\{0}, φ : R → R, ρ : X × X → R, θ : X × X → Rn, and a
sublinear function G(x, x∗; ·) : Rn → R such that for each x ∈ X and z ∈ Rn,

φ
(
f (x) − f (x∗) + 〈z,∇zh(x∗, z)〉 − h(x∗, z)

)
(<) ≤ 0

⇒ G
(
x, x∗; β(x, x∗)[∇zh(x∗, z)]

)
≤ −ρ(x, x∗)‖θ(x, x∗)‖2,

equivalently,

G
(
x, x∗; β(x, x∗)[∇zh(x∗, z)]

)
> −ρ(x, x∗)‖θ(x, x∗)‖2 ⇒

φ
(
f (x) − f (x∗) + 〈z,∇zh(x∗, z)〉 − h(x∗, z)

)
(≥) > 0,

where h : Rn × Rn → Rn is differentiable with respect to the second component.

Definition 2.5. The function f is said to be strictly (G, β, φ, h(x∗, z), ρ, θ)-quasiunivex at x∗ if there
exist functions β : X ×X → R+\{0}, φ : R→ R, ρ : X ×X → R, θ : X ×X → Rn, and a sublinear
function G(x, x∗; ·) : Rn → R such that for each x ∈ X and z ∈ Rn,

φ
(
f (x) − f (x∗) + 〈z,∇zh(x∗, z)〉 − h(x∗, z)

)
≤ 0

⇒ G
(
x, x∗; β(x, x∗)[∇zh(x∗, z)]

)
< −ρ(x, x∗)‖θ(x, x∗)‖2,

equivalently,

G
(
x, x∗; β(x, x∗)[∇zh(x∗, z)]

)
≥ −ρ(x, x∗)‖θ(x, x∗)‖2 ⇒

φ
(
f (x) − f (x∗) + 〈z,∇zh(x∗, z)〉 − h(x∗, z)

)
> 0,

where h : Rn × Rn → Rn is differentiable with respect to the second component.

We note that the generalized (G, β, φ, h(·, ·), ρ, θ)-univexities (see (Verma, 2012)) at x∗ of higher
order reduce to the Zalmai type (F , β, φ, ρ, θ)-univexities (see (Zalmai, 2012)) of higher-order if
we set

h(x∗, z) = 〈z,∇ f (x∗)〉 +
1
2
〈z,∇2 f (x∗)z〉.

Then, we have
∇z h(x∗, z) = ∇ f (x∗) + ∇2 f (x∗)z
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and

〈z,∇z h(x∗, z)〉 − h(x∗, z) =
1
2
〈z,∇2 f (x∗)z〉.

We observe some of the implications from the above definitions as follows: if f is (G, β, φ, h(·, ·), ρ, θ)-
univex at x∗, then it is both (G, β, φ, h(·, ·), ρ, θ)-pseudounivex and (G, β, φ, h(·, ·), ρ, θ)-quasiunivex
at x∗, if f is (G, β, φ, h(·, ·), ρ, θ)-quasiunivex at x∗, then it is prestrictly (G, β, φ, h(·, ·), ρ, θ)-quasiunivex
at x∗, and if f is strictly (G, β, φ, h(·, ·), ρ, θ)-pseudounivex at x∗, then it is (G, β, φ, h(·, ·), ρ, θ)-
quasiunivex at x∗.

Note that during the proofs of the duality theorems, sometimes it may be more convenient to
use certain alternative but equivalent forms of the above definitions. We conclude this section by
recalling a set of parametric necessary optimality conditions for (P) based on the following result.

Theorem 2.1. (See (Verma, 2013)) Let x∗ ∈ F and λ∗ = max1≤i≤p fi(x∗)/gi(x∗), for each i ∈ p, let
fi and gi be twice continuously differentiable at x∗, for each j ∈ q, let the function z → G j(z, t)
be twice continuously differentiable at x∗ for all t ∈ T j, and for each k ∈ r, let the function
z → Hk(z, s) be twice continuously differentiable at x∗ for all s ∈ S k. If x∗ is an optimal solution
of (P), if the second order generalized Abadie constraint qualification holds at x∗, and if for any
critical direction y, the set cone

{
(
∇G j(x∗, t), 〈y,∇2G j(x∗, t)y〉

)
: t ∈ T̂ j(x∗), j ∈ q}

+ span{
(
∇Hk(x∗, s), 〈y,∇2Hk(x∗, s)y〉

)
: s ∈ S k, k ∈ r},

where T̂ j(x∗) = {t ∈ T j : G j(x∗, t) = 0}, is closed, then there exist u∗ ∈ U = {u ∈ Rp : u ≥
0,

∑p
i=1 ui = 1} and integers ν∗0 and ν∗, with 0 ≤ ν∗0 ≤ ν

∗ ≤ n + 1, such that there exist ν∗0 indices jm,
with 1 ≤ jm ≤ q, together with ν∗0 points tm ∈ T̂ jm(x∗), m ∈ ν∗0, ν

∗ − ν∗0 indices km, with 1 ≤ km ≤ r,
together with ν∗−ν∗0 points sm ∈ S km for m ∈ ν∗\ν∗0, and ν∗ real numbers v∗m, with v∗m > 0 for m ∈ ν∗0,
with the property that

p∑
i=1

u∗i [∇ fi(x∗) − λ∗(∇gi(x∗)] +

ν∗0∑
m=1

v∗m[∇G jm(x∗, tm) +

ν∗∑
m=ν∗0+1

v∗m∇Hk(x∗, sm) = 0, (2.1)

〈y,
[ p∑

i=1

u∗i [∇2 fi(x∗) − λ∗∇2gi(x∗)] +

ν∗0∑
m=1

v∗m∇
2G jm(x∗, tm) +

ν∗∑
m=ν∗0+1

v∗m∇
2Hk(x∗, sm)

]
y〉 ≥ 0. (2.2)

We shall call x a normal feasible solution of (P) if x satisfies all the constraints of (P), if the
generalized Abadie constraint qualification holds at x, and if the set cone{∇G j(x, t) : t ∈ T̂ j(x), j ∈
q} + span{∇Hk(x, s) : s ∈ S k, k ∈ r} is closed.

The above theorem on the necessary optimality conditions provides us with clear guidelines for
formulating numerous Wolfe-type duality models for (P). From now on, the functions fi, gi, i ∈
p, z → G j(z, t), and z → Hk(z, s) are twice continuously differentiable on X for all t ∈ T j, j ∈ q,
and all s ∈ S k, k ∈ r.
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3. Duality Models

In this section, we consider two duality models with special constraint structures that allow for
a greater variety of generalized (G, β, φ, h(x, z), ρ, θ)-univexity conditions under which duality can
be established based on the following set:

H =
{
(y, z, u, v, λ, ν, ν0, Jν0 ,Kν\ν0 , t̄, s̄) : y ∈ X; z ∈ Rn; u ∈ U; 0 ≤ ν0 ≤ ν ≤ n + 1;

v ∈ Rν, vi > 0, 1 ≤ i ≤ ν0; λ ∈ R+; Jν0 = ( j1, j2, . . . , jν0), 1 ≤ ji ≤ q; Kν\ν0 =

(kν0+1 , . . . , kν), 1 ≤ ki ≤ r; t̄ = (t1, t2, . . . , tν0), ti ∈ T ji; s̄ = (sν0+1, . . . , sν), si ∈ S ki

}
.

Consider the following two problems:

(DI) sup
(y,z,u,v,λ,ν,ν0,Jν0 ,Kν\ν0 ,t̄,s̄)∈H

λ

subject to
p∑

i=1

ui[∇z hi(y, z) − λ∇z κi(y, z)] +

ν0∑
m=1

vm[∇z µ jm(y, tm, z)

+

ν∑
m=ν0+1

vm[∇z ψkm(y, sm, z)] = 0, (3.1)

fi(y) − λgi(y) +

p∑
i=1

ui[hi(y, z) − λκi(y, z) − 〈z,∇z hi(y, z) − λ∇z κi(y, z)]〉 ≥ 0, i ∈ p, (3.2)

G jm(y, tm) + µ jm(y, tm, z) − 〈z,∇z µ jm(y, tm, z)〉 ≥ 0, m ∈ ν0, (3.3)

vmHkm(y, sm) + vmψkm(y, sm, z) − 〈z, vm∇z ψkm(y, sm, z)〉 ≥ 0, m ∈ ν\ν0; (3.4)

(D̃I) sup
(y,z,u,v,λ,ν,ν0,Jν0 ,Kν\ν0 ,t̄,s̄)∈H

λ

subject to (3.2)-(3.4) and

G
(
x, y;

p∑
i=1

ui[∇z hi(y, z)] −
p∑

i=1

uiλ[∇z κi(y, z)] +

ν0∑
m=1

vm[∇z µ jm(y, z, tm)]

+

ν∑
m=ν0+1

vm[∇z ψkm(y, z, sm)] ≥ 0 for all x ∈ F, (3.5)

where G(x, y; ·) is a sublinear function from Rn to R.
Note that if we Compare (DI) and (D̃I), we see that (D̃I) is relatively more general than (DI)

in the sense that any feasible solution of (DI) is also feasible for (D̃I), but the converse may not
be necessarily true.
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Lemma 3.1. (See (Zalmai, 2012)) For each x ∈ X,

ϕ(x) ≡ max
1≤i≤p

fi(x)
gi(x)

= max
u∈U

∑p
i=1 ui fi(x)∑p
i=1 uigi(x)

.

The next theorem shows that (DI) is a dual problem for primal (P).

Theorem 3.1. (Weak Duality) Let x and w = (y, z, u, v, λ, ν, ν0, Jν0 ,Kν\ν0 , t̄, s̄) be arbitrary feasible
solutions of (P) and (DI), respectively, and let us assume that any one of the following five sets of
hypotheses is satisfied:

(a) (i) for each i ∈ p, fi is (G, β, φ̄, hi(·, ·), ρ̄i, θ)-univex and −gi is (G, β, φ̄, κi(·, ·), ρ̃i, θ)-univex
at y, φ̄ is superlinear, and φ̄(a) ≥ 0⇒ a ≥ 0;

(ii) the function ξ → G jm(ξ, tm) is (G, β, φ̂m, µm(·, ·), ρ̂m, θ)-quasiunivex at y, φ̂m is increas-
ing, and φ̂m(0) = 0 for each m ∈ ν0;

(iii) the function ξ → vmHkm(ξ, sm) is (G, β, φ̆m, ψm(·, ·), ρ̆m, θ)- quasiunivex at y, φ̆m is in-
creasing, and φ̆m(0) = 0 for each m ∈ ν\ν0;

(iv) ρ∗(x, y) +
∑ν0

m=1 vmρ̂m(x, y) +
∑ν

m=ν0+1 ρ̆m(x, y) ≥ 0 where
ρ∗(x, y) =

∑p
i=1 ui[ρ̄i(x, y) + λρ̃i(x, y)];

(b) (i) for each i ∈ p, fi is (G, β, φ̄, hi(·, ·), ρ̄i, θ)-univex and −gi is (G, β, φ̄, κi(·, ·), ρ̃i, θ)-univex
at y, φ̄ is superlinear, and φ̄(a) ≥ 0⇒ a ≥ 0;

(ii) the function ξ →
∑ν0

m=1 vmG jm(ξ, tm) is (G, β, φ̂, µm(·, ·), ρ̂, θ)-quasiunivex at y, φ̂ is in-
creasing, and φ̂(0) = 0;

(iii) the function ξ → vmHkm(ξ, sm) is (G, β, φ̆m, ψm(·, ·), ρ̆m, θ)-quasiunivex at y, φ̆m is in-
creasing, and φ̆m(0) = 0 for each m ∈ ν\ν0;

(iv) ρ∗(x, y) + ρ̂(x, y) +
∑ν

m=ν0+1 ρ̆m(x, y) ≥ 0;

(c) (i) for each i ∈ p, fi is (G, β, φ̄, hi(·, ·), ρ̄i, θ)-univex and −gi is (G, β, φ̄, ρ̃i, κi(·, ·), θ)-univex
at y, φ̄ is superlinear, and φ̄(a) ≥ 0⇒ a ≥ 0;

(ii) the function ξ → G jm(ξ, tm) is (G, β, φ̂m, µm(·, ·), ρ̂m, θ)-quasiunivex at y, φ̂m is increas-
ing, and φ̂m(0) = 0 for each m ∈ ν0;

(iii) the function ξ →
∑ν

m=ν0+1 vmHkm(ξ, sm) is (G, β, φ̆, ψm(·, ·), ρ̆, θ)-quasiunivex at y, φ̆ is
increasing, and φ̆(0) = 0;

(iv) ρ∗(x, y) +
∑ν0

m=1 vmρ̂m(x, y) + ρ̆(x, y) ≥ 0;

(d) (i) for each i ∈ p, fi is (G, β, φ̄, hi(·, ·), ρ̄i, θ)-univex and −gi is (G, β, φ̄, κi(·, ·), ρ̃i, θ)-univex
at y, φ̄ is superlinear, and φ̄(a) ≥ 0⇒ a ≥ 0;
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(ii) the function ξ →
∑ν0

m=1 vmG jm(ξ, tm) is (G, β, φ̂, µm(·, ·), ρ̂, θ)-quasiunivex at y, φ̂ is in-
creasing, and φ̂(0) = 0;

(iii) the function ξ →
∑ν

m=ν0+1 vmHkm(ξ, sm) is (G, β, φ̆, ψm(·, ·), ρ̆, θ)-quasiunivex at y, φ̆ is
increasing, and φ̆(0) = 0;

(iv) ρ∗(x, y) + ρ̂(x, y) + ρ̆(x, y) ≥ 0;

(e) (i) for each i ∈ p, fi is (G, β, φ̄, hi(·, ·), ρ̄i, θ)-univex and −gi is (G, β, φ̄, κi(·, ·), ρ̃i, θ)-univex
at y, φ̄ is superlinear, and φ̄(a) ≥ 0⇒ a ≥ 0;

(ii) the function ξ →
∑ν0

m=1 vmG jm(ξ, tm)+
∑ν

m=ν0+1 vmHkm(ξ, sm) is (G, β, φ̂, τm, ρ̂, θ)-quasiunivex
at y, φ̂ is increasing, and φ̂(0) = 0;

(iii) ρ∗(x, y) + ρ̂(x, y) ≥ 0.

Then ϕ(x) ≥ λ.

Proof. (a): Applying (i), we have the following inequality:

φ̄
( p∑

i=1

ui[ fi(x) − fi(y)] +
〈
z,

p∑
i=1

ui∇z hi(y, z)
〉
−

p∑
i=1

uihi(y, z)

+ λ[
p∑

i=1

ui[−gi(x) + gi(y)] −
〈
z,

p∑
i=1

ui∇z κi(y, z)
〉

+

p∑
i=1

uiκi(y, z)]
)

≥ G
(
x, y; β(x, y)

p∑
i=1

ui
{
∇z hi(y, z) − λ∇z κi(y, z)

})
+

p∑
i=1

ui[ρ̄i(x, y) + λρ̃i(x, y)]‖θ(x, y)‖2. (3.6)

From the primal feasibility of x, dual feasibility of w, and (3.3), we find that

G jm(x, tm) ≤ 0 ≤ G jm(y, tm) + µ jm(y, tm, z) − 〈z,∇z µ jm(y, tm, z)〉, m ∈ ν0,

and hence using the properties of the functions φ̂m, we have

φ̂m
(
G jm(x, tm) − [G jm(y, tm) + µ jm(y, tm, z) − 〈z,∇z µ jm(y, tm, z)〉]

)
≤ 0,

which from (ii) implies that G
(
x, y; β(x, y)[∇z µ jm(y, tm, z)]

)
≤ −ρ̂m(x, y)‖θ(x, y)‖2. As vm > 0 for

each m ∈ ν0, the above inequality yield

G
(
x, y; β(x, y)

ν0∑
m=1

vm[〈z,∇z µ jm(y, tm, z)〉]
)
≤ −

ν0∑
m=1

vmρ̂m(x, y)‖θ(x, y)‖2. (3.7)

Similarly, from the primal feasibility of x, dual feasibility of w, (3.4), and (iii) we deduce (since
vm > 0 for each m ∈ ν\ν0) that

G
(
x, y; β(x, y)

ν∑
m=ν0+1

vm[∇z ψ jm(y, tm, z)]
)
≤ −

ν∑
m=ν0+1

ρ̆m(x, y)‖θ(x, y)‖2. (3.8)
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Now, based on the positivity of β(x, y), sublinearity of G(x, y; ·), and (3.1), we conclude that

G
(
x, y; β(x, y)

p∑
i=1

ui
{
∇z hi(y, z) − λ∇z κi(y, z)

})
+ G

(
x, y; β(x, y)

ν0∑
m=1

vm[∇z µ jm(y, tm, z)]
)

+ G
(
x, y; β(x, y)

ν∑
m=ν0+1

vm[∇z ψ jm(y, tm, z)]
)
≥ 0. (3.9)

Next, applying (3.9) to (3.6), and then combining with (3.7) and (3.8) and using (iv), we have

φ̄
( p∑

i=1

ui[ fi(x) − fi(y)] +
〈
z,

p∑
i=1

ui∇z hi(y, z)
〉
−

p∑
i=1

uihi(y, z)

+ λ[
p∑

i=1

ui[−gi(x) + gi(y)] −
〈
z,

p∑
i=1

ui∇z κi(y, z)
〉

+

p∑
i=1

uiκi(y, z)]
)

≥ G
(
x, y; β(x, y)

p∑
i=1

ui
{
∇z hi(y, z) − λ∇z κi(y, z)

})
+

p∑
i=1

ui[ρ̄i(x, y) + λρ̃i(x, y)]‖θ(x, y)‖2 ≥ −
[
G
(
x, y; β(x, y)

ν0∑
m=1

vm[∇z µ jm(y, tm, z)]
)

+ G
(
x, y; β(x, y)

ν∑
m=ν0+1

vm[∇z ψ jm(y, tm, z)]
)]
≥

ν0∑
m=1

vmρ̂m(x, y)‖θ(x, y)‖2 +

ν∑
m=ν0+1

ρ̆m(x, y)‖θ(x, y)‖2

+

p∑
i=1

ui[ρ̄i(x, y) + λρ̃i(x, y)]‖θ(x, y)‖2 =

ν0∑
m=1

vmρ̂m(x, y)‖θ(x, y)‖2

+

ν∑
m=ν0+1

ρ̆m(x, y)‖θ(x, y)‖2 + ρ∗(x, y)‖θ(x, y)‖2 ≥ 0.

But φ̄(a) ≥ 0 ⇒ a ≥ 0 and hence because of (3.2) the above inequality reduces to
p∑

i=1

ui[ fi(x) − λgi(x)] ≥ 0.

Finally, this inequality using Lemma 3.1 leads to the weak duality inequality as follows:

ϕ(x) = max
1≤i≤p

fi(x)
gi(x)

= max
u∈U

∑p
i=1 ui fi(x)∑p
i=1 uigi(x)

≥ λ.

(b) - (e) : The proofs are similar to that of part (a).

The following theorem is based on the (G, β, hi(·, ·), ρ̃i, θ)-univexities and quasiunivexities.

Theorem 3.2. (Weak Duality) Let x and w = (y, z, u, v, λ, ν, ν0, Jν0 ,Kν\ν0 , t̄, s̄) be arbitrary feasible
solutions of (P) and (DI), respectively, and let us assume that any one of the following five sets of
hypotheses is satisfied:
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(a) (i) for each i ∈ p, fi is (G, β, hi(·, ·), ρ̄i, θ)-univex and −gi is (G, β, κi(·, ·), ρ̃i, θ)-univex at y,

(ii) the function ξ → G jm(ξ, tm) is (G, β, µm(·, ·), ρ̂m, θ)-quasiunivex at y, for each m ∈ ν0;

(iii) the function ξ → vmHkm(ξ, sm) is (G, β, ψm(·, ·), ρ̆m, θ)-quasi univex at y, for each m ∈
ν\ν0;

(iv) ρ∗(x, y) +
∑ν0

m=1 vmρ̂m(x, y) +
∑ν

m=ν0+1 ρ̆m(x, y) ≥ 0 where
ρ∗(x, y) =

∑p
i=1 ui[ρ̄i(x, y) + λρ̃i(x, y)];

(b) (i) for each i ∈ p, fi is (G, β, hi(·, ·), ρ̄i, θ)-univex and −gi is (G, β, κi(·, ·), ρ̃i, θ)-univex at
y, φ̄ is superlinear, and φ̄(a) ≥ 0⇒ a ≥ 0.

(ii) the function ξ →
∑ν0

m=1 vmG jm(ξ, tm) is (G, β, µm(·, ·), ρ̂, θ)-quasiunivex at y.

(iii) the function ξ → vmHkm(ξ, sm) is (G, β, φ̆m, ψm(·, ·), ρ̆m, θ)-quasiunivex at y.

(iv) ρ∗(x, y) + ρ̂(x, y) +
∑ν

m=ν0+1 ρ̆m(x, y) ≥ 0;

(c) (i) for each i ∈ p, fi is (G, β, hi(·, ·), ρ̄i, θ)-univex and −gi is (G, β, ρ̃i, κi(·, ·), θ)-univex at y.

(ii) the function ξ → G jm(ξ, tm) is (G, β, µm(·, ·), ρ̂m, θ)-quasiunivex at y.

(iii) the function ξ →
∑ν

m=ν0+1 vmHkm(ξ, sm) is (G, β, ψm(·, ·), ρ̆, θ)-quasiunivex at y.

(iv) ρ∗(x, y) +
∑ν0

m=1 vmρ̂m(x, y) + ρ̆(x, y) ≥ 0;

(d) (i) for each i ∈ p, fi is (G, β, hi(·, ·), ρ̄i, θ)-univex and −gi is (G, β, κi(·, ·), ρ̃i, θ)-univex at y.

(ii) the function ξ →
∑ν0

m=1 vmG jm(ξ, tm) is (G, β, φ̂, µm(·, ·), ρ̂, θ)-quasiunivex at y.

(iii) the function ξ →
∑ν

m=ν0+1 vmHkm(ξ, sm) is (G, β, φ̆, ψm(·, ·), ρ̆, θ)-quasiunivex at y.

(iv) ρ∗(x, y) + ρ̂(x, y) + ρ̆(x, y) ≥ 0;

(e) (i) for each i ∈ p, fi is (G, β, hi(·, ·), ρ̄i, θ)-univex and −gi is (G, β, κi(·, ·), ρ̃i, θ)-univex at y.

(ii) the function ξ →
∑ν0

m=1 vmG jm(ξ, tm)+
∑ν

m=ν0+1 vmHkm(ξ, sm) is (G, β, τm, ρ̂, θ)-quasiunivex
at y.

(iii) ρ∗(x, y) + ρ̂(x, y) ≥ 0.

Then ϕ(x) ≥ λ.
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Proof. (a): Applying (i), we have the following inequality:

p∑
i=1

ui[ fi(x) − fi(y)] +
〈
z,

p∑
i=1

ui∇z hi(y, z)
〉
−

p∑
i=1

uihi(y, z)

+ λ[
p∑

i=1

ui[−gi(x) + gi(y)] −
〈
z,

p∑
i=1

ui∇z κi(y, z)
〉

+

p∑
i=1

uiκi(y, z)]

≥ G
(
x, y; β(x, y)

p∑
i=1

ui
{
∇z hi(y, z) − λ∇z κi(y, z)

})
+

p∑
i=1

ui[ρ̄i(x, y) + λρ̃i(x, y)]‖θ(x, y)‖2. (3.10)

From the primal feasibility of x, dual feasibility of w, and (3.3), we find that

G jm(x, tm) ≤ 0 ≤ G jm(y, tm) + µ jm(y, tm, z) − 〈z,∇z µ jm(y, tm, z)〉, m ∈ ν0.

Then we have G jm(x, tm) − [G jm(y, tm) + µ jm(y, tm, z) − 〈z,∇z µ jm(y, tm, z)〉] ≤ 0, which from (ii)
implies that G

(
x, y; β(x, y)[∇z µ jm(y, tm, z)]

)
≤ −ρ̂m(x, y)‖θ(x, y)‖2. As vm > 0 for each m ∈ ν0, the

above inequalities yield

G
(
x, y; β(x, y)

ν0∑
m=1

vm[〈z,∇z µ jm(y, tm, z)〉]
)
≤ −

ν0∑
m=1

vmρ̂m(x, y)‖θ(x, y)‖2. (3.11)

Similarly, from the primal feasibility of x, dual feasibility of w, (3.4), and (iii) we deduce that

G
(
x, y; β(x, y)

ν∑
m=ν0+1

vm[∇z ψ jm(y, tm, z)]
)
≤ −

ν∑
m=ν0+1

ρ̆m(x, y)‖θ(x, y)‖2. (3.12)

Now, based on the positivity of β(x, y), sublinearity of G(x, y; ·), and applying (3.1), we conclude
that

G
(
x, y; β(x, y)

p∑
i=1

ui
{
∇z hi(y, z) − λ∇z κi(y, z)

})
+ G

(
x, y; β(x, y)

ν0∑
m=1

vm[∇z µ jm(y, tm, z)]
)

+ G
(
x, y; β(x, y)

ν∑
m=ν0+1

vm[∇z ψ jm(y, tm, z)]
)
≥ 0. (3.13)

Next, applying (3.13) to (3.10), and then combining with (3.11) and (3.12) and using (iv), we have

( p∑
i=1

ui[ fi(x) − fi(y)] +
〈
z,

p∑
i=1

ui∇z hi(y, z)
〉
−

p∑
i=1

uihi(y, z)

+ λ[
p∑

i=1

ui[−gi(x) + gi(y)] −
〈
z,

p∑
i=1

ui∇z κi(y, z)
〉

+

p∑
i=1

uiκi(y, z)]
)

≥
(
ρ∗(x, y) +

ν0∑
m=1

vmρ̂m(x, y) +

ν∑
m=ν0+1

ρ̆m(x, y)
)
‖θ(x, y)‖2 ≥ 0.
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Hence because of (3.2) the above inequality reduces to
p∑

i=1

ui[ fi(x) − λgi(x)] ≥ 0.

Finally, this inequality using Lemma 3.1 leads to the weak duality inequality as follows:

ϕ(x) ≡ max
1≤i≤p

fi(x)
gi(x)

= max
u∈U

∑p
i=1 ui fi(x)∑p
i=1 uigi(x)

≥ λ.

(b) - (e) : The proofs are similar to that of part (a).

Theorem 3.3. (Strict Converse Duality) Let x∗ be a normal optimal solution of (P), let w̃ =

(x̃, z̃, ũ, ṽ, λ̃, ν̃, ν̃0, Jν̃0 ,Kν̃\ν̃0 ,
¯̃t, ¯̃s) be an optimal solution of (DI), and assume that any one of the

following five sets of conditions is satisfied:

(a) The assumptions specified in part (a) of Theorem 3.2 are satisfied for the feasible solution
w̃ of (DI). Moreover, φ̄(a) > 0 ⇒ a > 0, fi is strictly (G, β, φ̄, h(·, ·), ρ̄i, θ)-univex at x̃ for
at least one i ∈ p with the corresponding component ũi of ũ positive, or −gi is strictly
(G, β, φ̄, κ(·, ·), ρ̃i, θ)-univex at x̃ for at least one i ∈ p with the corresponding component ũi

of ũ positive (and λ̃ > 0), or ξ → G jm(ξ, t̃m) is strictly (G, β, φ̂m, µ(·, ·), ρ̂m, θ)-pseudounivex at
x̃ for at least one m ∈ ν̃0, or ξ → ṽmHkm(ξ, s̃m) is strictly (G, β, φ̆m, ψ(·, ·), ρ̆m, θ)-pseudounivex
at x̃ for at least one m ∈ ν̃\ν̃0, or

ρ∗(x∗, x̃) +

ν̃0∑
m=1

ṽmρ̂m(x∗, x̃) +

ν̃∑
m=ν̃0+1

ṽmρ̆m(x∗, x̃) > 0,

where ρ∗(x∗, x̃) =
∑p

i=1 ũi[ρ̄i(x∗, x̃) + λ̃ρ̃i(x∗, x̃)].

(b) The assumptions specified in part (b) of Theorem 3.2 are satisfied for the feasible solution
w̃ of (DI). Moreover, φ̄(a) > 0 ⇒ a > 0, fi is strictly (G, β, φ̄, h(·, ·), ρ̄i, θ)-univex at x̃ for
at least one i ∈ p with the corresponding component ũi of ũ positive, or −gi is strictly
(G, β, φ̄, κ(·, ·), ρ̃i, θ)-univex at x̃ for at least one i ∈ p with the corresponding component ũi of
ũ positive (and λ̃ > 0), or ξ →

∑ν̃0
m=1 ṽmG jm(ξ, t̃m) is strictly (G, β, φ̂, µ(·, ·), ρ̂, θ)-pseudounivex

at x̃ , or ξ → ṽmHkm(ξ, s̃m) is strictly (G, β, φ̆m, ψ(·, ·), ρ̆m, θ)-pseudounivex at x̃ for at least
one m ∈ ν̃\ν̃0, or ρ∗(x∗, x̃) + ρ̂(x∗, x̃) +

∑ν̃
m=ν̃0+1 ṽmρ̆m(x∗, x̃) > 0.

(c) The assumptions specified in part (c) of Theorem 3.2 are satisfied for the feasible solution
w̃ of (DI). Moreover, φ̄(a) > 0 ⇒ a > 0, fi is strictly (G, β, φ̄, h(·, ·), ρ̄i, θ)-univex at x̃ for
at least one i ∈ p with the corresponding component ũi of ũ positive, or −gi is strictly
(G, β, φ̄, κ(·, ·), ρ̃i, θ)-univex at x̃ for at least one i ∈ p with the corresponding component ũi

of ũ positive (and λ̃ > 0), or ξ → G jm(ξ, t̃m) is strictly (G, β, φ̂m, µ(·, ·), ρ̂m, θ)-pseudounivex
at x̃ for at least one m ∈ ν̃0, or ξ →

∑ν̃
m=ν̃0+1 ṽmH jm(ξ, s̃m) is strictly (G, β, φ̆, ψ(·, ·), ρ̆, θ)-

pseudounivex at x̃, or ρ∗(x∗, x̃) +
∑ν̃0

m=1 ṽmρ̂m(x∗, x̃) + ṽmρ̆(x∗, x̃) > 0.
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(d) The assumptions specified in part (d) of Theorem 3.2 are satisfied for the feasible solution
w̃ of (DI). Moreover, φ̄(a) > 0 ⇒ a > 0, fi is strictly (G, β, φ̄, h(·, ·), ρ̄i, θ)-univex at x̃ for
at least one i ∈ p with the corresponding component ũi of ũ positive, or −gi is strictly
(G, β, φ̄, κ(·, ·), ρ̃i, θ)-univex at x̃ for at least one i ∈ p with the corresponding component ũi of
ũ positive (and λ̃ > 0), or ξ →

∑ν̃0
m=1 ṽmG jm(ξ, t̃m) is strictly (G, β, φ̂, µ(·, ·), ρ̂, θ)-pseudounivex

at x̃, or ξ →
∑ν̃

m=ν̃0+1 ṽmHkm(ξ, s̃m) is strictly (G, β, φ̆, ψ(·, ·), ρ̆m, θ)-pseudounivex at x̃, or
ρ∗(x∗, x̃) + ρ̂(x∗, x̃) + ρ̆(x∗, x̃) > 0.

(e) The assumptions specified in part (e) of Theorem 3.2 are satisfied for the feasible solution
w̃ of (DI). Moreover, φ̄(a) > 0 ⇒ a > 0, fi is strictly (G, β, φ̄, h(·, ·), ρ̄i, θ)-univex at x̃ for
at least one i ∈ p with the corresponding component ũi of ũ positive, or −gi is strictly
(G, β, φ̄, κ(·, ·), ρ̃i, θ)-univex at x̃ for at least one i ∈ p with the corresponding component
ũi of ũ positive (and λ̃ > 0), or ξ →

∑ν̃0
m=1 ṽmG jm(ξ, t̃m) +

∑ν̃
m=ν̃0+1 ṽmHkm(ξ, s̃m) is strictly

(G, β, φ̂, τ(·, ·), ρ̂, θ)-pseudounivex at x̃, or ρ∗(x∗, x̃) + ρ̂(x∗, x̃) > 0.

Then x̃ = x∗ and ϕ(x∗) = λ̃.

Proof. The proof is similar to that of Theorem 3.2.

4. Specialization I

In this section, we consider two duality models with special constraint structures that allow
the generalized (G, β, φ, h(·, ·), ρ, θ)-univexity reduce to second order generalized (F , β, φ, ρ, θ)-
univexity introduced and studied by Zalmai (see (Zalmai, 2012)) under which duality can be es-
tablished.

Consider the following two problems:

(DII) sup
(y,z,u,v,λ,ν,ν0,Jν0 ,Kν\ν0 ,t̄,s̄)∈H

λ

subject to

p∑
i=1

ui[∇ fi(y) − λ∇gi(y)] +

ν0∑
m=1

vm∇G jm(y, tm) +

ν∑
m=ν0+1

vm∇Hkm(y, sm)

+
{ p∑

i=1

ui[∇2 fi(y) − λ∇2gi(y)] +

ν0∑
m=1

vm∇
2G jm(y, tm) +

ν∑
m=ν0+1

vm∇
2Hkm(y, sm)

}
z = 0, (4.1)

fi(y) − λgi(y) −
1
2
〈z, [∇2 fi(y) − λ∇2gi(y)]z〉 ≥ 0, i ∈ p, (4.2)

G jm(y, tm) −
1
2
〈z,∇2G jm(y, tm)z〉 ≥ 0, m ∈ ν0, (4.3)

vmHkm(y, sm) −
1
2
〈z, vm∇

2Hkm(y, sm)z〉 ≥ 0, m ∈ ν\ν0; (4.4)
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(D̃II) sup
(y,z,u,v,λ,ν,ν0,Jν0 ,Kν\ν0 ,t̄,s̄)∈H

λ subject to (3.3) and (4.2) - (4.4).

The next theorem shows that (DII) is a dual problem for (P).

Theorem 4.1. (Weak Duality) Let x and w = (y, z, u, v, λ, ν, ν0, Jν0 ,Kν\ν0 , t̄, s̄) be arbitrary feasible
solutions of (P) and (DII), respectively, and assume that any one of the following five sets of
hypotheses is satisfied:

(a) (i) for each i ∈ p, fi is (F , β, φ̄, ρ̄i, θ)-sounivex and −gi is (F , β, φ̄, ρ̃i, θ)-sounivex at y, φ̄
is superlinear, and φ̄(a) ≥ 0⇒ a ≥ 0;

(ii) the function ξ → G jm(ξ, tm) is (F , β, φ̂m, ρ̂m, θ)-quasisounivex at y, φ̂m is increasing,
and φ̂m(0) = 0 for each m ∈ ν0;

(iii) the function ξ → vmHkm(ξ, sm) is (F , β, φ̆m, ρ̆m, θ)-quasisounivex at y, φ̆m is increasing,
and φ̆m(0) = 0 for each m ∈ ν\ν0;

(iv) ρ∗(x, y) +
∑ν0

m=1 vmρ̂m(x, y) +
∑ν

m=ν0+1 vmρ̆m(x, y) ≥ 0, where
ρ∗(x, y) =

∑p
i=1 ui[ρ̄i(x, y) + λρ̃i(x, y)];

(b) (i) for each i ∈ p, fi is (F , β, φ̄, ρ̄i, θ)-sounivex and −gi is (F , β, φ̄, ρ̃i, θ)-sounivex at y, φ̄
is superlinear, and φ̄(a) ≥ 0⇒ a ≥ 0;

(ii) the function ξ →
∑ν0

m=1 vmG jm(ξ, tm) is (F , β, φ̂, ρ̂, θ)-quasisounivex at y, φ̂ is increas-
ing, and φ̂(0) = 0;

(iii) the function ξ → vmHkm(ξ, sm) is (F , β, φ̆m, ρ̆m, θ)-quasisounivex at y, φ̆m is increasing,
and φ̆m(0) = 0 for each m ∈ ν\ν0;

(iv) ρ∗(x, y) + ρ̂(x, y) +
∑ν

m=ν0+1 ρ̆m(x, y) ≥ 0;

(c) (i) for each i ∈ p, fi is (F , β, φ̄, ρ̄i, θ)-sounivex and −gi is (F , β, φ̄, ρ̃i, θ)-sounivex at y, φ̄
is superlinear, and φ̄(a) ≥ 0⇒ a ≥ 0;

(ii) the function ξ → G jm(ξ, tm) is (F , β, φ̂m, ρ̂m, θ)-quasisounivex at y, φ̂m is increasing,
and φ̂m(0) = 0 for each m ∈ ν0;

(iii) the function ξ →
∑ν

m=ν0+1 vmHkm(ξ, sm) is (F , β, φ̆, ρ̆, θ)-quasisounivex at y, φ̆ is in-
creasing, and φ̆(0) = 0;

(iv) ρ∗(x, y) +
∑ν0

m=1 vmρ̂m(x, y) + ρ̆(x, y) ≥ 0;

(d) (i) for each i ∈ p, fi is (F , β, φ̄, ρ̄i, θ)-sounivex and −gi is (F , β, φ̄, ρ̃i, θ)-sounivex at y, φ̄
is superlinear, and φ̄(a) ≥ 0⇒ a ≥ 0;

(ii) the function ξ →
∑ν0

m=1 vmG jm(ξ, tm) is (F , β, φ̂, ρ̂, θ)-quasisounivex at y, φ̂ is increas-
ing, and φ̂(0) = 0;
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(iii) the function ξ →
∑ν

m=ν0+1 vmHkm(ξ, sm) is (F , β, φ̆, ρ̆, θ)-quasisounivex at y, φ̆ is in-
creasing, and φ̆(0) = 0;

(iv) ρ∗(x, y) + ρ̂(x, y) + ρ̆(x, y) ≥ 0;

(e) (i) for each i ∈ p, fi is (F , β, φ̄, ρ̄i, θ)-sounivex and −gi is (F , β, φ̄, ρ̃i, θ)-sounivex at y, φ̄
is superlinear, and φ̄(a) ≥ 0⇒ a ≥ 0;

(ii) the function ξ →
∑ν0

m=1 vmG jm(ξ, tm)+
∑ν

m=ν0+1 vmHkm(ξ, sm) is (F , β, φ̂, ρ̂, θ)-quasisounivex
at y, φ̂ is increasing, and φ̂(0) = 0;

(iii) ρ∗(x, y) + ρ̂(x, y) ≥ 0.

Then ϕ(x) ≥ λ.

Proof. The poof is similar to that of Theorem 3.2.

5. Specializations II

In this section, we consider certain specializations of the (G, β, φ, h(·, ·), ρ, θ)-univexity to first
order univexity under which first order duality (see (Zalmai & Zhang, 2007)) can be established.
These duality models have the following forms:

(DIII) sup
(y,u,v,λ,ν,ν0,Jν0 ,Kν\ν0 ,t̄,s̄)∈H

λ

subject to

p∑
i=1

ui[∇ fi(y) − λ∇gi(y)] +

ν0∑
m=1

vm∇G jm(y, tm) +

ν∑
m=ν0+1

vm∇Hkm(y, sm) = 0, (5.1)

ui[ fi(y) − λgi(y)] ≥ 0, i ∈ p, (5.2)

G jm(y, tm) ≥ 0, m ∈ ν0, (5.3)

vmHkm(y, sm) ≥ 0, m ∈ ν\ν0; (5.4)

(D̃III) sup
(y,u,v,λ,ν,ν0,Jν0 ,Kν\ν0 ,t̄,s̄)∈H

λ

subject to (3.3) and (5.2) - (5.4).

Theorem 5.1. (see (Zalmai & Zhang, 2007)) (Weak Duality) Let x and (y, u, v, λ, ν, ν0, Jν0 , Kν\ν0 ,
t̄, s̄) be arbitrary feasible solutions of (P) and (DIII), respectively, and assume that any one of the
following five sets of hypotheses is satisfied:

(a) (i) for each i ∈ p, fi is (F , β, φ̄, ρ̄i, θ)-univex and −gi is (F , β, φ̄, ρ̃i, θ)-univex at y, φ̄ is
superlinear, and φ̄(a) ≥ 0⇒ a ≥ 0;
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(ii) the function z → G jm(z, tm) is (F , β, φ̂m, ρ̂m, θ)-quasiunivex at y, φ̂m is increasing, and
φ̂m(0) = 0 for each m ∈ ν0;

(iii) the function z → vmHkm(z, sm) is (F , β, φ̆m, ρ̆m, θ)-quasiunivex at y, φ̆m is increasing,
and φ̆m(0) = 0 for each m ∈ ν\ν0;

(iv) ρ∗ +
∑ν0

m=1 vmρ̂m +
∑ν

m=ν0+1 vmρ̆m ≥ 0, where ρ∗ =
∑p

i=1 ui(ρ̄i + λρ̃i);

(b) (i) for each i ∈ p, fi is (F , β, φ̄, ρ̄i, θ)-univex and −gi is (F , β, φ̄, ρ̃i, θ)-univex at y, φ̄ is
superlinear, and φ̄(a) ≥ 0⇒ a ≥ 0;

(ii) the function z →
∑ν0

m=1 vmG jm(z, tm) is (F , β, φ̂, ρ̂, θ)-quasiunivex at y, φ̂ is increasing,
and φ̂(0) = 0;

(iii) the function z → vmHkm(z, sm) is (F , β, φ̆m, ρ̆m, θ)-quasiunivex at y, φ̆m is increasing,
and φ̆m(0) = 0 for each m ∈ ν\ν0;

(iv) ρ∗ + ρ̂ +
∑ν

m=ν0+1 ρ̆m ≥ 0;

(c) (i) for each i ∈ p, fi is (F , β, φ̄, ρ̄i, θ)-univex and −gi is (F , β, φ̄, ρ̃i, θ)-univex at y, φ̄ is
superlinear, and φ̄(a) ≥ 0⇒ a ≥ 0;

(ii) the function z → G jm(z, tm) is (F , β, φ̂m, ρ̂m, θ)-quasiunivex at y, φ̂m is increasing, and
φ̂m(0) = 0 for each m ∈ ν0;

(iii) the function z →
∑ν

m=ν0+1 vmHkm(z, sm) is (F , β, φ̆, ρ̆, θ)-quasiunivex at y, φ̆ is increas-
ing, and φ̆(0) = 0;

(iv) ρ∗ +
∑ν0

m=1 vmρ̂m + ρ̆ ≥ 0;

(d) (i) for each i ∈ p, fi is (F , β, φ̄, ρ̄i, θ)-univex and −gi is (F , β, φ̄, ρ̃i, θ)-univex at y, φ̄ is
superlinear, and φ̄(a) ≥ 0⇒ a ≥ 0;

(ii) the function z →
∑ν0

m=1 vmG jm(z, tm) is (F , β, φ̂, ρ̂, θ)-quasiunivex at y, φ̂ is increasing,
and φ̂(0) = 0;

(iii) the function z →
∑ν

m=ν0+1 vmHkm(z, sm) is (F , β, φ̆, ρ̆, θ)-quasiunivex at y, φ̆ is increas-
ing, and φ̆(0) = 0;

(iv) ρ∗ + ρ̂ + ρ̆ ≥ 0;

(e) (i) for each i ∈ p, fi is (F , β, φ̄, ρ̄i, θ)-univex and −gi is (F , β, φ̄, ρ̃i, θ)-univex at y, φ̄ is
superlinear, and φ̄(a) ≥ 0⇒ a ≥ 0;

(ii) the function z→
∑ν0

m=1 vmG jm(z, tm) +
∑ν

m=ν0+1 vmHkm(z, sm) is (F , β, φ̂, ρ̂, θ)-quasiunivex
at y, φ̂ is increasing, and φ̂(0) = 0;

(iii) ρ∗ + ρ̂ ≥ 0.

Then ϕ(x) ≥ λ.
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6. Concluding Remarks

The duality results established in this communication encompass a fairly large number of
second-order dual problems and duality theorems that were investigated previously for several
classes of nonlinear programming problems. Furthermore, the methods utilized in this paper could
lead to extend and generalize results to other classes of mathematical programming problems
based on general univexity assumptions.
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The purpose of this present paper is to derive some inclusion results and coefficient estimates for certain analytic

functions with logarithmic coefficients by using Hadamard product. Relevant connections of the results with various
known properties are also investigated.
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1. Introduction and Motivation

let A denote the class of normalized functions f (z) of the from

f (z) = z +

+∞∑
n=2

anzn, (1.1)

which are holomorphic in the open unit disk ∆ = {z : |z| < 1}. Let N denote the subclass of A
consisting of functions f (z) of the form

f (z) = z −
+∞∑
n=2

anzn. (an ≥ 0). (1.2)

Associated with each f in A is a well defined logarithmic function

log
f (z)
z

= 2
+∞∑
n=1

γnzn. z ∈ ∆. (1.3)
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The numbers γn are called the logarithmic coefficients of f (z). See (Girela, 2000). For log f (z)
z

given by (1.3) and G(z) ∈ N given by

G(z) = z −
+∞∑
n=2

bnzn, (1.4)

the convolution (or Hadamard product) of

F(z) = −(log
f (z)
z

) + (1 + 2γ1)z, (1.5)

and G(z) denoted by F ∗G, is defined by

H(z) = F ∗G := z −
+∞∑
n=2

2γnbnzn. (1.6)

We denote by Π(η, β) and Q(η, β) consisting of the functions H(z) = F ∗G in N which satisfy

Re{
zH′(z)
H(z)

η zH′(z)
H(z) + (1 − η)

} > β (1.7)

and

Re{
1 +

zH′′(z)
H′(z)

1 + η zH′′(z)
H′(z)

} > β , 0 ≤ β < 1, 0 ≤ η < 1, (1.8)

respectively. Also the functions H(z) in N are said to be in the class Λ(η, β, ψ) , if there exists a
function ψ(z) ∈ N such that

Re{
zH′(z)
ψ(z)

η zH′(z)
ψ(z) + (1 − η)

} > β. (1.9)

For these subclassess we prove some interesting theorems include coefficient bounds, inclusion
results, extreme points and property of convex sets.

Several other interesting subclasses of univalent functions were investigated recently, for ex-
ample, by Ghanim and Darus (Ghanim & Darus, 2008), Prajapat and Goyal (Prajapat & Goyal,
2009), Acu and Owa (Acu & Owa, 2000) and etc. See also (Najafzadeh & Kulkarni, 2006) and
(Najafzadeh & Ebadian, 2009).

2. Main result

Theorem 2.1. If H(z) ∈ Λ(η, β, ψ) , then

+∞∑
n=2

[2γnbn(1 − ηβ) − β(1 − η)cn] ≤ 1 − β. (2.1)
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Proof. Since H(z) ∈ Λ(η, β, ψ), then there exists a function ψ(z) = z −
∑+∞

n=2 cnzn ∈ N such
that (1.9) holds true. By putting (1.6) and H′(z) = (F ∗ g)′ = 1 −

∑+∞
n=2 2γnbnzn in (1.9) we

get Re{ 1−
∑+∞

n=2 2γnbnzn−1

1−
∑+∞

n=2(2ηγnbn+(1−η)cn)zn−1 } > β. By choosing the values of z on the real axis so that z(F∗G)′

ψ(z) is

real and letting r → 1− through real values, we have 1−
∑+∞

n=2 2γnbn

1−
∑+∞

n=2(2ηγnbn+(1−η)cn) ≥ β, or equivalently∑+∞
n=2[2γnbn(1 − ηβ) − β(1 − η)cn] ≤ 1 − β. Now the proof is complete.

Theorem 2.2. If H(z) ∈ Q(η, β) , then
∑+∞

n=2 2γnbn(1 + η(n − 1) + βn2) ≤ 1 − β.

Proof. Since H(z) ∈ Q(η, β) , then by (1.6) and (1.8) we get Re{ 1−
∑+∞

n=2 2n2γnbnzn−1

1−
∑+∞

n=2 2nγn(1+η(n−1))zn−1 } > β. By

choosing the values of z on the real axis so that z(F∗G)′′

(F∗G)′ is real and letting r → 1− though real values

we have 1−
∑+∞

n=2 2n2γnbn

1−
∑+∞

n=2 2nγnbn(1+η(n−1)) > β. The above inequality gives the required result.

Definition 2.1. A function H(z) ∈ N is said to be in W(η, β), if there exists a function ψ(z) =

z −
∑+∞

n=2 cnzn such that

(a) The condition (2.1) holds true;

(b) For every n, 2γnbn − cn ≥ 0.

In the next theorem we prove an inclusion property.

Theorem 2.3. W(η, β) ⊆ Λ(η, β, ψ).

Proof. Let H(z) ∈ W(η, β) , we must show that H(z) ∈ Λ(η, β, ψ) or equivalently the condition
(1.9) holds. But

|

z(F∗G)′

ψ(z)

η z(F∗G)′
ψ(z) + (1 − η)

−1| = |
1 −
∑+∞

n=2 2γnbnzn−1

1 −
∑+∞

n=2(2ηγnbn + (1 − η)cn)zn−1
−1| = |

(η − 1)
∑+∞

n=2(2γnbn − cn)zn−1

1 −
∑+∞

n=2(2ηγnbn + (1 − η)cn)zn−1
|

≤
(1 − η)

∑+∞
n=2(2γnbn − cn)

1 −
∑+∞

n=2(2ηγnbn + (1 − η)cn)
.

If (a) holds , above fraction is bounded above by 1 − α and hence (1.9) is satisfied. So H(z) ∈
Λ(η, β, ψ).

Remark. By putting ψ(z) = G(z) , in the last Theorem we obtain Π(η, β) ⊆ W(η, β) , and also by
putting ψ(z) = G(z) in (2.1) we have

∑+∞
n=2[2γn(1 − ηβ) − β(1 − η)]bn ≤ 1 − β. This is the necessary

and sufficient condition for functions H(z) ∈ N to be in the class Π(η, β) .
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3. Coefficient estimates and Distortion bounds for functions in W(η, β)

In this section we find coefficient bounds and verify distortion Theorem for the class W(η, β).

Remark. If H(z) be in the class W(η, β) , then

+∞∑
n=2

γnbn ≤
n(1 − β) + β(1 − η)

2(1 − ηβ)
. (3.1)

Proof. From definition of W(η, β) and taking ψ(z) = z−
∑+∞

n=2 cnzn, we have
∑+∞

n=2(1− ηβ)(2γnbn) ≤
1 − β + β(1 − η)cn. If cn ≤

1
n (∀n), thus we have

∑+∞
n=2 γnbn ≤

n(1−β)+β(1−η)
2(1−ηβ) .

Remark. The function Hn(z) = z − n(1−β)+β(1−η)
2(1−ηβ) zn is an extremal function for the class W(η, β) .

Theorem 3.1. Let H(z) = F ∗G be in the class W(η, β) , then for |z| ≤ r < 1

r −
2 − β − βη
4(1 − ηβ)

r2 ≤ |F ∗G| ≤ r +
2 − β − βη
4(1 − ηβ)

r2 (3.2)

Proof. Since

H(z) = F ∗G = z −
+∞∑
n=2

2γnbnzn, (3.3)

so by (2.1) we get
∑+∞

n=2 2γnbn(1−ηβ)−β(1−η)cn ≤ 1−β. Since cn ≤
1
n ≤

1
2 we have

∑+∞
n=2 2nγnbn(1−

ηβ) ≤ β(1−η)
2 +1−β, or 2

∑+∞
n=2 2nγnbn(1−ηβ) ≤ 2−β−βη, or 2

∑+∞
n=2 2γnbn ≤ 2

∑+∞
n=2 nγnbn ≤

2−β−βη
2(1−ηβ) ,

or
∑+∞

n=2 2γnbn ≤
2−β−βη
4(1−ηβ) . From this inequality and (3.3) we have |F ∗ G| ≤ |z| +

∑+∞
n=2 2γnbn|z|n

≤ r +
2−β−βη
4(1−ηβ)r

2, and |F ∗G| ≥ r − 2−β−βη
4(1−ηβ)r

2.

Theorem 3.2. The class W(η, β) is convex.

Proof. Let H1(z) and H2(z) be in the class W(η, β) with respect to functions ψ1(z) = z −
∑+∞

n=2 cnzn

and ψ2(z) = z −
∑+∞

n=2 c′nzn. For 0 ≤ j ≤ 1 we must show that H(z) = jH1(z) + (1 − j)H2(z)
belongs to W(η, β) with respect to ψ(z) = jψ1(z) + (1 − j)ψ2(z). But H1(z) = z −

∑+∞
n=2 2γnbnzn,

H2(z) = z −
∑+∞

n=2 2γnb′nzn, and H(z) = z −
∑+∞

n=2 sn( j)zn, where sn( j) = 2γn( jbn + (1 − j)b′n). Also
ψ(z) = z −

∑+∞
n=2 rn( j)zn where rn( j) = jcn + (1 − j)c′n.

The function H(z) will belong to W(η, β) if

(i)
∑+∞

n=2[sn( j)(1 − ηβ) − β(1 − η)rn( j)] ≤ 1 − β,

(ii) sn( j) − rn( j) ≥ 0 for every n.

Since H1 and H2 are in W(η, β) then 2γnbn − cn ≥ 0 and 2γnb′n − c′n ≥ 0, for all n. With direct
calculation since 0 ≤ j ≤ 1 we have, sn( j) − rn( j) = 2γn( jbn + (1 − j)b′n) − ( jcn + (1 − j)c′n) =

j(2γnbn − cn) + (1− j)(2γnb′n − c′n) ≥ 0. Also
∑+∞

n=2[sn( j)(1− ηβ)− β(1− η)rn( j)] = j
∑+∞

n=2 2γnbn(1−
ηβ)− β(1− η)cn + (1− j)

∑+∞
n=2 2γnb′n(1− ηβ)− β(1− η)c′n ≤ j(1− β) + (1− j)(1− β) = 1− β. Now

the proof is complete.
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1. Introduction

The concept of a real or complex extrafunction essentially extends the concept of a real or
complex function, encompassing, in particular, the concept of a distribution, i.e., distributions are
a kind of extrafunctions (Burgin, 2012). Extrafunctions have many advantages in comparison
with functions and distributions. For instance, integration of extrafunctions is more powerful
than integration of functions allowing integration of a much larger range of functions as it is
demonstrated in (Burgin, 2012).

At the same time, spaces of extrafunctions have a more sophisticated structure in comparison
with spaces of functions, which are topological vector spaces and have a highly advanced theory
(cf., for example, (Bourbaki, 1953-1955); (Robertson & Robertson, 1964); (Riez & Sz.-Nagy,
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1955); (Rudin, 1991); (Grothendieck, 1992); (Kolmogorov & Fomin, 1999)). In particular, it has
been demonstrated that topological vector spaces provide an efficient context for the development
of integration and are very useful for solving many problems in functional analysis in general
(Choquet, 1969); (Edwards & Wayment, 1970); (Shuchat, 1972); (Kurzweil, 2000). In addition,
locally convex topological vector spaces offer a convenient structure for studies of summation,
which is integration of functions on natural numbers (Pietsch, 1965).

In this paper we introduce and study semitopological vector spaces, operators in these spaces
and their mappings. It provides a base for the theory of extrafunction spaces in an abstract setting
of algebraic systems and topological spaces. Semitopological vector spaces are more general than
conventional topological vector spaces. To study semitopological vector spaces, hypermetrics and
hyperpseudometrics are introduced and it is demonstrated that hyperseminorms induce hyperpseu-
dometrics, while hypernorms induce hypermetrics. Norms are special cases of hypernorms, while
seminorms are special cases of hyperseminorms. Sufficient and necessary conditions for a hyper-
pseudometric (hypermetric) to be induced by a hyperseminorm (hypernorm) are found. We also
show that semitopological vector spaces are closely related to systems of hyperseminorms.

An essential property of operators in mathematics is continuity (cf. (Dunford & Schwartz,
1958); (Rudin, 1991); (Kolmogorov & Fomin, 1999)). One of the central results of functional
analysis is the theorem that establishes equivalence between continuity and boundedness for lin-
ear operators. Here we extend the concepts of boundedness and continuity for operators and
mappings of semitopological vector spaces with systems of hyperseminorms and seminorms, dif-
ferentiating between different types of boundedness and continuity and making these concepts
relative to systems of hyperseminorms and seminorms. Then we study these concepts, proving
a series of theorems, which establish equivalence between a type of relative continuity and the
corresponding type of relative boundedness for linear operators in semitopological vector spaces
with systems of hyperseminorms or seminorms. Classical results describing continuous operators
in convex spaces become direct corollaries of theorems proved in this paper. In conclusion, several
problems for further research are formulated.

I would like to express my gratitude to the anonymous reviewer for useful remarks and obser-
vations.

2. Semitopological vector spaces

The concept of a semitopological vector space is an extension of the concept of a topological
vector space.

Definition 2.1. A semitopological vector space L over a field F is a vector space over F with
a topology in which addition is continuous, while scalar multiplication by elements from F is
continuous with respect to L, i.e., the scalar multiplication mapping m : F × L → L is continuous
in the second coordinate.

When the multiplication mapping m : F × L → L is continuous, then L is a topological vector
space over the field F. Some authors (cf., for example, (Rudin, 1991)) additionally demand that
the point 0 in a topological vector space is closed. This condition results in the Hausdorff topology
in topological vector spaces.
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In what follows, F stands either for the field R of all real numbers or for the field C of all
complex numbers or for a subfield of C that contains R, while 0 denotes the zero element of any
vector space.

Semitopological vector spaces are closely related to hypernorms and hyperseminorms.
Let Rω be the set of all real hypernumbers and R+

ω be the set of all non-negative real hyper-
numbers (Burgin, 2012).

Definition 2.2. a) A mapping q : L → R+
ω is called a hypernorm if it satisfies the following

conditions:

N1 . For any x from L, q(x) = 0 if and only if x = 0.

N2 . q(ax) = |a| · q(x) for any x from L and any number a from F.

N3 . (the triangle inequality or subadditivity).

q(x + y) ≤ q(x) + q(y) for any x and y from L

b) A vector space L with a norm is called a hypernormed vector space or simply, a hypernormed
space.

c) The real hypernumber q(x) is called the hypernorm of an element x from the hypernormed
space L.

Note that norms in vector spaces coincide with hypernorms that take values only in the set of
real numbers.

Example 2.1. As it is proved in (Burgin, 2012), the set of all real hypernumbers Rω is a hyper-
normed space where the hypernorm ‖ · ‖ is defined by the following formula:

If α is a real hypernumber, i.e.,α = Hn(ai)i∈ω with ai ∈ R for all i ∈ ω, then ‖α‖ = Hn(|ai|)i∈ω.

Note that this hypernorm coincides with the conventional norm on real numbers but it is im-
possible get the same topology by means of a conventional finite norm.

Example 2.2. As it is proved in (Burgin, 2002), the set of all complex hypernumbers Cω of all
complex hypernumbers is a hypernormed space where the hypernorm ‖ · ‖ is defined by the fol-
lowing formula:

If α is a complex hypernumber,i.e., α = Hn(ai)i∈ω with ai ∈ C for all i ∈ ω, then ‖α‖ =

Hn(|ai|)i∈ω.

Note that this hypernorm coincides with the conventional norm on complex numbers but it is
impossible get the same topology by means of a conventional finite norm.

There are hypernormed spaces that are not normed spaces.

Example 2.3. The set C(R,R) of all continuous real functions is a hypernormed space where the
hypernorm ‖ · ‖ is defined by the following formula:

If f : R→ R, then ‖ f ‖ = Hn(ai)i∈ω where ai = max{| f (x)|; ai = [−i, i]}.
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At the same time, it is known that C(R,R) is not a normed space (Robertson & Robertson,
1964).

There are natural relations between hypernorms and semitopological vector spaces.

Theorem 2.1. Any hypernormed space is a Hausdorff semitopological vector space.

Proof. Let us consider a vector space L with a hypernorm q. Taking an element x from L and a
positive real number k, we define the neighborhood Okx of x by the following formula

Okx = {y ∈ L; q(x − y) < k}.

At first, we show that the system of so defined neighborhoods determines a topology in L. To do
this, it is necessary to check the following neighborhood axioms (Kuratowski, 1966):

NB1. Any neighborhood of a point x ∈ X contains this point.

NB2. For any two neighborhoods O1x and O2x of a point x ∈ X, there is a neighborhood Ox of x
that is a subset of the intersection O1x ∩ O2x.

NB3. For any neighborhood Ox of a point x ∈ X and a point y ∈ Ox, there is a neighborhood Oy
of y that is a subset of Ox.

Let us consider a point x from X.

NB1: The point x belongs to Okx because q(x − x) = q(0) = 0 < k for any positive real number k.

NB2: Taking two positive real numbers k and h, we see that the intersection Okx∩Ohx = Olx also
is a neighborhood of x where l = min{k, h}.

NB3: Let y ∈ Okx. Then q(x − y) < k and by properties of real numbers, there is a positive real
number t such that q(x − y) < k − t. Then Otx ⊆ Okx. Indeed, if z ∈ Otx, then q(y − z) < t.
Consequently,

q(x − z) = q((x − y) + (y − z)) ≤ q(x − y) + q(y − z) < (k − t) + t = k.

It means that z ∈ Okx.

Thus, we have a topology in L, and this topology is Hausdorff because any hypernorm separates
points, i.e., if x , y, then q(x − y) , 0.

Now we show that addition is continuous and scalar multiplication is continuous in the second
coordinate with respect to this topology.

Let us consider a sequence {xi; i = 1, 2, 3, . . . } that converges to x, a sequence {yi; i = 1, 2, 3, . . . }
that converges to y, and the sequence {zi = xi + yi; i = 1, 2, 3, . . . }. Convergence of these two se-
quences means that for any k > 0, there are a natural number n such that q(xi− x) < k for any i > n
and a natural number m such that q(yi − y) < k for any i > m. Then by properties of a hypernorm,
we have

q(zi − (x + y)) = q((xi + yi) − (x + y)) = q((xi − x) + (yi − y)) ≤ q(xi − x) + q(yi − y) < k + k = 2k
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when i > max{n,m}. As k is an arbitrary positive real number, this means that the sequence
{zi = xi + yi; i = 1, 2, 3, . . . }. converges to x + y. Consequently, addition is continuous in L.

In addition, for any number a from F, we have

q(ui − ax) = q(axi − ax) = q(a(xi − x)) ≤ |a|q(xi − x) < |a|k

where ui = axi . As k is an arbitrary positive real number and |a| is a constant, this means that
the sequence {ui = axi; i = 1, 2, 3, . . . } converges to ax. Consequently, scalar multiplication is
continuous in the second coordinate. Theorem is proved.

Hypernormed spaces are also hypermetric spaces.

Definition 2.3. a) A mapping d : X × X → R+
ω is called a hypermetric (or a hyperdistance

function) in a set X if it satisfies the following axioms:

M1. For any x and y from X, d(x, y) = 0 if and only if x = y.

M2. (Symmetry). d(x, y) = d(y, x) for all x, y ∈ X.

M3. (the triangle inequality or subadditivity).

d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X.

b) A set X with a hypermetric d is called a hypermetric space.
c) The real hypernumber d(x, y) is called the distance between x and y in the hypermetric space

X.

Note that the distance between two elements in a hypermetric space can be a real number, finite
hypernumber or infinite hypernumber. When the distance between two elements of X is always a
real number, d is a metric.

Lemma 2.1. a) A hypernorm q in a vector space L induces a hypermetric dq in this space.

b) If q is a norm in L, then dq is a metric.

Indeed, if q : X → R+
ω is a hypernorm in L and x and y are elements from L, then we can define

dq(x, y) = q(x − y). Properties of a hypernorm imply that dq satisfies all axioms M1- M3. The
statement (b) directly follows from definitions.

Theorem 2.1 and Lemma 2.1 imply the following result.

Corollary 2.1. Rω and Cω are hypermetric spaces.

It is interesting to find what hypermetrics in vector spaces are induced by hypernorms and what
metrics in vector spaces are induced by norms. To do this, let us consider additional properties of
hypermetrics and metrics.

Definition 2.4. A hypermetric (metric) in a vector space L is called linear if it satisfies the follow-
ing axioms:
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LM1. d(x + z, y + z) = d(x, y) for any x, y, z ∈ L.

LM2. d(ax, ay) = |a| · d(x, y) for all x, y ∈ L and a ∈ F.

Example 2.4. Let us take the space of all real numbers R as the space L. The natural metric in
this space is defined as d(x, y) = |x − y|. This metric is linear. Indeed,

d(x + z, y + z) = |(x + z) − (y + z)| = |x − y| = d(x, y)

and
d(ax, ay) = |ax − ay| = |a(x − y)| = |a| · |x − y| = |a| · d(x, y).

Example 2.5. Let us take the two-dimensional real vector space R2 as the space L. The natural
metric in this space is defined by the conventional formula

If x = (x1, x2) and y = (y1, y2) , then d(x, y) =
√

(x1 − y1)2 + (x2 − y2)2.

This metric is also linear. Indeed,

d(x+z, y+z) =
√

((x1 + z1) − (y1 + z1))2 + ((x2 + z2) − (y2 + z2))2 =
√

(x1 − y1)2 + (x2 − y2)2 = d(x, y)

and

d(ax, ay) =
√

(ax1 − ay1)2 + (ax2 − ay2)2 =
√

a2(x1 − y1)2 + a2(x2 − y2)2 =

= |a|
√

(x1 − y1)2 + (x2 − y2)2 = |a| · d(x, y).

Example 2.6. Let us take the two-dimensional real vector space R2 as the space L. The natural
metric in this space is defined by the conventional formula

If x = (x1, x2) and y = (y1, y2), then d(x, y) = (x1 − y1)2 + (x2 − y2)2.

This metric is not linear. Indeed, let us take x = (3, 3), y = (1, 1), and a = 2. Then d(x, y) = 8,
while d(2x, 2y) = 32.

These examples show that there are linear metrics (hypermetrics) in vector spaces and there
are metrics (hypermetrics) in vector spaces that are not linear. The majority of popular metrics are
induced by norms and thus, they are linear as the following result demonstrates.

Theorem 2.2. A hypermetric d is induced by a hypernorm if and only if d is linear.

Proof. Necessity. Let us consider a vector space L with a hypernorm q. By Lemma 2.1, it induces
the hypermetric dq(x, y) = q(x−y). Then dq(x+z, y+z) = q((x+z)(y+z)) = q(x−y) = dq(x, y), i.e.,
Axiom LM1 is true. In addition, dq(ax, ay) = q(ax−ay) = q(a(x− y)) = |a| ·q(x− y) = |a| ·dq(x, y),
i.e., Axiom LM2 is also true.

Necessity. Let us consider a vector space L with a linear hypermetric d. We define the hyper-
norm qd by the following formula

qd(x) = d(0, x).
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We show that qd is a hypernorm. Indeed, qd(0) = d(0, 0) = 0. Besides, if qd(x) = d(0, x) = 0,
then x = 0 by Axiom M1. This gives us Axiom N1 for qd.

In addition,

qd(ax) = d(0, ax) = d(a0, ax) = d(a(0, x)) = |a| · d(0, x) = |a| · qd(x)

by Axiom LM2. This gives us Axiom N2 for qd.
Likewise, by Axioms M3 and LM1, we have

qd(x + y) = d(0, x + y) ≤ d(0, x) + d(x, x + y) = d(0, x) + d(0, y) = qd(x) + qd(y).

This gives us the triangle inequality (Axiom N3) for qd.
Theorem is proved.

Corollary 2.2. A metric d is induced by a norm if and only if d is linear.

Taking only a part of the hypernorm properties, we come to the concept of a hyperseminorm.

Definition 2.5. a) A mapping q : L→ R+
ω is called a hyperseminorm if it satisfies the following

conditions:

N2. q(ax) = |a| · q(x) for any x from L and any number a from R.

N3. (the triangle inequality or subadditivity).

q(x + y) ≤ q(x) + q(y) for any x and y from L.

b) A vector space L with a norm is called a hyperseminormed vector space or simply, a hyper-
seminormed space.

c) The real hypernumber q(x) is called the hyperseminorm of an element x from the hyper-
seminormed space L.

d) A set X ⊆ L is called q - bounded if there is a positive real number h such that for any
element a from X, the inequality q(a) < h is true.

e) A set X ⊆ L is called weakly q - bounded if there is a positive real hypernumber α such that
for any element a from X, the inequality q(a) < α is true.

Note that any seminorm is a hyperseminorm that takes values only in the set of real numbers.

Proposition 2.1. If q : L→ R is a hyperseminorm, then it has the following properties:

(1) q(x) ≥ 0 for any x ∈ L.
(2) q(x − y) = q(y − x) for any x, y ∈ L.
(3) q(0) = 0.
(4) |q(x)q(y)| = q(x − y) for any x, y ∈ L.
(5) q(x) − q(y) ≤ q(x + y) for any x, y ∈ L.
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Proof. (1) By Axiom N3, we have

q(x) + q(−x) ≥ q(x + (−x)) = q(0).

At the same time, by N2, we have q(0) = 0 · q(0) = 0 and q(−x) = q(x). This gives us

q(x) + q(−x) = q(x) + q(x) = 2q(x) ≥ q(x + (−x)) = q(0) = 0

and thus, q(x) ≥ 0.
(2) By Axiom N2, we have

q(x − y) = q(−(y − x)) = | − 1| · q(y − x) = q(y − x).

(3) By Axiom N2, we have
q(0) = q(0 · 0) = |0| · q(0) = 0.

(4) By Axiom N3, we have

q(x) = q(x − y + y) ≤ q(x − y) + q(y).

Thus,
q(x) − q(y) ≤ q(x − y).

As q is symmetric (property (2)), we have

q(y) − q(x) ≤ q(x − y).

Consequently,
|q(x) − q(y)| = q(x − y).

Property (5) is a consequence of property (4).

Proposition is proved.

There are intrinsic relations between hyperseminorms and semitopological vector spaces.

Theorem 2.3. Any hyperseminormed space is a semitopological vector space, which is Hausdorff
if and only if it is a hypernormed space.

Proof. Let us consider a vector space L with a hyperseminorm q. Taking an element x from L and
a positive real number k, we define the neighborhood Okx of x by the following formula

Okx = {y ∈ L; q(x − y) < k}.

To show that the system of so defined neighborhoods determines a topology in L, we check the
neighborhood axioms (Kuratowski, 1966).

NB1: The point x belongs to Okx because by Proposition 1, q(x − x) = q(0) = 0 < k for any
positive real number k.
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NB2: Taking two positive real numbers k and h, we see that the intersection Okx ∩ Ohx = Olx is
also a neighborhood of x where l = min{k, h}.

NB3: Let y ∈ Okx. Then q(x − y) < k and by properties of real numbers, there is a positive real
number t such that q(x − y) < k − t. Then Otx ⊆ Okx. Indeed, if z ∈ Otx, then q(y − z) < t.
Consequently,

q(x − z) = q((x − y) + (y − z)) ≤ q(x − y) + q(y − z) < (k − t) + t = k.

It means that z ∈ Okx.
Now we show that addition is continuous and scalar multiplication is continuous in the second

coordinate with respect to this topology.
Let us consider a sequence {xi; i = 1, 2, 3, . . . } that converges to x, a sequence {yi; i = 1, 2, 3, . . . }

that converges to y, and the sequence {zi = xi + yi; i = 1, 2, 3, . . . }. Convergence of these two se-
quences means that for any k > 0, there are a natural number n such that q(xi − x) < k for any
i > n and a natural number m such that q(yi − y) < k for any i > m. Then by properties of a
hyperseminorm, we have

q(zi − (x + y)) = q((xi + yi) − (x + y)) = q((xi − x) + (yi − y)) ≤ q(xi − x) + q(yi − y) < k + k = 2k,

when i > max{n,m}. As k is an arbitrary positive real number, this means that the sequence
{zi = xi + yi; i = 1, 2, 3, . . . } converges to x + y. Consequently, addition is continuous in L.

In addition, for any number a from F, we have

q(ui − ax) = q(axi − ax) = q(a(xi − x)) = |a|q(xi − x) < |a|k,

where ui = axi . As k is an arbitrary positive real number and |a| is a constant, this means that
the sequence {ui = axi; i = 1, 2, 3, . . . } converges to ax. Consequently, scalar multiplication is
continuous in the second coordinate.

By Theorem 2.2, if q is a hypernorm, then the space L is Hausdorff. At the same time, if q is
not a hypernorm, then there are x and y from L such that x , y but q(x − y) = 0. According to
definition, these points x and y cannot be separated in the topology defined above. Thus, the space
L is not Hausdorff.

Theorem is proved.

Hyperseminormed spaces are also hyperpseudometric spaces.

Definition 2.6. A hyperpseudometric in a set X is a mapping d : X × X → R+
ω that satisfies the

following axioms:

P1. d(x, y) = 0 if x = y,
i.e., the distance between an element and itself is equal to zero.
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M2. (Symmetry). d(x, y) = d(y, x) for all x, y ∈ X,
i.e., the distance between x and y is equal to the distance between y and x.

M3. (the triangle inequality or subadditivity).

d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X.

When the distance between two elements of X is always a real number, d is a pseudometric
(Kuratowski, 1966).

Note that although it would look natural, we do not use terms semimetric and hypersemimet-
ric because according to the mathematical convention, semimetric is defined by a distance that
satisfies only axioms M1 and M2.

Lemma 2.2. a) A hyperseminorm in a vector space L induces a hyperpseudometric in this
space.

b) If q is a seminorm in L, then dq is a pseudometric.

Indeed, if q : X × R+
ω is a hyperseminorm in L and x and y are elements from L, then we can

define dq(x, y) = q(x − y). Properties of a hyperseminorm imply that dq satisfies all axioms P1,
M2 and M3. In addition, if q takes values only in R, then the same is true for dq , i.e., dq is a
pseudometric.

It is interesting to find what hyperpseudometrics in vector spaces are induced by hypersemi-
norms and what pseudometrics in vector spaces are induced by seminorms. To do this, let us
consider additional properties of hypermetrics and metrics.

Definition 2.7. A hyperpseudometric (metric) in a vector space L is called linear if it satisfies the
Axioms LM1 and LM2.

Examples 2.4 - 2.6 show that there are linear pseudometrics (hyperpseudometrics) in vector
spaces and there are pseudometrics (hyperpseudometrics) in vector spaces that are not linear. The
majority of popular pseudometrics are induced by seminorms and thus, they are linear as the
following result demonstrates.

Theorem 2.4. A hyperpseudometric d is induced by a hyperseminorm if and only if d is linear.
Proof is similar to the proof of Theorem 2.2.

Corollary 2.3. A pseudometric d is induced by a seminorm if and only if d is linear. We define the
kernel Ker q of a hyperseminorm q in L as

Ker q = {x ∈ L; q(x) = 0}.

Theorem 2.5. The kernel Ker q of a hyperseminorm q in L is a vector subspace of L.
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Indeed, if q(x) = 0 and a ∈ F, then by Axiom N2,

q(ax) = |a| · q(x) = |a| · 0 = 0

i.e., ax ∈ Ker q. In addition, q(x) = 0 and q(y) = 0, then by Axiom N3,

q(x + y) ≤ q(x) + q(y) = 0 + 0 = 0

and q(x + y) = 0 because by Proposition 2.1, q(x + y) ≥ 0.
Theorem 2.5 allows factorization of the hyperseminormed space L by its subspace Ker q, ob-

taining the quotient space Lq . The hyperseminorm q induces the hypernorm pq in the space Lq .
This gives us the natural projection τ : L→ Lq, which preserves the hyperseminorm q.

Example 2.7. Let us consider the set C∞(R,R) of all smooth real functions. The following semi-
norms are considered in is the set C∞(R,R). For each point a ∈ R, and f ∈ C∞(R,R), we define

qk( f ) = ( f (a))2 + ( f ′(a))2 + ( f ′′(a))2 + . . . + ( f (k)(a))2.

The factorization of the space by its subspace Ker q is called the k - th order jet space Jk
a(R,R)

of C∞(R,R) at the point a. Jet spaces were introduced by Ehresmann (Ehresmann, 1952, 1953)
and have various applications in the theory of differential equations and differential relations, as
well as in the theory of manifolds (Gromov, 1986), (Krasilshchik et al., 1986).

It is possible to get the same quotient space using the following seminorm

mk( f ) = max{| f (a)|, | f ′(a)|, | f ′′(a)|, . . . , | f (k)(a)|}.

Let us consider a Hausdorff space X that is a quotient space of L with the projection η : L→ X,
preserves the hyperseminorm q. Then it is possible to define a projection ν : Lq → X preserves the
hyperseminorm q and for which η = ντ, i.e., the following diagram is commutative:

L

X

Lq
τ

η
v

This gives us the following result.

Theorem 2.6. a) Lq is the largest Hausdorff quotient space of the topological space L that
preserves the hyperseminorm q.

b) Lq is the largest quotient space of the topological space L in which the hyperseminorm q
induces the hypernorm pq.

It is possible to define two basic operators in a vector space L.
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1. If z is an element from L, then the translation operator Tz is defined by the formula:

Tz(x) = x + z where x, z ∈ L.

2. If a , 0 is an element from F, then the multiplication operator Ma is defined by the formula:

Ma(x) = ax where x ∈ L.

Proposition 2.2. Operators Tz and Ma are homeomorphisms of the semitopological vector space
L.

Proof. The axioms of a vector space imply that Tz and Ma are one-to-one mappings and their
inverses are T−z and M−a , respectively. As addition is continuous in L, the operator Tz is also
continuous. As scalar multiplication is continuous with respect to L, the operator Ma is also
continuous. Proposition is proved.

Corollary 2.4. The topology of a semitopological vector space L is translation-invariant, or sim-
ply invariant, i.e., a subset A from L is open if and only if any its translation A + a is open.

As a result, such a topology is completely determined by any local base and thus, by any local
base at 0.

Let us consider two subsets K and C of a semitopological vector space L.

Theorem 2.7. If C is compact, K is closed and K ∩ C = ∅, then 0 has a neighborhood V such
that

(K + V) ∩ (C + V) = ∅.

Proof Proof is similar to the proof of Theorem 1.10 from (Rudin, 1991) because it uses only
the first property of semitopological vector spaces.

As topological vector spaces are special cases of semitopological vector spaces, Theorem 1.10
from (Rudin, 1991) is a corollary of Theorem 2.7.

In a topological space X, the weakest separation axiom is T0 (Kelly, 1955) where:

T0 (the Kolmogorov Axiom).∀x, y ∈ X (∃Ox(y < Ox) ∨ @Oy(x < Oy)).

Lemma 2.3. In a topological space X, all points are closed if and only if X satisfies the axiom T0.

Proof. Sufficiency. If X satisfies the axiom T0 and x is a point from X, then each point from the
complement Cx of x has a neighborhood that does not contain x. Thus, all these neighborhoods
are subsets of Cx. By definition, Cx is an open set (Kuratowski, 1966) and consequently, its
complement x is a closed set.

Necessity. If x, y ∈ X and the point x is closed, then y belongs to the complement Cx of x,
which is open as the complement of a closed set (Kuratowski, 1966). Thus, y has a neighborhood
Oy that is a subset of Cx. Consequently, Oy does not contain x. As points x and y are arbitrary, X
satisfies the axiom T0.
Lemma is proved.
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We remind (Alexandroff, 1961) that T3 - spaces, or regular spaces, are topological spaces in
which satisfy Axiom T3:

T3 For every point a and closed set B, there exist disjoint open sets which separately contain a
and B.

It means that points and closed sets are separated.
Note that there are semitopological vector spaces in which not all points are closed. The

space Rω of all sequences of real numbers is an example of such a semitopological vector space.
Moreover, in Rω, there are no closed points.

As a point is a compact space, Theorem 2.5 implies the following result.

Corollary 2.5. Every semitopological vector space L in which all points are closed is a regular
space.

Lemma 2.3 and Corollary 2.5 imply the following result.

Corollary 2.6. In semitopological vector spaces, L axiom T0 implies axiom T3.

As any regular space is a Hausdorff space (Alexandroff, 1961), we have the following result.

Corollary 2.7. Every semitopological vector space L in which all points are closed is a Hausdorff
space.

Lemma 2.3 and Corollary 2.7 imply the following result.

Corollary 2.8. In semitopological vector spaces, L axiom T0 implies axiom T2.

As both sets K + V and C + V in Theorem 2.7 are open, the closure of K + V does not intersect
C + V , while the closure of C + V does not intersect K + V . As any point a from L is a compact
space, we can take K = {a}. Applying Theorem 2.7 to this situation, we obtain the result, which
has a considerable interest according to (Rudin, 1991).

Corollary 2.9. Any neighborhood Oa of any point a in a semitopological vector space L contains
the closure of some neighborhood Va of the same point a.

As topological vector spaces are special cases of semitopological vector spaces, Theorem 1.11
from (Rudin, 1991) is a corollary of Corollary 2.9.

3. Mappings of hyperseminormed vector spaces

Let us consider a hyperseminormed vector space L, i.e., a vector space L with a system of
hyperseminorms Q, a hyperseminormed vector space M with a system of hyperseminorms P, a
hyperseminorm q from Q, a hyperseminorm p from P, and a subset V of the space L.

Vector spaces with systems of hyperseminorms (of hypernorms) will be called polyhypersemi-
normed spaces (polyhypernormed spaces) because vector spaces over R with systems of norms or
seminorms are called polynormed spaces (see (Helemski, 1989); (Dosi, 2011)).
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Definition 3.1. a) An operator (mapping) A : L → M is called (q, p) - bounded at a point a
from L if for any positive real number k, there is a positive real number h such that for any
element b from L, the inequality q(a − b) < k implies the inequality p(A(b) − A(a)) < h.

b) An operator (mapping) A : L → M is called (q, p) - bounded if it is (q, p) - bounded at all
points of L.

c) An operator (mapping) A : L→ M is called V - uniformly (q, p) - bounded if for any positive
real number k, there is a positive real number h such that for any element a from V and any
element b from L, the inequality q(a − b) < k implies the inequality p(A(b) − A(a)) < h.

d) An operator (mapping) A : L → M is called uniformly (q, p) - bounded in V if for any
positive real number k, there is a positive real number h such that for any elements a and b
from V , the inequality q(a − b) < k implies the inequality p(A(b) − A(a)) < h.

Note that when the set V contains only one point (say a), then V - uniform (q, p) - boundedness
coincides with (q, p) - boundedness at the point a.

Definitions imply the following result.

Lemma 3.1. Any uniformly (q, p) - bounded in L operator is L - uniformly (q, p) - bounded and
any L - uniformly (q, p) - bounded operator is (q, p) - bounded.

At the same time, as the following example demonstrates, there are (q, p) - bounded operators
that are not L - uniformly (q, p) - bounded.

Example 3.1. Let us take L = M = R and assume that q and p are both equal to the absolute
value, while A(x) = x2. This mapping (operator) is (q, p) - bounded but not L - uniformly (q, p) -
bounded.

However, for linear operators, the inverse of Lemma 3.1 is also true.

Proposition 3.1. The following conditions are equivalent for a linear operator (mapping) A:

(1) A is (q, p) - bounded.

(2) A is uniformly (q, p) - bounded in L.

(3) For some point a, A is uniformly (q, p) - bounded at the point a.

(4) A is L - uniformly (q, p) - bounded.

Proof. Implications (2) ⇒ (1) ⇒ (3) directly follow from definitions. So, we need to prove only
(3) ⇒ (2), namely, if A : L → M is (q, p) - bounded at a point a from L, then it is uniformly
(q, p) - bounded.

Let us consider another point b from L and assume that q(b − c) < k for some c from L. Then
taking d = c − (b − a), we have

q(a − d) = q(a − (c − (b − a)) = q(b − c) < k.
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As A is (q, p) - bounded at a, there is a positive real number h such that p(A(a) − A(d)) < h.
As A is linear operator, we have

p(A(b) − A(c)) = p(A(b − c)) = p(A(a − (c − (b − a)) = p(A(a − d)) = p(A(a) − A(d)) < h.

This shows that A is (q, p) - bounded at the point b because c is an arbitrary point for which
q(b− c) < k. Thus, A is uniformly (q, p) - bounded in L because for a fixed number k, we have the
same number h for all points in L.

In addition, we see that by definition, properties (2) and (4) always coincide.

Proposition is proved.

Corollary 3.1. A linear operator (mapping) A is (q, p) - bounded if and only if it is (q, p) - bounded
at 0.

The above proof of Proposition 3.1 gives us the following result.

Corollary 3.2. Any (q, p) - bounded linear operator (mapping) A : L → M is L - uniformly
(q, p) - bounded.

These results show that for linear operators, the concepts of a (q, p) - bounded at a point
operator and of a (q, p) - bounded operator coincide.

For operators that are not linear, these results are true as the following examples demonstrate.

Example 3.2. Let us assume that L = M = Rω is the space of all real hypernumbers (cf. Ex-
ample 2.1), while both hyperseminorms q and p are both equal to the absolute value || · || of real
hypernumbers. Actually the absolute value || · || is a norm in the space Rω (Burgin, 2012).

For the operator A, we define A(x) = x for all real hypernumbers x but the hypernumber
ν = Hn(i)i∈ω and put A(ν) = 1. Then ||ν− (ν+1)|| = 1 but ||A(ν)−A(ν+1)|| = ||1− (ν+1)|| = ||ν|| = ν
and this hypernumber is larger than any positive real number (Burgin, 2012). Thus, operator A is
(q, p) - bounded at any real number but it is not (q, p) - bounded at the hypernumbers ν.

This shows that an operator can be (q, p) - bounded at one point and not (q, p) - bounded at
another point of L.

Example 3.3. Let us take L = M = C(R,R), while the space C(R,R) of all continuous real
functions is a hypernormed space (cf. Example 2.1) where the hypernorm || · || is defined by the
following formula:

If f : R→ R, then || f || = Hn(ai)i∈ω where ai = max{| f (x)|; ai ∈ [−i, i]}.

We define A( f ) = f for all real functions f but the function ν(x) = x2 and put A(x2) = e(x)
where e(x) = 1 for all x ∈ R. This operator A is (q, p) - bounded at any constant function from L
but it is not (q, p) - bounded at ν. At the same time, taking u(x) = x2 + 1, we have ||ν − u|| = 1,
while ||A(v) − A(u)|| = ||e − u|| = Hn(i)i∈ω and this hypernumber is larger than any positive real
number (Burgin, 2011).
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This also shows that an operator can be (q, p) - bounded at one point and not (q, p) - bounded
at another point of L.

However, for norms and seminorms, we do not need additional conditions to establish the
result of Proposition 3.1.

Proposition 3.2. If q is a seminorm, then an operator (mapping) A : L→ M is (q, p) - bounded if
and only if it is (q, p) - bounded, at least, at one point.

Proof. Let us consider two points a and c from L and assume that an operator A : L → M is
(q, p) - bounded at the point a. Then taking a point b such that q(c − b) < u where u is a positive
real number.

As q is a seminorm, q(a − c) is equal to some positive real number w. Thus, by properties of
seminorms, we have

q(a − b) = q(a − c + c − b) ≤ q(a − c) + q(c − b) < w + u.

As the operator A is (q, p) - bounded at the point a and q(a− c) < w + 1, we have a positive real
number h such that p(A(a) − A(b)) < h and a positive real number k such that p(A(a) − A(c)) < k.
Consequently,

p(A(c) − A(b)) ≤ p(A(a) − A(c)) + p(A(a) − A(b)) < k + h.

As b is an arbitrary point from L, A is (q, p) - bounded at the point c.
As c is an arbitrary point from L, the operator A is (q, p) - bounded.

Proposition is proved.

Proposition 3.2 implies the following results.

Corollary 3.3. The concepts of a (q, p) - bounded at a point operator and of a (q, p) - bounded
operator coincide when q is a seminorm.

Note that Examples 3.2 and 3.3 show this is not true for the general case of hyperseminorms.

Corollary 3.4. When q is a seminorm, an operator (mapping) A is (q, p) - bounded if and only if
it is (q, p) - bounded at 0.

The above proof of Proposition 3.2 gives us the following result.

Corollary 3.5. If q is a seminorm, then any (q, p) - bounded operator (mapping) A : L → M is
L - uniformly (q, p) - bounded.

Proposition 3.3. If q is a seminorm and there is a (q, p) - bounded operator (mapping) A of the
linear space L onto the linear space M, then p is a finite hyperseminorm.
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Proof. Let us take a point u from M. As A is a projection (surjection), there are points a and b such
that A(a) = 0 and A(b) = u. As q is a seminorm, q(b− a) is less than some positive real number w.
As the operator A is (q, p) - bounded, there is a positive real number h such that p(A(a)−A(b)) < h

p(u) = p(u − 0) = p(A(b) − A(a)) < h.

As u is an arbitrary point from M, the hyperseminorm p is finite.

Proposition is proved.

Note that a finite hyperseminorm is not always a seminorm and a finite hypernorm is not always
a norm.

Definition 3.2. (Burgin, 2012). A real hypernumber is called monotone is it has a monotone
representative.

For instance, all real numbers are monotone hypernumbers (Burgin, 2012). At the same time,
all finite monotone real hypernumbers are real numbers (Burgin, 2012). Thus, Proposition 3.3
implies the following result.

Corollary 3.6. If q is a seminorm, there is a (q, p) - bounded operator (mapping)A of the linear
space L onto the linear space M and all values of p are monotone hypernumbers, then p is a
seminorm.

Definitions imply the following results.

Lemma 3.2. If W ⊆ V ⊆ L, then any V - uniformly (q, p) - bounded operator is W - uniformly
(q, p) - bounded and any uniformly (q, p) - bounded in V operator is uniformly (q, p) - bounded in
W.

Lemma 3.3. Any V - uniformly (q, p) - bounded operator is (q, p) - bounded in V.

Let us consider a binary relation u between the system of hyperseminorms Q, the system of
hyperseminorms P and a subset V of the space L.

Definition 3.3. a) An operator (mapping) A : L→ M is called (Q, u, P) - bounded at a point a
from L if for any hyperseminorms q and p such that (q, p) ∈ u, the operator (mapping) A is
(q, p) - bounded at the point a.

b) An operator (mapping) A : L → M is called V - uniformly (Q, u, P) - bounded if for any
hyperseminorms q and p with (q, p) ∈ u and any positive real number k, there is a positive
real number h such that for any element a from V and any element b from L, the inequality
q(a − b) < k implies the inequality p(A(b) − A(a)) < h.

c) An operator (mapping) A : L → M is called uniformly (Q, u, P) - bounded in V if for any
hyperseminorms q and p with (q, p) ∈ u and any positive real number k, there is a positive
real number h such that for any elements a and b from V , the inequality q(a− b) < k implies
the inequality p(A(b) − A(a)) < h.
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d) An operator (mapping) A : L → M is called (Q, u, P) - bounded if it is (Q, u, P) - bounded
at all points of L.

It means that an operator (mapping) A is (Q, u, P) - bounded if for any hyperseminorms q and
p such that (q, p) ∈ u, the operator (mapping) A is (q, p) - bounded.

Note that when the set V contains only one point (say a), then V - uniform (Q, u, P) - bound-
edness coincides with (Q, u, P) - boundedness at the point a.

Lemma 3.1 implies the following result.

Lemma 3.4. Any uniformly (Q, u, P) - bounded operator in L is L - uniformly (Q, u, P) - bounded,
while any L - uniformly (Q, u, P) - bounded operator is (Q, u, P) - bounded.

At the same time, taking L = M = R, Q = {q}, P = {p}, and assuming that q and p are both
equal to the absolute value and u = {(q, p)}, we see that Example 3.1 demonstrates that there are
(Q, u, P) - bounded operators that are not L - uniformly (Q, u, P) - bounded.

However, for linear operators, the inverse of Lemma 3.4 is also true because Proposition 3.1
implies the following result.

Proposition 3.4. The following conditions are equivalent for a linear operator (mapping) A:

(1) A is (Q, u, P) - bounded.

(2) A is uniformly (Q, u, P) - bounded in L.

(3) For some point a, A is uniformly (Q, u, P) - bounded at the point a.

(4) A is L - uniformly (Q, u, P) - bounded.

Corollary 3.7. A linear operator (mapping) A is (Q, u, P) - bounded if and only if it is (Q, u, P) -
bounded at 0.

Corollary 3.2 implies the following result.

Corollary 3.8. Any (Q, u, P) - bounded linear operator (mapping) A : L → M is L - uniformly
(Q, u, P) - bounded.

These results show that for linear operators, the concepts of a (Q, u, P) - bounded at a point
operator and a (Q, u, P) - bounded operator coincide.

At the same time, taking L = M = R, Q = {q}, P = {p}, and assuming that q and p are both
equal to the absolute value and u = {(q, p)}, we see that Examples 3.2 and 3.3 demonstrate that
there are operators that are (Q, u, P) - bounded at one point and not (Q, u, P) - bounded at another
point.

However, for norms and seminorms, we do not need additional conditions to establish the
result of Proposition 3.4. We remind that the definability domain of the relation u is defined as

Du = {q; there is a pair (q, p) that belongs to u}.

Then Proposition 3.2 implies the following result.
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Proposition 3.5. If all q from the definability domain Du of u are seminorms, then an operator
(mapping) A : L→ M is (Q, u, P) - bounded if and only if it is (Q, u, P) - bounded, at least, at one
point.

Proposition 3.5 implies the following result.

Corollary 3.9. The concepts of (Q, u, P) - bounded at a point operators and (Q, u, P) - bounded
operator coincide when all q from the definability domain Du of u are seminorms.

Note that Examples 3.2 and 3.3 show this is not true for the general case of hyperseminorms.

Corollary 3.10. When all q from the definability domain Du of u are seminorms, an operator
(mapping) A is (Q, u, P) - bounded if and only if it is (Q, u, P) - bounded at 0.

The above proof of Proposition 3.2 gives us the following result.

Corollary 3.11. If all q from the definability domain Du of u are seminorms, then any (Q, u, P) -
bounded operator (mapping) A : L→ M is L - uniformly (Q, u, P) - bounded.

Proposition 3.3 implies the following result.

Proposition 3.6. If all q from the definability domain Du of u are seminorms and there is a
(Q, u, P) - bounded operator (mapping) A of the linear space L onto the linear space M, then
all p from the range Rg u of u are finite hyperseminorms.

Corollary 3.12. If all q from the definability domain Du of u are seminorms and there is a
(Q, u, P) - bounded operator (mapping) A of the linear space L onto the linear space M, and all
values of all p from the range Rg u are monotone hypernumbers, then all such p are seminorms.

Definitions imply the following results.

Lemma 3.5. If W ⊆ V ⊆ L, then any V - uniformly (Q, u, P) - bounded operator is W - uniformly
(q, p) - bounded and any uniformly (Q, u, P) - bounded in V operator is uniformly (q, p) - bounded
in W.

Lemma 3.6. Any V - uniformly (Q, u, P) - bounded operator is (Q, u, P) - bounded in V.

Let us take a subset V of the space L.

Definition 3.4. a) An operator (mapping) A : L→ M is called uniformly (Q, u, P) - bounded at
a point a from L if for any positive real number k, there is a positive real number h such that
for any hyperseminorms q and p with (q, p) ∈ u, and any element b from L, the inequality
q(a − b) < k implies the inequality p(A(b) − A(a)) < h.

b) An operator (mapping) A : L → M is called u - uniformly (Q, u, P) - bounded if it is
uniformly (Q, u, P) - bounded at all points of L.
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c) An operator (mapping) A : L→ M is called u - uniformly (Q, u, P) - bounded in V if for any
positive real number k, there is a positive real number h such that for any hyperseminorms q
and p with (q, p) ∈ u, and any elements a and b from V , the inequality q(a − b) < k implies
the inequality p(A(b) − A(a)) < h.

d) An operator (mapping) A : L → M is called uV - uniformly (Q, u, P) - bounded in V if for
any positive real number k, there is a positive real number h such that for any hypersemi-
norms q and p with (q, p) ∈ u, and any elements a from V and b from L, the inequality
q(a − b) < k implies the inequality p(A(b) − A(a)) < h.

Asking whether any (Q, u, P) - bounded at a point operator (mapping) is uniformly (Q, u, P) -
bounded at the same point, we find that the answer is negative.

Example 3.4. Let us take L = M = C(R,R), while the space C(R,R) of all continuous real
functions. It is possible (Burgin, 2012) for all real numbers x, to define seminorms qptx = pptx by
the following formula

qptx( f ) = pptx( f ) = | f (x)|.

We define A( f ) = x f (x) for all real functions f and u = {(qptx, pptx); x ∈ R}. Taking the
function f (x) = x as the point a from L, we see that A( f ) = x2. Thus, taking some positive real
number k, e.g., k = 1, the corresponding h from Definition 3.2 always exists but it grows with the
growth of x. For instance, when k = 1, we have

qpt1( f − g) < 1 implies ppt1(A( f ) − A(g)) = ppt1(x f − xg) < 1.

At the same time, qpt10( f − g) < 1 does not imply ppt10(A( f ) − A(g)) < 1. It only implies
ppt10(A( f ) − A(g)) = ppt10(x f − xg) < 10. This means that for any pair (qptx, pptx) of seminorms
and a number k, we need to find a specific number h to satisfy Definition 3.3 a. Consequently, the
operator A is (Q, u, P) - bounded at f but it is not uniformly (Q, u, P) - bounded at f .

The same example shows that there are (Q, u, P) - bounded operators that are not uniformly
(Q, u, P) - bounded.

It is also possible to ask whether Propositions 3.4 and 3.5 remain true for uniformly (Q, u, P) -
bounded operators. In this case, the answer is positive.

Proposition 3.7. If all q from the definability domain Du of the relation u are seminorms, then
an operator (mapping) A : L → M is uniformly (Q, u, P) - bounded if and only if it is uniformly
(Q, u, P) - bounded, at least, at one point.

Indeed, Proposition 3.7 is a direct corollary of Proposition 3.5 because any uniformly (Q, u, P) -
bounded at a point operator is (Q, u, P) - bounded at the same point and any uniformly (Q, u, P) -
bounded operator is (Q, u, P) - bounded.

Proposition 3.7 implies the following result.

Corollary 3.13. The concepts of uniformly (Q, u, P) - bounded at a point operators and uniformly
(Q, u, P) - bounded operators coincide when all q from the definability domain Du of u are semi-
norms.
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Note that Examples 3.2 and 3.3 show this is not true for the general case of hyperseminorms.

Proposition 3.8. If all q from the definability domain Du of u are seminorms and there is a uni-
formly (Q, u, P) - bounded operator (mapping) A of the linear space L onto the linear space M,
then all p from the range Rg u of u are finite hyperseminorms.

Indeed, Proposition 3.8 is a direct corollary of Proposition 3.6 because any uniformly (Q, u, P) -
bounded operator is (Q, u, P) - bounded.

Corollary 3.14. If all q from the definability domain Du of u are seminorms and there is a uni-
formly (Q, u, P) - bounded operator (mapping) A of the linear space L onto the linear space M,
and all values of all p from the range Rg u are monotone hypernumbers, then all such p are
seminorms.

Definitions imply the following results.

Lemma 3.7. a) Any uniformly (Q, u, P) - bounded at a point a operator A is (Q, u, P) - bounded
at the point a.

b) Any u-uniformly (Q, u, P) - bounded operator A is ((Q, u, P) - bounded.

Lemma 3.8. Any u-uniformly (Q, u, P) - bounded in L operator is u-uniformly (Q, u, P) - bounded.

At the same time, taking L = M = R, Q = {q}, P = {p}, and assuming that hyperseminorms q
and p are both equal to the absolute value and u = {(q, p)}, we see that Example 3.1 demonstrates
that there are u-uniformly (Q, u, P) - bounded operators that are not uniformly (Q, u, P) - bounded
because if Q has only one hyperseminorm q, P also has only one hyperseminorm p and u is a
complete relation, then any (Q, u, P) - bounded operator is u-uniformly (Q, u, P) - bounded.

However, for linear operators, this is impossible as Proposition 3.1 allows us to prove the
following result.

Proposition 3.9. The following conditions are equivalent for a linear operator (mapping) A:

(1) A is u-uniformly (Q, u, P) - bounded.

(2) A is u-uniformly (Q, u, P) - bounded in L.

(3) For some point a, A is uniformly (Q, u, P) - bounded at the point a.

Proof. Implications (2) ⇒ (1) ⇒ (3) directly follow from definitions. So, we need to prove only
(3) ⇒ (2), namely, if A : L → M is uniformly (Q, u, P) - bounded at a point a from L, then it is
uniformly (Q, u, P) - bounded in L.

Let us consider another point b from L, take two hyperseminorms q and p with (q, p) ∈ u, and
assume that q(b − c) < k for some c from L. Then taking d = c − (b − a), we have

q(a − d) = q(a − (c − (b − a))) = q(b − c) < k.
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As A is uniformly (Q, u, P) - bounded at a, it is also (q, p) - bounded at a. Thus, there is a
positive real number h such that p(A(a) − A(d)) < h. As A is linear operator, we have

p(A(b) − A(c)) = p(A(b − c)) = p(A(a − (c − (b − a)))) = p(A(a − d)) = p(A(a) − A(d)) < h.

This shows that A is (q, p) - bounded at the point b because c is an arbitrary point for which
q(b − c) < k and thus, A is u-uniformly (Q, u, P) - bounded because q and p are arbitrary hyper-
seminorms with (q, p) ∈ u. In addition, A is uniformly (q, p) - bounded in L because for a fixed
number k, we have the same number h for all points in L.

Proposition is proved.

Corollary 3.15. A linear operator (mapping) A : L→ M is u-uniformly (Q, u, P) - bounded if and
only if it is uniformly (Q, u, P) - bounded at 0.

Corollary 3.2 implies the following result.

Corollary 3.16. Any u-uniformly (Q, u, P) - bounded linear operator (mapping) A is u-uniformly
(Q, u, P) - bounded in L.

These results show that for linear operators, different types of uniformly bounded operators
coincide.

Proposition 3.10. If the relation u is finite, then an operator (mapping) A : L → M is uniformly
(Q, u, P) - bounded (at a point a) if and only if it is (Q, u, P) - bounded (at the point a).

Proof. As any uniformly (Q, u, P) - bounded (at a point a) operator is (Q, u, P) - bounded (at the
same point), we need only to show that when the relation u is finite, a (Q, u, P) - bounded (at a
point a) operator A : L→ M is uniformly (Q, u, P) - bounded (at the point a). At first, we consider
local boundedness.

Indeed, by Definition 3.3, for any hyperseminorms q and p such that (q, p) ∈ u, the operator
(mapping) A is (q, p)-bounded at the point a, that is, by Definition 3.1, the following condition is
true:

Condition 1. For any positive real number k, there is a positive real number h such that for any
element b from L, the inequality q(a − b) < k implies the inequality p(A(b) − A(a)) < h.

This number h can be different for different pairs (q, p), but because u is finite, there is only a
finite number of these pairs. So, we can take

l = max{h; h satisfies Condition 1 for a pair (q, p) ∈ u}

and this number l will satisfy the condition from Definition 3.4. Thus, the operator A is uniformly
(Q, u, P) - bounded at the point a.

The global case is proved in a similar way.
Proposition is proved.
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Corollary 3.17. If systems of hyperseminorms Q and P are finite, then an operator (mapping) A
is uniformly (Q, u, P) - bounded (at a point a) if and only if it is (Q, u, P) - bounded (at the point
a).

Now let us study different types of continuity in polyhyperseminormed vector spaces.

Definition 3.5. a) An operator (mapping) A : L → M is called (q, p) - continuous at a point a
from L if for any positive real number k, there is a positive real number h such that for any
element b from L, the inequality q(a − b) < h implies the inequality p(A(b) − A(a)) < k.

b) An operator (mapping) A : L → M is called (q, p) - continuous if it is (q, p) - continuous at
all points of L.

c) An operator (mapping) A : L → M is called uniformly (q, p) - continuous in V ⊆ L if for
any positive real number k, there is a positive real number h such that for any elements a and
b from V , the inequality q(a − b) < h implies the inequality p(A(b) − A(a)) < k.

d) An operator (mapping) A : L → M is called V - uniformly (q, p) - continuous if for any
positive real number k, there is a positive real number h such that for any element a from
V ⊆ L and any element b from L, the inequality q(b− a) < h implies the inequality p(A(b)−
A(a)) < k.

Note that when the set V contains only one point (say a), then V - uniform (q, p) - continuity
coincides with (q, p) - continuity at the point a. Besides, to be L - uniformly (q, p) - continuous or
to be uniformly (Q, u, P) - continuous in L means the same for all operators.

Definitions imply the following results.

Lemma 3.9. For any V ⊆ L, any V - uniformly (q, p) - continuous operator is (q, p) - continuous
in V.

Lemma 3.10. Any L - uniformly (q, p) - continuous operator is (q, p) - continuous.

At the same time, as the following example demonstrates, there are (q, p) - continuous opera-
tors that are not L - uniformly (q, p) - continuous.

Example 3.5. Let us take L = M = R and assume that q and p are both equal to the absolute
value, while A(x) = x2. This mapping (operator) is (q, p) - continuous but not L - uniformly
(q, p) - continuous.

However, for linear operators, the inverse of Lemma 3.9 is also true.

Proposition 3.11. The following conditions are equivalent for a linear operator (mapping) A:

(1) A is (q, p) - continuous.

(2) A is uniformly (q, p) - continuous in L.

(3) For some point a, A is uniformly (q, p) - continuous at the point a.
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(4) A is L - uniformly (q, p) - continuous.

Proof. Implications (2) ⇒ (1) ⇒ (3) directly follow from definitions. So, we need to prove only
(3) ⇒ (2), namely, if A : L → M is (q, p) - continuous at a point a from L, then it is uniformly
(q, p) - continuous in L.

Let us consider a positive real number k. Then because A is (q, p) - continuous at the point
a, there is a positive real number h, such that the inequality q(a − b) < h implies the inequality
p(A(b) − A(a)) < k.

Let us take another point b from L and assume that q(b−c) < h for some c from L. Then taking
d = c − (b − a), we have

q(a − d) = q(a − (c − (b − a))) = q(b − c) < h.

As A is (q, p) - continuous at a, we have p(A(a) − A(d)) < k. As A is linear operator, we have

p(A(b) − A(c)) = p(A(b − c)) = p(A(a − (c − (b − a)))) = p(A(a − d)) = p(A(a) − A(d)) < k.

This shows that A is (q, p) - continuous at the point b because c is an arbitrary point for which
q(b − c) < h. Thus, A is uniformly (q, p) - continuous in L because for a fixed number k, we have
the same number h for all points in L.

In addition, we see that by definition, properties (2) and (4) always coincide.

Proposition is proved.

Corollary 3.18. A linear operator (mapping) A is (q, p) - continuous if and only if it is (q, p) -
continuous at 0.

The above proof of Proposition 3.4 gives us the following result.

Corollary 3.19. Any (q, p) - continuous linear operator (mapping) A : L → M is L - uniformly
(q, p) - continuous.

These results show that for linear operators, the concepts of (q, p) - continuous at a point
operators and (q, p) - continuous operators coincide.

For operators that are not linear, these results are not true as the following examples demon-
strate.

Example 3.6. Let us take L = M = Rω (cf. Example 2.1) and assume that q and p are both equal
to the absolute value ‖ · ‖ of real hypernumbers. We define A(x) = x for all real hypernumbers x
but the hypernumber ν = Hn(i)i∈ω and put A(ν) = 1. Then ‖ν− (ν+ 1)‖ = 1 but ‖A(ν)−A(ν+ 1)‖ =

‖1 − (ν + 1)‖ = ‖ν‖ = ν and this hypernumber is larger than any positive real number (Burgin,
2012). Thus, operator A is (q, p) - continuous at any real number but it is not (q, p) - continuous at
ν.

This shows that an operator can be (q, p) - continuous at one point and not (q, p) - continuous
at another point of L and thus not (q, p) - continuous in L, as well as not L - uniformly (q, p) -
continuous.
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Example 3.7. Let us take L = M = C(R,R), while the space C(R,R) of all continuous real
functions is a hypernormed space (cf. Example 2.1) where the hypernorm ‖ · ‖ is defined by the
following formula:

If f : R→ R, then ‖ f ‖ = Hn(ai)i∈ω where ai = max{| f (x)|; ai ∈ [−i, i]}.

We define A( f ) = f for all real functions f but the function v(x) = x2 and put A(x2) = e(x)
where e(x) = 1 for all x ∈ R. This operator A is (q, p) - continuous at any constant function from
L, but it is not (q, p) - continuous at ν. At the same time, taking u(x) = x2 + 1, we have ‖v− u‖ = 1,
while ‖A(v) − A(u)‖ = ‖e − u‖ = Hn(i)i∈ω and this hypernumber is larger than any positive real
number (Burgin, 2012).

This also shows that an operator can be (q, p) - continuous at one point and not (q, p) - con-
tinuous at another point of L and thus not (q, p) - continuous in L, as well as not L - uniformly
(q, p) - continuous.

Definitions imply the following result.

Lemma 3.11. If W ⊆ V ⊆ L, then any V - uniformly (q, p) - continuous operator is W - uniformly
(q, p) - continuous.

Now let us consider continuity with respect to a binary relation u between systems of hyper-
seminorms.

Definition 3.6. a) An operator (mapping) A : L→ M is called (Q, u, P) - continuous at a point
a from L if for any hyperseminorms q and p such that (q, p) ∈ u, the operator (mapping) A
is (q, p) - continuous at the point a.

b) An operator (mapping) A : L → M is called (Q, u, P) - continuous if it is (Q, u, P) - contin-
uous at all points of L.

c) An operator (mapping) A : L→ M is called uniformly (Q, u, P) - continuous in V ⊆ L if for
any hyperseminorms q and p such that (q, p) ∈ u and any positive real number k, there is a
positive real number h such that for any elements a and b from V , the inequality q(a−b) < h
implies the inequality p(A(b) − A(a)) < k.

d) An operator (mapping) A : L → M is called V - uniformly (Q, u, P) - continuous if for any
hyperseminorms q and p such that (q, p) ∈ u and for any positive real number k, there is a
positive real number h such that for any element a from V ⊆ L and any element b from L,
the inequality q(b − a) < h implies the inequality p(A(b) − A(a)) < k.

Note that to be L - uniformly (Q, u, P) - continuous or to be uniformly (Q, u, P) - continuous in
L means the same for all operators.

Lemma 3.10 implies the following result.

Lemma 3.12. Any uniformly (Q, u, P) - continuous in L operator is (Q, u, P) - continuous.
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At the same time, taking L = M = R, Q = {q}, P = {p}, and assuming that q and p are both
equal to the absolute value and u = {(q, p)}, we see that Example 3.5 demonstrates that there are
(Q, u, P) - continuous operators that are not L - uniformly (Q, u, P) - continuous.

However, for linear operators, the inverse of Lemma 3.12 is also true as Proposition 3.11
implies the following result.

Proposition 3.12. The following conditions are equivalent for a linear operator (mapping) A:

(1) A is (Q, u, P) - continuous.

(2) A is uniformly (Q, u, P) - continuous in L.

(3) For some point a, A is uniformly (Q, u, P) - continuous at the point a.

(4) A is L - uniformly (Q, u, P) - continuous.

Corollary 3.20. A linear operator (mapping) A is (Q, u, P) - continuous if and only if it is (Q, u, P) -
bounded at 0.

Corollary 3.19 implies the following result.

Corollary 3.21. Any (Q, u, P) - continuous linear operator (mapping) A : L→ M is L - uniformly
(Q, u, P) - continuous.

These results show that for linear operators, the concepts of (Q, u, P) - continuous at a point
operators and (Q, u, P) - continuous operators coincide.

At the same time, taking L = M = Rω, Q = {q}, P = {p}, and assuming that q and p are
both equal to the absolute value of real hypernumbers and u = {(q, p)}, we see that Example 3.6
demonstrates that there are operators that are (Q, u, P) - continuous at one point and not (Q, u, P) -
continuous at another point. A similar situation is also presented in Example 3.7.

Definitions and Lemma 3.10 imply the following result.

Lemma 3.13. If W ⊆ V ⊆ L, then any V - uniformly (Q, u, P) - continuous operator is W -
uniformly (Q, u, P) - continuous.

Lemma 3.9 imply the following result.

Lemma 3.14. For any V ⊆ L, any V - uniformly (Q, u, P) - continuous operator is (Q, u, P) -
continuous in V.

Let us study relations between relative continuity and relative boundedness.

Theorem 3.1. A linear operator (mapping) A : L→ M is (Q, u, P) - continuous if and only if it is
(Q, u, P) - bounded.
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Proof. Sufficiency. Let us consider a (Q, u, P) - bounded linear operator (mapping) A : L →
M and suppose that A is not (Q, u, P) - continuous. It means that for some pair (q, p) ∈ u of
hyperseminorms q and p, the operator A is not (q, p) - continuous. By Corollary 3.9, A is not
(q, p) - continuous at 0. Consequently, there is a positive real number k such that for any natural
number n, there is an element xn from L for which q(xn) < 1/n while p(A(xn)) > k.

Let us consider the set Z = {zn; n = 1, 2, 3, . . .} where zn = n · xn for all n = 1, 2, 3, . . . Then

q(zn) = q(n · xn) = n · q(xn) < 1,

i.e., Z is a q - bounded set. At the same time, as A is a linear operator, we have

p(A(zn)) = p(A(n · xn)) = n · p(A(xn)) > kn.

Thus, the image of Z is not a p - bounded set and A is not a (Q, u, P) - bounded operator. This
contradicts our assumption and by reductio ad absurdum, A is (Q, u, P) - continuous.

Necessity. Let us consider a (Q, u, P) - continuous linear operator (mapping) A : L → M and
suppose that A is not (Q, u, P) - bounded. It means that for some pair (q, p) ∈ u of hyperseminorms
q and p, the operator A is not (q, p) - bounded. By Corollary 3.3, A is not (q, p) - bounded at 0.
Consequently, there is a positive real number k such that for any natural number n, there is an
element xn from L for which q(xn) < k while p(A(xn)) > n.

Let us consider the set Z = {zn; n = 1, 2, 3, . . .} where zn = (1/n) · xn for all n = 1, 2, 3, . . . Then

q(zn) = q((1/n) · xn) = (1/n) · q(xn) < k/n.

It means that the sequence {zn; n = 1, 2, 3, . . .} q - converges to 0.
At the same time, as A is a linear operator, we have

p(A(zn)) = p(A((1/n) · xn)) = (1/n) · p(A(xn)) > k.

It means that the sequence {A(zn); n = 1, 2, 3, . . .} does not p - converge to 0. This violates
conditions from Definition 3.5 and shows A is not a (Q, u, P) - continuous operator. Thus, we have
a contradiction with our assumption that A is a (Q, u, P) - continuous operator. By reductio ad
absurdum, A is (Q, u, P) - bounded.

Theorem is proved.

Corollary 3.22. A linear operator (mapping) A : L → M is (q, p) - continuous if and only if it is
(q, p) - bounded.

Corollary 3.22 implies the following result.

Corollary 3.23. A linear operator (mapping) A : L→ M is L - uniformly (Q, u, P) - continuous if
and only if it is L - uniformly (Q, u, P) - bounded.

As topology of topological vector spaces is determined by system of seminorms (Rudin, 1991),
Theorem 3.1 gives us the following classical result ((Dunford & Schwartz, 1958); (Rudin, 1991)).



28 Mark Burgin / Theory and Applications of Mathematics & Computer Science 3 (2) (2013) 1–35

Corollary 3.24. A linear mapping A of a topological vector space L into a topological vector
space M is continuous if and only if it is bounded.

As for linear operators (mappings) continuity at a point coincides with continuity and bound-
edness at a point coincides with boundedness, we have the following results.

Corollary 3.25. A linear operator (mapping) A : L→ M is (q, p) - continuous at a point a if and
only if it is (q, p) - bounded at a.

Corollary 3.26. A linear operator (mapping) A : L → M is (Q, u, P) - continuous at a point a if
and only if it is (Q, u, P) - bounded at a.

Let us take a vector subspace V of L and consider uniform (Q, u, P) - continuity in V .

Theorem 3.2. A linear operator (mapping) A : L → M is uniformly (Q, u, P) - continuous in V if
and only if it is uniformly (Q, u, P) - bounded in V.

Proof. Sufficiency. Let us consider a vector subspace V of L and a uniformly (Q, u, P) - bounded in
V linear operator (mapping) A : L→ M and suppose that A is not uniformly (Q, u, P) - continuous
in V . It means that for some pair (q, p) ∈ u of hyperseminorms q and p, the operator A is not
uniformly (q, p) - continuous. Consequently, there is a positive real number k such that for any
natural number n, there are elements xn and yn from V for which q(xn − yn) < 1/n while p(A(xn) −
A(yn)) > k.

Let us consider two sets Z = {zn; n = 1, 2, 3, . . .} and U = {un; n = 1, 2, 3, . . .} where zn = n · xn

and un = n · yn for all n = 1, 2, 3, . . . As V is a vector subspace of L, then Z and U are subsets of V .
Besides,

q(zn − un) = q(n · xn − n · yn) = q(n · (xn − yn)) = n · q(xn − yn) < 1.

It means that the set {zn − un; n = 1, 2, 3, . . .} is q - bounded.
At the same time, as A is a linear operator, we have

p(A(zn − un)) = p(A(n · xn − n · yn)) = n · p(A(xn) − A(yn)) > kn.

It means that the set {A(zn − un); n = 1, 2, 3, . . .} is not p - bounded. Thus, A is not a uniformly
(Q, u, P) - bounded in V operator. This contradicts our assumption and by reductio ad absurdum,
A is uniformly (Q, u, P) - continuous in V .

Necessity. Let us consider a uniformly (Q, u, P) - continuous in V linear operator (mapping)
A : L → M and suppose that A is not uniformly (Q, u, P) - bounded in V . It means that for some
pair (q, p) ∈ u of hyperseminorms q and p, the operator A is not uniformly (q, p) - bounded in V .
By Corollary 3.3, A is not (q, p) - bounded in V at 0 as V is a vector subspace of L. Consequently,
there is a positive real number k such that for any natural number n, there is an element xn from V
for which q(xn) < k while p(A(xn)) > n.

Let us consider the set Z = {zn; n = 1, 2, 3, . . .} where zn = (1/n) · xn for all n = 1, 2, 3, . . . Then

q(zn) = q((1/n) · xn) = (1/n) · q(xn) < k/n.

It means that the sequence {zn; n = 1, 2, 3, . . .} q - converges to 0.
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At the same time, as A is a linear operator, we have

p(A(zn)) = p(A((1/n) · xn)) = (1/n) · p(A(xn)) > k.

It means that the sequence {A(zn); n = 1, 2, 3, . . .} does not p - converge to 0. This violates
conditions from Definition 3.5 and shows A is not a uniformly (Q, u, P) - continuous in V operator.
Thus, we have a contradiction with our assumption that A is a uniformly (Q, u, P) - continuous in
V operator. By reductio ad absurdum, A is uniformly (Q, u, P) - bounded in V .

Theorem is proved.

Corollary 3.27. For any vector subspace V of L, a linear operator (mapping) A : L → M is
uniformly (q, p) - continuous in V if and only if it is uniformly (q, p) - bounded in V.

As before, V is a vector subspace of L and we study V - uniform (Q, u, P) - continuity.

Theorem 3.3. A linear operator (mapping) A : L → M is V - uniformly (Q, u, P) - continuous if
and only if it is V - uniformly (Q, u, P) - bounded.

Proof. Sufficiency. Let us consider a vector subspace V of L and a V - uniformly (Q, u, P) -
bounded linear operator (mapping) A : L→ M and suppose that A is not V - uniformly (Q, u, P) -
continuous. It means that for some pair (q, p) ∈ u of hyperseminorms q and p, the operator A is
not V - uniformly (q, p) - continuous. Consequently, there is a positive real number k such that
for any natural number n, there are elements xn from V and yn from L for which q(xn − yn) < 1/n
while p(A(xn) − A(yn)) > k.

Let us consider two sets Z = {zn; n = 1, 2, 3, . . .} and U = {un; n = 1, 2, 3, . . .} where zn = n · xn

and un = n ·yn for all n = 1, 2, 3, . . .As V is a vector subspace of L, then Z is a subset of V . Besides,

q(zn − un) = q(n · xn − n · yn) = q(n · (xn − yn)) = n · q(xn − yn) < 1.

It means that the set {zn − un; n = 1, 2, 3, . . .} is q - bounded.
At the same time, as A is a linear operator, we have

p(A(zn − un)) = p(A(n · xn − n · yn)) = n · p(A(xn) − A(yn)) > kn.

It means that the set {A(zn − un); n = 1, 2, 3, . . .} is not p - bounded. Thus, A is not a V - uni-
formly (Q, u, P) - bounded operator. This contradicts our assumption and by reductio ad absurdum,
A is V - uniformly (Q, u, P) - continuous.

Necessity. Let us consider a V - uniformly (Q, u, P) - continuous linear operator (mapping)
A : L → M and suppose that A is not V - uniformly (Q, u, P) - bounded. It means that for some
pair (q, p) ∈ u of hyperseminorms q and p, the operator A is not V - uniformly (q, p) - bounded.
By Corollary 3.3, A is not (q, p) - bounded at 0. Consequently, there is a positive real number
k such that for any natural number n, there is an element xn from L for which q(xn) < k while
p(A(xn)) > n.

Let us consider the set Z = {zn; n = 1, 2, 3, . . .} where zn = (1/n) · xn for all n = 1, 2, 3, . . . Then

q(zn) = q((1/n) · xn) = (1/n) · q(xn) < k/n.
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It means that the sequence {zn; n = 1, 2, 3, . . .} q - converges to 0.
At the same time, as A is a linear operator, we have

p(A(zn)) = p(A((1/n) · xn)) = (1/n) · p(A(xn)) > k.

It means that the sequence {A(zn); n = 1, 2, 3, . . .} does not p - converge to 0. This violates
conditions from Definition 3.6 and shows A is not a V - uniformly (Q, u, P) - continuous operator.
Thus, we have a contradiction with our assumption that A is a V - uniformly (Q, u, P) - continuous
operator. By reductio ad absurdum, A is V - uniformly (Q, u, P) - bounded.

Theorem is proved.

Corollary 3.28. For any subset V of L, a linear operator (mapping) A : L → M is V - uniformly
(q, p) - continuous if and only if it is V - uniformly (q, p) - bounded.

Let us take a subset V of the space L.

Definition 3.7. a) An operator (mapping) A : L→ M is called uniformly (Q, u, P) - continuous
at a point a from L if for any positive real number k, there is a positive real number h such
that for any hyperseminorms q and p with (q, p) ∈ u, for any element b from L, the inequality
q(a − b) < h implies the inequality p(A(b) − A(a)) < k.

b) An operator (mapping) A : L → M is called u - uniformly (Q, u, P) - continuous if it is
uniformly (Q, u, P) - continuous at all points of L.

c) An operator (mapping) A : L → M is called u - uniformly (Q, u, P) - continuous in V if for
any positive real number k, there is a positive real number h such that for any elements a
and b from V and any hyperseminorms q and p with (q, p) ∈ u, the inequality q(a − b) < h
implies the inequality p(A(b) − A(a)) < k.

d) An operator (mapping) A : L→ M is called uV - uniformly (Q, u, P) - continuous if for any
positive real number k, there is a positive real number h such that for any elements a from V
and b from L, and any hyperseminorms q and p with (q, p) ∈ u, the inequality q(a − b) < h
implies the inequality p(A(b) − A(a)) < k.

Note that to be uL - uniformly (Q, u, P) - continuous or to be u - uniformly (Q, u, P) - continuous
in L means the same for all operators.

It it possible to ask a question how u - uniform (Q, u, P) - continuity is connected to (Q, u, P) -
continuity. The following example and Lemma 3.5 clarify this situation.

Example 3.8. Let us take L = M = C(R,R), while the space C(R,R) of all continuous real
functions. It is possible (Burgin, 2012) for all real numbers x, to define seminorms qptx = pptx by
the following formula

qptx( f ) = pptx( f ) = | f (x)|.

We define A( f ) = x f (x) for all real functions f and u = {(qptx, pptx); x ∈ R}. Taking the
function f (x) = x as the point a from L, we see that A( f ) = x2. Thus, taking some positive real
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number k, e.g., k = 1, the corresponding h from Definition 3.2 always exists but it decreases with
the growth of x. For instance, when k = 1, we have

qpt1( f − g) < 1 implies ppt1(A( f ) − A(g)) = ppt1(x f − xg) < 1.

At the same time, qpt10( f − g) < 1 does not imply ppt10(A( f ) − A(g)) < 1. It only implies
ppt10(A( f )−A(g)) = ppt10(x f −xg) < 10. To have ppt10(A( f )−A(g)) < 1, we need qpt10( f −g) < 0.1.

It means that for any pair (qptx, pptx) of seminorms and a number k, we need to find a specific
number h to satisfy Definition 3.7.a. Consequently, the operator A is (Q, u, P) - continuous at f = x
but it is not uniformly (Q, u, P) - continuous at f .

The same example shows that there are (Q, u, P) - continuous operators that are not u - uni-
formly (Q, u, P) - continuous.

Definitions imply the following result.

Lemma 3.15. a) Any uniformly (Q, u, P) - continuous at a point a operator A is (Q, u, P) -
continuous at the point a.

b) Any u - uniformly (Q, u, P) - continuous operator A is (Q, u, P) - continuous.

Lemma 3.16. Any u - uniformly (Q, u, P) - continuous in L operator is u - uniformly (Q, u, P) -
continuous.

For linear operators, the inverse of Lemma 3.15 is also true.

Proposition 3.13. The following conditions are equivalent for a linear operator (mapping) A:

(1) A is u - uniformly (Q, u, P) - continuous.

(2) A is u - uniformly (Q, u, P) - continuous in L.

(3) For some point a, A is uniformly (Q, u, P) - continuous at the point a.

(4) A is uL - uniformly (Q, u, P) - continuous.

Corollary 3.29. A linear operator (mapping) A is u - uniformly (Q, u, P) - continuous in L if and
only if it is (Q, u, P) - continuous at 0.

Corollary 3.20 implies the following result.

Corollary 3.30. Any u - uniformly (Q, u, P) - continuous linear operator (mapping) A : L→ M is
u - uniformly (Q, u, P) - continuous in L.

These results show that for linear operators, the concepts of uniformly (Q, u, P) - continuous
at a point operators and u - uniformly (Q, u, P) - continuous operators coincide.

At the same time, taking L = M = Rω, Q = {q}, P = {p}, and assuming that q and p are
both equal to the absolute value of real hypernumbers and u = {(q, p)}, we see that Example 3.6
demonstrates that there are operators that are (Q, u, P) - continuous at one point and not (Q, u, P) -
continuous at another point. A similar situation is also presented in Example 3.7.

Definitions and Lemma 3.9 imply the following result.
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Lemma 3.17. If W ⊆ V ⊆ L, then any u - uniformly (Q, u, P) - continuous in V operator is
u - uniformly (Q, u, P) - continuous in W.

For finite relations u, different concepts of uniform continuity coincide.

Proposition 3.14. If the relation u is finite, then, an operator (mapping) A : L → M is u -
uniformly (Q, u, P) - continuous (u - uniformly (Q, u, P) - continuous at a point a) if and only if it
is (Q, u, P) - continuous ((Q, u, P) - continuous at a point a).

Proof. As any u - uniformly (Q, u, P) - continuous (u - uniformly (Q, u, P) - continuous at a point
a) operator is (Q, u, P) - continuous ((Q, u, P) - continuous at the same point), we need only to
show that when the relation u is finite, a (Q, u, P) - continuous (at a point a) operator A : L → M
is uniformly (Q, u, P) - continuous (at the point a). At first, we consider local boundedness.

Indeed, by Definition 3.6, for any hyperseminorms q and p such that (q, p) ∈ u, the operator
(mapping) A is (q, p) - continuous at the point a, that is, by Definition 3.4, the following condition
is true:

Condition 2. For any positive real number k, there is a positive real number h such that for any
element b from L, the inequality q(a − b) < h implies the inequality p(A(b) − A(a)) < k.

This number h can be different for different pairs (q, p), but because u is finite, there is only a
finite number of these pairs. So, we can take

l = min{h : h satisfies Condition 2 for a pair (q, p) ∈ u},

and this number l will satisfy the condition from Definition 3.7 Thus, the operator A is u - uni-
formly (Q, u, P) - continuous at the point a.

The global case is proved in a similar way.
Proposition is proved.

Corollary 3.31. If systems of hyperseminorms Q and P are finite, then an operator (mapping) A
is uniformly (Q, u, P) - continuous if and only if it is (Q, u, P) - continuous.

There are connections between uniform with respect to systems of hyperseminorms continuity
and uniform boundedness that are similar to the connections between nonuniform with respect to
systems of hyperseminorms continuity and nonuniform boundedness described in Theorems 3.1 -
3.3. Namely, we have the following results.

Theorem 3.4. A linear operator (mapping) A : L → M is uniformly (Q, u, P) - continuous at a
point a if and only if it is uniformly (Q, u, P) - bounded at a.

Proof is similar to the proof of Theorem 3.1.
Let us take a vector subspace V of the space L.

Theorem 3.5. A linear operator (mapping) A : L → M is u - uniformly (Q, u, P) - continuous in
V if and only if it is u - uniformly (Q, u, P) - bounded in V.

Proof is similar to the proof of Theorem 3.2.

Theorem 3.6. A linear operator (mapping) A : L→ M is uV - uniformly (Q, u, P) - continuous if
and only if it is uV - uniformly (Q, u, P) - bounded.

Proof is similar to the proof of Theorem 3.3.
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4. Conclusion

Semitopological vector spaces are introduced and studied. Semitopological vector spaces are
more general than conventional topological vector spaces, which have been very useful for solving
many problems in functional analysis. Thus, we come to the following problems.

Problem 1. Study topology in semitopological vector spaces.
Problem 2. Study applications of semitopological vector spaces.
In addition, hypernorms and hyperseminorms are introduced and studied. In this paper, it is

demonstrated that hyperseminormed and hypernormed spaces are semitopological vector spaces.
These results bring us to the following problems.
Problem 3. Study what kinds of topology it is possible to define with systems of seminorms,

hypernorms or hyperseminorms.
It is proved (cf. (Rudin, 1991)) that systems of seminorms characterize locally convex spaces

and thus, there are topological vector spaces topology in which is not defined by systems of semi-
norms. It is possible to ask if the same is true for semitopological vector spaces. Namely, we have
the following problem.

Problem 4. Is the topology in a semitopological vector space always defined by a system of
seminorms?

In this paper, hypermetrics and hyperpseudometrics are also introduced and it is demonstrated
that hyperseminorms induce hyperpseudometrics, while hypernorms induce hypermetrics. Suffi-
cient and necessary conditions for a hyperpseudometric (hypermetric) to be induced by a hyper-
seminorm (hypernorm) are found. Hyperpseudometrics and hypermetrics define definite topolo-
gies in vector spaces.

Problem 5. Study what kinds of topology it is possible to define with hyperpseudometrics and
hypermetrics.

In this paper, boundedness and continuity are defined relative to systems of hyperseminorms
or hypernorms. Inclusion of hyperseminorm sets is reflected in the strength of corresponding
topologies, namely, the larger is the set Q of hyperseminorms (hypernorms), the weaker topology
it defines. In such a way, we obtain a definite scalability of spaces ((Burgin, 2004); (Burgin, 2006))
with systems of hyperseminorms (hypernorms), coming to the following problem.

Problem 6. Study scalability of topological spaces defined by systems of hyperseminorms and
hypernorms.

Topological vector spaces provide an efficient context for the development of integration (Cho-
quet, 1969); (Edwards & Wayment, 1970); (Shuchat, 1972); (Kurzweil, 2000).

Problem 7. Study integration in semitopological (polyhyperseminormed) vector spaces.
At the same time, integration and hyperintegration in bundles with a hyperspace base are de-

fined and studied in (Burgin, 2010) where the hyperspace is built by means of seminorms. The
goal of this paper is to provide a base for developing the theory of extrafunction spaces in an ab-
stract setting of algebraic systems and topological spaces, where integration plays an important
role (Burgin, 2012). So, we naturally come to the following problem.

Problem 8. Study integration and hyperintegration in bundles with a hyperspace base where
the hyperspace is built by means of hyperseminorms.
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It is possible to define norms and seminorms with values not only in number or hypernumber
spaces but in more general spaces, e.g., operator spaces.

Problem 9. Study vector spaces that have norms or/and seminorms with values in general
spaces.

Problem 10. Study continuity of non-linear operators in (mappings of) polyhyperseminormed
(semitopological) vector spaces.

Here we have proved (Theorem 2.3) that any hyperseminormed vector space is a semitopolog-
ical vector space. It would be interesting to find if a more general statement is also true.

Problem 11. Is any polyhyperseminormed vector space a semitopological vector space?
Thus, the theory of semitopological vector spaces opens many new opportunities for research

in mathematics.
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Abstract
The main aim of this paper is to define the generalized difference double sequence spaces 2W I(M, ‖., ..., .‖,∆n

m, p),
2W I

0(M, ‖., ..., .‖,∆n
m, p) and 2W I

∞(M, ‖., ..., .‖,∆n
m, p) defined over a n-normed space (X, ‖., ..., .‖). Here we also study

their properties and establish some inclusion relations.
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1. Introduction

The notion of ideal convergence was introduced first by Kostyrko et-al- (Kostyrko et al., 2000)
as an interesting generalization of statistical convergence (Khan & Tabassum, 2012) which was
further studied in topological spaces. A family I ⊂ 2Y of subsets of a nonempty set Y is said to be
an ideal in Y if

1. ∅ ∈ I;
2. A, B ∈ I imply A ∪ B ∈ I;
3. A ∈ I, B ⊂ A imply B ∈ I,

while an admissible ideal I further satisfies {x} ∈ I for each x ∈ Y (Kostyrko et al., 2000, 2005;
Savas, 2010).
Given I ⊂ 2N be a nontrivial ideal in N. Let X be a normed space. The sequence (x j) in X is said
to be I − convergent to ξ ∈ X, if for each ε > 0 the set A(ε) = { j ∈ N : ‖x j − ξ‖ ≥ ε} belongs to I
(Khan & Tabassum, 2010).
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Tabassum)



V. A. Khan, S. Tabassum / Theory and Applications of Mathematics & Computer Science 3 (1) (2013) 90–98 91

The concept of 2-normed spaces was initially introduced by G̈ahler (Gähler, 1963) in the mid
of 1960’s as an interesting nonlinear generalization of a normed linear space. Since then, many
researchers have studied this concept and obtained various results, see for instance (Gunawan &
Mashadi, 2001; Khan & Tabassum, 2010; Savas, 2010).

Recall (Khan & Tabassum, 2012) that an Orlicz Function is a function M : [0,∞) → [0,∞)
which is continuous, nondecreasing and convex with M(0) = 0, M(x) > 0 for x > 0 and M(x) →
∞, as x→ ∞. If convexity of M is replaced by M(x+y) ≤ M(x)+ M(y), then it is called a Modulus
funtion (Maddox, 1986).

Let w be the space of all sequences. Lindenstrauss and Tzafriri (Lindenstrauss & Tzafiri, 1971)
used the idea of Orlicz sequence space. Let

lM :=
{
x ∈ w :

∞∑
k=1

M
(
|xk|

ρ

)
< ∞, for some ρ > 0

}
is Banach space with respect to the norm

‖x‖M := inf
{
ρ > 0 :

∞∑
k=1

M
(
|xk|

ρ

)
≤ 1

}
.

Orlicz function has been studied by V. A. Khan (Khan, 2008a,b) and many others.
Let n ∈ N and X be a real vector space of dimension d, where n ≤ d. An n-norm on X is a

function ‖., ..., .‖ : X × X × ... × X → R which satisfies the following four conditions:

1. ‖x1, x2, ..., xn‖ = 0 if and only if x1, x2, ..., xn are linearly dependent,
2. ‖x1, x2, ..., xn‖ is invariant under permutation,
3. ‖αx1, x2, ..., xn‖ = |α|‖x1, x2, ..., xn‖, for any α ∈ R,
4. ‖x + x′, x2, ..., xn‖ ≤ ‖x, x2, ..., xn‖ + ‖x′, x2, ..., xn‖.

The pair (X, ‖., ., ..., .‖) is called an n-normed space (Savas, 2011).

Example 1.1. (see (Savas, 2011)). As a standard example of a n-normed space we may take Rn

being equipped with the n-norm ‖x1, x2, ..., xn‖E = the volume of the n-dimensional parallelopiped
spaned by the vectors x1, x2, ..., xn−1, xn which may be given explicitly by the formula

‖x1, x2, ..., xn‖E =

∣∣∣∣∣∣∣∣∣∣∣
〈x1, x2〉 ... 〈x1, xn.〉

. ...

. ...
〈xn, x1〉 ... 〈xn, xn〉

∣∣∣∣∣∣∣∣∣∣∣ .
where 〈., .〉 denotes inner product.

Example 1.2. (see (Savas, 2011)). Let (X, ‖., ., ..., .‖) be an n-normed space of dimension d ≥ n ≥ 2
and {a1, a2, ..., an} be a linearly independent set in X. Then the following function ‖., ., ..., .‖∞ de-
fined by

‖x1, x2, ..., xn−1, xn‖∞ = max{‖x1, x2, ..., xn−1, ai‖ : i = 1, 2, ..., n}
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defines an (n − 1)−norm on X with respect to {a1, a2, ..., an}.

Definition 1.1. (see (Savas, 2011)). A sequence (x j) in an n-normed space (X, ‖., ., ..., .‖) is said to
be converge to some L ∈ X in the n-norm if

lim
j→∞
‖x j − L, x1, ..., xn−1‖ = 0, for every x1, ..., xn−1 ∈ X.

Example 1.3. (see (Khan & Tabassum, 2010)). A sequence (x j) in an n-normed space (X, ‖., ., ..., .‖)
is said to be Cauchy with respect to the n-norm if

lim
j,k→∞

‖x j − xk, x1, ..., xn−1‖ = 0, for every x1, ..., xn−1 ∈ X.

If every Cauchy sequence in X converges to some L ∈ X, then X is said to be complete with respect
to the n-norm. Any complete n-normed space is said to be n-Banach space.

Let w, l∞, c and c0 denote the spaces of all, bounded, convergent and null sequences x = (xk)
with complex terms, respectively, normed by

‖x‖ = sup
k
|xk|.

Kizmaz (Kizmaz, 1981), defined the difference sequences l∞(∆), c(∆) and c0(∆) as follows:

Z(∆) = {x = (xk) : (∆xk) ∈ Z},

for Z = l∞, c and c0, where ∆x = (∆xk) = (xk − xk+1), for all k ∈ N.
The above spaces are Banach spaces, normed by

‖x‖∆ = |x1| + sup
k
|∆xk|.

The notion of difference sequence spaces was generalized by Et. and Colak (Et & Colak, 1995) as
follows:

Z(∆n) = {x = (xk) : (∆nxk) ∈ Z},

for Z = l∞, c and c0, where n ∈ N, (∆nxk) = (∆n−1xk − ∆n−1xk+1) and so that

∆nxk =

n∑
v=0

(−1)v

(
n
v

)
xk+v.

In 2005, Tripathy and Esi (Tripathy & Esi, 2006), introduced the following new type of difference
sequence spaces:

Z(∆m) = {x = (xk) ∈ w : ∆mx ∈ Z}, for Z = l∞, c and c0

where ∆mx = (∆mxk) = (xk − xk+m), for all k ∈ N.
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Later on, Tripathy, Esi and Tripathy (B. C. Tripathy & Tripathy, 2005), generalized the above
notions and unified these as follows:
Let m, n be non negative integers, then for Z a given sequence space we have

Z(∆n
m) = {x = (xk) ∈ w : (∆n

mxk) ∈ Z}

where ∆n
mx = (∆n

mxk) = (∆n−1
m xk − ∆n−1

m xk+m) and ∆◦mxk = xk for all k ∈ N. The difference operator
is equivalent to the binomial representation

∆n
mxk =

n∑
v=0

(−1)v

(
n
v

)
xk+mv.

A paranorm is a function g : X → R which satisfies the following axioms:
For any x, y, x0 ∈ X, λ, λ0 ∈ C:

(i) g(θ) = 0;
(ii) g(x) = g(−x);

(iii) g(x + y) ≤ g(x) + g(y)
(iv) the scalar multiplication is continuous, that is λ→ λ0, x→ x0 imply λx→ λ0x0.

Throughout, a double sequence x = (x jk) is a double infinite array of elements x jk. for j, k ∈ N.
Double sequences have been studied by V. A. Khan and S. Tabassum (Khan & Tabassum, 2012;
V. & Tabassum, 2011; Khan & Tabassum, 2011, 2010), Moricz and Rhoades (Moricz & Rhoades,
1952) and many others.

Definition 1.2. (see (Khan & Tabassum, 2010)). A double sequence space X is said to be Solid
(Normal), if (α jkx jk) ∈ X whenever (x jk) ∈ X and for all double sequence (α jk) of scalars with
|α jk| ≤ 1 for all j, k ∈ N.

2. Main Results

In 2010 E. Savas (Savas, 2010) introduced certain new sequence spaces using ideal conver-
gence in 2-normed spaces. Later on V. A. Khan and S. Tabassum (Khan & Tabassum, 2010)
introduced similar kind of double sequence spaces using difference operator in 2-normed spaces.
In this paper we generalized these sequence spaces in n-normed spaces.

Let p = (p jk) be any bounded sequence of positive numbers, m, n be non-negative integers and
let I be an admissible ideal of N. Let 2W(n − X) be the space of X-valued double sequence spaces
defined over a n-normed space (X, ‖., ..., .‖). Then for an Orlicz function M we define the following
sequence spaces:

2W I(M, ‖., ..., .‖,∆n
m, p) =

{
x = (x jk) ∈ 2W(n − X) : ∀ε > 0 the set

{
( j, k) ∈ N × N :

lim
j,k→∞

(
M

(∥∥∥∥∥∆n
mx jk − L
ρ

, z1, z2, ..., zn−1

∥∥∥∥∥))p jk

≥ ε
}
∈ I, for some ρ > 0, L ∈ X, z1, z2, ..., zn−1 ∈ X

}
.

2W I
0(M, ‖., ..., .‖,∆n

m, p) =

{
x = (x jk) ∈ 2W(n − X) : ∀ε > 0 the set

{
( j, k) ∈ N × N :
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lim
j,k→∞

(
M

(∥∥∥∥∥∆n
mx jk

ρ
, z1, z2, ..., zn−1

∥∥∥∥∥))p jk

≥ ε
}
∈ I, for some ρ > 0, z1, z2, ..., zn−1 ∈ X

}
.

2W I
∞(M, ‖., ..., .‖,∆n

m, p) =

{
x = (x jk) ∈ 2W(n − X) : ∃K > 0 s.t.

{
( j, k) ∈ N × N :

sup
j,k≥1

(
M

(∥∥∥∥∥∆n
mx jk

ρ
, z1, z2, ..., zn−1

∥∥∥∥∥))p jk

≥ K
}
∈ I, for some ρ > 0, z1, z2, ..., zn−1 ∈ X

}
where

(∆n
mx jk) = (∆n−1

m x jk − ∆n−1
m x j+1,k − ∆n−1

m x j,k+1 + ∆n−1
m x j+1,k+1)

and
(∆0

mx jk) = x jk for all j, k ∈ N,

which is equivalent to the following binomial representation:

∆n
mx jk =

n∑
u=0

n∑
v=0

(−1)u+v

(
n
u

) (
n
v

)
x j+mu,k+mv.

and ∆x j,k = x j,k − x j+1,k − x j,k+1 + x j+1,k+1.
The following inequality will be used throughout the paper. Let p j,k be a double sequence of
positive real numbers with 0 < p jk ≤ sup

j,k
p jk = H, and let D = max{1, 2H−1}. Then for the

factorable sequences (a jk) and (b jk) in the complex plane, we have

|a jk + b jk|
q jk ≤ D(|a jk|

q jk + |b jk|
q jk)

Theorem 2.1. If {∆n
mx jk, z1, z2, ..., zn−1} is a linearly independent set in (X.‖., ..., .‖) for all but finite

j, k where x = (x jk) ∈ 2W(n − X) and inf
j,k

p jk > 0, then

(i) lim
j,k→∞

[
M

(∥∥∥∥∥∆n
m x jk

ρ
, z1, z2, ..., zn−1

∥∥∥∥∥)]p jk

= 0, for every ρ > 0,

(ii) lim
j,k→∞

[
M

(∥∥∥∥∥∆n
m x jk−L
ρ

, z1, z2, ..., zn−1

∥∥∥∥∥)]p jk

< ∞, for every ρ > 0.

Proof. (i). Assume that {∆n
mx jk, z1, z2, ..., zn−1} is a linearly independent set in (X.‖., ..., .‖) for all but

finite j, k. Then we have ‖∆n
mx jk, z1, z2, ..., zn−1‖ → 0 as j, k → ∞.

Since M is continuous and 0 < p jk ≤ sup p jk < ∞, for each j, k, we have

lim
j,k→∞

[
M

(∥∥∥∥∥∆n
mx jk

ρ
, z1, z2, ..., zn−1

∥∥∥∥∥)]p jk

= 0, for every ρ > 0.

(ii). Proof of this part is similar to part (i).

Theorem 2.2. 2W I(M, ‖., ..., .‖,∆n
m, p), 2W I

0(M, ‖., ..., .‖,∆n
m, p) and 2W I

∞(M, ‖., ..., .‖,∆n
m, p) are lin-

ear spaces.
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Proof. We prove the assertion for 2W I
0(M, ‖., ..., .‖,∆n

m, p) the others can be proved similarly. As-
sume that x = (x jk) and y = (y jk) ∈ 2W I

0(M, ‖., ..., .‖,∆n
m, p) and α, β ∈ R, so

{
( j, k) ∈ N × N : lim

j,k→∞

(
M

(∥∥∥∥∥∆n
mx jk

ρ1
, z1, z2, ..., zn−1

∥∥∥∥∥))p jk

≥ ε
}
∈ I, for some ρ1 > 0, (2.1)

{
( j, k) ∈ N × N : lim

j,k→∞

(
M

(∥∥∥∥∥∆n
my jk

ρ2
, z1, z2, ..., zn−1

∥∥∥∥∥))p jk

≥ ε
}
∈ I, for some ρ2 > 0, (2.2)

Since ‖., ..., .‖ is a n-norm, and M is an Orlicz function the following inequality holds:

lim
j,k→∞

(
M

(∥∥∥∥∥∆n
m(αx jk+βy jk)
|α|ρ1+|β|ρ2

, z1, z2, ..., zn−1

∥∥∥∥∥))p jk

≤ D lim
j,k→∞

[
|α|ρ1

|α|ρ1+|β|ρ2
M

(∥∥∥∥∥∆n
m x jk

ρ1
, z1, z2, ..., zn−1

∥∥∥∥∥)]p jk

+D lim
j,k→∞

[
|β|ρ2

|α|ρ1+|β|ρ2
M

(∥∥∥∥∥∆n
my jk

ρ2
, z1, z2, ..., zn−1

∥∥∥∥∥)]p jk

≤ DF lim
j,k→∞

[
M

(∥∥∥∥∥∆n
m x jk

ρ1
, z1, z2, ..., zn−1

∥∥∥∥∥)]p jk

+DF lim
j,k→∞

[
M

(∥∥∥∥∥∆n
my jk

ρ2
, z1, z2, ..., zn−1

∥∥∥∥∥)]p jk

(2.3)

where

F = max
[
1,

(
|α|

αρ1 + |β|ρ2

)H

,
(

|β|

αρ1 + |β|ρ2

)H]
(2.4)

From the above inequality, we get{
( j, k) ∈ N × N : lim

j,k→∞

(
M

(∥∥∥∥∥∆n
mαx jk+∆n

mβy jk

|α|ρ1+|β|ρ2
, z1, z2, ..., zn−1

∥∥∥∥∥))p jk

≥ ε
}

⊆

{
( j, k) ∈ N × N : DF lim

j,k→∞

(
M

(∥∥∥∥∥∆n
m x jk

ρ1
, z1, z2, ..., zn−1

∥∥∥∥∥))p jk

≥ ε
2

}
∪

{
( j, k) ∈ N × N : DF lim

j,k→∞

(
M

(∥∥∥∥∥∆n
my jk

ρ2
, z1, z2, ..., zn−1

∥∥∥∥∥))p jk

≥ ε
2

}
.

(2.5)

The sets on the right hand side belong to I and this completes the proof.

Theorem 2.3. For any fixed ( j, k) ∈ N × N, 2W I
∞(M, ‖., ..., .‖,∆n

m, p) is paranomed space with
respect to the paranorm defined by:

g(x) = inf
j,k

{
ρ

p jk
H :

(
sup
j,k≥1

(
M

(∥∥∥∥∥∆n
mx jk

ρ
, z1, z2, ..., zn−1

∥∥∥∥∥))p jk) 1
H

≤ 1,∀z1, z2, ..., zn−1 ∈ X
}
. (2.6)

Proof. (i) x = θ implies that then ‖0, z1, z2..., zn−1‖ = 0 since the set containing 0 is linearly depen-
dent. Also M(0) = 0 implies that g(θ) = 0.
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(ii) g(x) = g(−x)

(iii) Let x = (x jk), y = (y jk) ∈ 2W I
∞(M, ‖., ..., .‖,∆n

m, p).

Then there exists ρ1, ρ2 > 0 such that: sup
j,k≥1

(
M

(∥∥∥∥∥∆n
m x jk

ρ1
, z1, z2, ..., zn−1

∥∥∥∥∥))p jk

≤ 1 and

sup
j,k≥1

(
M

(∥∥∥∥∥∆n
my jk

ρ2
, z1, z2, ..., zn−1

∥∥∥∥∥))p jk

≤ 1 (2.7)

for each z1, z2, ..., zn−1 ∈ X.
Let ρ = ρ1 + ρ2. Then by convexity of Orlicz function we have:

sup
j,k≥1

(
M

(∥∥∥∥∥∆n
m x jk+∆n

my jk

ρ
, z1, z2, ..., zn−1

∥∥∥∥∥) ≤ (
ρ1

ρ1+ρ2

)
sup
j,k≥1

M
(∥∥∥∥∥∆n

m x jk

ρ1
, z1, z2, ..., zn−1

∥∥∥∥∥)
+

(
ρ2

ρ1+ρ2

)
sup
j,k≥1

M
(∥∥∥∥∥∆n

my jk

ρ2
, z1, z2, ..., zn−1

∥∥∥∥∥). (2.8)

Thus sup
j,k≥1

M
(∥∥∥∥∥∆n

m x jk+∆n
my jk

ρ1+ρ2
, z1, z2, ..., zn−1

∥∥∥∥∥)p jk

≤ 1 and hence

g(x + y) ≤ inf
j,k

{
ρ

p jk
H

1 : sup
j,k≥1

(
M

(∥∥∥∥∥∆n
m x jk

ρ1
, z1, z2, ..., zn−1

∥∥∥∥∥))p jk

≤ 1
}

+ inf
j,k

{
ρ

p jk
H

2 : sup
j,k≥1

(
M

(∥∥∥∥∥∆n
my jk

ρ2
, z1, z2, ..., zn−1

∥∥∥∥∥))p jk

≤ 1
}
.

(2.9)

The arbitrary ρ1 and ρ2 implies that g(x + y) ≤ g(x) + g(y).
(iv) Let α→ 0 and g(xn − x)→ 0 (n→ ∞)

g(αx) = inf
{(
ρ

|α|

) p jk
H

: sup
j,k≥1

(
M

(∥∥∥∥∥∆n
mαx jk

ρ
, z1, z2, ..., zn−1

∥∥∥∥∥))p jk

≤ 1
}
. (2.10)

Theorem 2.4. Let M,M1,M2, be Orlicz functions. Then we have

(i) 2W I
0(M1, ‖., ..., .‖,∆

n
m, p) ⊆ 2W I

0(M ◦ M1, ‖., ..., .‖,∆
n
m, p)

provided (p jk) is such that H0 = inf p jk > 0.
(ii) 2W I

0(M1, ‖., ..., .‖,∆
n
m, p) ∩ 2W I

0(M2, ‖., ..., .‖,∆
n
m, p) ⊆ 2W I

0(M1 + M2, ‖., ..., .‖,∆
n
m, p).

Proof. (i). For given ε > 0, first choose ε0 > 0 such that max{εH
0 , ε

H0
0 } < ε. Now using the

continuity of M choose 0 < δ < 1 such that 0 < t < δ, implies that M(t) < ε0, Let (x jk) ∈
2W I

0(M1, ‖., .‖,∆
n
m, p). Now by definition:

A(δ) =

{
( j, k) ∈ N × N : lim

j,k→∞

(
M1

(∥∥∥∥∥∆n
mx jk

ρ
, z1, z2, ..., zn−1

∥∥∥∥∥))p jk

≥ δH
}
∈ I. (2.11)

Thus if ( j, k) < A(δ) then(
M1

(∥∥∥∥∥∆n
mx jk

ρ
, z1, z2, ..., zn−1

∥∥∥∥∥))p jk

≤ δH, ∀ j, k ∈ N. (2.12)
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That is (
M1

(∥∥∥∥∥∆n
mx jk

ρ
, z1, z2, ..., zn−1

∥∥∥∥∥))p jk

< δ, ∀ j, k ∈ N. (2.13)

Hence from above using continuity of M we must have

M
(
M1

(∥∥∥∥∥∆n
mx jk

ρ
, z1, z2, ..., zn−1

∥∥∥∥∥))p jk

< ε0, ∀ j, k ∈ N (2.14)

Which consequently implies that

lim
j,k→∞

[
M

(
M1

(∥∥∥∥∥∆n
mx jk

ρ
, z1, z2, ..., zn−1

∥∥∥∥∥))]p jk

< max{εH
0 , ε

H0
0 } < ε. (2.15)

This shows that{
( j, k) ∈ N × N : lim

j,k→∞

[
M

(
M1

(∥∥∥∥∥∆n
mx jk

ρ
, z1, z2, ..., zn−1

∥∥∥∥∥))]p jk

≥ ε
}
⊂ A(δ) (2.16)

and so belongs to I. This completes the result.
(ii). Let x jk ∈ 2W I

0(M1, ‖., ..., .‖,∆
n
m, p) ∩ 2W I

0(M2, ‖., ..., .‖,∆
n
m, p)

Then the fact that

lim
j,k→∞

[
(M1 + M2)

(∥∥∥∥∥∆n
m x jk

ρ
, z1, z2, ..., zn−1

∥∥∥∥∥)]p jk

≤ D lim
j,k→∞

[
M1

(∥∥∥∥∥∆n
m x jk

ρ
, z1, z2, ..., zn−1

∥∥∥∥∥)]p jk

+D lim
j,k→∞

[
M2

(∥∥∥∥∥∆n
m x jk

ρ
, z1, z2, ..., zn−1

∥∥∥∥∥)]p jk

.
(2.17)

This gives the result.

Theorem 2.5. The sequence space 2W I
0(M, ‖., ..., .‖,∆n

m, p), 2W I
∞(M, ‖., ..., .‖,∆n

m, p) are Solid.

Proof. We give the proof for 2W I
0(M, ‖., ..., .‖,∆n

m, p) only.
Let (x jk) ∈ 2W I

0(M, ‖., ..., .‖,∆n
m, p) and let (α jk) be a double sequence of scalars such that

|α jk| ≤ 1 for all j, k ∈ N. Then we have{
( j, k) ∈ N × N : lim

j,k→∞

[
M

(∥∥∥∥∥∆n
m(α jk x jk)

ρ
, z1, z2, ..., zn−1

∥∥∥∥∥)]p jk

≥ ε
}

⊆

{
( j, k) ∈ N × N : E lim

j,k→∞

[
M

(∥∥∥∥∥∆n
m x jk

ρ
, z1, z2, ..., zn−1

∥∥∥∥∥)]p jk

≥ ε
}
∈ I.

(2.18)

Where E = max
j,k
{1, |α jk|

H}. Hence (α jkx jk) ∈ 2W I
0(M, ‖., .‖,∆n

m, p) for all double sequence of scalars

(α jk) with |α jk| ≤ 1 for all j, k ∈ N whenever (x jk) ∈ 2W I
0(M, ‖., ..., .‖,∆n

m, p).
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Satellite Constellation Reconfiguration Using the Approximating
Sequence Riccati Equations

Ashraf H. Owisa

aDepartment of Astronomy, Space and Meteorology Cairo University

Abstract
In this work we study the reconfiguration of a constellation of satellite. In this work we consider the non-linear

feedback optimal control of the motion of a spacecraft under the influence of the gravitational attraction of a central
body, the Earth in our case, and we would like to transfer the spacecraft from lower circular orbit to a higher one. Both
orbits around the Earth are assumed to be circular and coplanar. We use both radial and tangential thrust control. The
nonlinear dynamics of the system will be factorized in such a way that the new factorized system is accessible. The
problem is tackled using the Approximating Sequence Riccati Equations (ASRE) method. The technique is based on
Linear Quadratic Regulator (LQR) with fixed terminal state, which guarantees closed loop solution. The method is
tested through GNSS circular constellation.

Keywords: Nonlinear feedback, linear quadratic regulator, approximation sequence Riccati equation, GNSS
satellite.
2010 MSC: 49.

1. Introduction

In some instances, it is desirable to deploy a constellation in stages to gradually expand its
capacity. This requires launching additional satellites and reconfiguring the existing on-orbit satel-
lites (de Weck et al., 2008). Also, a constellation might be re-structured and reconfigured after it
is initially set for operational reasons.

The most common way of raising or lowering the orbit of a spacecraft is the low thrust orbit
rendezvous approach, which is a nonlinear optimal control problem. Historically, there are several
method to solve the nonlinear optimal control problem in both open and closed loop contexts. In
the open loop context the problem can be solved via indirect and then direct method. The indirect
method was developed through Pontryagin Maximum Principle (PMP) (Bryson & Ho, 1975),

∗Corresponding author
Email address: aowis@eun.eg (Ashraf H. Owis)
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(Pontryagin et al., 1952). The direct method was developed using the Karush-Kuhn-Tucker(KKT)
algebric equation (Enright & Conway, 1992).

One of the most common methods for solving the nonlinear optimal control problem in the
closed loop context is the State Dependent Riccati Equations (SDRE) (Cimen, 2006), (Owis,
2013). The Approximating Sequence of Riccati Equations (ASRE) (Cimen, 2004) technique is
an iterative approach to solve the nonlinear optimal control problem. The ASRE is developed
(Topputo & Bernelli-Zazzera, 2012) using the state transition matrix. The guidance designed with
these methods is obtained in an open-loop context. In other words, the optimal path, even if mini-
mizing the prescribed performance index, is not able to respond to any perturbation that could alter
the state of the spacecraft. Furthermore, if the initial conditions are slightly varied (e.g. the launch
date changes), the optimal solution needs to be recomputed again. The outcome of the classical
problem is in fact a guidance law expressed as a function of the time, the initial and final time,
and u the control vector, respectively. We develop a closed loop approach. With this approach
the solutions that minimize the performance index are also functions of the generic initial state
x0; the outcome is in fact a guidance law written as u = u(x0, t0, t), t ∈ [t0, t f ]. This represents a
closed-loop solution: given the initial conditions (t0, x0) it is possible to extract the optimal control
law that solves the optimal control problem. Moreover, if for any reason the state is perturbed
and assumes the new value (t

′
0, x

′
0) = (x0 + δx, t0 + δt), we are able to compute the new optimal

solution by simply evaluating so avoiding the solution of another optimal control problem. This
property holds by virtue of the closed loop characteristics of the control law that can be viewed as
a one-parameter family of solutions. Due to such property, a trajectory designed in this way has
the property to respond to perturbations acting during the transfer that continuously alter the state
of the spacecraft. The optimal feedback control for linear systems with quadratic objective func-
tions is addressed through the matrix Riccati equation: this is a matrix differential equation that
can be integrated backward in time to yield the initial value of the Lagrange multipliers (Bryson &
Ho, 1975). Recently, the nonlinear feedback control of circular coplanar low-thrust orbital trans-
fers has been faced using continuous orbital elements feedback and Lyapunov functions (Chang &
Marsden, 2002) and proved optimal by (Alizadah & Villac, 2011). Later on the problem has been
solved using the primer vector approximation method (Haung, 2012).

The analytical low-thrust optimal feedback control problem is solved, with modulated inverse-
square-distance, in the frame of a nonlinear vector field, the two-body dynamics, supported by
a nonlinear objective function by applying a globally diffeomorphic linearizing transformation
that rearranges the original problem into a linear system of ordinary differential equations and a
quadratic objective function written in a new set of variables with radial thrust (Topputo et al.,
2008). In this work we consider the nonlinear feedback optimal control of the motion of a space-
craft under the influence of the gravitational attraction of a central body, the Earth in our case,
and we would like to transfer the spacecraft from lower to higher orbit. Both lower and higher
orbits around the Earth are assumed to be circular and coplanar. We use both radial and tangential
thrust control. The nonlinear dynamics of the system will be factorized in such a way that the
new factorized system is accessible. The problem is tackled using the Approximating Sequence
Riccati Equation (ASRE) method. The technique is based on Linear Quadratic Regulator (LQR)
with fixed terminal state. The method is applied to GNSS circular constellation Figure 1.



Ashraf H. Owis / Theory and Applications of Mathematics & Computer Science 3 (1) (2013) 99–106 101

Figure 1. Constellation reconfiguration.

Linear Quadratic Regulator(LQR) with Fixed Terminal State.

Consider the following system with linear dynamics and quadratic performance index as fol-
lows:

Ẋ = AX + BU, X(t0) = X0 ∈ Rn, (1.1)

the following performance index

J = XT
f Q f X f +

1
2

∫ t f

t0
[XT QX + UT RU]dt, (1.2)

where A , B , Q , and R are constant coefficients matrices of the suitable dimensions. we have
to find the m-dimensional control functions U(t), t ∈ [t0 t f ] which minimizes the J, which is an
open loop (with t0 fixed) optimal control. We optimize the performance index J, by adjoining the
dynamics and the performance index (integrand) to form the Hamiltonian:

H(X, λ,U, t) =
1
2

(XT QX + UT RU) + λT (A(t)X + B(t)U),

where the Lagrange multiplier λ is called the adjoint variable or the costate. The necessary condi-
tions for optimality are:

1. Ẋ = Hλ = A(t)X + B(t)U, X(t0) = X0,

2. λ̇ = −Hx = −QX − ATλ, λ(t f ) = Q f X f ,

3. Hu = 0 =⇒ RU + BTλ = 0 =⇒ U? = −R−1BTλ.

To find the minimum solution we have to check for Huu =
∂2H
∂λ2 > 0 or equivalently R > 0. Now

we have that Ẋ = AX + BU? = AX − BR−1BTλ , which can be combined to the the equation of the
costate as follows

[
Ẋ
λ̇

]
=

[
A −BR−1BT

−Q −AT

] [
X
λ

]
, (1.3)



102 Ashraf H. Owis / Theory and Applications of Mathematics & Computer Science 3 (1) (2013) 99–106

which is called the Hamiltonian matrix, it represents a 2n boundary value problem with X(t0) = X0

and, λ(t f ) = Q f X f .
We can solve this 2n boundary value problem using the transition matrix method as follows.

Let’s define a transition matrix

φ(t1, t0) =

[
φ11(t1, t0) φ12(t1, t0)
φ21(t1, t0) φ22(t1, t0)

]
,

we use this matrix to relate the current values of X and λ to the final values X f and λ f as follows
[

X
λ

]
=

[
φ11(t, t f ) φ12(t, t f )
φ21(t, t f ) φ22(t, t f )

] [
X(t f )
λ(t f )

]
,

so we have X = φ11(t, t f )X(t f ) + φ12(t, t f )λ(t f ) = [φ11(t, t f ) + φ12(t, t f )Q f ]X(t f ), we can eliminate
X(t f ) to get X = [φ11(t, t f ) + φ12(t, t f )Q f ][φ11(t0, t f ) + φ12(t0, t f )Q f ]−1X(t0) = X(t, X0, t0), now we
can find λ(t) in terms of X(t f ) as λ(t) = [φ21(t, t f ) + φ22(t, t f )Q f ]X(t f ), then we can eliminate X(t f )
to get λ(t) = [φ21(t, t f ) + φ22(t, t f )Q f ][φ11(t, t f ) + φ12(t, t f )Q f ]−1X(t) = φλxX(t). Now we search
a solution for φλx . By differentiating λ(t) we get λ̇(t) = φ̇λxX(t) + φλxẊ(t). Comparing the last
equation with the Hamiltonian matrix we get −QX(t) − ATλ(t) = φ̇λxX(t) + φλxẊ(t), then we have

− ˙φλx(t)X(t) = QX(t) + ATλ(t) + φλxẊ(t)

= QX(t) + ATλ(t) + φλx(AX − BR−1BTλ(t))

= (Q + φλxA)X(t) + (AT − φλxBR−1BT )λ(t)

= (Q + φλxA)X(t) + (AT − φλxBR−1BT )φλxX(t)

= [Q + φλxA + ATφλx − φλxBR−1BTφλx]X(t).

Since this is true for arbitrary X(t), φλx must satisfy

−φ̇λx(t) = Q + φλxA + ATφλx − φλxBR−1BTφλx, (1.4)

which is the matrix differential Riccati Equation . We can solve for φλx by solving Riccati Equation
backwards in time from t f with φλx(t f ) = Q f . The optimal control is then given by

U? = −R−1BTλ(t) = −R−1BTφλxX = −K(t)X(t, X0, t0). (1.5)

From 1.5 we notice that the optimal control is a linear full-state feedback control, therefore the
linear quadratic terminal controller is feedback by default.

2. The Approximating Sequence of Riccati Equations(ASRE)

Assume that we have the following nonlinear system

Ẋ = f (X,U, t) (2.1)

X(t0) = X0, X(t f ) = X f ∈ Rn (2.2)
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with performance index

J = φ(X f , t f ) +

∫ t f

t0
L(X,U, t)dt. (2.3)

This system can be rewritten in the state dependent quasi-linear system as follows

Ẋi = A(Xi−1)Xi + B(Xi−1)U i (2.4)
X(t0) = X0

0 , X(t f ) = Xn
f ∈ Rn (2.5)

J = Xi
f
T Q(Xi−1

f )Xi
f +

1
2

∫ t f

t0
[XiT Q(Xi−1)Xi + U iT R(Xi−1)U i]dt, (2.6)

where i represents the iteration step over the time interval [ti − 1, ti] Figure 2, the technique
is based of the previously introduced Linear Quadratic Regulator with fixed terminal state, which
is a full state feedback and therefore the obtained solution will be a closed loop one, i.e. able to
respond to the unexpected change in the inputs. The technique works as follows: the initial state
is used to compute A0, and B0 and we solve for the first LQR iteration and compute X1 and then
used to compute new value of A1, and B1 for the second iteration until the final state error reaches
a value below a set threshold.

Figure 2. Time Interval Disecretization.

3. Optimal Orbit Transfer

The equations of motion are written in polar coordinates (r, θ), in the inertial Earth-Centered
frame. In order to transfer the spacecraft between two circular coplanar orbits two components of
the thrust control are used. The tangential component Tθ, and the radial component Tr.

The equations of motion are:

r̈ − rθ̇2 = Tr − µ

r2

rθ̈ + 2ṙθ̇ = Tθ

(3.1)
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where µ is the gravitational constant of the Earth (3.986005 × 1014m3/s2) In this system of units
the gravitational constant µ is unity, and equations (3.1) are rewritten as:

r̈ − rθ̇2 = Tr − 1
r2

θ̈ + 2
ṙθ̇
r

=
Tθ

r

(3.2)

Equations of motion in state variable form, equations (3.2), are then written in state variable form.
The state vector x is chosen to be:

x =



x1

x2

x3

x4


=



r
θ
ṙ
θ̇


(3.3)

and the control vector is :

u =

[
u1

u2

]
=

[
Tr

Tθ

]
. (3.4)

Then equation (3.2) can be written in the form :

ẋ = f(x) + B(x)u. (3.5)

Choosing a suitable factorization equation (3.5) is rewritten in the factored state variable form :

ẋ = A(x)x + B(x)u, (3.6)

where :

A(x) =



0 0 1 0
0 0 0 1
x2

4 − 1
x2

1 x2
0 0

−2x4
x2

1
0 0 0


, (3.7)

B(x) =



0 0
0 0
1 0
0 1

x1


. (3.8)

4. Factored Controllability

For the factored system (3.6) the controllability is established by verifying that the controlla-
bility matrix Mcl = [B AB A2B A3B] has a rank equals to n = 4 ∀x in the domain.

Since A and B have nonvanishing rows the controllability matrix Mcl for the System (3.6) is of
rank 4.

Nondimensionalization of the problem in order to simplify the calculation we dimensionalize
the system by removing the units from the equations of motion via multiplying or dividing some
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constants. The two constant we divide by are the radial distance of the initial orbit and the grav-
itational constant µ in this case the radius of the initial orbit is unity and velocity is divided by
the circular velocity of the initial orbit

√
µ

r2
0

and the time is multiplied by
√

µ

r3
0
. In the first two

example we would like to make an optimal orbit transfer (i.e. from (r = 1) to (r = 1.2) in time
t f = 4.469, 5.2231 (time unit) Figure 3 with an optimal control function of both radial and tan-
gential components Figure 4. The initial angle is (θ0 = π

2 ) and the final angle is (θ f = 3π
2 ). ṙ0 = 0

and ṙ f = 0 for the initial and final orbits. θ̇0 =
√

1
r3

0
= 1 and θ̇ f =

√
1
r3

f
= 0.54433105395. In the

second θ f = 5π
2 with t f = 6.866. In both examples the matrices Q and R are the identity matrices:

Q =



1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


, R =

[
1 0
0 1

]
.
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4. Factored Controllability108

For the factored system (3.6) the controllability is established by verifying that the controlla-
bility matrix

Mcl = [B AB A2B A3B]

has a rank equals to n = 4 ∀x in the domain.109

Since A and B have nonvanishing rows the controllability matrix Mcl for the System (3.6) is of110

rank 4.111

112

Nondimensionalization of the problem In order to simplify the calculation we dimensionalize
the system by removing the units from the equations of motion via multiplying or dividing some
constants. The two constant we divid by are the radial distance of the initial orbit and the gravi-
tational constant µ in this case the radius of the initial orbit is unity and velocity is divided by the
circular velocity of the initial orbit

�
µ

r2
0

and the time is multiplied by
�
µ

r3
0

In application we would

like to make an optimal orbit transfer(i.e. from (r = 1) to (r = 1.2) in time t f = 4.469, 5.2231 (time
unit) Fig. 3 with an optimal control function of both radial and tangential components Fig. 4. The
initial angle is (θ0 = π2 ) and the final angle is (θ f =

3π
2 ). ṙ0 = 0 and ṙ f = 0 for the initial and final

orbits. θ̇0 =
�

1
r3

0
= 1 and θ̇ f =

�
1
r3

f
= 0.54433105395 . In the second θ f =

5π
2 with t f = 6.866 .

in example the matrices Q and R are the identity matrices.

Q =



1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



R =
�

1 0
0 1

�
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Figure 3: Trajectory of orbit transfer in polar coordinates, from [r0 = 1, θ0 = π/2, ṙ0 = 0, θ̇0 = 1] to [r f = 1.2, θ f = 3π/2, ṙ f =

0, θ̇ f = 0.72213]

Figure 3. Trajectory of orbit transfer in polar coordinates, from [r0 = 1, θ0 =

π/2 , ṙ0 = 0, θ̇0 = 1] to [r f = 1.2, θ f = 3π/2, ṙ f = 0, θ̇ f = 0.72213]

Figure 4. Control function in polar coordinates, from [r0 = 1, θ0 = π/2, ṙ0 = 0, θ̇0 =

1] to [r f = 1.2, θ f = 3π/2, ṙ f = 0, θ̇ f = 0.54433].
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5. Conclusion

The nonlinear feedback optimal control can be solved by factorizing the original nonlinear dy-
namics into accessible (weakly controllable) linear dynamics of state dependent factors. The fac-
torized problem has been solved using the the Approximating Sequence Riccati Equations (ASRE)
method. The technique is based on Linear Quadratic Regulator (LQR) with fixed terminal state,
which guarantees closed loop solution. The method is tested through reconfiguration of a GNSS
circular constellation. The result is valid for any circular orbit transfer.
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Abstract

This article introduces descriptive separation spaces useful in the discovery of what are known as motif patterns.
The proposed approach presents the separation axioms in terms of descriptive proximities. Asymmetries arise nat-
urally in the form of the separation of neighbourhoods of descriptively distinct points in what are known as Leader
uniform topological spaces. A practical application of theproposed approach is given in terms of visual motif patterns,
identification of nearness structures and pattern stability analysis in digital images.

Keywords: Descriptive proximity, near sets, visual motif patterns, separation spaces.
2010 MSC:Primary 26A21, Secondary 26A24, 54D35, 54A20, 54E99, 18B30.

1. Introduction

This article introduces separation spaces, useful in the study of set patterns. Various forms of
separation in topological spaces are defined by what are known as separation axioms. The main
purpose of a separation axiom is to make the points and sets ina space topologically distinguish-
able (Thron, 1966, §14.1). The earliest of such spaces comes from F. Hausdorff, where distinct
points belong to disjoint neighbourhoods (Hausdorff, 1957a, §40.II). In this article, traditional
separation spaces are extended to description-based separation spaces. The practical benefit of
considering descriptive separation spaces is the generation of multiple patterns that are descrip-
tively distinguishable. In a Hausdorff space, for example, a pair of descriptively distinct points
become generators of distinguishable set patterns.

A form of set pattern (Grenander, 1993, §17.5) of particular interest in an approach to pattern
recognition is given in terms of what are known as descriptive motif patterns. Adescriptive motif
pattern is a collection of sets such that each member of the collection is descriptively close to a
motif. A motif is a set with members that are near one or more members of othersets. Motifs

∗Corresponding author
Email address:james.peters3@ad.umanitoba.ca (James Peters)

tamcslogo.eps
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are a particular form set pattern generators. Visual motif patterns are found in pictures, geometric
structures, and digital images. Avisual motif patternis a particular form of descriptive motif
pattern that is a collection of sets such that each member of the collection is visually close to a
set that is a motif. Visual motif patterns have a number of important applications (Naimpally &
Peters, 2013; Peters, 2013a).

The study of visual patterns includes a consideration of S. Leader’s uniform topology1 in a
metric space (Leader, 1959) and its extension to descriptive uniform topologies that provide a basis
for new forms of asymmetric spaces. Adescriptive uniform topologyis determined by finding the
collection of all sets that are descriptively near a given set.

Set descriptions result from the introduction of feature vectors that describe members of sets
such as sets of pixels in digital images. These considerations lead in a straightforward way to a
form of topology of digital images with considerable practical importance in solving image analy-
sis and image classification problems. Since we are interested in patterns in separation spaces, we
introduce stability criteria for the generation of multiple set patterns. A visual pattern is consid-
eredstable, provided the members of the pattern do not wander away from the pattern generator,
neither spatially nor descriptively.

2. Preliminaries

Let X be a nonempty set of points,P(X) the powerset ofX, P2(X) the set of all collections
of subsets ofX. A single pointx ∈ X is denoted by a lowercase letter, a subsetA ∈ P(X) by an
uppercase letter, collection of subsets inP2(X) by a round letter such asB ∈ P2(X). Theclosure
of a subsetA ∈ P(X) (denoted by clA) is defined by

clA = {x ∈ X : x δ A} ,

i.e., clA is the set of all pointsx in X that are nearA. Let δ on a nonempty setX denote a spatial
nearness (proximity) relation. ForA, B ∈ P(X), A δ B (readsA is spatially nearB), provided
A ∩ B , ∅, i.e., the intersection ofA andB is not empty (clA and clB have at least one point in
common). The spatial proximity (nearness) relationδ is defined by

δ = {(A, B) ∈ P(X) × P(X) : clA ∩ clB , ∅} .

A δ B (readsA far (remote) fromB), provided clA and clB have no points in common such that
δ = P(X) × P(X) \ δ. Sets that are far from each other relative to the locations of the points in
the sets (the points in one set are not among the points of the other set) are calledspatially remote
sets. The complement of a setC ∈ P(X) is denoted byCc.

In the study of patterns, a descriptive form of EF-proximityis useful (Peters & Naimpally,
2012). Let X be a nonempty set endowed with a descriptive proximity relation δΦ, x ∈ X, A, B ∈
P(X), and letΦ = {φ1, . . . , φi, . . . , φn}, a set of probe functionsφi : X → R that represent features

1Metric space uniformity is logically equivalent to EF-proximity and the axioms given by Efremovic̆ (Efremovic̆,
1951) (see Theorem 1.15, one of the most beautiful results in set-theoretic topology (Naimpally & Peters, 2013, §1.11,
p. 27)). Many thanks to Som Naimpally for pointing this out.
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of eachx, whereφi(x) equals a feature value ofx. LetΦ(x) denote a feature vector for the object
x, i.e., a vector of feature values that describex, where

Φ(x) = (φ1(x), . . . , φi(x), . . . , φn(x)) .

A feature vector provides a description of an object. LetA, B ∈ P(X). LetQ(A),Q(B) denote sets
of descriptions of points inA, B, respectively. For example,

Q(A) = {Φ(a) : a ∈ A} .

The expressionA δΦ B readsA is descriptively near B. The descriptive proximity ofA andB is
defined by

A δΦ B⇔ Q(clA) ∩ Q(clB) , ∅.

Descriptive remotenessof A andB (denoted byA δ
Φ

B) is defined by

A δ
Φ

B⇔ Q(clA) ∩ Q(clB) = ∅.

Early informal work on the descriptive intersection of disjoint sets based on the shapes and colours
of objects in the disjoint sets is given by N. Rocchi (Rocchi, 1969, p.159). Thedescriptive inter-
section∩

Φ

of A andB is defined by

A ∩
Φ

B = {x ∈ A∪ B : Φ(x) ∈ Q(clA) andΦ(x) ∈ Q(clB)} .

The descriptive intersection will be nonempty, provided there is at least one element of clA with
a description that matches the description of a least one element of clB. That is, a nonempty
descriptive intersection of setsA andB is a set containinga ∈ clA andb ∈ clB such thatΦ(a) =
Φ(b). Observe thatA andB can be disjoint and yetA ∩

Φ

B can be nonempty. In finding subsets

A, B ∈ P(X) that are descriptively near, one considers descriptive intersection of the closure ofA
and the closure ofB. That is, clA ∩

Φ

clB implies A δΦ B. The descriptive proximity (nearness)

relationδΦ is defined by

δΦ =

{

(A, B) ∈ P(X) × P(X) : clA ∩
Φ

clB , ∅
}

.

a1 a2 a3
X A B

b4b3b2b1

C
c1 c2

Figure 1. Φ =
{

colour probe fns
}

, clA ∩
Φ

clB = {a2, b4}, clA ∩
Φ

clC = ∅.

Example 2.1. Descriptive intersection of disjoint sets
The coloured and white squares in Figure1 represent cells in a weave. Acell in a fabric is that
part of a weave strand that overlaps another weave strand. The parallel strands of each layer in
a weave are perpendicular to those strands in the other layer, making the cells square (Thomas,
2009). ChooseΦ to be a set of probe functions representing weave cell colours. Let the set
of cells X in Figure 1 be endowed withδΦ. Notice that setsA, B ∈ P(X) are disjoint but the
descriptive intersection is nonempty. That is, clA ∩

Φ

clB = {a2, b4}. Similarly, for B,C ∈ P(X),

clB ∩
Φ

clC = {b1, b2, b3, c1, c2}. �
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The descriptive remoteness ofA andB (denoted byA δ
Φ

B) such thatδ
Φ
= P(X) × P(X) \ δΦ is

defined by
A δ
Φ

B⇔ clA ∩
Φ

clB = ∅.

Example 2.2. Descriptively remote disjoint sets
ChooseΦ to be a set of probe functions representing weave cell colours. In Figure1, setsA,C ∈
P(X) are disjoint. In addition, there are no cells inA with descriptions that resemble cells in
C. Hence, the descriptive intersection is empty. That is,A δ

Φ
C (A andC are remote), since

clA ∩
Φ

clC = ∅. �

2.1. Descriptive EF-proximity

A binary relationδΦ is adescriptive EF-proximity, provided the following axioms are satisfied for
A, B,C ∈ P2(X).

(EFΦ.1) A δΦ B impliesA , ∅, B , ∅.
(EFΦ.2) A ∩

Φ

B , ∅ impliesA δΦ B.

(EFΦ.3) A δΦ B impliesB δΦ A (descriptive symmetry).
(EFΦ.4) A δΦ (B∪C), if and only if, A δΦ B or A δΦ C.
(EFΦ.5) Descriptive Efremovic̆ axiom:

A δ
Φ

B impliesA δ
Φ

C andB δ
Φ

Cc for someC ∈ P(X).

The structure (X, δΦ) is adescriptive EF-proximity space(or, briefly,descriptive EF space).

Theorem 2.1.Let (X, δ), (X, δΦ) be spatial and descriptive EF-spaces, respectively, with nonempty
sets A, B ∈ P(X), A∩ B , ∅. Then A∩ B ⊆ A ∩

Φ

B.

Proof. Let A, B ∈ P(X) and assumeA∩ B , ∅. If x ∈ A∩ B, then, by definition,Φ(x) ∈ Q(A) and
Φ(x) ∈ Q(B). By assumptionx ∈ A∩ B ⊆ A∪ B. Then,x ∈ A∩

Φ

B. Hence,A ∩ B ⊆ A ∩
Φ

B.

L

Figure 2. Connected points.

Descriptive EF-proximity is useful in describing, analysing and
classifying the parts within a single digital image or the parts in
either near or remote sets in separate digital images. The basic
approach to the study of set patterns introduced in this article
reflects recent work on descriptively near sets (see,e.g., (Peters
& Naimpally, 2012; Peters, 2012; Peterset al., 2013)). Ap-
plications of descriptive EF-proximity are numerous (see,e.g.,
(Naimpally & Peters, 2013; Peters, 2013c)).

2.2. Shape set patterns

Shape descriptors are useful in representing, extracting and quantifying shape information from
images. In general, a digital imageshape descriptoris an expression that describes, identifies or
indexes an image region. Shape descriptors are usually mathematical expressions used to extract

./images/connect2.eps
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image region shape feature values. In this section, we briefly consider picture points in terms of
adjacency, connectedness, and edges.

Let p, q ∈ Z × Z be points in a gridX. Pointsp andq arespatially adjacent, provided they are
joined by an edge (Klette & Rosenfeld, 2004). For example, pairs of magenta pixels in the grid in
Figure2 are spatially adjacent, since each pair of magenta pixels isjoined by an edge.

Remark 2.1. Points vs. cells.
Points are the standard elements in standard topological spaces. In some discrete cases, the base
elements arecells(indivisible collections of points) (Düntsch & Vakarelov, 2007). �

In keeping with an interest in descriptive proximity, points p, q in a grid aredescriptively
adjacent, providedp, q have matching descriptions and there is an edge connectingp, q such that
the description of the points on a connecting edge match the descriptions ofp, q. For example, for
the blue lineL ⊂ X along the northwest edge of the weave in Figure2, each pair of pixelsp, q ∈ L
are descriptively adjacent but pixels belowL are not descriptively adjacent to any pixel inL, since
L contains only blue pixels in Figure2. Let p, q be magenta points, then the descriptive closure of
L is descriptively far fromp, q and the closure of any pointr ∈ L is descriptively far from eitherp
or q, i.e.,

Φ =
{

φ : φ(x) = colour brightness ofx for x ∈ X
}

,

clΦL =
{

x ∈ X : x ∩
Φ

L , ∅
}

,

clΦr = {y ∈ X : Φ(y) = Φ(r)} ,

clΦL δ
Φ
{p, q} ,

clΦr δ
Φ

p,

clΦr δ
Φ

q.

Descriptive adjacency is the heartbeat (main influence) in the study of visual motif patterns in
pictures that are descriptive proximity spaces (Peterset al., 2013; Peters, 2013a,c; Peters & Naim-
pally, 2012; Naimpally & Peters, 2013) (for the underlying near set theory, see, also, (Peters,
2013b; Henry, 2010)).

A 2D digital image (also called a picture) is defined on a finite, rectangular array of point
samples called agrid. An element of a grid is a point sample or pixel. In terms of a digitized
optical sensor value, apoint sample(briefly, point) is a single number in a greyscale image or a
set of 3 numbers in a colour image (Smith, 1995). In a 2D model of an image, a pixel is a point
sample that exists only at a point in the plane. For a colour image, each pixel is defined by three
point samples, one for each colour channel.

Let M be a set of grid points in a picture and let

S = p0, p1, . . . , pi−1, pi , . . . , pn

be a sequence of points inM. The sequenceS is called apath. Further, letp = p0, q = pn. Then
M is connected, provided, for all pointsp, q ∈ M, point pi is adjacent topi−1 in a path betweenp
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Figure 3. Sample straight edges.

andq in M. Maximally connected subsets ofM are calledconnected componentsof M (Klette &
Rosenfeld, 2004, §1.1.4).

The set of points inL in Figure2 are connected and the remainder of the points in this weave
are also connected. LetX = L ∪W, whereW is the set of points in the threads in the weave in
Figure2. The setX is not a connected component, since there are pairs of pointsin separate threads
with no path between the points. However, taken separately,any thread W containing pixels with
the same colour is a connected component.

Let M be a grid that is connected and let pointsp, q ∈ M. A path betweenp andq defines an
edge. A path betweenp andq defines astraight edge, provided every point in the path has the
same gradient orientation. The penultimate example of a picture edge is a straight line segment
such as the edges along the contour of the camera tripod legs in Figure3. Hence, straight edges in
a picture are distinguished from ridges, valleys and, in general, arcs, where the points in the paths
defining non-straight edges have unequal gradient orientation.

A shape set patternis a set pattern that results from the choices of shape descriptors used in
comparing descriptions of picture elements. For example, the pairs of points along the diagonal
in the northeast corner of Figure2 are both spatially adjacent (each pair points along the upper
northeast diagonal are joined by an edge) and descriptivelyadjacent (each pair pointsp, q along the
diagonal are joined by an edge containing points that descriptively matchp, q). Spatial adjacency
and descriptive adjacency shape descriptors are importantin separating spatially connected points
from descriptively connected points in a picture and deriving spatial and descriptive set patterns in
pictures.

t3

t2 t1
a

m1

r1

Figure 4. SpatialP(t1) = {t1, t2, t3, a} & descriptivePΦ(t1) = {t1,m1, r1}.
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Example 2.3. Descriptive penrose tiling shape pattern.
ChooseΦ to be a set of probe functions representing shape features such as connected, edge
gradient, and edge gradient orientation as well as colour and intensity features. Also, for example,
choose tilet1 in Figure4 as a shape pattern generator2. Tile t1 in the penrose tiling in Figure4 is
descriptively near tilesm1 (in the middle tiling) andr1 (in the righthand tiling) as well as a number
of other unlabelled tiles that are descriptively near some part of t1. In generating descriptive shape
patterns, we use the descriptive closure of a setA in a pictureX (denoted by clΦA), defined by

clΦA =
{

x ∈ X : {x} δΦ A, i.e., {x} ∩
Φ

A , ∅
}

.

In effect,x clΦA for x ∈ X meansΦ(x) ∈ Q(A). Then

PΦ(t1) = {t1,m1, r1, . . . } .

For example, clΦt1 ∩ clΦm1 , ∅, since the gradient orientation of edges along the border oft1
match the gradient orientation of the edges along the borderof m1. Similarly, clΦt1 ∩ clΦr1 , ∅,
and so on. “

3. Descriptive uniform topology on digital images

It was S. Leader who pointed out in 1959 that it is possible to determine what he called a
uniform topology in a metric space (Leader, 1959). By introducing a metric on a nonempty set
of points, one obtains a metric space. Then a topology in the metric space results from observing
which points are close to each given set of points. A pointx in a setX is closeto a setA, provided
the distance betweenx andA is zero. Adigital uniform topologyin a metric space on a digital
image is determined by observing which sets of pixels are close to a given set of pixels.

A useful alternative form of uniform topology (called a discrete uniform topology) arises in a
proximity space by defining the nearness of sets in terms of set intersection. A discrete uniform
topology in a proximity space is determined by observing which sets have nonempty intersection
with a given set. In a discrete uniform topology, sets that are close to a given set are callednear
sets.

A descriptive form of either the Leader form of uniform topology or discrete uniform topol-
ogy arises when the nearness of sets is based on the descriptions of members of one set matching
the descriptions of members of another set. Adescriptive uniform topologyin a metric space is
determined by finding which sets are descriptively close to each given set. In a descriptive uni-
form topology, nonempty disjoint sets can be descriptivelynear each other. The introduction of a
uniform topology in a metric space or discrete uniform topology or descriptive uniform topology
on a digital image provides a basis for the study of visual patterns in a image. In the sequel, it is
assumed that each of the traditional separation spaces is defined in the context of a discrete uni-
form topology and that each descriptive separation space isdefined in the context of a descriptive
uniform topology on a nonempty set. From an application point-of-view, the focus in this article is
on the introduction of uniform topologies that provide a basis for the introduction of asymmetric
spaces on digital images.

2Regular structures known aspattern generatorsin pattern theory, are described in U. Grenander (Grenander,
1993, 1996), in building patterns from simple building blocks.
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4. Antisymmetric spaces

During the 1930s, separation axioms were discovered and called Trennungsaxiome(Trennung
is German forseparation) by P. Alexandroff and H. Hopf (Alexandroff & Hopf, 1935, 58ff, §4).
Hence, these axioms are named with a subscriptedT asTn, n = 0, 1, 2, 3, 4, 5. Often these axioms
have alternate names such as Hausdorff, normal, regular, Tychonoff, and so on and there is no
unanimity in the nomenclature. In this article, we consideronly axiomsT0,T1,T2. Each of these
separation axioms concern the distinctness of points.

Remark 4.1. Distinct points.
Let X be a nonempty set endowed with a proximity relationδ. Pointsx, y ∈ X arespatially distinct,
provided the closures ofx andy are not near,i.e., cl{x} δ cl{y}. “

The anti-symmetric axiomT0 (discovered by A. Kolmogorov) is defined as follows.

T0: (a) For every pair of distinct points, at least one of them isfar from
the other, or
(b) For every pair of distinct points in a topological spaceX, there ex-
ists an open set containing one of the points but not the otherpoint
(cf. (Alexandroff & Hopf, 1935, p. 58)).

The discovery ofT0 topologies in digital images hinges on what is meant by the observation
that points are descriptively distinct.

Remark 4.2. Descriptively distinct points.
Let Φ be a set of probe functions that represent features of pointsx in a nonempty setX. Then
let X be endowed with a descriptive proximity relationδΦ. Pointsx, y aredescriptively distinct,
providedx andy are spatially distinct and the feature vectorsΦ(x) andΦ(y) are not equal. For
example, pointsx, y in a digital imageX are descriptively distinct (descriptively far), providedx
andy are spatially distinct and have different descriptions,i.e., x δ

Φ
y. �

LetΦ be a set of probe functions representing features of membersof a set and letε > 0. There
is a descriptive form ofT0 space (denoted byTΦ0 ). Let adescriptive open neighbourhood NΦ(x) be
defined by

NΦ(x) = {y ∈ X : Φ(x) = Φ(y) and|x− y| < ε} .

That is, the description of each point inNΦ(x) matches the description ofx. Due to the spatial
restriction|x − y| < ε, NΦ(x) is also called abounded descriptive neighbourhood(Peters, 2013d,
§1.19.3).

TΦ
0

: For every pairx, y of descriptively distinct points in a topological
spaceX, there exists a descriptive open neighbourhood containingone
of the points but not the other point.
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Figure 5. Sample visual space.

Example 4.1.TΦ
0

Visual space.
Let X be represented by the checkerboard in Figure5 and letx, y be black and white points inX. It
is easily verified thatX is a topological space. Then letNΦ(x) be a descriptive open neighbourhood
of x. The pointy is excluded fromNΦ(x), sinceΦ(x) , Φ(y). This is true for every pair of
descriptively distinct points inX. Hence,X is aTΦ0 space. “

T1: A topological space isT1 if, and only if, distinct points are not near.

TΦ
1

: A topological space isTΦ1 if, and only if, descriptively distinct
points are not descriptively near.

Example 4.2. CheckerboardTΦ
1

space. ChooseΦ to be a set of probe functions that represent
greyscale and colour intensities of points in an image. Let atopological spaceX be represented
by the checkerboard in Figure5. X is an example of a visualTΦ1 space. To see this, letx, y ∈ X be
points in black and white squares, respectively. The pointsx andy are descriptively distinct and
x δ
Φ

y. In general, black and white pixels inX are descriptively distinct and not near, descriptively.
Hence, the checkerboard is an example of aTΦ1 space. “

Lemma 4.1. A digital image X endowed with a descriptive proximityδΦ such that X contains
descriptively distinct points is a TΦ1 space.

Proof. Let X be a digital image (a set of points called pixels) endowed with a descriptive proximity
δΦ. ChooseΦ, a set of probe functions that represent features of points in X. Let pointsx, y ∈ X be
descriptively distinct. Thenx δ

Φ
y, i.e., x is descriptively not neary. Hence,X is aTΦ1 space.

Hausdorff observed that it is possible for a pair of distinct points to have distinct neighbour-
hoods and used this axiom in his work. The corresponding space with pairs of distinct points be-
long to disjoint neighbourhoods(Hausdorff, 1957b, §40.II) is now named after him and is called
theT2 or Hausdorff space.

./images/8checkers.eps
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T2: A topological space isT2, if and only if, distinct points have disjoint
neighbourhoods (distinct points live in disjointhouses4).

There is a descriptive counterpart of a traditionalT2 space (denoted byTΦ2 ), introduced in (Peters,
2013a) (see, also, (Naimpally & Peters, 2013)). In aTΦ2 space, one can observe that descriptively
distinct points belong to disjoint descriptive neighbourhoods.

TΦ2 : A topological space isTΦ2 if, and only if, descriptively distinct
points have disjoint descriptive neighbourhoods.

Example 4.3. ATΦ
2

Visual space. ChooseΦ to be a set of probe functions that represent greyscale
and colour intensities of points in an image. Let a topological spaceX again be represented by
the checkerboard in Figure5. X is an example of a visualTΦ2 space. To see this, letx, y ∈ X be
points in black and white squares, respectively. Then consider a pair of descriptive neighbourhoods
NΦ(x),NΦ(y) of x andy, respectively. NeighbourhoodNΦ(x) contains only points with descriptions
that match the description ofx, i.e., NΦ(x) contains only black points. Similarly, neighbourhood
NΦ(y) contains only points with descriptions that match the description of y, i.e., NΦ(y) contains only
white points. Hence,NΦ(x),NΦ(y) are disjoint. “

Figure 6. Manitoba dragonfly.

Observe that aTΦ2 space is also aTΦ1 space, since, by definition, descriptively distinct points
are not near. The dragonfly in Figure6 provides an illustration of a biology-basedTΦ2 space (see
Example4.4for details). Also observe that aTΦ1 space is also aTΦ0 space, since, for every pair of
descriptively distinct points, one can find a descriptive open set containing of the points and not
containing the other point. The penultimate example of aTΦ1 space that is also aTΦ0 space is a

4A partition is aT2 space if, and only if, every class has no more than one point,i.e., every class is single tenant
”house”.

./images/dragonfly2c.eps
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space where descriptively distinct points belong to open descriptive neighbourhoods. From these
observations, observe thatTΦ2 ⇒ TΦ1 ⇒ TΦ0 .

Let ε ∈ R such thatε > 0. A bounded descriptive neighbourhood NΦ(x) of a pointx in a setX
is defined by

NΦ(x) = {y ∈ X : d(Φ(x),Φ(y)) = 0 and|x− y| < ε} ,

whered is the taxicab distance between the descriptions ofx andy, i.e.,

d(Φ(x),Φ(y)) =
n
∑

i=1

|φi(x) − φi(y)| : φi ∈ Φ.

Theorem 4.1. A digital image X endowed with a descriptive proximityδΦ such that X contains
two or more descriptively distinct points is a TΦ2 space.

Proof. Let X be a digital image (a set of points called pixels) endowed with a descriptive proximity
δΦ. ChooseΦ, a set of probe functions that represent features of points in X. Let pointsx, y ∈ X
be descriptively distinct. LetNΦ(x),NΦ(y) be descriptive neighbourhoods ofx, y, respectively. If
a ∈ NΦ(x), thend(Φ(a),Φ(x)) = 0, i.e., each member ofNΦ(x) must descriptively matchx. Similarly,
eachb ∈ NΦ(y) descriptively matchesy. Then,NΦ(x) ∩ NΦ(y) = ∅. Hence,X is aTΦ2 space.

Figure 7. Dragonfly edges.

Example 4.4. DragonflyTΦ
2

Shape space.
ChooseΦ to be a set of probe functions that represent the gradient orientation of the points in
an image. Let a topological spaceX be represented by the dragonfly in Figure6, endowed with
a descriptive proximity relationδΦ. X is an example of a complex visualTΦ2 shape space. To
see this, letx, y ∈ X be points along the edges of the filtered dragonfly image in Figure 7. The
pointsx andy are descriptively distinct, since these points have different gradient orientations. In
addition, pointsx, y are centers of disjoint descriptive neighbourhoodsNΦ(x),NΦ(y), respectively, in
aTΦ2 Shape Space.

Proof. We assume thatΦ(x) , Φ(y), i.e., x andy have different gradient orientations in Figure7.
The descriptive neighbourhoodNΦ(x) of point x (with no spatial restriction) is defined by

NΦ(x) = {a ∈ X : Φ(x) = Φ(a)} ,

./images/wings.eps
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i.e., the gradient orientation ofx matches the gradient orientation of each pointa in NΦ(x). Hence,
y < NΦ(x), since the gradient orientation ofy does not match the gradient orientation ofx. Similarly,
observe thatx < NΦ(y). ThenNΦ(x),NΦ(y) are disjoint. This is true of every pair of points inX that
have unequal gradient orientations. Hence,X is an example of a descriptiveTΦ2 shape space.

NΦ(x)
x

Figure 8. TΦ
2

Shape space.

Remark 4.3. NΦ(x), TΦ
2

Implementation details.
A MatlabR© 7.10.0 (R2010a) script written by C. Uchime has been used on the dragonfly image in
Figure6 to extract the edges shown in Figure7. From Example4.4, we know that the dragonfly
in Figure7 provides a basis for aTΦ2 shape space. Next, bounded descriptive neighbourhoods
NΦ(x),NΦ(y) of points x, y, respectively, are found by selectingx, y, radiusε, and pixel gradient
orientation as the shape descriptor. For simplicity, onlyNΦ(x) is shown in Figure8.

Using C. Uchime’s Matlab script, the selection ofx, y is done manually by clicking on two
points of interest on the dragonfly wings (see Figure8). Starting withNΦ(x), for example, the
construction of the shape patternPΦ(NΦ(x)) is carried out by using Matlab to search through the
image for points (outside the motif neighbourhood) with gradient orientations that match the gra-
dient orientation ofx. For each pixelx′ < NΦ(x) such thatΦ(x′) = Φ(x), a new neighbourhood
is constructed. In practice, only a restricted number of neighbourhoods are found, namely, those
neighbourhoods with centers that are reasonably close to the motif neighbourhood centerx. “

4.1. Descriptive nearness structures

Herrlich nearness structures are extended to descriptive nearness structures in this section. One
begins the study of such structures by choosingΦ, a set of probe functions that represent features
of members of a nonempty setX. Let X be endowed with a descriptive proximity relationΦ. By
way of illustration, the honey bee in Figure9 provides a basis for a shape nearness space relative
to the bee image edges shown in Figure10 (see Example4.5for details).
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Figure 9. Bee

A1

A2

A3

A4

A5

Figure 10. ξΦ = {A1, . . . ,A5}

For descriptive nearness, we use the following notation.

X = nonempty set of points,

Φ =
{

probe functions representing features ofx ∈ X
}

,

A,B denote collections of subsets inX, i.e., A,B ∈ P2(X),

Q(A) = {Q(A) : A ∈ A} ,

η
Φ
A, orA ∈ η, i.e., members ofA are descriptively near,

η
Φ

A , i.e., members ofA are not descriptively near,

A η
Φ

B = η
Φ
{A, B} (A descriptively nearB),

A∨ B = {A∪ B : A ∈ A, B ∈ B},

clη
Φ
E = {x ∈ X : {x,E} ∈ η

Φ
} (x descriptively nearE),

clη
Φ
A = {clηA : Q(A) ∈ Q(A)}.

A descriptive nearness structure (denoted byξΦ) is defined by

ξΦ =















A ∈ P2(X) :
⋂

Φ

{A : A ∈ A} , ∅















.

In the following axioms, letA ∈ ξΦ. It can be shown that the descriptive nearness structureξΦ
satisfies (dN.1)-(dN.5):

(dN.1)
⋂

Φ

{A : A ∈ A} , ∅ ⇒ η
Φ
A is not empty,

(dN.2) η
Φ

A andη
Φ

B ⇒ η(A∨B),
(dN.3) η

Φ
A and, for eachB ∈ B, there is anA ∈ A : A ⊂ B⇒ η

Φ
B,

./images/1bee0.eps
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(dN.4) ∅ ∈ A ⇒ η
Φ

A,
(dN.5) η

Φ
(clηA)⇒ η

Φ
A (descriptive Herrlich axiom).

Example 4.5. Descriptive Herrlich nearness.
Let the setX be represented by the set of edge pixels in Figure10and letΦ contain a single probe
function representing pixel orientation. Each member of the collection of subsetsA contains ridge
pixels, where

ξΦ = A = {A1,A2,A3,A4,A5} ,

since each pair of sets inA contain pixels with matching orientation. Observe that there are other
collections of subsetsB in Figure10 containing pixels with matching orientations that are not
the same as the pixels orientations in the subsets inA. Hence,ξΦ contains more collections of
descriptively near subsets that are not shown in Figure10. “

5. Visual patterns in descriptive separation spaces

Figure 11. TΦ2 .

Visual patterns arise naturally from the different forms of descriptive sep-
aration spaces. We illustrate this in terms of patterns thatnaturally occur in
TΦ1 andTΦ2 spaces. LetP2(X) denote the set of collections of subsets inX
and let patternP ∈ P2(X), motif M ∈ P(X). Let Φ be a set of probe func-
tions that represent features of members ofX and letX be endowed with a
descriptive proximityδΦ. For example, the 1870 Punch dancing delivery boy
image in Figure11 provides a basis for a visual pattern (see Example5.2 for
details). Further, a visual patternPΦ is a descriptive motif pattern, provided
the following axioms are satisfied.

(motif .1) Sets inPΦ are pairwise disjoint.
(motif .2) A is descriptively nearM (A δΦ M) for eachA ∈ PΦ.
(motif .3) If there are pairsA, B ∈ PΦ that are copies ofM, there is an isometry5 of the plane that

mapsA ontoB.

A descriptive motif pattern is an example of what is known as adiscrete pattern in the study
of patterns in tilings and weaving (see,e.g., (Grünbaum & Shepard, 1987)). Observing visual
patterns in an image is aided by various forms of image filtering, sharpening the features of pixel
neighbourhoods, making it more possible to detect those parts of an image that are either close or
remote from each other.

5Let A and B be sets of pixels in digital images endowed with metricsdX anddY. An isometryis a distance-
preserving map (Beckman & Quarles, 1953). For any pair pixelsx, y ∈ A with descriptionsΦ(x),Φ(y) found inB (i.e.,
f (Φ(x)), f (Φ(y)) ∈ B), a mapf : A→ B is an isometry, provided

dY( f (Φ(x)), f (Φ(y))) = dX(Φ(x),Φ(y)).
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X

M

Y

A

B2

B1

Figure 12.PΦ = {A, B1, B2}.

Example 5.1. Sample descriptive motif pattern.
Let sets of pointsX,Y endowed with a proximity relationδ be represented by Figure12. Choose
Φ to be a set of probe functions that represent greyscale and colour features of points inX,Y. The
setM in Figure12 represents a motif in a set pattern. Observe thatA, B1, B2 are pairwise disjoint
and each of the setsA, B1, B2 is descriptively nearM. For example,M is descriptively nearB1,
sinceM andB1 contain subsets with red and green pixels. Again, for example, M is descriptively
nearA, sinceM andA contain subsets with red pixels. There is also an isometry between the
descriptions of points inX and the descriptions of the points inY. From these observation, we
obtain the descriptive motif patternPΦ = {A, B1, B2}. “

5.1. Visual patterns in descriptive T1 spaces

To find visual patterns in descriptiveT1 spaces, do the following:

(1) ChooseΦ, a set of probe functions representing features of points ina TΦ1 spaceX.
(2) Select a pair of descriptively distinct pointsx, y ∈ X. By definition, x δ

Φ
y. Hence, theTΦ1

space property is satisfied.
(3) Let M1,M2 denote point sets{x}, {y}, respectively.
(4) Determine all subsets ofX containing points that descriptively matchM1 and then determine

all subsets of points that descriptively matchM2.

As a result of the above steps, we can identify a pair of descriptive motif patternsPΦ(M1),PΦ(M2)
in a TΦ1 spaceX. In addition, each such a motif pattern is a member of a descriptive Herrlich
topologyξΦ defined onX.

Let X be endowed with a proximityδΦ such thatX is aTΦ1 space and letM = {x} be a motif
containing a single pointx ∈ X, which defines a descriptive motif patternPΦ(M). If A, B ∈
PΦ(M), thenA ∩

Φ

B , ∅. From this, we obtain the following result.

Theorem 5.1. Let (X, δΦ) be a TΦ1 space with nearness structureξΦ on X and letPΦ(M) be a
descriptive motif pattern determined by a motif M containing a single point x in X. ThenPΦ(M) ∈
ξΦ.
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5.2. Visual patterns in descriptive T2 spaces

To find visual patterns in descriptiveT2 spaces, do the following:
(1) ChooseΦ, a set of probe functions representing features of points ina TΦ2 spaceX.
(2) Select a pair of descriptively distinct pointsx, y ∈ X. By definition,NΦ(x) δΦ NΦ(y), since the

description of each point in a descriptive neighbourhood matches the description of the point
at the centre of the neighbourhood andx δ

Φ
y). That is, neighbourhoodsNΦ(x) δΦ NΦ(y) are

descriptively disjoint. Hence, theTΦ2 space property is satisfied.
(3) Let M1,M2 denote neighbourhoodsNΦ(x) δΦ NΦ(y), respectively.
(4) Determine all subsets ofX that are descriptively nearM1 and then determine all subsets of X

such that descriptively nearM2.

x

NΦ(x)

x′
NΦ(x′)

y

NΦ(y)

y′

NΦ(y′)

X

Figure 13. SampleTΦ2 visual edge patterns.

As a result of the above steps, we can identify a pair of descriptive motif patternsPΦ(M1),
PΦ(M2) in a TΦ2 spaceX. In general, each such a motif pattern is not a member of the same
descriptive Herrlich nearness structureξΦ defined onX. To see this, consider a pair of neighbour-
hoodsNΦ(x′),NΦ(x′′) that are descriptively nearNΦ(x). We know thatNΦ(x) δΦ NΦ(x′) but it is possible
thatNΦ(x′) δΦ NΦ(x′′ ), if, for example, we compare pixel colours.NΦ(x) may have a mixture of red
and green colours, whereNΦ(x′) has pixels with red colours but no green colours andNΦ(x′′ ) has
pixels with green colours but no red colours. In other words,many different Herrlich nearness
structures can be found in the same digital image.

Example 5.2. Edge motif pattern inTΦ
2

space.
Let X be the set of edge points in Figure13, extracted from the 1870 Punch image in Figure11,

./images/3epunch.eps
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using the edge function with the Canny filter6 available in Matlab. ChooseΦ to be a set of probe
functions representing the orientation (gradient direction) of edge pixels inX. Observe that if
pixels x, y in X have different orientations (i.e., x andy are descriptively distinct), thenx δ

Φ
y.

ThenNΦ(x),NΦ(y) are descriptively disjoint neighbourhoods. Hence,X is an example ofTΦ2 space.
Then letM1,M2 denote motif neighbourhood edge point setsNΦ(x),NΦ(y) of pointsx, y, respec-

tively. An indication of the descriptive motif patternsPΦ(M1),PΦ(M2) determined byM1,M2 is
suggested by the edge regions containing pointsx′, y′. In the pattern representingPΦ(M1), for ex-
ample, notice thatx′ is the centre of bounded descriptive neighbourhoodNΦ(x′) containing points
with matching orientations. And theM1 edge point neighbourhood is descriptively nearNΦ(x′),
since the orientation of one or more edges inNΦ(x) match the orientation of one or more edges in
NΦ(x′), i.e.,

NΦ(x) δΦ NΦ(x′) : M1 + NΦ(x).

Similarly, there is a descriptive neighbourhoodNΦ(y′) in the edge patternPΦ(M2) so that

NΦ(y) δΦ NΦ(y′) : M2 + NΦ(y).

Continuing this process, one can observe many other edge motif patterns in this particularTΦ2
space. “

Theorem 5.2.A descriptive TΦ2 space contains distinct descriptive motive patterns.

Proof. Immediate from Lemma4.1and the definition of descriptive motif patterns.

6. Stability in pattern constructions

A meaningful theory of stable pattern selection requires models of pattern-forming mecha-
nisms that are simple enough to be understood in detail (Dee & Langer, 1983). An approach to
achieving pattern selection stability in propagating patterns in eitherT1 or T2 spaces is introduced
in this section. Basically in this study of descriptive patterns in a pair of digital imagesA, B, it is
necessary to propagate a pattern in imageB with some assurance that the pattern generated inB
will belong to the class of images containing the imageA and each new set added to a pattern does
not wander or drift away from the pattern generator. That is,given a pattern generatorM, each
new setA added to patternPΦ(M) must be sufficiently nearM, spatially.

P.E. Forsseén and D. Lowe observe that shape descriptors are reliable in detecting maximally
stable extremal regions in digital images (Forsseén & Lowe, 2007, 1-8). In this work, descrip-
tive motif set pattern growth is stable, provided the shape-based description of each set added to
the pattern matches the shape-based description of the pattern motif. This interpretation of pattern
stability is comparable to U. Grenander’s notion of configuration transformation stability (Grenan-
der, 1993, §4.1.1). To arrive at a formal definition of pattern stability, we introduce the descriptive
distance between collections in terms of theC̆ech distance between sets.

6The Matlab canny filter is based on J.F. Canny’s approach to edge detection introduced in his M.Sc. thesis
completed in 1983 at the MIT Artificial Intelligence Laboratory (Canny, 1983). For details about this considered in
the context of a topology of digital images, see (Peters, 2013d, §6.2).
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Let A, B ∈ C be nonempty sets in a spaceC and let

D(A, B) = inf {|a− b| : a ∈ A, b ∈ B}

be theC̆ech distance betweenA andB. That is, a configuration transformationT on a configuration
spaceC is stable, if, for anyε > 0, there exists aδ such that

D(A, B) ≤ δ ⇒ D(T(A),T(B)) ≤ ε.

Let (X, δΦ) be a descriptive proximity Hausdorff space and letA, B ∈ P,A,B ∈ P2(X). Next,
consider a descriptive form of a Grenander configuration transformation, namely,TΦ. That is, the
transformationTΦ + PΦ : P(X) → P2(X) is defined by

PΦ(M) = A : M δΦ B for B ∈ A, andD(M, B) ≤ ε.

Definition 6.1. Pattern stability sufficiently near criterion .
Let PΦ(M) be a descriptive motif pattern constructed on a nonempty set X, ε > 0 and letA ∈
PΦ(M). The patternPΦ(M) is stable, provided the distance requirementD(M,A) < ε is satisfied.
That is,PΦ(M) is stable, providedA is sufficiently near Mfor eachA added toPΦ(M). �

Let B ≪ A denote the fact thatB is aproximal neighbourhoodof A, providedA ⊂ B. From
Def. 6.1, we obtain the following result.

Lemma 6.1. Let M ⊂ X, a TΦ2 space and letPΦ(M) be a descriptive motif pattern. Let A, B ∈
PΦ(M). PΦ(M) is stable, if and only if, D(M,A) < ε and B≪ A implies D(M, B) < ε.

From Def.6.1and Lemma6.1, we obtain the following result.

Theorem 6.1. Descriptive pattern stability.
Let PΦ be a pattern configuration transformation used to constructcollections of patterns on
X, a TΦ2 space endowed with a descriptive proximityδΦ such thatΦ is a set of probe functions
representing shape descriptors, let M∈ P(X), ε > 0. Then the following are equivalent.
(1) PΦ(M) is stable.
(2) D(M,A) < ε for each A∈ PΦ(M).
(3) D(M,A) < ε and B≪ A implies D(M, B) < ε.

Proof.
(1)⇔ (2): PΦ(M) is stable, if and only if, from Def.6.1, D(M,A) < ε for eachA ∈ PΦ(M).
(1) ⇔ (3): PΦ(M) is stable, if and only if, from Lemma6.1, D(M,A) < ε andB ≪ A implies
D(M, B) < ε.
(2)⇔ (3): D(M,A) < ε for eachA ∈ PΦ(M), if and only if, B ∈ PΦ(M), providedB≪ A.

Remark 6.1. Pattern stability and clustering stability.
Observe that descriptive pattern generation is a form of clustering. Recall that data clustering is a
natural groupingof a set of patterns or points or objects (Jain, 2010). Let X be aTΦ2 space and let
M ∈ P(X). Then the use ofM to generate the patternPΦ(M) can be considered a natural grouping
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of sets in the pattern relative to the pattern generatorM. That is,A ∈ PΦ(M), providedA δΦ M.
Hence, an obvious research path in the study of descriptive pattern generation is to consider the
parallel between clustering stability (e.g., (Ben-Huret al., 2002; Wang, 2010; Reizer, 2011)) and
descriptive pattern generation stability. For example, ithas been found (Ben-Huret al., 2002) that
pairwise similarity between clusterings of sub-samples ina dataset provides a basis for clustering
stability. A partial guarantee that descriptive pattern generation is stable, stems from the fact that
A ∈ PΦ(M), if and only if,A is descriptively nearM. But this is only a partial guarantee of pattern
generation stability, since subset similarity in a descriptive pattern does not prevent subsets from
drifting or wandering awayspatially from the pattern generatorM. To achieve full descriptive
pattern generation stability, we consider distance-basedpattern generation in keeping with recent
work on the stability of distance-based clustering (see,e.g., (Wang, 2010)). In the distance-based
approach to descriptive pattern stability, we introduce the sufficiently nearcriterion in Def.6.1.
�

6.1. Multiple pattern generation stability

Since we are interested in constructing multiple patterns across disjoint regions of digital im-
ages that resemble each other in aTΦ2 space, we introduce a stability criterion for the generation
of multiple patterns. Again, the goal is to arrive at a view ofstability of multiple patterns in a
TΦ2 space such that patterns do not wander or drift away from eachother. LetA,B ∈ P2(X) be
collections containing setsA, B ∈ P(X), respectively. To complete the definition of pattern sta-
bility, we introduce the descriptive distanceDΦ, which a descriptive form of the distance between
sets introduced by E.̆Cech (̆Cech, 1966, §18.A.2). The distanceDΦ is used to define the descrip-
tive distanceDΦ between collections of sets. The descriptive distanceDΦ : P2(X) × P2(X) → R

between collectionsA,B is defined by

DΦ(A,B) = inf {DΦ(A, B) : A ∈ A, B ∈ B}, where,

DΦ(A, B) = inf {d(Φ(a),Φ(b)) : a ∈ A, b ∈ B}.

The descriptive distanceDΦ can be used to measure the distance between descriptive motif set
patterns, since such patterns are collections of nonempty sets that are descriptively near each other.
Let {A} , {B} denote collections, each containing one set. ThenPΦ is astable descriptive pattern,
if, for any ε > 0, there exists aδ > 0 such that

DΦ({A} , {B}) ≤ δ ⇒ DΦ(PΦ(A),PΦ(B)) < ε.

That is, whenever setsAandBare descriptively near, then the corresponding patternsPΦ(A),PΦ(B)
are descriptively near. This form of set pattern stability works well in comparing regions of pairs
of digital images, where we need to guarantee that the transformation that produces the descriptive
set patterns in separate image regions is stable.

Definition 6.2. Multiple pattern stability criterion .
Let PΦ be a pattern configuration transformation used to constructcollections of patterns onX, a
TΦ2 space endowed with a descriptive proximityδΦ and letε > 0, δ > 0. Let x, y ∈ X be distinct
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points and letM1,M2 be disjoint neighbourhoods ofx, y, respectively. Further, letA,B ∈ P2(X).
PatternsPΦ(M1) ∈ A,PΦ(M2) ∈ B are stable, provided

DΦ(A,B) ≤ δ ⇒ DΦ (PΦ(M1),PΦ(M2)) < ε. �

To achieve stability in comparing image regions in the same digital image regions in pairs
of images, it is necessary to consider pixel features that can be reliably matched, regardless of
the appearance of the surroundings of a region. In this article, the focus is on constructing motif
set patterns containing neighbourhoods of points defined byconnected point sets that are straight
edges. Neighbourhood selection is determined by the gradient orientation of the focal point of a
pattern motif neighbourhood. The construction of a patternmotif (a descriptive neighbourhood of
point) reduces to finding a connected set of points along an edge such that the edge points have
matching gradient orientation. Hence, a gradient orientation-based motif set pattern results from
finding neighbourhoods of points containing straight edgeswith pixel gradient orientations that
match the gradient orientation of the points in the motif neighbourhood of the pattern.

Keeping in mind the underlying descriptive uniform topology in a Hausdorff TΦ2 spaceX en-
dowed with a descriptive proximityδΦ, an image pixely belongs to a neighbourhood of pointx,
provided the gradient orientation ofy matches the gradient orientation ofx. Let Φ be a set of
shape descriptors that includes pixel gradient orientation. In addition, let the descriptive neigh-
bourhoodNΦ(x) be a pattern motifM that is a connected set of points belonging to a straight edge,
i.e., y ∈ NΦ(x), providedΦ(y) = Φ(x). Then the patternPΦ(M) is a collection of straight edges
defined by

PΦ(M) =
{

NΦ(y) ∈ P(X) : NΦ(y) δΦ M
}

.

Pattern stability is achieved by guaranteeing that only matching straight edges belong to the pattern
PΦ(M). In comparing regions across pairs of digital images, stability is achieved by comparing
straight edge patterns. Letx, y ∈ X,Y be a pixels in a pair of digital imagesX,Y, respectively.
Further, letPΦ(M1),PΦ(M2) be straight edge shape patterns in imagesX,Y, respectively, such
that M1 = NΦ(x),M2 = NΦ(y). PatternPΦ(Mx) is close to patternPΦ(My), provided the straight
edges represented by neighbourhoods in the patterns have matching edge-neighbourhood motifs,
i.e.,

PΦ(M1) δΦ PΦ(M2), if and only if,

NΦ(x) δΦ NΦ(y), if and only if,

Φ(x) = Φ(y). “

From Def.6.2and Theorem6.1, we obtain the following result.

Theorem 6.2. Multiple pattern generation stability.
Let PΦ be a pattern configuration transformation used to constructcollections of patterns on
X, a TΦ2 space endowed with a descriptive proximityδΦ such thatΦ is a set of probe functions
representing shape descriptors, let M1,M2 ∈ P(X), and letε > 0. Further, letA,B ∈ P2(X). Then
the following are equivalent.
(1) PΦ(M1) ∈ A,PΦ(M2) ∈ B are stable.
(2) D(M1,A) < ε,D(M2, B) < ε for each A∈ PΦ(M1) and for each B∈ PΦ(M2).
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6.2. Comparison with existing clustering stability analysis

One of the most widely used clustering techniques is k-meansclustering. This is a non-
hierarchical clustering approach, which aims to partitionn p-dimensional observations intok clus-
ters (k ≤ n) by minimizing a measure of dispersion within the clusters.In k-means clustering, the
selection of the number of clusters affects the clustering stability significantly (Ben-Hur et al.,
2002). Let k be the true number of clusters in an image. If the number of clusters is greater than
k, then some of the true clusters will be split into smaller clusters during clustering. On the other
hand, if the number of clusters is less thank, then some of the true clusters will be merged into
bigger clusters during clustering. Both cases will lead to unstable clusterings. Hence, clustering
stability can be used as a quality measure of the clustering algorithm.

Ben-Hur, Elisseeff and Guyon propose distribution of pairwise similarity between clusterings
of sub-samples of a dataset as a stability measure of a partition (Ben-Huret al., 2002). Another
notion of stability as proposed in (Langeet al., 2004) is based on the average dissimilarity of
solutions computed on two different data sets. While the aforementioned approaches focuson
maximizing the within-cluster similarity and within-cluster dissimilarity, Wang proposes a new
measure of the quality of clusterings based on the clustering instability from sample to sample
(Wang, 2010). On the other hand, Reizer proposes to measure the quality of clustering through
stability from sample to sample (Reizer, 2011).

In contrast to the traditional clustering methods, the descriptive-based pattern generation method
proposed in this article does not require the number of clusters to be pre-determined. The pattern
PΦ(M) may grow as long as it satisfies the condition that each new set A added to patternPΦ(M)
is sufficiently nearM, both spatially and descriptively. However, similar to clustering stability, we
may say that the pattern generation is stable, provided it produces similar patterns on data originat-
ing from the same source. Based on this argument, a definitionfor pattern stability can be derived
from the clustering stability model given in (Reizer, 2011).

Since we are interested in determining when a generated pattern in a sample digital image
Y serves as an indicator thatY belongs to the class of digital images represented by a pattern
generated in a query imageX, we define pattern stability in terms of the expected descriptive
distance betweenPΦ(M,X) (pattern generated inX) andPΦ(M,Y) (pattern generated inY).

Definition 6.3. Pattern Stability.
Let th > 0 denote an expectation threshold and letE[·] denote the expected value of·. Further,
let PΦ(M,X) be a pattern generated byM in X andPΦ(M,Y), pattern generated byM in Y. The
stability of any description-based patternPΦ(M) (denoted byS tab(PΦ(M))) is defined by

S tab(PΦ(M)) =















1, if E [DΦ(PΦ(M,X),PΦ(M,Y))] ≤ th,

0, otherwisePΦ(M) is unstable.

whereX andY are two independent samples from some unknown distribution. PatternPΦ(M) is
stable, providedS tab(PΦ(M)) = 1. “

Furthermore, given two patternsPΦ(M1) andPΦ(M2), pattern generation will be stable, pro-
videdM1 δφ M2 and S tab(PΦ(M1)) = S tab(PΦ(M2)) = 1. In addition, for any setA, A δΦ M1 and
A δ

φ
M2 will ensure that setA will always be added to patternPΦ(M1). This is advantageous in
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achieving pattern stability for the method proposed in thisarticle compared to the traditional clus-
tering methods such as k-means clustering, since pattern stability, in our case, derives its strength
from the fact that each setA added to a pattern hasdescriptive proximityto the pattern generator
M in a descriptive proximity space.
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Abstract

Assessment and improvement of software maintenance processes in small software companies is very important
because of large costs of maintenance and constraints of small software companies. This study presents an approach
to assessment of software maintenance requests’ processing in a very small local software company. The approach is
context dependent and uses trend analysis and feedback sessions for assessing the current state of maintenance request
processing. The analysis is based on various sources of datasuch as: internal repository of maintenance requests,
company documents, transcribed records of interviews withcompany employees, and transcribed records of feedback
sessions. Monthly trends for maintenance requests, working hours and types of maintenance tasks, by considering
clients and software products are presented in the article.Identified trends were discussed during feedback sessions
in the company. Participants in feedback sessions were company employees and researchers. During discussions
of trends, some directions for further improvement of maintenance requests’ processing were proposed. The article
concludes with implications for practitioners from industry and researchers, as well as further research directions.

Keywords: software maintenance, process assessment, trend analysis, feedback session, very small software
company.
ACM CCS:D.2.7 Distribution, Maintenance, and Enhancement, D.2.9 Management—Life cycle, K.6.3 Software
Management—Software maintenance.

1. Introduction

Software maintenance includes all activities related to the preservation of consistency and
efficiency of complex software systems. Maintenance consumes most of the costs of software
systems (between 40% and 90% of the total costs) in software life-cycle (Lientz et al., 1978;
Kajko-Mattssonet al., 2001; Abran et al., 2004). Maintenance costs for systems that are in use
for a very long time usually greatly exceed the costs of development. Despite that fact, software
maintenance attracts less attention in scientific literature comparing to software development.
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Software Maintenance is in literature recognized as the last phase in software life-cycle, which
does not attract enough attention when compared with software development. Developers and
managers consider maintenance requests as short-term jobsthat should be done as quickly as
it is possible (Junioet al., 2011). Research on the maintenance process conducted with people
involved in the process indicates that only 2.7% thought that the maintenance process is effective,
while 70.2% of them believe that the maintenance process is ineffective (Sousa, 1998).

Small companies are dominant in economies across the globe (Richardson & von Wangen-
heim, 2007). U.S. Census Bureaus ”1995 County Business Patterns” pointed that the vast majority
of software and data processing companies are small, and that those with more than 50 employees
comprise only a few percent of the total number (Fayadet al., 2000). Laporteet al.(2006) reported
that in Europe, 85% of IT sector companies have between 1 and 10 employees.

Small software companies are typically characterized as economically vulnerable with low
budget to perform corrective post delivery maintenance, aswell as with limited resources and the
lack of knowledge and capacities to implement software process assessment and improvement
activities (Laporteet al., 2008). According toVasilev (2012), rationalization of processes indi-
rectly affects company business and reduces managerial costs. Small software companies have
not adopted assessment directives proposed by software process improvement (SPI) models (Ca-
pability Maturity Model (CMM) and more recently CMMI) or intenational process-related stan-
dards (ISO 15504 and ISO 9001) (Fayad & Laitinen, 1997). Because of limitations in scale and
resources, small software companies find software process improvement a major challenge that
should be supported with short, light and tailored assessment methods (Mc Caffery et al., 2007).
Qualitative empirical study about the maintenance practice in local small software companies
(companies from Timisoara and Zrenjanin), with the focus oncollecting and processing client re-
quests, revealed that they face many problems, both technical and organizational (Stojanov, 2011;
Stojanovet al., 2011; Stojanov, 2012b). Therefore, software maintenance practice assessment and
improvement in these companies require more attention.

This paper presents an approach to maintenance assessment in a very small software company
based on analyzing trends in available maintenance data. Practice assessment is based on a tailored
lightweight approach with frequent feedback, with the following phases: initialization, planning,
execution, and final reporting on assessment. Since the aim of this paper is to present the use of
trend analysis as a valuable tool in process assessment, assessment phases will not be discussed in
more details.

The research was conducted in a very small software company with seven employees (classi-
fied as micro enterprise according to (Commission, 2005)). This study is a part of a large project
(from 2011 to 2014) with the aim to assess and improve maintenance practice in the selected
software company. Data collected in the company through practice observation, interviews with
programmers, and analysis of company documents and maintenance repository provide the ba-
sis for assessment of the maintenance practice. The objective of the paper is to present a light
assessment approach of software maintenance practice based on trend analysis.

The paper is organized as follows. Section 2 contains related work that presents the use of trend
analysis in software engineering. After that are describedthe context of the research in section 3,
and analysis of maintenance trends in section 4. Discussionof results follows in section 5, while
discussion of treats to validity is in section 6. The last section of the paper contains concluding
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remarks with implications for research community and practitioners from industry, and further
research directions.

2. Related work

Software maintenance trend analysis requires systematic data collection over an appropriate
period. This is very important since maintenance requests occur randomly, and cannot be planned
neither technically nor in budget. It is also important to note that maintenance workload cannot be
managed using project management techniques (April , 2010).

Trend analysis can help in analyzing and controlling the activities and processes, and in as-
sessing the efficiency of observed processes. Trend analysis is based on real empirical data and
provides information of prime importance for organization(Buglear, 2001). A trend can be seen
as an underlying longer-term movement in the observed data series. In addition, trend analysis is
also important for providing evidence on deviations from trends. Trends are generally related to
long-term observation and data collection, although the term ”long term” is based on the subjec-
tive assessment (Chatfield, 1996). Kanoun & Laprie(1996) argued that trend analyses are usually
applied intuitively and empirically rather than in quantified and well-defined manner. Results of
trend analyses provide valuable information for assessingmaintenance activities and workload of
maintenance personnel.

In the paper (Kenmeiet al., 2008) is proposed a trend analysis approach of change requests
based on time series analysis of data extracted from versioncontrol and bug tracking systems. The
empirical study is based on data from three large-scale opensource software projects (Eclipse,
Mozilla and JBoss). The study proved that time series are efficient tools for modeling change
request density and further trends in receiving new change requests.

The study (Ahmed & Gokhale, 2009) presented an approach to modelling the behaviour of
bugs inside Linux kernels. The study included the analysis of bug distribution, lifetime, and clus-
tering inside the kernel modules, as well as a deeper analysis of the statistical trends in the bug
data from an architectural perspective. The aim of the studywas to gain insight into the factors
that impact system reliability. The analysis was related to: trends across the three releases of the
kernel, the manner in which bugs were resolved, and on understanding the impact of bug severities
on the resolution time of the bugs. From the architectural perspective of the kernel, the results of
the study based on the statistical trends suggested that themodule dependencies and interactions
have higher impact on the bugs than the individual modules themselves.

April (2010) presented trend analysis of software maintenance services. Analysis includes
supply and demand of software maintenance services. The research was conducted as a part of a
process improvement activity in Integratik, an ERP development firm in Canada. The improve-
ment aim is the implementation of maintenance request tracking process and information system.
This process should ensure that each request would be recorded, dispatched and tracked formally,
as well as time recording of maintenance personnel effort. In addition, this improvement ensured
that the maintenance demands would be properly measured andanalyzed. The author investigated
trends related to distribution of requests per months, maintenance personnel effort per months,
distribution of requests and work effort for particular software applications.
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Zhuet al.(2011) proposed an approach for quality evolution monitoring based on the analysis
of deviation trends of different modularity views of software. The approach includes monitor-
ing the following views: package view that prescribes how developers intentionally group related
source files as modules (packages), structural cluster viewthat reflects the nature of inter-file de-
pendencies and method invocation relations, and semantic cluster view that reflects the nature of
vocabulary used and topics involved in different source files and their correlations. The approach
is based on an assumption that the deviation between different modularity views can influence
quality evolution. If the views are properly aligned, the developers will be able to easily locate
concepts and implement modifications. Deviation between different trends was measured with
SiMo (Similarity between the Modularity views) metrics. Deviations for individual versions were
computed and analyzed, and after that deviation trends in a sequence of versions were analyzed.
The main activities in the approach are: construction of modularity views, computation of simi-
larity metrics and analysis of deviation trends. Deviationtrend of different modularity views is a
combination of three change trends (i.e. rise, drop, hold) of three SiMo metrics, which is totally 27
patterns of deviation trends. Empirical study was conducted on three open-source Java systems,
JFreeChart, JHotDraw and Jedit, that are available at SourceForge.net Subversion (SVN) reposito-
ries. Presented empirical study confirms that continuous monitoring of deviation trends provides
useful feedback.

3. Context

Proper understanding of the assessment approach requires more detailed insight into the or-
ganizational context where the study is conducted. The approach is tailored to a selected small
software company and therefore it is necessary to outline basic facts about the company.

This research was realized in a very small software company with seven employees (six pro-
grammers and one technical secretary). Software development and maintenance activities are or-
ganized in the way that one or more programmers are assigned to each software application. When
a maintenance request (MR) is received from a client, it is forwarded to a programmer from a set
of assigned programmers. Programmers’ assignments to software applications are documented
and available to all employees.

The company maintains over 30 business software applications used by local clients in Serbia.
Clients are classified in two groups: clients that have signed Maintenance Service Agreement
(MSA) and pay for maintenance services on the monthly basis,and clients that do not have signed
MSA and pay for each maintenance service after its completion.

3.1. Maintenance request processing

Analysis of trends for a long period of time requires the existence of systematically collected
data, and the process that is implemented and followed by allstakeholders. All requests are
recorded in the internal software application with the repository for issues tracking (requests,
tasks, work orders). Although a process is usually tailoredfor the current request and a user, a
general process is defined and implemented in the company. The process includes the following
steps: receiving and recording a request in the internal repository, sending a notification email
with the request info to an appropriate programmer, checking a client’s status in order to define
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the priority of the request, assigning a programmer to a request, collecting additional information
that is necessary for understanding and solving a request (if necessary), preparing a bid for work
that is supposed to be done for clients that do not have signedMSA, and solving the request.

The request processing is completed when a client confirms correctness of finished work. In
the repository is recorded who confirms the correctness, thedate and the way of confirming. After
that a working order is printed and sent to a client, and a request is labeled as closed.

3.2. Internal repository

The repository provides the efficient platform for storing and tracking tasks and maintenance
requests. Practically, maintenance requests include all types of requests for maintenance, not only
requests related to modification of software applications.In order to provide support for complete
set of activities related to tracking requests, in the repository are also stored data about clients,
software applications and work orders that are associated to requests. The repository is managed
through an internal Web based application.

Issue tracking system does not contain only records for clients maintenance requests, but also
records for all other, non-maintenance, tasks. However, analysis of all records for the period
from May 2010 to November 2011 provides the evidence that 1896 tasks of totally 2252 tasks
are related to software maintenance (84%), while 356 tasks are related to other activities (16%).
A period of 19 months that begins two years after introducingthe issue tracking system in the
company is selected for the analysis. Discussions with programmers in the company confirmed
that they are accustomed in using the system, which ensures extraction of more reliable data from
the repository.

3.3. Programmers’ working hours

Working hours spent on solving clients’ requests provide the real basis for charging main-
tenance services. These working hours are hours that a programmer spends on a specific task
associated to a request. In addition, these working hours are a part of a programmer’s daily ac-
tivities. Repository of MRs contains recorded working hours for each request. Three types of
working hours exist in the repository: working hours spent in the company, working hours spent
on Internet (activities that require Internet access to clients’ information system), working hours
spent at client side (in client’s company). The total numberof working hours can be calculated as
a sum of these three types of working hours.

4. Maintenance trends analysis

Two sources of data were used for the trend analysis: companydocuments containing de-
scription of organizational structure of the company, and data extracted from the internal repos-
itory by using SQL script. Data about programmers’ assignments to software applications, and
the list of clients with MSA were extracted from company documents. Internal repository con-
tains data about users’ requests and other entities that arenecessary to track all activities asso-
ciated to each request. Data was extracted from tablesUserRequest, Worker (programmers),
SoftwareApplication, User (clients) andWorkOrder. In table1 is presented the monthly dis-
tribution of solved (completed) maintenance requests usedfor the analysis in this paper, for clients
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Table 1. Monthly distribution of solved maintenance requests

Month Clients with MSA Clients without MSA
5.2010. 43 17
6.2010. 37 29
7.2010. 52 24
8.2010. 57 16
9.2010. 42 18
10.2010. 80 18
11.2010. 94 28
12.2010. 88 41
1.2011. 73 49
2.2011. 85 33
3.2011. 85 44
4.2011. 88 30
5.2011. 57 28
6.2011. 60 35
7.2011. 64 30
8.2011. 83 39
9.2011. 49 30
10.2011. 78 54
11.2011. 70 48

Total 1285 611

with MSA and clients without MSA. The following trends can bedrawn: (1) Clients with MSA
submit more requests, which is expected since the costs of their requests usually fit the contracted
amount in MSA, and (2) The average number of requests per month is 99.79, which practically
means that all clients submit approximately four request per working day.

These trends do not provide enough information on maintenance requests’ processing. Trends
are too general, and therefore not suitable for more detailed analysis. However, these trends prove
the high demand for maintenance services. In addition, these trends show that clients with MSA
require more maintenance services than clients without MSA. In order to get deeper insight into
maintenance trends it is necessary to include details aboutparticular software applications that are
maintained, about clients, and about types of maintenance tasks. This analysis enables detection
of trends in demands for maintenance by various clients, discovery of distribution of requests per
applications, and detection of trends for types of maintenance tasks.

4.1. Monthly trends for maintenance requests per client

Previous analysis shows that clients with MSA submit two times more requests. Therefore, it
would be beneficial to find out the distribution of requests per clients, to find out clients with the
highest demand for maintenance and based on that to suggest improved versions of MSA that will
be tailored to each client or a group of clients. Detailed monthly trends with the number of requests
for clients that submit more than five requests per month in average is presented in figure1. Names
of clients’ companies are coded with lettersA,B,C,D andE in order to preserve their anonymity
according to guidelines for ethical issues in empirical studies in software engineering (Singer &
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Table 2. Total and average number of MRs for clients with MSA

Client A Client B Client C Client D Client E
Total number 171 170 95 184 142

Average 9.00 8.95 5.00 10.82 9.47

Vinson, 2002). It should be noted that clients D and E have zero requests inthe beginning of
observed interval because client D started to use software applications in July 2010 and client E in
September 2010.

Figure 1. Monthly distribution of MRs for clients that submit more than five requests
per month in average

Data presented in figure1 are related to requests submitted by clients with MSA. Totalnumber
of requests, and the average number of requests per month forclientsA,B,C,D andE are shown in
table2. Other clients with MSA submit smaller number of requests, but they submit them in each
month.

Clients without MSA submit smaller number of requests than clients with MSA. In addition,
they do not submit requests regularly. This means that thereare longer periods of time without
requests from them. Typical trends for requests submitted by clients (K,M andN) without MSA
are presented in figure2.

Trend analysis of the number of MRs for particular clients can be used for the proactive man-
agement of software maintenance activities. In addition, these data can be used also for improve-
ment of policies in MSAs. Since trends for clients with MSA are regular, they could be also used
as parameters for estimating future maintenance activities and workload. For clients without MSA
it is very hard to draw any conclusion because of irregularity in trends.

Analysis of the number of working hours spent for each clientshows the real state of the
maintenance workload per client. Figure3 shows the monthly distribution of working hours for
selected clients with MSA.

The average number of working hours for clientsA,B,C,D andE that have MSA per month,
and the average number of working hours for clientsK,M andN that do not have MSA are shown

figMRMonthlyTrendsPerClient.eps
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Figure 2. Typical MRs monthly trends for clients without MSA

Figure 3. Monthly distribution of working hours for clients with MSA that submit
more than five requests per month in average

figMRMonthlyTrendsForClientsWithoutMSA.eps
figWHMonthlyTrendsForClientsWithMSA.eps
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Table 3. Average number of of working hours per month and per request for clients
with MSA that submit more than five requests per month in average

Client A Client B Client C Client D Client E
Average number of working hours per month 15.72 11.21 5.81 14.29 12.93
Average number of working hours per request 1.65 1.30 1.16 1¿,17 1.42

Table 4. Average number of of working hours per month and per request for clients
without MSA

Client K Client M Client N
Average number of working hours per month 1.13 2.61 1.76
Average number of working hours per request 0.44 0.92 0.64

in tables3 and4 respectively.
The first insight into the data related to clients and their requests suggests that clients with

MSA consume more time and resources than clients without MSA. This is somehow expected,
but directs the thinking towards tailoring appropriate service agreements for particular clients that
have not signed agreements yet.

4.2. Monthly trends for maintenance requests per software application

Application portfolio consists of over 30 software applications used by local clients. Organi-
zation of maintenance activities is based on assignments ofprogrammers to software applications,
which is documented in the company. This means that when somebody receives a request, he/she
knows who are potential programmers that should solve it. Itis very important to know the distri-
bution of MRs and working hours per software applications inorder to improve the maintenance
practice.

For that purpose was conducted trend analysis that shows thedistribution of maintenance re-
quests per applications, and the distribution of working hours per applications. Analysis disclosed
that 75.84 percent of all requests are related to five software applications (namedapp1, app2,
app3, app4andapp5), while 87.39 percent of all requests are distributed to totally nine software
applications (see figure4).

Table5 shows the average number of working hours per month for five most frequently used
software applications, and the average number of working hours per request for these five applica-
tions.

4.3. Trends for types of maintenance tasks associated to requests

Classification of maintenance tasks, or maintenance types in the practice is subjected of sev-
eral studies. From the first typology of software maintenance proposed bySwanson(1976), many
authors have proposed different typologies. General agreement among the researchersand practi-
tioners is that maintenance types are: corrective, perfective, adaptive and preventive. However, in
practice, software organizations define their typologies according to their needs (Stojanov, 2012a).
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Figure 4. Monthly distribution of MRs per sotware applications

Table 5. Average number of working hours per month and per request forfive most
frequently used applications

app1 app2 app3 app4 app5
Average number of working hours per month19.05 33.07 20.91 19.99 9.51
Average number of working hours per request1.20 1.41 1.18 1.78 1.10

figMRDistributionPerApplications.eps
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Jones(2010) proposed the list of 23 types of maintenance tasks based on the best practice in in-
dustry.

In the selected small company, all maintenance tasks have been recorded in the internal reposi-
tory. Despite of the large experience in industry, leading experts in the company have not proposed
any classification of maintenance tasks based on proposals in available literature, but rather on their
own experience and needs. In the repository are defined the following types of tasks: change (any
type of change on software products), training, mandatory change (changes proposed by regula-
tive and law), and all other tasks (updates, adaptations). However, more helpful analysis requires
more detailed classification of maintenance tasks. For thatpurpose, general change tasks were
manually classified by the company leading programmer in twogroups: corrections tasks related
to fixing detected faults, and enhancements tasks related toadding new features and other changes
not related to faults. Classification was based on detailed description of tasks provided by clients
and programmers.

The new classification schema for maintenance tasks is: corrections, enhancements, training,
mandatory changes and other. Figure5 presents trends for types of maintenance tasks in the
company. The most of maintenance work is related to enhancing software product capabilities
(60.18%), while corrections are related to 23.32% of all maintenance works. All other mainte-
nance tasks contribute with about 10% .

Figure 5. Trends for maintenance tasks

5. Discussion of results in the company

According to assessment plan, feedback meetings (sessions) were regularly organized in the
company. Feedback meeting is an effective tool that helps in discussing the state of the assessment
process, current findings, and further steps (Dyba et al., 2004; Oktaba & Piattini, 2008). Hattie
& Timperley (2007) argued that feedback provides directions for the current practice assessment,
learning based on the experience, and further performance improvement.

Company manager and leading programmers participated in the feedback sessions. All ses-
sions were prepared in advance in order to reflect the currentstate, discussions were type-recorded,

figMaintenanceTasksTrends.eps
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and records were later transcribed and analyzed. Session lasted between 30 and 60 minutes. Prac-
tically, sessions were semi-structured, which means that asession plan and initial discussion had
been prepared in advance, but discussions during the sessions included many issues that had not
been planed.

Discussions related to the analysis of the average number ofworking hours per clients revealed
the following trends:

• Programmers spend approximately six times more time on average for the realization of re-
quests submitted by clients with MSA. According to MSA, clients pay for contracted num-
ber of working hours on the monthly basis, and that makes themto feel more comfortable
in submitting new requests.

• On the other hand, clients without MSA submits less requests. In addition, their requests
require less time in average on the monthly basis.

• The next issues that is obvious is that MRs submitted by clients with MSA consume more
time comparing to requests originated from clients withoutMSA. In addition, clients without
MSA are less interested in the improvement of the software applications they use.

Discussions related to the analysis of the average number ofworking hours per software appli-
cations revealed the following trends:

• Software applications labeled withapp1toapp5are usually installed as comprehensive busi-
ness solution for accounting and management of resources inorganizations. This explains
their dominance regarding the number of requests and consumed working hours. Other ap-
plications are not so frequently used and usually are sold asindependent software solutions.
This implies that the package of these applications should be considered as a candidate for
tailoring a special type of MSA for clients that regularly use them, and to offer this option
also to other clients.

• For software applications that consume less working hours,solutions that will increase their
usability to clients should be identified, which will lead toincrease of associated mainte-
nance activities and, therefore, to increased profit to the company. There are few possible
directions for further activities that will help in increasing the profit from software applica-
tions that are not regularly used: include them in integrated business software solutions, or
retire some of them and introduce substitutions that are more attractive to clients.

Discussions related to the analysis of trends in maintenance tasks revealed that the most of
the work is related to enhancements and corrections. However, data available in the repository
are not suitable for detailed analysis of trends because maintenance tasks have not been properly
differentiated.
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5.1. Improvement directions

Software process assessment is usually considered in literature as the initial phase of a process
improvement (Gray & Smith, 1998). Assessment leads to the identification of key process (prac-
tice) elements that need improvements, or towards identification of the strengths and weaknesses
that should be considered during improvements’ planning (von Wangenheimet al., 2006). Based
on the presented trend analysis, the following improvementdirections are identified:

• Development of effort estimation models that will be useful in planning programmers’ work-
load. These models will consider monthly distributions of maintenance requests per soft-
ware applications and per clients and distribution of responsibilities in the company.

• Improvement of planning activities in the company related to distribution of workloads
among programmers in order to achieve more efficient and faster processing of maintenance
requests.

• Improvements of service agreements for clients. This direction includes proposing different
types of MSA that will include various types of software applications. This will lead to
portfolio of MSAs that are tailored for special clients’ needs.

• Improvements of software applications portfolio management that will consider software ap-
plications that are irregularly used, and have very small number of maintenance requests.This
direction includes planning the retirement of unsuccessful software and introduction of ap-
propriate substitutions.

• Development of more detailed typology of maintenance tasksthat will enable derivation of
trends that will cross data about software applications, clients, programmers workload, and
maintenance tasks.

6. Limitations and threats to validity

Discussion about internal end external validity, and any other possible limitation is mandatory
for empirical studies (Kitchenhamet al., 2002).

Internal validity relates to the design of the research, consistency of analysis, and the influence
of unexpected sources of bias. Analysis is based on trend analysis techniques that are easy to im-
plement, but requires deeper understanding of the context and full engagement of both researchers
(assessors) and company employees that perform the process. This is accomplished by joint work
on proposing general improvement and assessment goals, selection of appropriate techniques and
methods, and joint analysis of all findings during feedback meetings in the company. The prob-
lem with the bias is not addressed since the general goal of the study is practice assessment and
improvement and we assume that company employees will provide the full assistance in order
to achieve the best results for them. In addition, using rigorous data analysis methods based on
traceable data minimized researchers’ bias in the research.

The threat to the external validity primarily is related to applicability of this approach in other
industrial settings. The approach assumes deeper understanding of the context and involvement
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of all company employees in all phases of the research from planning, through collecting and
analysing data, to discussing and presenting research findings. Since very small software com-
panies have the similar problems in their business, the approach could be adapted to other small
software companies, by considering specificity of their internal organization. The analysis process
presented in this study could be also adapted to other, preferably small software companies or
small teams. Subsequent applications of this approach would provide evidence about its validity
and usefulness.

7. Conclusions

In this paper is presented an approach to software maintenance assessment based on trend
analysis and feedback sessions. The study was conducted in avery small software company in
Serbia, which is oriented towards local clients. Trend analysis includes analysis of maintenance
requests’ processing trends with the focus on the number of requests and working hours spent per
clients and software applications, as well as simple analysis of maintenence tasks’ trends.

The observations and conclusions from trend analysis will be used as directions for process
improvement activities in the company. Both technical and organizational issues in the company
are subject of improvement based on the results of trend analysis. For example, improvement of
client service agreements is the obvious directions for practice improvement related to organiza-
tional issues. Improvement of the practice can be achieved also by proposing effort estimation
models based on the current trends, such as the model presented byStojanovet al. (2013). The
next direction for practice improvement is related to development of more detailed typology of
maintenance tasks that will enable analysis of trends for various types of tasks regarding software
applications and clients.

The main contribution of the presented approach is related to implementation of assessment
method based on trend analysis tailored to a very small software company. The method is based
on collecting field data from company maintenance repository, analyzing data by using trend anal-
ysis, and identification of relevant conclusions and directions for further improvements of the
maintenance practice. The next contribution is detailed presentation of trend analysis as a part
of assessment method tailored to specific context, which will be helpful for other small software
companies.

The approach is designed for small software companies or teams, and can be tailored to other
similar settings. Findings of this research contain lessons that can be used by software practitioners
in small software companies in order to assess and improve their decision-making and maintenance
requests’ processing. On the other hand, researchers couldfind some useful guidelines how to
conductlight maintenance assessment based on trend analysis by considering given context.

Further work includes developing a formal model of light assessment approach for software
maintenance in very small software companies, and adaptation and implementation of the ap-
proach in other similar settings. This will provide the opportunity to replicate the research in order
to validate usability of presented approach. The next promising research direction is related to
adapting this assessment approach to other processes in small software companies, or to compa-
nies that are mostly oriented towards outsourcing of products and services.
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Abstract

In this paper, the steady two-dimensional motion of an incompressible Newtonian fluid between two parallel
plates with heat transfer in the presence of a cosine shaped stenosis is studied. The governing equations are trans-
formed into a compatibility and energy equations, which is solved analytically with the help of the regular perturbation
technique. The solutions obtained from the present analysis are given in terms of streamlines, wall shear stress, sep-
aration and reattachment points, pressure and temperaturedistributions through the stenosed channel. The accuracy
of the results are verified from available literature. It is found that the wall shear stress, pressure gradient and tem-
perature increase with the development of the stenosis, causing separation and reattachment points in the region. It is
also observed that even at low velocity, separation occurs if the thickness of the stenosis is increased. We present the
results in graphical form.

Keywords: Newtonian fluid, stenosis, heat transfer.
2010 MSC:76-XX.

1. Introduction

The motivation of this study comes from the investigation ofabnormal blood flow in a stenosed
artery, which may be due to atherosclerotic plaques developed at various locations in the artery.
Its effect on the flow of blood is discussed by many authors theoretically, experimentally as well
as numerically. Forrester and Young (Forrester & Young, 1970) presented the theoretical as well
as experimental results of an axisymmetric, steady flow through a converging and diverging tube
with mild stenosis. It is observed that there is an abundant amount of evidence to support the con-
clusion that the abnormal flow conditions developed in a stenotic obstruction can be an important
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factor in the development and progression of arterial disease. Further indicate that even a mild
collarlike stenosis in a small artery can create significantabnormalities in the flow. Morgan and
Young (Morgan & Young, 1974) provided the approximate analytical solution of axisymmetric,
steady flow of incompressible Newtonian fluid both for mild and severe stenosis by using an in-
tegral method; basically they presented the extension of Forrester (Forrester & Young, 1970). It
is observed that even a mild stenosis can cause a radical alteration in flow characteristics and that
the effect in general becomes more drastic as the stenosis becomes more severe and the Reynolds
number increases and also wall shearing stress is especially affected. Analysis of blood flow using
an incompressible Newtonian fluid through an axisymmetric stenosed artery of cosine shape has
been done by K. Haldar (Haldar, 1991). It is shown that for any given Reynolds number or tube
constriction the separation point moves towards the throatof the tube and the reattachment point
moves downstream with the enlargement of the region of separation which is physiologically un-
favorable. Layek and Midya (Layek & Midya, 2007) presented the numerical solution of a time
dependent incompressible Newtonian fluid for symmetric stenosis in a two dimensional channel.
It is noticed that the maximum stress and the length of the recirculating region associated with
two shear layers of the constriction increase with the increase of the area reduction of the con-
striction. It is observed that the critical values for threeconstriction heightsh = 0.25, 0.3, 0, 35 are
600, 300, 210 respectively. Chow et al. (Chowet al., 1971) analyzed the steady laminar flow of
an incompressible Newtonian fluid for different physical parameters by considering a sinusoidal
boundary. It is observed that by increasing eitherReor ǫ, the separation point would move down
towards the throat in the divergent part of the channel with subsequent enlargement of the region
of separation. Lee and Fung (Lee & Fung, 1970) solved the flow model of the Newtonian fluid
numerically through locally constricted tube for the low Reynolds number. The constraints in their
numerical procedure restricted the shape of the tube to be fixed and the Reynolds number to be
moderate. Haldar (Haldar, 1985) discussed the effect of the shape of constriction on the resistance
of blood flow through an artery with mild local narrowing. It is shown that the resistance to flow
decreases as the shape of the stenosis changes and maximum resistance is attained for symmetric
stenosis. S. Chakravarty and A. Ghosh Chakravarty (Chakravarty & Chakravarty, 1988) presented
analytical solutions by considering an anisotropically elastic cylindrical tube filled with viscous
incompressible fluid representing blood having stenosis. The analysis is carried out for an artery
with mild local narrowing in its lumen forming a stenosis. K.Haldar (Kruszewskiet al., 2008)
studied the oscillatory flow of blood which behaves as a Newtonian fluid having surface roughness
of cosine shape. It is observed that the resistive impedanceand wall shear stress increases as the
phase lag increases for a particular value of stenosis height. It is also observed that impedance
and wall shear stress increases with the increase in the stenosis height. Newman et al. (Newman
et al., 1979) investigated the oscillatory flow numerically in a rigid tube with stenosis. The pre-
dictions of the numerical results agreed well with the experimental works. This paper deals with
the problem of oscillatory blood flow through a rigid tube with a mild constriction under a simple-
harmonic pressure gradient examines the effect of stenosis on the flow field by considering blood
as a Newtonian fluid. Mehrotra et al. (Mehrotraet al., 1985) presented analysis by considering
the flow in a stenotic tube where the cross-section is elliptic. It is observed that the theoretical
study of pulsatile flow in a stenotic tube confirms the view that the fluid dynamics characteristics
of the flow are affected by the percentage of stenosis as well as the geometry ofthe stenosis. The
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frequency of oscillation also influences the shearing stress. Srivastava and Rastogi (Srivastava
& Rastogi, 2010) investigated the blood flow through narrow catheterized artery with an axially
nonsymmetrical stenosis. It is found that the flow resistance increases with the catheter size, the
hematocrit and the stenosis size but decreases with the shape parameter. A significant increase in
the magnitude of the impedance and the wall shear stress occurs even for a small increase in the
catheter size. The shear stress at the stenosis throat decreases with the increasing catheter size. The
abnormal flow conditions developed due to stenosis can be an important factor in the development
and progression of arterial diseases. Some of the further major complications developed through
these stenosis are the growth of tissues into arteries, development of an intravascular clot and post-
stenotic dilatation. This type of flow also has applicationsin various fields like physiological flows
and polymer science.

In the present paper, the effect of stenosis height and Reynolds number on flow characteris-
tics, wall shear stress, pressure gradient, separation andreattachment points and heat transfer are
analyzed. The study of the Peclet number and Brinkman numberon the temperature distribution
is also presented. It is observed that the general pattern offlow is similar to the results given in
(Haldar, 1991) - (Chowet al., 1971). The results of the present investigation indicate that even a
mild collar like stenosis in a small artery can create significant abnormalities in the flow includ-
ing the phenomenon of separation. This study presents the steady, two-dimensional motion of an
incompressible Newtonian fluid in a cosine shaped stenosed channel with heat transfer. In this
analysis blood is assumed as Newtonian fluid and the geometryof the artery is approximated by
a channel. The layout of the paper is as follows: The basic equations governing the flow, in the
Cartesian coordinate, are given in section 2. Problem formulation is presented in Section 3. In
Section 4 the method is discussed and section 5 is dedicated the solution for different parameters.
Section 6 provides a graphical discussion. A summary is given in section 7.

2. Governing equations

The basic governing equations for steady two dimensional flow of a non-isothermal, incom-
pressible linearly viscous fluid in the absence of body forces are

˜∇ · ˜V = 0, (2.1)

ρ
d˜V
dt
= −˜∇p̃+ ˜∇τ̃, (2.2)

ρcp
d˜T
dt
= κ˜∇2

˜T + φ, (2.3)

where˜V, ˜T andρ are the velocity vector, temperature and constant density of the fluid respectively,
p̃ is the dynamic pressure,cp and κ are the specific heat and thermal conductivity parameters
respectively,˜∇2 is the Laplacian,φ the viscous dissipation function defined asφ = τ̃ ·˜∇˜V andd/dt
the material time derivative defined as

d
dt
=
∂

∂t
+ ũ

∂

∂x̃
+ ṽ

∂

∂̃y
, (2.4)
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whereũ and ṽ are the velocity components iñx and ỹ directions, respectively and̃τ is the extra
stress tensor defined as follows

τ̃ = µ˜A1, (2.5)

whereµ is the dynamic viscosity andA1 the first Rivlin-Ericksen tensor defined as

˜A1 =
˜∇˜V + (˜∇˜V)⊤, (2.6)

here⊤ indicates the transpose.

3. Problem formulation

Consider the non-isothermal Newtonian flow through the channel of infinite length with heat
transfer having stenosis of lengthlo/2. The coordinate system is chosen in such a way that the
arterial system lies in thẽx̃y−plane, such that̃x−axiscoincide with the center line in the direction
of flow andỹ− axisperpendicular tõx− axis.

Consider the boundary of the stenosed region of the form (Haldar, 1991)

h (x̃) = ho −
λ

2

(

1+ cos

(

4πx̃
lo

))

−
lo
4
< x̃ <

lo
4
,

= ho otherwise,
(3.1)

whereh(x̃) is variable gap between the stenosis, 2ho the width of unobstructed channel andλ the
maximum height of stenosis.

Figure 1. Geometry of the problem.

Boundary conditions for the present problem are

ũ = ṽ = 0, ˜T = T1 at ỹ = h(x̃),

∂ũ
∂̃y
= 0,

∂˜T
∂̃y
= 0 at ỹ = 0,

˜Q = 2
∫ h(x̃)

0
ũd̃y = −uoho,

(3.2)

visc_fig111.eps
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whereuo is the average velocity and˜Q the volume flow rate. Assume that the blood behaves
like Newtonian fluid and for steady, homogeneous, incompressible two dimensional flow of blood
velocity field is assumed as

˜V = (̃u (x̃, ỹ) , ṽ (x̃, ỹ) , 0) . (3.3)

Introducing the dimensionless parameters as follows

u =
ũ
uo
, v =

ṽ
uo
, x =

x̃
lo
, y =

ỹ
ho
, p =

h2
o

µuolo
p̃, θ =

˜T − To

T1 − To
, (3.4)

whereT1 andTo are temperatures on the boundary of stenosis and fluid respectively.
Substituting equations (2.4)-(2.6) in equations (2.1) - (2.3) and making use of (3.3) and (3.4),

nondimensional form of equations becomes

δ
∂u
∂x
+
∂v
∂y
= 0, (3.5)

Re

(

δu
∂u
∂x
+ v

∂u
∂y

)

= −
∂p
∂x
+ ∇2u, (3.6)

Reδ

(

δu
∂v
∂x
+ v

∂v
∂y

)

= −
∂p
∂y
+ δ∇2v, (3.7)

Pe

(

δu
∂

∂x
+ v

∂

∂y

)

θ = ∇2θ + Br













4δ2

(

∂u
∂x

)2

+

(

∂u
∂y
+ δ

∂v
∂x

)2










, (3.8)

where

δ =
ho

lo
, Re=

uoho

ν
, Br =

µu2
o

κ(T1 − To)
, Pe=

ρcphouo

κ
, (3.9)

in whichReis the Reynolds number,Br the Brinkman number,Pethe Peclet number.
Now to convert these equations in single variable, introducing the stream function defined as

u =
∂ψ

∂y
, v = −δ

∂ψ

∂x
, (3.10)

which satisfy the continuity equation (3.5) identically. After eliminating pressure gradient term
from momentum equations (3.6)-(3.7) and making use of (3.10), compatibility equation is obtained
of the form

Reδ
∂
(

ψ,∇2ψ
)

∂ (y, x)
= ∇4ψ, (3.11)

where∇2
= δ2 ∂2

∂x2 +
∂2

∂y2 , is the dimensionless form of the Laplacian. Energy equation (3.8) in terms
of stream function becomes

Peδ
∂(ψ, θ)
∂(y, x)

= ∇2θ + Br















4δ2

(

∂2ψ

∂x∂y

)2

+

(

∂2ψ

∂y2
− δ2∂

2ψ

∂x2

)2












. (3.12)
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The dimensionless stenosis profile (3.1) takes the form

f (x) = 1−
ǫ

2
(1+ cos 4πx) −

1
4
< x <

1
4
,

= 1 otherwise,
(3.13)

where f = h(x̃)
ho

andǫ = λ

ho
.

Boundary conditions in terms of stream function becomes

∂ψ

∂y
= 0, ψ = −

1
2
, θ = 1 at y= f ,

∂2ψ

∂y2
= 0, ψ = 0,

∂θ

∂y
= 0 at y= 0.

(3.14)

Due to non-linearity of (3.11) and (3.12), the regular perturbation technique is applied to find the
analytical solution along with the boundary conditions defined in (3.14).

4. Perturbation method

In this section we shall discuss the perturbation method by considering a linear or nonlinear
differential equation

L(ψ, δ) = 0, (4.1)

that depends on the small positive parameterδ. The boundary or initial conditions may depend on
δ. The reduced or unperturbed problem associated with the problem is obtained by settingδ = 0
along with its boundary or initial conditions. We expand thesolutionψ in the perturbation series

ψ =

∞
∑

n=0

ψnδ
n, (4.2)

the difference betweenψ andψo is refereed to as a perturbation on the solutionψo of the reduced
problem. Inserting this equation into (4.1) gives

L(ψ, δ) = L(
∞

∑

n=0

ψnδ
n, δ) = 0. (4.3)

We assume thatL(ψ, δ) can be expanded in a power series inψ andδ. As a result above equation
(4.3) can be expanded in the form of the series

L(ψ, δ) =
∞
∑

n=0

Ln(ψn, ψn−1, ...ψ1, ψo)δ
n
= 0, (4.4)

whereLn represents differential operator, which may be linear or nonlinear. The series (4.2) is also
inserted into the given initial and boundary conditions forthe problem.
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To solve the given problem by means of the perturbation method, we put the coefficient ofδn in
(4.4) equal to zero and obtain

Ln(ψn, ψn−1, · · ·ψ1, ψo) = 0, n = 0, 1, 2, · · ·. (4.5)

Similarly we equate coefficient of like powers ofδ in the initial or boundary conditions. This yields
the system of equations (4.5) with appropriate boundary conditions that we solve recursively.
We first solve the reduced equation

Lo(ψo) = 0, (4.6)

with relevant boundary conditions. Onceψo is found, then equation forψ1 with boundary condi-
tions is

L1(ψ1, ψo) = 0, (4.7)

is solved and then the equations forψ2, ψ3, · · · with relevant boundary or initial conditions are
solved successively.

5. Solution

To solve the compatibility equation and energy equation along with boundary conditions (3.14),
the flow variablesψ andθ are perturbed as

ψ = ψo + δψ1 + δ
2ψ2 + · · ·,

θ = θo + δθ1 + δ
2θ2 + · · ·.

(5.1)

whereδ is a small parameter.

5.1. Zeroth order problem and its solution

Zeroth order system of equations is obtained by substituting (5.1) in equations (3.11)-(3.12),
(3.14) and equating the coefficients ofδ0 as

∂4ψo

∂y4
= 0, (5.2)

∂2θo

∂y2
= −Br

(

∂2ψo

∂y2

)2

, (5.3)

and corresponding boundary conditions

∂ψo

∂y
= 0, ψo = −

1
2
, θo = 1 at y= f ,

∂2ψo

∂y2
= 0, ψo = 0,

∂θo

∂y
= 0 at y= 0.

(5.4)

The solution of equation (5.2) along with boundary conditions (5.4) is given of the form

ψo =
η

4

(

η2 − 3
)

, where η =
y
f
. (5.5)
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After substitution of (5.5) in (5.3) subject to (5.4), zeroth order temperature is obtained as

θo = 1−
3Br
16f 2

(

η4 − 1
)

, (5.6)

which indicates that the temperature depends upon the ratioof heat production by viscous dissipa-
tion to heat transport by conduction.

5.2. First order problem and its solution

For the first order system comparing the coefficients ofδ, we get

∂4ψ1

∂y4
= Re

∂
(

ψo,
∂2ψo

∂y2

)

∂ (y, x)
, (5.7)

∂2θ1

∂y2
= Pe

∂ (ψo, θo)
∂(y, x)

− 2Br

(

∂2ψo

∂y2

∂2ψ1

∂y2

)

, (5.8)

and boundary conditions

∂ψ1

∂y
= 0, ψ1 = 0 θ1 = 0 at y= f ,

∂2ψ1

∂y2
= 0, ψ1 = 0,

∂θ1

∂y
= 0 at y= 0.

(5.9)

The solution of equation (5.7) by making use (5.5) and (5.9) becomes

ψ1 = −
3Re f′η
1120

(

η6 − 7η4
+ 11η2 − 5

)

. (5.10)

By substitution of (5.5) and (5.10) in equation (5.8) and making use of (5.9), the first order tem-
perature profile is obtained of the form

θ1 =
3Br f ′

(

η2 − 1
)

8960f 2

{

2Re
(

9η6 − 47η4
+ 19η2

+ 19
)

+ Pe
(

15η6 − 13η4 − 83η2
+ 337

)}

. (5.11)

It is observed that the first order temperature depends upon the ratio of heat production by viscous
dissipation and heat transport by convection to heat transport by conduction.

5.3. Second order problem and its solution

Comparing the coefficients ofδ2 to get the second order system as

∂4ψ2

∂y4
= Re



















∂
(

ψo,
∂2ψ1

∂y2

)

∂ (y, x)
+

∂
(

ψ1,
∂2ψo

∂y2

)

∂ (y, x)



















− 2
∂4ψo

∂x2∂y2
, (5.12)
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∂2θ2

∂y2
=Pe

[

∂ (ψo, θ1)
∂(y, x)

+
∂ (ψ1, θo)
∂(y, x)

]

−
∂2θo

∂x2
− Br















4

(

∂2ψo

∂x∂y

)2

+

(

∂2ψ1

∂y2

)2

+2
∂2ψo

∂y2

∂2ψ2

∂y2
− 2

∂2ψo

∂y2

∂2ψo

∂x2

]

,

(5.13)

boundary conditions for second order system are

∂ψ2

∂y
= 0, ψ2 = 0, θ2 = 0 at y= f ,

∂2ψ2

∂y2
= 0, ψ2 = 0,

∂θ2

∂y
= 0 at y= 0.

(5.14)

Using (5.5) and (5.10) in equation (5.12), the solution is obtained by successive integration along
with the boundary conditions defined in (5.14) as follows

ψ2 = CRe2η
[

f ′2
(

98η10− 1155η8
+ 4488η6 − 8778η4

+ 8222η2 − 2875
)

− f f ′′
(

35η10− 385η8
+ 1518η6 − 3234η4

+ 3279η2 − 1213
)]

−
3η(4 f ′2 − f f ′′)

40
(η4 − 2η2

= 1),

(5.15)

which is second order solution for stream lines. To find the second order temperature, using (5.5),
(5.10) and (5.15) in equation (5.13), with the help of MATHEMATICA, we get

θ2 =
C1(η2 − 1)

f 2

[

−4 f ′2
{

7Pe2
(

225η10 − 721η8 − 220η6
+ 30134η4 − 94771η2

+ 238859
)

+2PeRe
(

840η10 − 6860η8
+ 11455η6

+ 3139η4 − 26891η2
+ 56269

)

+ Re2
(

2303η10

−21721η8
+ 63122η6 − 68086η4

+ 17183η2
+ 17183

)

− 517440(13η4
+ 9η2 − 36)

}

+ f f ′′
{

3Br
(

7Pe2
(

225η10− 721η8 − 2206η6
+ 30134η4 − 94771η2

+ 238859
)

+2PeRe
(

525η10 − 5173η8
+ 14132η6 − 7120η4 − 29065η2

+ 102605
)

+ 8Re2
(

175η10

−1673η8
+ 5158η6 − 7778η4

+ 2059η2
+ 2059

)

− 2069760
(

7η4 − 4η2 − 9
)

)}]

.

(5.16)

5.4. Velocity and temperature fields

The dimensionless velocity components inx andy directions are obtained from (3.10), we
arrive at the axial component of velocity as

u =

(

η2 − 1
)

f

[

3
4
−

3Reδ f ′

1120

(

7η4 − 28η2
+ 5

)

+ δ2

{

3
40

(

f f ′′ − 4 f ′2
) (

5η2 − 1
)

+CRe2
{

f ′2
(

1078η8 − 9317η6
+ 22099η4 − 21791η2

+ 2875
)

−C f f ′′
(

385η8 − 3080η6
+ 7546η4 − 8624η2

+ 1213
)}}]

,

(5.17)
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and the normal component of velocity is

v =
δη

(

η2 − 1
)

f

[

3
4

f ′ +
3Reδ
20

(

f f ′′
(

η2 − 1
) (

η2 − 5
)

− f ′2
(

7η4 − 28η2
+ 5

))

+δ2

{

3 f f ′ f ′′

10

(

3η2 − 1
)

−
3 f 2 f ′′

40

(

η2 − 1
)

−
3 f ′3

10

(

5η2 − 1
)

+ Re2
{

C f ′3
(

1078η8

−93172η6
+ 22099η4 − 21791η2

+ 28875
)

−C2 f f ′ f ′′
(

273η8 − 2422η6
+ 6620η4

−8626η2
+ 2875

)

+C f2 f ′′
(

η2 − 1
) (

35η6 − 315η4
+ 853η2 − 1213

)}}]

.

(5.18)

The temperature distribution up to second order is obtainedfrom (5.1), we arrive

θ =1−
Br
f 2

[

3
16

(η4 − 1)− δ

{

3 f ′(η2 − 1)
8960

(

2Re
(

9η6 − 47η4
+ 19η2

+ 19
)

+ Pe
(

15η6 − 13η4

−83η2
+ 337

))}

− δ2
[

C1(η
2 − 1)

{

−2 f ′2
{

7Pe2
(

225η10− 721η8 − 2206η6
+ 30134η4

−94771η2
+ 238859

)

+ 4PeRe
(

840η10 − 6860η8
+ 11455η6

+ 3139η4 − 26891η2
+ 56269

)

+2Re2
(

2303η10− 21721η8
+ 63122η6 − 68086η4

+ 17183η2
+ 17183

)

− 1034880
(

13η4

+9η2 − 36
)}}

+ f f ′′
{

3Br
{

7Pe2
(

225η10 − 721η8 − 2206η6
+ 30134η4 − 94771η2

+ 238859
)

+2PeRe
(

525η10 − 5173η8
+ 14132η6 − 7120η4 − 29065η2

+ 102605
)

+ 8Re2
(

175η10 − 1673η8

+5158η6 − 7778η4
+ 2059η2

+ 2059
)

− 2069760
(

7η4 − 4η2 − 9
)}}]]

,

(5.19)

whereC = 1
3449600, C1 =

1
55193600, C2 =

1
1724800. Dimensionless wall shear stress for viscous

fluid up to second order is given by

τω =

(

∂u
∂y
+ δ

∂v
∂x

)

y= f

=
3
f 2

[

1
2
+

Re f′

35
δ +

δ2

10

{

Re2

8085

(

40f f ′′ − 79f ′2
)

+

(

2 f f ′′ − 13f ′2
)

}]

.

(5.20)

The points of separation and reattachment are defined as the back flow at wall, where the wall
shear stress is zero, i.e.τω = 0, then above equation reduces as

40425+ 2310Re f′δ + δ2
{

10f f ′′
(

40Re2
+ 16170

)

− f ′2
(

79Re2
+ 105105

)}

= 0. (5.21)

The solution of (5.21) in terms of Reynolds numberReis

Re=
7

δ
(

40f f ′′ − 79f ′2
)

{

−165f ′ ±
√

165
{

165f ′2 −
(

40f f ′′ − 79f ′2
) (

5− 13δ2 f ′2 + 2δ2 f f ′′
)}

}

.

(5.22)
By using equation (5.22), our aim is to find graphically the critical Reynolds numberat which the
back flow occur.
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5.5. Pressure distribution

To find the pressure distribution along x-axis within the channel, the equations (3.6) and (3.7)
are converted in terms of stream function and then perturb these equation by using (5.1) and

p = po + δp1 + δ
2p2 + · · ·, (5.23)

system of equations is obtained as follows.

5.5.1. Zeroth order pressure and solution
Comparing the coefficients ofδ0 , we get

∂po

∂x
=
∂3ψo

∂y3
, (5.24)

∂po

∂y
= 0. (5.25)

By integrating the above two equations and making use of (5.5), the zeroth order pressure is
obtained of the form

po =
3

32π(ǫ − 1)2

[

1
√

1− ǫ

(

3ǫ2 − 8ǫ + 8
)

tan− 1

(

tan 2πx
√

1− ǫ

)

−
f ′

8π f 2

{

16(ǫ − 1)− 3ǫ2

−3ǫ(ǫ − 2) cos(4πx)}
]

,

(5.26)

which involves the trigonometric and inverse trigonometric function.

5.5.2. First order pressure and solution
Equating the coefficients ofδ , we obtain

∂p1

∂x
=
∂3ψ1

∂y3
− Re

∂
(

ψo,
∂ψo

∂y

)

∂ (y, x)
, (5.27)

∂p1

∂y
= 0, (5.28)

by making use of equations (5.5), (5.10) and solving (5.27)-(5.28), the first order solution for
pressure is obtained by applying

p1 =

∫ x

0

∂p1

∂x
dx+

∫ y

0

∂p1

∂y
dy, (5.29)

of the form

p1 =
27Re
140f 2

(

1
(1− ǫ)2

−
1
f 2

)

. (5.30)
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5.5.3. Second order pressure and solution
Comparing the coefficients ofδ2 , we arrive at

∂p2

∂x
=
∂3ψ2

∂y3
− Re



















∂
(

ψo,
∂ψ1

∂y

)

∂ (y, x)
+

∂
(

ψ1,
∂ψo

∂y

)

∂ (y, x)



















, (5.31)

∂p2

∂y
= −

∂3ψo

∂x∂y2
, (5.32)

by integrating the equations (5.31)-(5.32) and making use of (5.5), (5.10) and (5.15) ,we arrive at
the second order pressure as follows

p2 =
3

13475

[

πǫ2

(1− ǫ)
3
2

(

13Re2
+ 8085

)

tan− 1

(

tan 2πx
√

1− ǫ

)

+ f ′
{

40425η2

2 f 2
+

52Re2 − 18865
4 f 2

+
(ǫ − 2)(13Re2

+ 8085)
4 f (ǫ − 1)

}]

.

(5.33)

Now one can easily find the pressure up to second order by usingequations (5.26), (5.30) and
(5.33).

6. Graphical discussion

In this section the effect of different pertinent parameters on stream lines, wall shear stress,
pressure distribution, separation and reattachment points and analysis for heat transfer are pre-
sented graphically. The geometry of the proposed model for the study of the stenosed artery is
depicted in Figure 1. The radii of obstructed and unobstructed regions areh(x) andho. The point
of separation lies near the throat of the stenosed region in the converging section. Separation point
means the point where reverse flow occurs. Figure 2,3 presents the behavior of stream lines for
zeroth order in 2(a), first order in 2(b), second order in 3(a)and up to second order in 3(b) respec-
tively, for the fixed values ofRe= 12, ǫ = 0.2, δ = 0.1, α = 0.04. In these figuresx− axis lies in
the horizontal direction andy− axisperpendicular to it. The zeroth order solution correspondsto
the flow with vanishing wall slopes and reduces to the flow between parallel plates forǫ = 0. The
stream lines are relatively straight in the center of the channel. The first order solution induces the
clockwise and counterclockwise rotational motion in the converging and diverging regions, which
indicates the separation point in the converging region andreattachment point in the diverging re-
gion. Figure 3(a) shows the stream lines for second order solution reinforce the first order solution
and observe the rotational motion which predicts the separation and reattachment points. Figure
3(b) presents the stream lines up to second order. It is observed that the stream lines becomes
relatively straight in the center of the channel as comparesto the walls of the channel and similar
to (Chowet al., 1971).

The distribution of wall shear stress across the stenosis has been described for the variation of
Rein figure 4(a) for fixedǫ = 0.2, δ = 0.1. An increase inRe, wall shear stress increases near the
throat of stenosed region and becomes negative in the converging and diverging section of channel
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due to back flow. The adverse shearing in converging and diverging sections of channel indicates
that there is point of separation in the upstream region and reattachment point in the downstream
region of channel. It is observed that wall shear stress holds for both small and largeRe.

In figure 4(b) effect ofǫ on wall shear stress is presented. The straight line indicates that there
is no stenosis and the flow is Poiseuille flow. By the increase in ǫ wall shear stress increases over
the stenosed region and becomes negative in the converging section of channel due to adverse flow,
which is prediction for the point of separation. The separation point was considered to be the point
nearest the throat where reversed flow along the wall of channel could be observed. The point
farthest down stream from the throat where back flow occur is defined as reattachment point. It is
expected that the wall shear stress plays an important role in the formation of the stenosis and its
further growth. Because the deposit of cholesterol and proliferation of connective tissue may be
responsible for the abnormal growth in lumen of artery. Its actual cause may not be known exactly
but its effect on the cardiovascular system can easily be understood bystudying the blood flow in
its vicinity. One of the practical applications of blood flowthrough a membrane oxygenator is the
flow with an irregular wall surface.
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Figure 2. The zeroth order stream lines forǫ = 0.20,Re= 12, δ = 0.1 are shown in
(a) and the first order stream lines are shown in (b).

Figure 5(a) depict the distribution for the point of separation in converging section of channel
for differentǫ along with fixedδ. The separation point lie to the right of minimum point, actually
the purpose for zero wall shear stress is to find the critical Reynolds number where separation
occur. The critical value ofRe in the converging region forǫ = 0.6 is 70. The theory that the
critical Re decreases with the increase inǫ is verified. In figure 5(b) zero wall shear stress is
plotted forǫ having fixed value ofδ in diverging section of channel. The aim of investigation is
to determine the critical value ofReat which reattachment occurred in the diverging region of the
channel. As the criticalRereached the reattachment occur in the diverging region of channel and
separation point occur in the upstream region of channel. Itis observed that the critical value of
Re for ǫ = 0.6 is 380. It is also observed form figure 6 that asǫ increases critical value ofRe
decreases.
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Figure 3. The second order stream lines are shown in (a) and the streamlines correct
up to the second order inδ are shown in (b).
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Figure 4. The effect ofReon wall shear stress is shown in (a) and the effect of ǫ on
wall shear stress is shown in (b).

Figure 6(a) presents the effect for the various values ofReon pressure distribution. It may
be noted that with the increase inRe leads to increase the pressure gradient over the stenosed
region and becomes negative in the converging and divergingregions, due to the dependence ofRe
on average velocity. The adverse pressure gradient in theseregions causes back flows as observed
earlier. These back flows predicts the separation point in converging region and reattachment point
in diverging region of the channel. It is observed that the magnitude of adverse pressure gradient
in the diverging region is smaller as compared to that in the converging region.

Effect of ǫ on pressure gradient is studied in figure 6(b). It is observedthat with the increase
in ǫ, pressure gradient increases over the region having stenosis and becomes negative in the
upstream and downstream regions of channel due to back flow. The adverse pressure gradient in
the converging part of stenosis describing the flow separation and reattachment in the diverging
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Figure 5. The separation point in converging region are shown in (a) and the reattach-
ment point in diverging region are shown in (b).
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Figure 6. The pressure distribution forReis shown in (a) and the pressure distribution
for ǫ is shown in (b).

part. The straight line preserve Poiseuille flow as there is no stenosis.
Figure 7(a) depict for various values ofReon axial component of velocity. It is observed that

with the increase inRe the axial velocity is maximum over the obstructive region and becomes
negative causing back flow in the converging and diverging sections of the channel. Figure 7(b)
shows the effect of ǫ on velocity distribution. It is observed that as theǫ increases the velocity
increases over the stenosed region and decreases sharply inthe converging section and then recover
it in the diverging section of channel. Negative velocity indicates the back flow, due to separation
and reattachment points in the channel.

Figure 8(a) shows the effect of Pe on temperature distribution. It is observed that with the
increase inPe, temperature increases over the stenosed region and becomes negative in the con-
verging and diverging regions. The adverse temperature in the upstream and downstream sections
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Figure 7. The axial velocity distribution forReis shown in (a) and the axial velocity
distribution forǫ is shown in (b).
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Figure 8. The effect ofPeon temperature distribution is shown in (a) and the effect of
Br on temperature distribution is shown in (b).

describing flow separation and reattachment from the wall also confirm the results for velocity
and wall shear stress. Temperature distribution across thestenosis has been described in figure
8(b) for different values ofBr. Temperature increases steeply from its axial axis in the converging
section of the stenosis to the peak value at the throat, then drop to a minimum value downstream
behind the stenosis and again approaches to the axial axis inthe region away from stenosis. The
magnitude of adverse temperature in the diverging region ofstenosis is smaller as compared to
that in the converging section of the stenosis. The adverse temperature in these regions cause back
flow as observed earlier in velocity and pressure fields.
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7. Summary

In the present study, steady two-dimensional flow of incompressible Newtonian fluid with heat
transfer between two parallel plates in the presence of a cosine shaped stenosis is presented. The
underlying problem is solved with the help of the regular perturbation method. The results thus
obtained are discussed graphically in terms of stream lines, pressure gradient, wall shear stress,
separation and reattachment points and temperature distribution. It is observed that the general
pattern of streamlines is similar as discussed in (Layek & Midya, 2007) - (Chowet al., 1971), wall
shear stress is same as given by (Morgan & Young, 1974) - (Haldar, 1991) and separation and
reattachment points are in agreement with (Haldar, 1991). It is observed that:

• Stream lines for zeroth order and up to second order are similar due to smallδ and first and
second order shows rotational motion.

• Increase in Reynolds number increases the wall shear stress, velocity and pressure gradient.

• Increase in thickness of stenosis increases pressure gradient, temperature and wall shear
stress causing separation and reattachment in the channel.

• Increase in the thickness of stenosis decreases the critical Reynolds number for separation
and reattachment points, means even at low velocity separation occurs.

• By the increase in Peclet and Brinkman number increases the temperature between the chan-
nel.

• For ǫ = 0 Poiseuille flow is recovered.

References

Chakravarty, S. and A. G. Chakravarty (1988). Response of blood flow through an artery under stenotic conditions.
Rheologica Acta.

Chow, J. C. F., K. Soda and C. Dean (1971). On laminar flow in wavy channel. In:Developments in Mechanics,
Vol. 8, Proceedings of the12th. Midwestern Mechanics Conference, University of Notre Dame Press, Notre Dame,
Indiana. pp. 247–260.

Forrester, J. H. and D. F. Young (1970). Flow through a converging-diverging tube and its implications in occlusive
vascular disease.Journal of Biomechanics3, 297–316.

Haldar, K. (1985). Effect of the shape of stenosis on the resistance to blood flow through an artery.Bulletin of Mathe-
matical Biology47, 545–550.

Haldar, K. (1991). Analysis of separation of blood flow in constricted arteries.Archives of Mechanics43(1), 107–113.

Kruszewski, A., R. Wang and T.M. Guerra (2008). Nonquadratic stabilization conditions for a class of uncertain
nonlinear discrete time ts fuzzy models: A new approach.IEEE Transactions on Automatic Control53(2), 606–
611.

Layek, G. C and C. Midya (2007). Effect of constriction height on flow seperation in a two-dimensional channel.
Communications in Nonlinear Science and Numerical Simulation 12, 745–759.

Lee, J. S. and Y. C. Fung (1970). Flow in locally constricted tubes at low Reynolds number.Journal of Applied
Mechanics37, 9–16.



92 A. M. Siddiqui et al./ Theory and Applications of Mathematics& Computer Science 3 (2) (2013) 75–92

Mehrotra, R., G. Jayaraman and N. Padmanabhan (1985). Pulsatile blood flow in a stenosed artery - a theoretical
model.Medical Biological Engineering and Computing23, 55–62.

Morgan, B. E. and D. F. Young (1974). An integral method for the analysis of flow in arterial stenoses.Bulletin of
Mathematical Biology36, 39–53.

Newman, D. L., N. Westerhof and P. Sipkema (1979). Modellingof aertic stenosis.Journal of Biomechanics12, 229–
235.

Srivastava, V. P. and R. Rastogi (2010). Blood flow through a stenosed catheterized artery: Effects of hematocrit and
stenosis shape.Computers and Mathematics with Applications59(4), 1377–1385.

Appendix 1

List of Mathematical Symbols

V Velocity vector (m/s)
∇ del operator
p scalar pressure(Pa)
d/dt material time derivative
cp specific heat(J/kgK)
T temperature(Co)
u, v velocity components(m/s)
x, y coordinate axis(m)
A1 first Rivlin-Ericksen tensor
lo/2 length of stenosis(m)
h(x) variable width between the stenosis(m)
ho radius of unobstructed channel(m)
uo average velocity(m/s)
Q volume flow rate(m3/s)
T1,To temperatures on boundary of stenosis and fluid(Co)
Re Reynolds number
Br Brinkman number
Pe Peclet number
f (x) boundary profile
τ extra stress tensor
ρ density
κ thermal conductivity
φ viscous dissipation function
µ dynamic viscosity(Pa/s)
⊤ transpose
λ, ǫ maximum height of stenosis
θ dimensionless temperature
ν kinematic viscosity(m2/s)
ψ stream function
δ constant
η ratio ofy and f
τω wall shear stress
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Abstract
The purpose of this paper is to investigate the problems of finding the order of starlikeness and the order of

convexity of the products of certain meromorphically p-valent functions belonging to some interesting classes of
β-uniformly p-valent starlike functions and β-uniformly p-valent convex functions in the open unit disk U. The
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1. Introduction and definitions

LetA denote the class of all functions f (z) which are analytic in the open unit disk

U = {z : z ∈ C and |z| < 1}

and normalized by
f (0) = 0 and f ′(0) = 1.

A function f (z) ∈ A is said to be uniformly convex (or uniformly starlike) in U if, for every circular
arc Γ contained in U, with center at ω0 also in U, the arc f (Γ) is convex (or starlike) with respect
to the point f (ω0). The classes of all uniformly convex function in U and all uniformly starlike
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functions in U are denoted by UCV and US T , respectively. These analytic function classes UCV
and US T were introduced and studied by Goodman (Goodman, 1991a,b) who showed, among
other things, that

f ∈ UCV ⇐⇒<
(
1 + (z − ζ)

f ′′(z)
f ′(z)

)
= 0 (z, ζ ∈ U)

and

f ∈ US T ⇐⇒<
(
(z − ζ) f ′(z)
f (z) − f (ζ)

)
= 0 (z, ζ ∈ U).

Rønning (Rønning, 1993, 1994) and Ma and Minda (Ma & Minda, 1992) gave the following one-
variable characterization of the class UCV of uniformly convex functions in U.
Theorem A. A function f (z) ∈ A is said to be in the class UCV of uniformly convex functions in
U if it satisfies the following condition:

<

(
1 +

z f ′′(z)
f ′(z)

)
=

∣∣∣∣∣z f ′′(z)
f ′(z)

∣∣∣∣∣ (z ∈ U).

Since the Alexander type result that

f ∈ UCV ⇐⇒ z f ′(z) ∈ US T

does not hold true (Rønning, 1994), the class Sp defined by

Sp := { f : z f ′(z) ∈ UCV}

was introduced by Rønning (Rønning, 1993). On the other hand, Shams et al. (Shams et al., 2004)
initiated a study of the class S D(α, β) of β-uniformly starlike functions of order α (0 5 α < 1) in
U consisting of functions f (z) ∈ A which satisfy the following inequality:

<

(
z f ′(z)
f (z)

− α

)
> β

∣∣∣∣∣z f ′(z)
f (z)

− 1
∣∣∣∣∣ (β = 0; 0 5 α < 1; z ∈ U).

The class KD(α, β) of β-uniformly convex of order α (0 5 α < 1) in U is defined as follows:

f ∈ KD(α, β)⇐⇒ z f ′(z) ∈ S D(α, β).

Motivated by the above-defined function classes S D(α, β) and KD(α, β), Nishiwaki and Owa
(Nishiwaki & Owa, 2007) introduced the class MD(α, β) consisting of all functions f (z) ∈ A
which satisfy the following inequality:

<

(
z f ′(z)
f (z)

− α

)
< β

∣∣∣∣∣z f ′(z)
f (z)

− 1
∣∣∣∣∣ (β 5 0; α > 1; z ∈ U).

The function class ND(α, β) may also be considered as a subclass ofA consisting of all func-
tions f (z) such that z f ′(z) ∈ MD(α, β).
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The class of uniformly convex functions and various other related function classes have been
studied by several authors (see, for example, (Ali & Ravichandran, 2010; Frasin, 2011; Kanas &
Srivastava, 2000; Kanas & Wisniowska, 1999, 2000; Murugusundaramoorthy & Magesh, 2004;
Rønning, 1991); see also (Srivastava & Owa (Editors), 1992)).

Let Σp denote the class of functions of the form:

f (z) = z−p +

∞∑
k=1

ak−pzk−p (p ∈ N := {1, 2, 3, · · · }), (1.1)

which are analytic and p-valent in the punctured unit disk

U∗ = {z : z ∈ C and 0 < |z| < 1} = U \ {0}.

A function f ∈ Σp is said to be in the class ΣS ∗p(α) of meromorphically p-valent starlike functions
of order α in U if and only if

<

[
1
p

(
z f ′(z)
f (z)

)]
< −α (z ∈ U; 0 5 α < 1). (1.2)

Also a function f ∈ Σp is said to be in the class ΣCp(α) of meromorphically p-valent convex
functions of order α in U if and only if

<

[
1
p

(
1 +

z f ′′(z)
f ′(z)

)]
< −α (z ∈ U; 0 5 α < 1). (1.3)

It is easy to observe from (1.2) and (1.3) that

f (z) ∈ ΣCp(α)⇐⇒ −
z f ′(z)

p
∈ ΣS ∗p(α). (1.4)

We note that the meromorphically p-valent function classes ΣS ∗p(α) and ΣCp(α) were intro-
duced by Kumar and Shukla (Kumar & Shukla, 1982).

We next denote by ΣMp(α) and ΣNp(α) the subclasses of the meromorphically p-valent func-
tion class Σp which satisfy the following inequalities:

ΣMp(α) :=
{

f : f ∈ Σp and <

[
−

1
p

(
z f ′(z)
f (z)

)]
< α (z ∈ U; α > 1)

}
and

ΣNp(α) :=
{

f : f ∈ Σp and <

[
−

1
p

(
1 +

z f ′′(z)
f ′(z)

)]
< α (z ∈ U; α > 1)

}
,

respectively. The meromorphically p-valent function classes ΣMp(α) and ΣNp(α) are analogous,
respectively, to the subclasses M(α) and N(α) of the analytic function class A which were intro-
duced by Owa and Nishiwaki (Owa & Nishiwaki, 2002).
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Recently, Kumar et al. (Kumar et al., 2005) introduced the following subclass ΣS∗p(α, β) of
meromorphically p-valent starlike functions f ∈ Σp in U, which is similar to the class S D(α, β),
by means of the following inequality:

<

[
−

1
p

(
z f ′(z)
f (z)

)]
> α

∣∣∣∣∣∣1p
(
z f ′(z)
f (z)

)
+ 1

∣∣∣∣∣∣ + β (1.5)

(z ∈ U; α = 0; 0 5 β < 1).

Analogously, we define here the subclass ΣCp(α, β) of meromorphically p-valent convex functions
in U, which is similar to the class KD(α, β), consisting of all functions f ∈ Σp which satisfy the
following inequality:

<

[
−

1
p

(
1 +

z f ′′(z)
f ′(z)

)]
> α

∣∣∣∣∣∣1p
(
1 +

z f ′′(z)
f ′(z)

)
+ 1

∣∣∣∣∣∣ + β (1.6)

(z ∈ U; α = 0; 0 5 β < 1).

Similarly, for −1 < α 5 0 and β > 1, we let ΣMp(α, β) be the subclass consisting of all functions
f ∈ Σp which satisfy the following inequality:

<

[
−

1
p

(
z f ′(z)
f (z)

)]
< α

∣∣∣∣∣∣1p
(
z f ′(z)
f (z)

)
+ 1

∣∣∣∣∣∣ + β (1.7)

(z ∈ U; −1 < α 5 0; β > 1).

We also let ΣNp(α, β) be the subclass consisting of all functions f ∈ Σp which satisfy the following
inequality:

<

[
−

1
p

(
1 +

z f ′′(z)
f ′(z)

)]
< α

∣∣∣∣∣∣1p
(
1 +

z f ′′(z)
f ′(z)

)
+ 1

∣∣∣∣∣∣ + β (1.8)

(z ∈ U; −1 < α 5 0; β > 1).

The main purpose of this paper is to investigate the problems of finding the order of starlike-
ness and the order of convexity of certain products of meromorphically p-valent functions be-
longing to some of the above-defined classes of β-uniformly p-valent starlike functions in U and
β-uniformaly p-valent convex functions in U. Our main results in Section 2 (stated as Theorems 1
to 4 and Corollaries 1 to 5) can indeed be specialized suitably in order to deduce the solutions of
the corresponding problems for relatively more familiar subclasses of meromorphically p-valent
functions in U.

2. The main results and their consequences

Our first main result is asserted by Theorem 1 below.

Theorem 1. Let f j ∈ ΣS ∗p(γ j) ( j = 1, · · · , n), where

γ j := 1 − α j = 0 and α j = 0 ( j = 1, · · · , n).
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Also let

κ := 1 −
n∑

j=1

α j = 0.

Then the product Fp(z) defined by

Fp(z) := z−p
n∏

j=1

{
zp f j(z)

}
(2.1)

is in the class ΣS ∗p(κ) of meromorphically p-valent starlike functions of order κ in U.

Proof. Clearly, Fp(z) ∈ Σp. By differentiating (2.1) logarithmically with respect to z, we obtain

1
p

(zF′p(z)

Fp

)
= −1 +

n∑
j=1

[
1
p

(z f ′j (z)

f j(z)

)
+ 1

]
, (2.2)

which readily yields

1
p

(zF′p(z)

Fp

)
= −1 +

(
1 − γ j

)
+

n∑
j=1

[
1
p

(z f ′j (z)

f j(z)

)
+ γ j

]
. (2.3)

We thus find that

<

[
1
p

(zF′p(z)

Fp

)]
= −1 +

n∑
j=1

α j +

n∑
j=1

<

[
1
p

(z f ′j (z)

f j(z)

)
+ γ j

]
. (2.4)

Since, by hypothesis, f j ∈ ΣS ∗p(γ j) ( j = 1, · · · , n), we have

<

[
1
p

(zF′p(z)

Fp

)]
< −

1 − n∑
j=1

α j

 =: κ, (2.5)

which evidently completes the proof of Theorem 1.

Upon setting

f j(z) = f (z), γ j = γ and α j = α ( j = 1, · · · , n)

in Theorem 1, we have the following corollary.

Corollary 1. Let f ∈ ΣS ∗p(γ) (γ := 1 − α = 0), where α = 0. Also let 1 − nα = 0. Then the
product Θp(z) defined by

Θp(z) := z−p [
zp f (z)

]n

is in the class ΣS ∗p(1 − nα) of meromorphically p-valent starlike functions of order 1 − nα in U.
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Corollary 2. Let f j ∈ ΣS ∗p(γ j) ( j = 1, · · · , n), where

γ j := 1 − α j = 0 and α j = 0 ( j = 1, · · · , n).

Also let

κ := 1 −
n∑

j=1

α j = 0.

Then the function Φp(z) defined by

Φp(z) := −p
∫ z

0
t−p−1

n∏
j=1

{
tp f j(t)

}
dt (2.6)

is in the class ΣCp(κ) of meromorphically p-valent convex functions of order κ in U.

Proof. The result asserted by Corollary 2 follows immediately from Theorem 1, since

Φp(z) ∈ ΣCp(κ)⇐⇒ −
zΦ′(z)

p
=: Fp(z) ∈ ΣS ∗p(κ).

Corollary 3. Let f j ∈ ΣCp(γ j) ( j = 1, · · · , n), where

γ j := 1 − α j = 0 and α j = 0 ( j = 1, · · · , n).

Also let

κ := 1 −
n∑

j=1

α j = 0.

Then the product Gp(z) defined by

Gp(z) = z−p
n∏

j=1

−
zp+1 f ′j (z)

p


 (2.7)

is in the class ΣS ∗p(κ) of meromorphically p-valent starlike functions of order κ in U.

Proof. From the fact that

f j(z) ∈ ΣCp(γ j)⇐⇒ −
z f ′j (z)

p
∈ ΣS ∗p(γ j) ( j = 1, · · · , n),

by replacing f j(z) by −
z f ′j (z)

p in Theorem 1, we are led easily to Corollary 3.
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Corollary 4. Let f j ∈ ΣCp(γ j) ( j = 1, · · · , n), where

γ j := 1 − α j = 0 and α j = 0 ( j = 1, · · · , n).

Also let

κ := 1 −
n∑

j=1

α j = 0.

Then the function Ψp(z) defined by

Ψp(z) = −p
∫ z

0
t−p−1

n∏
j=1

−
 tp+1 f ′j (t)

p


 dt (2.8)

is in the class ΣCp(κ) of meromorphically p-valent convex functions of order κ.

Proof. The result asserted by Corollary 4 follows immediately from Corollary 3, since

Ψp(z) ∈ ΣCp(κ)⇐⇒ −
zΨ′p(z)

p
=: Gp(z) ∈ ΣS ∗p(κ).

By applying the same method and technique as in our proofs of Theorem 1 as well as of Corol-
laries 2, 3 and 4, we can establish Theorem 2 below.

Theorem 2. Let f j ∈ Σp ( j = 1, · · · , n). Suppose that

γ j := 1 + α j = 0 and α j = 0 ( j = 1, · · · , n).

Also let

σ := 1 +

n∑
j=1

α j = 0.

Then each of the following assertions holds true:
(i) If f j ∈ ΣMp(γ j) ( j = 1, · · · , n), then the product Fp(z) defined by (2.1) is in the class ΣMp(σ).
(ii) If f j ∈ ΣMp(γ j) ( j = 1, · · · , n), then the integral operator Φp defined by (2.6) is in the class
ΣNp(σ).
(iii) If f j ∈ ΣNp(γ j) ( j = 1, · · · , n), then the product Gp(z) defined by (2.7) is in the class ΣMp(σ).
(iv) If f j ∈ ΣNp(γ j) ( j = 1, · · · , n), then the integral operator Ψp defined by (2.8) is in the class
ΣNp(σ).
Theorem 3. Let

α j = 0 and 0 5 β j < 1 ( j = 1, · · · , n)

and suppose that

δ := 1 −
n∑

j=1

(
1 − β j

1 + α j

)
.
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Also let the products Fp(z) and Gp(z) be defined by (2.1) and (2.7), respectively. Then each of the
following assertions holds true:
(i) If f j ∈ ΣS∗p(α j, β j) ( j = 1, · · · , n), then Fp(z) ∈ ΣS ∗p(δ).
(ii) If fi ∈ ΣCp(α j, β j) ( j = 1, · · · , n), then Gp(z) ∈ ΣS ∗p(δ).

Proof. By following the lines as in (Kumar et al., 2005), we first prove that

ΣS∗p(λ, µ) ⊂ ΣS ∗p
(
λ + µ

1 + λ

)
.

Indeed, if we let f ∈ ΣS∗p(λ, µ), then the quantity w defined by

w :=
1
p

(
z f ′(z)
f (z)

)
satisfies the following inequality:

−<(w) − µ = λ |w + 1| = λ< (w + 1) ,

which immediately yields

−<(w) =
λ + µ

1 + λ
.

We thus have
f ∈ ΣS∗p(λ, µ) =⇒ f ∈ ΣS ∗p

(
λ + µ

1 + λ

)
.

Next, since
f j ∈ ΣS∗p(α j, β j) ( j = 1, · · · , n),

we have

f j ∈ ΣS ∗p

(
α j + β j

1 + α j

)
( j = 1, · · · , n),

The assertion (i) of Theorem 3 now follows readily from an application of Theorem 1.
The proof of the assertion (ii) of Theorem 3 follows similarly by using Corollary 3.

Corollary 5. Let
α j = 0 and 0 5 β j < 1 ( j = 1, · · · , n)

and suppose that

δ := 1 −
n∑

j=1

(
1 − β j

1 + α j

)
.

Also let the functions Φp(z) and Ψp(z) be defined by (2.6) and (2.8), respectively. Then each of the
following assertions holds true:
(i) If f j ∈ ΣS∗p(α j, β j) ( j = 1, · · · , n), then Φp(z) ∈ ΣCp(δ).
(ii) If f j ∈ ΣCp(α j, β j) ( j = 1, · · · , n), then Ψp(z) ∈ ΣCp(δ).
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Proof. The results asserted by Corollary 5 would follow immediately from Theorem 3, since

Φp(z) ∈ ΣCp(δ)⇐⇒ −
zΦ′p(z)

p
=: Fp(z) ∈ ΣS ∗p(δ)

and
Ψp(z) ∈ ΣCp(δ)⇐⇒ −

zΨ′(z)
p

=: Gp(z) ∈ ΣS ∗p(δ).

Finally, if we make use of the same method and technique as in our proofs of Theorem 3 and
Corollary 5, we are led easily to Theorem 4 below.

Theorem 4. Let
−1 < α j 5 0 and β j > 1 ( j = 1, · · · , n)

and suppose that

ν := 1 +

n∑
j=1

(
β j − 1
1 + α j

)
.

Also let the products Fp(z) and Gp(z) be defined by (2.1) and (2.7), respectively, and the functions
Φp(z) and Ψp(z) be defined by (2.6) and (2.8), respectively. Then each of the following assertions
holds true:
(i) If f j ∈ ΣMp(α j, β j) ( j = 1, · · · , n), then Fp(z) ∈ ΣMp(ν).
(ii) If f j ∈ ΣNp(α j, β j) ( j = 1, · · · , n), then Gp(z) ∈ ΣMp(ν).
(iii) If f j ∈ ΣMp(α j, β j) ( j = 1, · · · , n), then Φp(z) ∈ ΣNp(ν).
(iv) If f j ∈ ΣNp(α j, β j) ( j = 1, · · · , n), then Ψp(z) ∈ ΣNp(ν).

3. Concluding remarks and observations

In our present investigation, we have considered several interesting subclasses of the familiar
class of meromorphically p-valent functions in the open unit disk U. Our main purpose has been to
successfully address the problems of finding the order of starlikeness and the order of convexity of
the products of functions belonging to each of the various classes of β-uniformly p-valent starlike
functions and β-uniformly p-valent convex functions in U, which we have introduced here. The
main results (stated as Theorems 1 to 4 and Corollaries 1 to 5) can indeed be specialized suitably in
order to deduce the solutions of the corresponding problems for relatively more familiar subclasses
of meromorphically p-valent functions in U.
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Abstract
In this study we develop a reliable algorithm to control the satellite formation using the Approximating Sequence

of Riccati Equations(ASRE) minimizing the fuel consumption and the deviation of the orbit from the nominal orbit.
The nonlinear Clohessy -Wiltshire(CW) equations of motions are used to describe the motion of the satellite formation
about a virtual reference position maintained at the formation center. The nonlinear dynamics of the system will be
factorized in such a way that the new factorized system is accessible. The problem is tackled using the Approximating
Sequence Riccati Equations(ASRE) method. The technique is based on Linear Quadratic Regulator(LQR) with fixed
terminal state, which guarantees closed loop solution.

Keywords: Nonlinear Feedback, Linear Quadratic Regulator, Approximation Sequence Riccati Equation,
Satellite Formation.

1. Introduction

Satellite formation flying is one of the space dynamics branches which gained much consider-
ation in recent years. Despite the topic evolved two decades ago, the implementation of formation
flying is not yet mature.

A satellite formation consists of two or more satellite flying together in close proximity, coop-
erating together to achieve some space mission such as terrestrial or deep space one. This system of
distributed satellites has several advantages over the single satellite system such as, larger capabil-
ity, reliability, flexibility, and more importantly less cost. Satellite formation in contrast to satellite
constellation in which the satellites are moving independently, the satellites affecting each other
in co orbital motion about a virtual reference position maintained at the formation center. The
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nonlinear Clohessy -Wiltshire equations of motions are used to describe the motion of the satellite
formation. CW equations are developed for rendezvous(Clohessy & Wiltshire, 1960). Later on
the linear inhomogeneous CW are studied(Meirovitch, 1970). CW equations have been solved by
simplifying the nonlinear equations of motion via coordinate transformation of the central gravity
field dynamics in presence of quadratic drag force(Thomas Carter, 2002).

The nonlinear dynamics of the system will be factorized in such a way that the new factorized
system is accessible. The problem is tackled using the Approximating Sequence Riccati Equa-
tions method. The most common way of solving the orbit rendezvous of a satellite is the low
thrust orbit rendezvous approach, which is a nonlinear optimal control problem. In the open loop
context the problem can be solved via indirect and then direct method. The indirect method was
developed through Pontryagin Maximum Principle(PMP) (A. J. Bryson, 1975),(L. Pontryagin &
Mishchenko, 1952) . The direct method was developed using the Karush-Kuhn-Tucker(KKT)
algebric equation(Enright & Conway, 1992).

one of the most common methods for solving the nonlinear feedback optimal control prob-
lem in the is the State Dependent Riccati Equations(SDRE) (Cimen, 2006). The Approximating
Sequence of Riccati Equations (Cimen, 2004) technique is an iterative approach to solve the non-
linear optimal control problem. The ASRE is developed(Topputo & Bernelli-Zazzera, 2012) using
the state transition matrix. By the virtue of the closed-loop nature of this control law, a trajectory
designed in this way has the property to respond to perturbations acting during the transfer that
continuously alter the state of the spacecraft. The optimal feedback control for linear systems with
quadratic objective functions is addressed through the matrix Riccati equation: this is a matrix dif-
ferential equation that can be integrated backward in time to yield the initial value of the Lagrange
multipliers (A. J. Bryson, 1975). Recently, the nonlinear feedback control of circular coplanar
low-thrust orbital transfers has been faced using continuous orbital elements feedback and Lya-
punov functions(Chang & Marsden, 2002) and proved optimal by(Alizadah & Villac, 2011). Later
on the problem has been solved using the primer vector approximation method(Haung, 2012). The
problem is tackled using the Approximating Sequence Riccati Equation(ASRE) method based on
Linear Quadratic Regulator(LQR) with fixed terminal state and the method is applied to GNSS
circular constellation (Owis, 2013). In this work the control of the satellite formation described in
the Earth Centered Earth Fixed Frame Fig. 1 is developed.

Linear Quadratic Regulator(LQR) with Fixed Terminal State
Consider the following system with linear dynamics and quadratic performance

index as follows:

Ẋ = AX + BU, X(t0) = X0 ∈ Rn, (1.1)

the following performance index

J = XT
f Q f X f +

1
2

∫ t f

t0
[XT QX + UT RU]dt, (1.2)

Where A , B , Q , and R are constant coefficients matrices of the suitable dimen-
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Figure 1. Satellite Formation Flying in the Earth Centered Earth Fixed Frame

sions. we have to find the m-dimensional control functions U(t), t ∈ [t0 t f ] which
minimizes the J, which is an open loop (with t0 fixed) optimal control. We op-
timize the performance index J, by adjoining the dynamics and the performance
index (integrand) to form the Hamiltonian:

H(X, λ,U, t) =
1
2

(XT QX + UT RU) + λT (A(t)X + B(t)U),

where the Lagrange multiplier λ is called the adjoint variable or the costate. The
necessary conditions for optimality are:

1. Ẋ = Hλ = A(t)X + B(t)U, X(t0) = X0,

2. λ̇ = −Hx = −QX − ATλ, λ(t f ) = Q f X f ,

3. Hu = 0 =⇒ RU + BTλ = 0 =⇒ U? = −R−1BTλ.

To find the minimum solution we have to check for Huu =
∂2H
∂λ2 > 0 or equivalently

R > 0. Now we have that

Ẋ = AX + BU? = AX − BR−1BTλ,

which can be combined to the the equation of the costate as follows[
Ẋ
λ̇

]
=

[
A −BR−1BT

−Q −AT

] [
X
λ

]
, (1.3)

which is called the Hamiltonian matrix, it represents a 2n boundary value problem
with X(t0) = X0 and, λ(t f ) = Q f X f .
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We can solve this 2n boundary value problem using the transition matrix method
as follows. Let’s define a transition matrix

φ(t1, t0) =

[
φ11(t1, t0) φ12(t1, t0)
φ21(t1, t0) φ22(t1, t0)

]
,

we use this matrix to relate the current values of X and λ to the final values X f and
λ f as follows [

X
λ

]
=

[
φ11(t, t f ) φ12(t, t f )
φ21(t, t f ) φ22(t, t f )

] [
X(t f )
λ(t f )

]
,

so we have

X = φ11(t, t f )X(t f ) + φ12(t, t f )λ(t f )

= [φ11(t, t f ) + φ12(t, t f )Q f ]X(t f ),

we can eliminate X(t f ) to get

X = [φ11(t, t f ) + φ12(t, t f )Q f ][φ11(t0, t f ) + φ12(t0, t f )Q f ]−1X(t0)

= X(t, X0, t0),

now we can find λ(t) in terms of X(t f ) as

λ(t) = [φ21(t, t f ) + φ22(t, t f )Q f ]X(t f ),

then we can eliminate X(t f ) to get

λ(t) = [φ21(t, t f ) + φ22(t, t f )Q f ][φ11(t, t f ) + φ12(t, t f )Q f ]−1X(t),

= φλxX(t).

Now we search a solution for φλx . By differentiating λ(t) we get

λ̇(t) = φ̇λxX(t) + φλxẊ(t).

Comparing the last equation with the Hamiltonian matrix we get

−QX(t) − ATλ(t) = φ̇λxX(t) + φλxẊ(t),
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then we have

− ˙φλx(t)X(t) = QX(t) + ATλ(t) + φλxẊ(t)

= QX(t) + ATλ(t) + φλx(AX − BR−1BTλ(t))

= (Q + φλxA)X(t) + (AT − φλxBR−1BT )λ(t)

= (Q + φλxA)X(t) + (AT − φλxBR−1BT )φλxX(t)

= [Q + φλxA + ATφλx − φλxBR−1BTφλx]X(t).

Since this is true for arbitrary X(t), φλx must satisfy

−φ̇λx(t) = Q + φλxA + ATφλx − φλxBR−1BTφλx, (1.4)

which is the matrix differential Riccati Equation . We can solve for φλx by solving
Riccati Equation backwards in time from t f with φλx(t f ) = Q f . The optimal
control is then given by

U? = −R−1BTλ(t) = −R−1BTφλxX = −K(t)X(t, X0, t0). (1.5)

From 1.5 we notice that the optimal control is a linear full-state feedback control,
therefore the linear quadratic terminal controller is feedback by default.

2. The Approximating Sequence of Riccati Equations(ASRE)

Assume that we have the following nonlinear system

Ẋ = f (X,U, t) (2.1)

X(t0) = X0, X(t f ) = X f ∈ Rn (2.2)

with performance index

J = φ(X f , t f ) +

∫ t f

t0
L(X,U, t)dt (2.3)

This system can be rewritten in the state dependent quasi-linear system as fol-
lows

Ẋi = A(Xi−1)Xi + B(Xi−1)U i (2.4)
X(t0) = X0

0 , X(t f ) = Xn
f ∈ Rn (2.5)
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J = Xi
f
T

Q(Xi−1
f )Xi

f +
1
2

∫ t f

t0
[XiT Q(Xi−1)Xi + U iT R(Xi−1)U i]dt, (2.6)

where i represents the iteration step over the time interval [ti − 1, ti] Fig. the
technique is based of the previously introduced Linear Quadratic Regulator with
fixed terminal state, which is a full state feedback and therefore the obtained so-
lution will be a closed loop one, I.e. able to respond to the unexpected change in
the inputs. The technique works as follows: the initial state is used to compute A0,
and B0 and we solve for the first LQR iteration and compute X1 and then used to
compute new value of A1, and B1 for the second iteration until the final state error
reaches a value below a set threshold.

3. Satellite formation control

Consider a satellite in the central gravity field. The eqaution of motion can be
written in the cartesian frame as follows

r̈) = −
µ

r3 r +
f
m

(3.1)

Where µ is the gravitational constant of the Earth(3.986005 × 1014m3/s2). In
the rotating coordinate frame along a circular orbit at a constant angular velocity,
the position, velocity, and the acceleration become

r = R + δr = (R + x)i + y j + zk
ṙ = (ẋ − ωy)i + [(ẏ + ω(R + x)] j + żk

r̈ = [ẍ − 2ωẏ − ω2(R + x)]i + [(ÿ + 2ωẋ) − ω2y] j + z̈k
(3.2)

Plugging third equation of (3.2) into equ. (3.1) and substituting r =
√

[(R + x)2 + y2 + z2]
we get

ẍ − 2ωẏ − ω2(R + x) = −
µ

r3 (R + x) + Ux

ÿ + 2ωẋ − ω2y = −
µ

r3 y + Uy

z̈ = −
µ

r3 z + Uz

(3.3)



Ashraf H. Owis et al. /Theory and Applications of Mathematics & Computer Science 3 (2) (2013) 103–113 109

If we nondimensionalize the problem by setting the radius of the reference orbit
R = 1 and reference time 1

ω
and in this system of units the gravitational constant

µ is unity the nondimensionalized equation of motion can be written as

ẍ − 2ẏ − (1 + x)(
1
r3 − 1) = Ux

ÿ + 2ẋ + y(
1
r3 − 1) = Uy

z̈ +
1
r3 z = Uz

(3.4)

where r =
√

[(1 + x)2 + y2 + z2], for simplicity we consider the in plan motion.
We define the state vector of the system

x =


x1

x2

x3

x4

 =


x
y
ẋ
ẏ

 (3.5)

u =

[
u1

u2

]
=

[
Tx

Ty

]
(3.6)

Then Equation (3.4) can be written in the form :

ẋ = f(x) + B(x)u (3.7)

Choosing a suitable factorization equation (3.7) is rewritten in the factored state
variable form :

ẋ = A(x)x + B(x)u (3.8)

where :

A(x) =


0 0 1 0
0 0 0 1

Γ + Γ
x1

0 0 2
0 Γ 2 0

 (3.9)

B(x) =


0 0
0 0
1 0
0 1

 (3.10)

where Γ = 1
r3 − 1
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4. Factored Controllability

For the factored system (3.8) the controllability is established by verifying that
the controllability matrix

Mcl = [B AB A2B A3B]

has a rank equals to n = 4 ∀x in the domain.
Since A and B have nonvanishing rows the controllability matrix Mcl for the Sys-
tem (3.8) is of rank 4.

Nondimensionalization of the problem In order to simplify the calculation we
dimensionalize the system by removing the units from the equations of motion
via multiplying or dividing some constants. The two constant we divid by are the
radial distance of the initial orbit and the gravitational constant µ in this case the
radius of the initial orbit is unity and velocity is divided by the circular velocity
of the initial orbit

√
µ

r2
0

and the time is multiplied by
√

µ

r3
0

In application we would

like to make an optimal orbit transfer(i.e. from (r = 1) to (r = 1.2) in time
t f = 4.469, 5.2231 (time unit) Fig. 2 with optimal velocity Fig. 3 and optimal
control function of both radial and tangential components Figs. 4, 5. The initial
angle is (θ0 = π

2) and the final angle is (θ f = 3π
2 ). ṙ0 = 0 and ṙ f = 0 for the initial

and final orbits. θ̇0 =
√

1
r3

0
= 1 and θ̇ f =

√
1
r3

f
= 0.54433105395 . In the second

θ f = 5π
2 with t f = 6.866 .

in example the matrices Q and R are the identity matrices.

Q =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


R =

[
1 0
0 1

]
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Figure 2. Trajectory of orbit rendezvous manoeuvre in the non dimensional coordinates

Figure 3. Velocity in the non dimensional coordinates

Figure 4. Control X component in the non dimensional coordinates
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Figure 5. Control Y component in the non dimensional coordinates

5. Conclusion

The nonlinear orbital dynamics of the satellite formation with respect to the
Earth Center Earth Fixed Coordinates are developed. The feedback optimal con-
trol of the satellite formation can be solved by factorizing the original nonlinear
dynamics into accessible (weakly controllable) linear dynamics of state depen-
dent factors. The factorized problem has been solved using the the Approximat-
ing Sequence Riccati Equations(ASRE) method. The technique is based on Linear
Quadratic Regulator(LQR) with fixed terminal state, which guarantees closed loop
solution. A computer simulation verified that the adopted technique is relaible.
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Abstract
In this paper, we use the the Riemann-Liouville fractional integral to develop some new results related to the

Hermite-Hadamard inequality. Our results have some relationships with the paper of M.Z. Sarikaya et al. published
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can be deduced as some special cases.
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1. Introduction

Let us consider the famous Hermite-Hadamard inequality (Hadamard, 1893; Hermite, 1883) :

f (a + b)
2

≤
2

b − a

∫ b

a
f (x)dx ≤

f (a) + f (b)
2

, (1.1)

where f is a convex function on [a, b].
Many researchers have given considerable attention to (1.1) and a number of extensions and gen-
eralizations have appeared in the literature, see (Belaidi et al., 2009; Dahmani, 2010; Dragomir &
Pearse, 2000; Florea & Niculescu, 2007; Set et al., 2010; Sarikaya et al., 2012).
The aim of this paper is to present new extensions for a Hermite-Hadamard type inequality involv-
ing log-convex functions and using Euler Functions. Our results have some relationships with the
work of M.Z. Sarikaya et al. (Sarikaya et al., 2012). Some interested results of this reference can
be deduced as particular cases.

∗Corresponding author
Email address: zzdahmani@yahoo.fr (Zoubir Dahmani)
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2. Preliminaries

We shall introduce the following definitions and properties which are used throughout this
paper.

Definition 2.1. The Riemann-Liouville fractional integral operator of order α > 0, for a continu-
ous function on [a, b] is defined by:

Jα f (t) =
1

Γ(α)

∫ t

a
(t − τ)α−1 f (τ)dτ; α > 0, a ≤ t ≤ b, (2.1)

where Γ(α) :=
∫ ∞

0
e−uuα−1du.

We give the semigroup property:

JαJβ f (t) = Jα+β f (t), α > 0, β > 0. (2.2)

For more details, one can consult (Gorenflo & Mainardi, 1997).

3. Main Results

Theorem 3.1. Let f and g be two differentiable positive log-convex functions on I0 (the interior
of the interval I and a, b ∈ I0.) Then, for α > 0, the following inequalities hold.

2Γ−2(α)Γ(2α − 1)(b − a)J2α−1 f g(b)

≥ Jα
[
g(t)exp

(
bAb

)]
exp

[
−Jα−1b f (b)+Jαb f ′(b)

Jα f (b)

]
Jα f (b)

+Jα
[
f (b)exp

(
bDb

)]
exp

[
−Jα−1g(b)+Jαbg′(b)

Jαg(b)

]
Jαg(b),

(3.1)

where Ab := −Jα−1 f (b)+Jα f ′(b)
Jα f (b) ,Db := −Jα−1g(b)+Jαg′(b)

Jαg(b) .

Proof. Let us consider:
K(x) := (t−x)α−1

Γ(α) f (x), x ∈ [a, t], a < t ≤ b, α > 0.
We remark immediately that, if α = 1, then K(x) = f (x) and hence, we can obtain the first main
result of (Sarikaya et al., 2012).
Now, let us take α , 1. We can write

logK(x) − logK(y) ≥
d
dy

(logK(y))(x − y), x, y ∈ [a, t]. (3.2)

Therefore,

log
K(x)
K(y)

≥
K′(y)
K(y)

(x − y). (3.3)

Hence,
K(x)
K(y)

≥ exp
( (1 − α)(t − y)α−2 f (y) + (t − y)α−1 f ′(y)

(t − y)α−1 f (y)
(x − y)

)
. (3.4)
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Consequently,

(t − x)α−1 f (x)g(x)
Γ(α)

≥
(t − y)α−1 f (y)g(x)

Γ(α)
exp

( (1 − α)(t − y)α−2 f (y) + (t − y)α−1 f ′(y)
(t − y)α−1 f (y)

(x − y)
)
. (3.5)

Integrating the above inequality with respect to y over [a, t], a < t ≤ b, yields

(t − a)(t − x)α−1 f (x)g(x)
Γ(α)

≥ g(x)
∫ t

a
(t−y)α−1 f (y)

Γ(α) exp
[

(1−α)(t−y)α−2 f (y)+(t−y)α−1 f ′(y)
(t−y)α−1 f (y) (x − y)

]
dy.

(3.6)

For the right hand side of (3.6) we use Jensen inequality. We obtain∫ t

a

(t − y)α−1 f (y)
Γ(α)

exp
( (1 − α)(t − y)α−2 f (y) + (t − y)α−1 f ′(y)

(t − y)α−1 f (y)
(x − y)

)
dy

≥
( ∫ t

a
(t−y)α−1 f (y)

Γ(α) dy
)
exp

[ ∫ t
a

(1−α)(t−y)α−2 f (y)+(t−y)α−1 f ′(y)
Γ(α) (x−y)dy( ∫ t

a
(t−y)α−1 f (y)

Γ(α) dy
) ]

.

(3.7)

Consequently,∫ t

a

(t − y)α−1 f (y)
Γ(α)

exp
( (1 − α)(t − y)α−2 f (y) + (t − y)α−1 f ′(y)

(t − y)α−1 f (y)
(x − y)

)
dy

≥ exp
[
−Jα−1(x−t) f (t)+Jα(x−t) f ′(t)

Jα f (t)

]
Jα f (t).

(3.8)

That is ∫ t

a

(t − y)α−1 f (y)
Γ(α)

exp
( (1 − α)(t − y)α−2 f (y) + (t − y)α−1 f ′(y)

(t − y)α−1 f (y)
(x − y)

)
dy

≥ exp
[

Jα−1t f (t)−Jαt f ′(t)
Jα f (t)

]
exp

[
−Jα−1 f (t)+Jα f ′(t)

Jα f (t) x
]
Jα f (t).

(3.9)

Thanks to (3.6) and (3.9), we obtain

(t − a)(t − x)α−1 f (x)g(x)
Γ(α)

≥ g(x)exp
[ Jα−1t f (t) − Jαt f ′(t)

Jα f (t)

]
exp

[−Jα−1 f (t) + Jα f ′(t)
Jα f (t)

x
]
Jα f (t).

(3.10)
Then,

Γ−2(α)Γ(2α − 1)(t − a)J2α−1 f g(t) ≥ Jα
[
g(t)exp

(
tAt

)]
exp

[−Jα−1t f (t) + Jαt f ′(t)
Jα f (t)

]
Jα f (t), (3.11)
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where

At :=
−Jα−1 f (t) + Jα f ′(t)

Jα f (t)
.

With the same arguments, we obtain:

Γ−2(α)Γ(2α − 1)(t − a)J2α−1 f g(t) ≥ Jα
[
f (t)exp

(
tBt

)]
exp

[−Jα−1tg(t) + Jαtg′(t)
Jαg(t)

]
Jαg(t), (3.12)

where

Dt :=
−Jα−1g(t) + Jαg′(t)

Jαg(t)
.

Adding (3.11) and (3.12), yields

2Γ−2(α)Γ(2α − 1)(t − a)J2α−1 f g(t) ≥ Jα
[
g(t)exp

(
tAt

)]
exp

[−Jα−1t f (t) + Jαt f ′(t)
Jα f (t)

]
Jα f (t)

+Jα
[
f (t)exp

(
tDt

)]
exp

[
−Jα−1tg(t)+Jαtg′(t)

Jαg(t)

]
Jαg(t).

(3.13)

Taking t = b, we obtain the desired inequality (3.1).

Theorem 3.2. Let f and g be two differentiable positive log-convex functions on I0 and a, b ∈ I0.
Then, for α > 0, β > 0, α + β , 1, we have:

2Γ(2α + 2β − 3)(b − a)
J2α+2β−3 f g(b)
Γ2(α)Γ2(β)

≥ exp[
−Jα+β−2b f (b) + Jα+βb f ′(b)

Jα+β−1 f (b)
]
Jα+β−1(g(b)exp[bEb])

(α + β − 1)B(α, β)
Jα+β−1 f (b)

(α + β − 1)B(α, β)
(3.14)

+exp[
−Jα+β−2bg(b) + Jα+βbg′(b)

Jα+β−1g(b)
]
Jα+β−1( f (b)exp[bLb])

(α + β − 1)B(α, β)
Jα+β−1g(b)

(α + β − 1)B(α, β)
,

where

Eb :=
−Jα+β−2 f (b) + Jα+β−1 f ′(b)

Jα+β−1 f (b)
, Lb :=

−Jα+β−2g(b) + Jα+β−1g′(b)
Jα+β−1g(b)

.

Proof. We consider:K(x) := (t−x)α−1(t−x)β−1

Γ(α)Γ(β) f (x), x ∈ [a, t], a < t ≤ b, α > 0, β > 0.
We remark immediately that if α = 1, β = 1, then we obtain the first main result in (Sarikaya

et al., 2012).
To prove Theorem 3.2, we need to take α + β , 1. We have

K(x)
K(y)

≥ exp
( (2 − α − β)(t − y)α+β−3 f (y) + (t − y)α+β−2 f ′(y)

(t − y)α+β−2 f (y)
(x − y)

)
. (3.15)

Then,

(t − x)α−1(t − x)β−1 f (x)g(x)
Γ(α)Γ(β)

≥
(t − y)α+β−2 f (y)g(x)

Γ(α)Γ(β)
exp

( (2 − α − β)(t − y)α+β−3 f (y) + (t − y)α+β−2 f ′(y)
(t − y)α+β−2 f (y)

(x − y)
)
.(3.16)
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Integrating the above inequality with respect to y over [a, t], a < t ≤ b, yields

(t − a)(t − x)α+β−2 f (x)g(x)
Γ(α)Γ(β)

≥ g(x)
∫ t

a

(t − y)α+β−2 f (y)
Γ(α)Γ(β)

exp
[ (2 − α − β)(t − y)α+β−3 f (y) + (t − y)α+β−2 f ′(y)

(t − y)α+β−2 f (y)
(x − y)

]
dy. (3.17)

Thanks to Jensen inequality, we can write∫ t

a

(t − y)α+β−2 f (y)
Γ(α)Γ(β)

exp
( (2 − α + β)(t − y)α+β−3 f (y) + (t − y)α+β−2 f ′(y)

(t − y)α+β−2 f (y)
(x − y)

)
dy

≥
( ∫ t

a

(t − y)α+β−2 f (y)
Γ(α)Γ(β)

dy
)
exp

[∫ t

a
(2−α−β)(t−y)α+β−3 f (y)+(t−y)α+β−2 f ′(y)

Γ(α)Γ(β) (x − y)dy( ∫ t

a
(t−y)α+β−2 f (y)

Γ(α)Γ(β) dy
) ]

. (3.18)

By simple calculation, we can state that∫ t

a

(t − y)α+β−2 f (y)
Γ(α)Γ(β)

exp
( (2 − α − β)(t − y)α+β−3 f (y) + (t − y)α+β−2 f ′(y)

(t − y)α+β−2 f (y)
(x − y)

)
dy

≥ exp
[−Jα+β−2t f (t) + Jα+β−1t f ′(t)

Jα+β−1 f (t)

]
exp

[−Jα+β−2 f (t) + Jα+β−1 f ′(t)
Jα+β−1 f (t)

x
] Jα+β−1 f (t)
(α + β − 1)B(α, β)

, (3.19)

where B(α, β) =
Γ(α)Γ(β)
Γ(α+β) .

Thanks to (3.17) and (3.19), we obtain

(t − a)(t − x)α+β−2 f (x)g(x)
Γ(α)Γ(β)

≥ exp
[−Jα+β−2t f (t) + Jα+β−1t f ′(t)

Jα+β−1 f (t)

]
exp

[−Jα+β−2 f (t) + Jα+β−1 f ′(t)
Jα+β−1 f (t)

x
]
g(x)

Jα+β−1 f (t)
(α + β − 1)B(α, β)

.

(3.20)
Then,

Γ(2α + 2β − 3)(t − a)
J2α+2β−3 f g(t)
Γ2(α)Γ2(β)

≥ exp
[−Jα+β−2t f (t) + Jα+βt f ′(t)

Jα+β−1 f (t)

] Jα+β−1
(
g(t)exp

[
−Jα+β−2 f (t)+Jα+β−1 f ′(t)

Jα+β−1 f (t) t
])

(α + β − 1)B(α, β)
Jα+β−1 f (t)

(α + β − 1)B(α, β)
.

(3.21)

With the same arguments, we obtain
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Γ(2α + 2β − 3)(t − a)
J2α+2β−3 f g(t)
Γ2(α)Γ2(β)

≥ exp
[−Jα+β−2tg(t) + Jα+βtg′(t)

Jα+β−1g(t)

] Jα+β−1
(

f (t)exp
[
−Jα+β−2g(t)+Jα+β−1g′(t)

Jα+β−1g(t) t
])

(α + β − 1)B(α, β)
Jα+β−1g(t)

(α + β − 1)B(α, β)
.

(3.22)

Adding (3.21) and (3.22), yields

2Γ(2α + 2β − 3)(t − a)
J2α+2β−3 f g(t)
Γ2(α)Γ2(β)

≥ exp
[−Jα+β−2t f (t) + Jα+βt f ′(t)

Jα+β−1 f (t)

] Jα+β−1
(
g(t)exp

[
−Jα+β−2 f (t)+Jα+β−1 f ′(t)

Jα+β−1 f (t) t
])

(α + β − 1)B(α, β)
Jα+β−1 f (t)

(α + β − 1)B(α, β)

+exp
[−Jα+β−2tg(t) + Jα+βtg′(t)

Jα+β−1g(t)

] Jα+β−1
(

f (t)exp
[
−Jα+β−2g(t)+Jα+β−1g′(t)

Jα+β−1g(t) t
])

(α + β − 1)B(α, β)
Jα+β−1g(t)

(α + β − 1)B(α, β)
.

(3.23)

Taking t = b, we obtain (3.14). Theorem 3.2 is thus proved.

Remark. Applying Theorem 3.2 for α = 1, β , 1 or β = 1, α , 1, we obtain Theorem 3.1.
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Abstract

In mathematics and computer science, an accelerated Turingmachine is a hypothetical computational model
related to Turing machines, which can perform the countableinfinite number of computational steps within a finite
time. But this machine cannot be physically realized from the standpoint of the Heisenberg uncertainty principle,
because the energy required to perform the computation willbe exponentially increased when the computational step
is accelerated and it is considered that it is mere a mathematical concept and there is no possibility for its realization
in a physical world. However, by using superluminal particles instead of subluminal particles including photons, it
can be shown that the hypercomputation system which can perform infinite steps of computation within a finite time
length and energy can be realized.

Keywords: Turing machine, Zeno machine, hypercomputation, superluminal particle, tachyon, halting problem.
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1. Introduction

In mathematics and computer science, an accelerated Turingmachine is a hypothetical com-
putational model related to Turing machines which can perform the countable infinite number of
computational steps within a finite time. It is also called a Zeno machine which concept was pro-
posed by B. Russel, R. Blake and H. Weyl independently, whichperforms its first computational
step in one unit of time and each subsequent step in half the time of the step before, that allows an
infinite number of steps can be completed within a finite interval of time (Ord, 2006), (Hamkins
& Lewis, 2000). However this machine cannot be physically realized from the standpoint of the
Heisenberg uncertainty principle∆E · ∆t ≈ ~, because the energy to perform the computation
will be exponentially increased when the computational step is accelerated. Thus it is considered
that the Zeno machine is mere a mathematical concept and there is no possibility to realize it in
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Email address:takaaki.mushya@gmail.com (Takaaki Musha)
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a physical world. Contrary to this conclusion, the author studied the possibility to realize it by
utilizing superluminal particles instead of subliminal particles including photons.

2. Computational time required to perform infinite steps of computation by using ordinary
particles

Feynman defined the reversible computer model as shown in Fig.1, which requires energy per
step given by (Feynman, 2000):

energy per step= kBT
f − b

( f + b)/2
, (2.1)

wherekB is Boltzmann’s constant,T is a temperature,f is a forward rate of computation andb is
backward rate.

Supposing that there in no energy supply and parametersf andb are fixed during the compu-
tation, we can consider the infinite computational steps given by:

E1 = kE0, E2 = kE1, · · · , En = kEn−1, · · · , (2.2)

where we let the initial energy of computation beE0 = kBT, k = 2( f − b)/( f + b) andEn is the
energy for then-th step computation.

Figure 1. Computational steps for the reversible computation (Feynman, 2000).

From which, we haveEn = knE0, then the energy loss for each computational step becomes:

∆E1 = E0 − E1 = (1− k)E0

∆E2 = E1 − E2 = (1− k)kE0
...

∆En =En−1 − En= (1− k)kn−1E0.

(2.3)

According to the paper by (Lloyd, 2000), it is required for the quantum system with average
energy∆E to take time at least∆t to evolve to an orthogonal state given by:

∆t =
π~

2∆E
, (2.4)

fig1.eps
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From which, the total energy for the infinite steps yieldsE0 if settingE = ∆Ei in equation (2.4),
then the total time for the computation with infinite steps becomes:

Tn =

n
∑

j=1

∆tn =
π~

2E0

n
∑

j=1

1
(1− k)k j−1

. (2.5)

As the infinite sum of equation (2.5) diverges to infinity as shown in Fig. 2, the Feynman model
of computation requires infinite time to complete the calculation when satisfying 0< k < 1.

Figure 2. Computational time to complete then-th step of computation by using sub-
luminal particles (for the case,k = 1/2 , γ = 1.0).

Hence it can be seen that a computer system utilizing subluminal particles including photons
requires infinite time to complete infinite steps of computation.

3. Computational time by using superluminal elementary particles

3.1. Uncertanity Principle for superluminal particles
E. Recami claimed in his paper (Recami, 2001) that tunneling photons which travel in evanes-

cent mode can move with superluminal group speed inside the barrier. Chu and S. Wong at AT&T
Bell Labs measured superluminal velocities for light traveling through the absorbing material
(Brown, 1995). Furthermore Steinberg, Kwait and Chiao measured the tunneling time for visible
light through the optical filter consisting of the multilayer coating about 10−6 m thick. Measure-
ment results by Steinberg and co-workers have shown that thephotons seemed to have traveled
at 1.7 times the speed of light (Steinberget al., 1993). Recent optical experiments at Princeton
NEC have verified that superluminal pulse propagation can occur in transparent media (Wanget
al., 2000). These results indicate that the process of tunneling in quantum physics is superluminal
as claimed by E. Recami. From relativistic equations of energy and momentum of the moving
particle, shown as:

E =
m0c2

√

1− ν2/c2
, (3.1)

fig2.eps
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and
p =

m0ν
√

1− ν2/c2
, (3.2)

the relation between energy and momentum can be shown asp/ν = E/c2.
From which, we have (Musha, 2012):

ν∆p− p∆ν
ν2

=
∆E
c2
, (3.3)

Supposing that∆ν/ν2 ≈ 0, equation (3.3) can be simplified as:

∆p ≈
ν

c2
∆E . (3.4)

This relation is also valid for the superluminal particle called a tachyon which has an imaginary
massim∗ (Musha, 2012), the energy and the momentum of which are given by followingequations,
respectively.

E =
m∗c2

√

ν2/c2 − 1
, (3.5)

p =
m∗ν

√

ν2/c2 − 1
. (3.6)

According to the paper by M. Park and Y. Park (Park & Park, 1996), the uncertainty relation
for the superluminal particle can be given by:

∆p · ∆t ≈
~

ν − ν′
, (3.7)

whereν andν′ are the velocities of a superluminal particle after and before the measurement. By
substituting equation (3.4) into (3.7), we obtain the uncertainty relation for superluminal particles
given by:

∆E · ∆t ≈
~

β(β − 1)
, (3.8)

when we letν′ = c andβ = ν/c.

3.2. Computational time required for the superluminal particle

Instead of subluminal particles including photons, the time required for the quantum system
utilizing superluminal particles becomes

Tn =

n
∑

j=1

∆t j =
π~

2E0

n
∑

j=1

1
β j(β j − 1)(1− k)k j−1

, (3.9)
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from the uncertainty principle for superluminal particlesgiven by equation (3.8), whereβ j can be
given by:

β j =

√

1+
m∗2c4

E j
2
=

√

1+
γ2

k2 j
, (3.10)

which is derived from equation (3.6), whereγ = m∗c2/E0.

Figure 3. Computational time to complete then-th step of computation by using su-
perluminal particles (for the case,k = 1/2 , γ = 1.0).

Hence it is seen that the computation time can be acceleratedaccording to equation (3.10).
By the numerical calculation, it can be shown that the infinite sum of equation (3.9) converges

to a certain value satisfying 0< k < 1 as shown in Fig.4.
In this figure, the horizontal line is for the parameterγ = m∗c2/E0 and the vertical line is for the

time to complete infinite step calculations. From these calculation results, an accelerated Turing
machine can be realized by utilizing superluminal particles instead of subliminal particles for the
Feynman’s model of computation.

Thus, contrary to the conclusion for the Feynman’s model of computation by using ordinary
particles, it can be seen that superluminal particles permits the realization of an accelerated Turing
machine.

It is known that an accelerate Turing machines allow us to be computed some functions which
are not Turing-computable such as the halting problem (Kieu, 2004), described as ”given a descrip-
tion of an arbitrary computer program, decide whether the program finishes running or continues
to run forever”.

This is equivalent to the problem of deciding, given a program and an input, whether the
program will eventually halt when run with that input, or will run forever.

Halting problem for Turing machines can easily solved by an accelerated Turing machine using
the following pseudocode algorithm (as shown in Fig.5). As an accelerated Turing machines are
more powerful than ordinary Turing machines, they can perform computation beyond the Turing
limit which is called hypercomputation, such as to decide any arithmetic statement that is infinite

fig3.eps
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Figure 4. Computational time by using superluminal particles.

Figure 5. Psedocode algorithm to solve the halting problem (Wikipedia, 2009).

time decidable. From this result, we can construct an oraclemachine (van Melkebeek, 2000) by
using a superluminal particle, which is an abstract machineused to study decision problems. It
can be conceived as a Turing machine with a black box, called an oracle, which is able to decide
certain decision problems in a single operation.

4. Human mind from the standpoint of superluminal hyper computation

There are some papers on the hypothesis that the human mind isconsisted of evanescent tun-
neling photons which has a property of superluminal particles called tachyons (Georgiev, 2003),
(Musha, 2005, 2009).

Professor Dutheil proposed his hypothesis in his book titled, ”L’homme superlumineux” (Dutheil

fig4.eps
5.eps
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& Dutheil, 2006), that consciousness is a field of superluminal matter belonging to the true funda-
mental universe shown in Fig.6, and our world is merely a subluminal holographic projection of
it.

He proposed the hypothesis based on superluminal consciousness shown as follows;

• The brain is nothing more than a simple computer that transmit information.

• Consciousness, or the mind is composed of a field of tachyons or superluminal matter, lo-
cated on the other side of the light barrier in superluminal space-time.

If the human consciousness is consisted of superluminal particles as claimed by Prof. Dutheil,
the superiority of the human brain to conventional silicon processors may be explained because it
can perform infinite steps of computation within a finite time.

To further interpret this result, we consider S.Berkovich suggestion of a ”cloud computing
paradigm”, in which is given an elegant constructive solution to the problem of the organization
of mind. Within his article, he defines a situation where individual brains are not stand-alone
computers but collective users whom have shared access to portions of a holographic memory of
the Universe (Berkovich, 2010). He proposed that the cosmic background radiation (CMB) has
nothing at all to do with the residual radiation leftover from the Big Bang.

Figure 6. Superluminal Universe model proposed by Prof. Dutheil.

Instead, he claimed that CMB is nothing but noise from writing operations in the holographic
memory of the Universe. Such holographic write operations would require some type of universal
clocking rate for these operations. Since the virtual superluminal particle pairs are created and an-
nihilated in the vacuum within a short, finite period of time according to the uncertainty principle,
we could logically consider this duration as the clock rate for these operations (Fig.7).

From this standpoint, the extraordinary capability of a human brain such as the enigma of
Srinivasa Ramanujan (Kanigel, 1991), who invented numerous remarkable and mysterious math-
ematical formulas from his inspiration without proofs, canbe explained from the capability of
superluminal consciousness which is superior to that of conventional Turing type computer sys-
tems.

fig6.eps
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Figure 7. Is CBR an activity of zero-point energy fluctuations of vacuum which re-
lates to the writing operations in the holographic memory ofthe Universe?
(www.computus.org).

5. Conclusion

From the theoretical analysis, it is seen that a hypercomputational system which can com-
plete infinite steps of computation within a finite time and energy can be realized by using super-
luminal particles from the standpoint of quantum mechanics. Thus an extraordinary capability of
human consciousness such as intuition compared with the ordinary silicon processors might be ex-
plained if they are composed of superluminal particles, because they have a capability to function
beyond the ordinary Turing machines.
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