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Abstract
In this paper we consider vector valued (X-valued with X a Banach space) distributions on the euclidean space Rd, extending

the T -periodicity, and the T -periodic transform with T = (T1, ....,Td) ∈ Rd, Ti > 0 from the scalar case to the Banach space valued
case.

Besides immediate basic properties of these concepts, a realization of the space of X-valued T -periodic distributions, up to a
toplinear isomorphism, as the space of all bounded linear operators from the space of T -periodic test functions to the Banach space
X is given.
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1. Introduction

It is well known the part played by the concept of ”periodicity” in the mathematical description of the
state of a ”phenomenon” with some rhythmic evolutions, appearing in different particular sciences.

But in spite of fact that mathematical models are often well described in terms of vector valued periodic
functions, there are many situations in which the ordinary concept of function is not satisfactory. Such
situations are mainly determined by the absence of derivability of such functions, especially when the
evolutions of the phenomena to be modeled must satisfy a law expressed by a differential equation. Such
difficulties are well overcome in the more general setting of distributions, or, if we wish to describe a class
of larger and more complex situations, of vector valued distributions.

It is the aim of this paper to enlarge the domains (the possibilities) of application of vector valued
periodic functions, extending some important results on scalar periodic distributions to the vector valued
case.

Let us mention that there is a very rich literature regarding distributions and even their periodicity in
the scalar case (see (Schwartz, 1950), (Zemanian, 1965), (Kecs, 1978)), as well as the new developments
connected especially to the theory of topological linear spaces, including some general aspects from the
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vector valued case (see (Schwartz, 1953a), (Schwartz, 1953b), (Gaşpar & Gaşpar, 2009), (Schwartz, 1957)),
which we shall use elsewhere.

The content of the paper runs as follows.
In Section 2 we recall and complete some necessary basic results on the spaces of test functions and of

locally r-summable functions on the euclidean space Rd with respect to the Lebesgue measure md(·), the
T -periodicity with respect to a general period T = (T1,T2, ...,Td) ∈ Rd, Ti > 0, the T -periodic transform
taking a special place.

The Section 3 is devoted to the main results of the note.
Considering the class of X-valued T -periodic distributions as a subspace of the space of all X-valued

distributions (X a Banach space), which is invariant to the multiplication operator with T -periodic test
functions (Proposition 3.2) and to derivation (Proposition 3.3), the T -periodic transform is extended from
the space of compactly supported test functions to the space of compactly supported X-valued distributions
(Theorem 3.1).

It is also proved that the space of X-valued T -periodic distributions is isomorphic as linear topological
space to the space of all bounded linear operators from space of T -periodic test functions on X (Theorem
3.2 and Theorem 3.3).

2. Periodic functions

In this section we define the T -periodicity for test and locally summable scalar functions, as well as the
T -periodic transform on the space of scalar test functions.

Definition 2.1. (see (Zemanian, 1965), chap. 11, § 2, p. 314) An ordinary function f : Rd → C is said
to be periodic if there exists T = (T1,T2, ...,Td) ∈ Rd, Ti > 0, such that (LT f )(t) = f (t), t ∈ Rd, where
Lτ, τ ∈ Rd means the translation operator on Rd. T is called a period of f . The set of all periods of f is kT
(kT = (k1T1, ..., kdTd), k ∈ Zd). The ”smallest” period is called the fundamental period of f .

We will denote by [0,T ] the d-dimensional ”parallelepiped” [0,T1] × [0,T2] × ... × [0,Td], T =

(T1,T2, ...,Td) ∈ Rd, Ti > 0, i ∈ N.

Definition 2.2. (see (Zemanian, 1965), chap. 11, § 2, p. 314) A function θ : Rd → C will be called
T -periodic test function, if it is periodic of period T and infinitely smooth. The space of all such T -periodic
test functions will be denoted byDT (Rd) orDd,T .

Let us recall the basic well known spaces of test functions used in distributions theory (see (Gaşpar &
Gaşpar, 2009), (Schwartz, 1950)): D(Rd), S(Rd), E(Rd), B(Rd),Ḃ(Rd) and OM(Rd) which we shall briefly
denote Dd, Sd, Ed, Bd, Ḃd and Od,M. We also denote the Lebesgue spaces Lr

d of r-summable complex
functions on Rd with respect to the Lebesgue measure md on Rd and Lr

d,loc of locally r-summable complex
valued functions on Rd, while Lr

d,T means the set of all elements from Lr
d,loc, which are T -periodic, where

1 ≤ r ≤ ∞. For the space of all complex functions from Ed which together with all derivatives are in Lr
d we

use the notation Dd,Lr 1 ≤ r ≤ ∞ and Bd = Dd,L∞ (see (Schwartz, 1950), p. 55). For r = 1 we obtain the
space of summable test functionsDd,L1 .

These spaces satisfy the inclusions (with continuous embeddings):

Dd ⊂ Sd ⊂ Dd,L1 ⊂ Dd,Lr ⊂ Ḃd ⊂ Bd ⊂ Od,M ⊂ Ed (2.1)

(see (Schwartz, 1950))
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Remark. Dd,T is a linear space and following inclusions hold

Dd,T ⊂ Bd ⊂ Od,M ⊂ Ed. (2.2)

The spaceDd,T will be endowed with the topology induced from Bd, i.e. a sequence {θk}k∈N fromDd,T

converges to zero, if the sequences of all derivatives {Dαθk}k∈N (α ∈ Nd) converge uniformly to zero.

Definition 2.3. The T -periodic transform on Dd denoted by $T (for T=(1,...,1) see (Schwartz, 1950), p.
85) is theDd,T -valued operator onDd defined by

($Tϕ)(t) =
∑
n∈Zd

ϕ(t − nT ) =
∑
n∈Zd

(LnTϕ)(t), t ∈ Rd, ϕ ∈ Dd. (2.3)

A function ξ from Dd is called a T -unitary function, or a T -partition of unity (see (Kecs, 1978), chap. 3, §
2, p. 133 and (Zemanian, 1965), chap. 11, § 2, p. 315), if $T ξ = 1. The space of all such functions ξ will
be denoted byUT (Rd), orUd,T .

Remark. $T is a continuous linear operator fromDd ontoDd,T .

Indeed, it is easy to see that $T is linear in ϕ and, if ϕ j converges to zero ( j → ∞) in Dd, then $Tϕ j

converges to zero in Dd,T . Moreover $T is an onto mapping, since for any θ ∈ Dd,T and a fixed ξ ∈ Ud,T ,
we have ξθ ∈ Dd and $T (ξθ) = θ. In this context it is obvious that the mapping

Dd,T 3 θ 7→ ξθ ∈ Dd, (2.4)

is a linear continuous ”inverse” of $T .

Remark. For each ϕ ∈ Dd the sum
∑

n∈Zd
(LnTϕ)(t) is finite and because LT (

∑
n∈Zd

(LnTϕ)) =
∑

n∈Zd
(LnTϕ), it

defines a function fromDd,T .

Remark. $T can be extended in a natural way to the spaceDd,L1 (compare with (Schwartz, 1950), p. 86).

Remark. It is immediately seen that
Dd = Ud,TDd,T , (2.5)

holds.

Let us mention that this T -periodic transform on the space of test functions is used in the study of scalar
periodic distributions by extending this transform from test functions to distributions. Namely such a T -
periodic transform is extended to the space of compactly supported distributions, E′d (see (Kecs, 1978), p.
138) and to the space D′

d,L1 of summable distributions (see (Schwartz, 1950), p. 86). We try to do that for
the case of vector valued distributions in the next Section.

3. T-periodic transform of X-valued distributions

At the beginning let us recall some general facts.

Definition 3.1. (see (Schwartz, 1957), chap. II, § 2) Let X be a Banach space. Any linear and continuous
operator U : Dd → X is an X-valued distribution on Rd. The set of all X-valued distributions on Rd will be
denoted byD′d(X).

Analogously, we can introduce the spaces S′d(X) of X-valued tempered distributions, E′d(X) of X-valued
”compactly” supported distributions and B′d(X) of X-valued bounded distributions.



4 Păstorel Gaşpar et al. / Theory and Applications of Mathematics & Computer Science 2 (1) (2012) 1–9

Remark. D′d(X) = D′dεX, S′d(X) = S′dεX, E′d(X) = E′dεX, B′d(X) = B′dεX, where by ε we have denoted the
ε - product (see (Schwartz, 1957), chap. I, § 2).

Considering also X-valued test functions and the corresponding spaces the following inclusions hold
with continuous embeddings:

Dd(X) ⊂ Sd(X) ⊂ Dd,L1(X) ⊂ Dd,Lr (X) ⊂ Ḃd(X) ⊂ Bd(X) ⊂ Od,M(X) ⊂ Ed(X)

∩ ∩ ∩ ∩ ∩ ∩ ∩ ∩

E′d(X) ⊂ O′d,c(X) ⊂ D′d,L1(X) ⊂ D′d,Lr (X) ⊂ Ḃ′d(X) ⊂ B′d(X) ⊂ S′d(X) ⊂ D′d(X),
(3.1)

(see (Schwartz, 1950), (Popa, 2007)).
Analogously to the Lebesque type spaces Lr

d, Lr
d,loc, Lr

d,T of complex valued functions, we associate in
an obvious way the corresponding spaces Lr

d(X), Lr
d,loc(X), Lr

d,T (X) (1 ≤ r ≤ ∞) of X-valued functions.
Let us consider now F ∈ L1

d,loc(X). The operator UF defined by

UF(ϕ) :=
∫
Rd

ϕ(t)F(t)dt, ϕ ∈ Dd (3.2)

is clearly linear and continuous onDd, hence UF ∈ D
′
d(X).

Identifying F with UF , the following continuous embeddings holds

Lr
d(X) ⊆ Lr

d,loc(X) ⊆ L1
d,loc(X) ⊆ D′d(X). (3.3)

For any ϕ ∈ Dd we recall the definition of the following operators on the spaces of X-valued distributions
defined with the help of corresponding operators on the spaces of test functions:

• The translations (LτU)(ϕ) := U(L−τϕ), τ ∈ Rd;

• Multiplications with functions (MψU)(ϕ) := U(Mψϕ), ψ ∈ Ed;

• The derivation (DαU)(ϕ) := (−1)|α|U(Dαϕ), α ∈ Zd, |α| = α1 + ... + αd.

Now we try to extend to the vector valued case and d > 1 some results regarding the scalar periodic
distributions treated in (Schwartz, 1950), (Zemanian, 1965), (Kecs, 1978).

Definition 3.2. A vector valued distribution U ∈ D′d(X) is said to be T -periodic, where T = (T1, ...,Td) ∈
Rd, Ti > 0, when LT U = U. T is called a period of U. The set of all periods of the distribution U is
kT, k ∈ Zd. The ”smallest” period is called the fundamental period of U (see (Zemanian, 1965) for d = 1)

By D′T (Rd, X), or D′d,T (X), we shall denote the space of all such X-valued T -periodic distributions
having the same period T ∈ Rd, Ti > 0 (T - fixed).

In the next Theorem we extend the T -periodic transform from the space of compactly supported test
functions, to the space of compactly supported X-valued distributions.

Theorem 3.1. If V ∈ E′d(X), then
∑

n∈Zd
LnT V defines an X-valued T-periodic distribution U.

Conversely, any X-valued T-periodic distribution U ∈ D′d,T (X) can be written as follows

U =
∑
n∈Zd

LnT V, (3.4)

where V ∈ E′d(X).
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Proof. Since X is a Banach space, E′d(X) consists just of the compactly supported X-valued distributions
(see (Schwartz, 1957), p. 62), hence the sum

∑
n∈Zd

LnT V contains a finite nonzero terms. Denoting by U this

X-valued distribution, we successively have

LT U = LT

∑
n∈Zd

LnT V =
∑
n∈Zd

LT (LnT V) =
∑
k∈Zd

LkT V = U,

i.e. U ∈ D′d,T (X).

Conversely, let us consider U ∈ D′d,T (X) an X-valued T -periodic distribution and ξ ∈ Ud,T . Now the
X-valued distribution V = MξU (which is obvious from E′d(X)) satisfies∑

n∈Zd

LnT V =
∑
n∈Zd

LnT (ξU) = U.

From Theorem 3.1 it results that the operator$T defined by U = $T V given by (3.4) is an onto mapping
from E′d(X) ontoD′d,T (X). It will be called the T-periodic transform on X-valued distributions.

Remark. It is a simple matter to observe that an analog of (2.5) also holds:

E′d(X) = Ud,TD
′
d,T (X). (3.5)

Remark. When V ∈ D′d,Lr (X), then is not difficult to see that
∑

n∈Zd
LnT V also makes sense, meaning that$T

can be naturally extended toD′
d,L1(X).

Remark. Regarding the mapping$T , from the successive equalities

($T V)(ϕ) =
∑
n∈Zd

(LnT V)(ϕ) = V(
∑
n∈Zd

L−nTϕ) = V($Tϕ), ϕ ∈ Dd,

we see that$T is the restrictions to E′d(X) of the ”adjoint” operator$′T ∈ B(B′d(X),D′d(X)).

This transformation enables us to identify, up to an isomorphism, the space of X-valued T -periodic
distributions on Rd with the ”dual” of Dd,T , i.e. with the space B(Dd,T , X) of all bounded linear operators
fromDd,T to X. Indeed now we can prove

Theorem 3.2. (a) For each U ∈ D′d,T (X), the operator UT defined by

UT (θ) := (U, ξθ), θ ∈ Dd,T , (3.6)

is correctly defined, being independent of the choice of ξ ∈ Ud,T .

(b) UT ∈ B(Dd,T , X).

Proof. (a) For any U ∈ D′d(X) we have that ηU ∈ E′d(X), η ∈ Ud,T , where ηU(ϕ) = U(ηϕ), ϕ ∈ Dd. Also,
because ∑

n∈Zd

(LnTηU)(ϕ) = U
( ∑

n∈Zd

LnTη
)
(ϕ) = U(ϕ), ϕ ∈ Dd,
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we have

U =
∑
n∈Zd

LnTηU.

For any ξ and η ∈ Ud,T , assuming that U is T -periodic, we can write U = LnT U and for any θ ∈ Dd,T

we have

(U, ξθ) =
( ∑

n∈Zd

LnTηU, ξθ
)

=
∑
n∈Zd

(ULnTηξ, θ) =
∑
n∈Zd

(LnTηU, ξθ) =
∑
n∈Zd

(ηU, L−nT ξθ)

= (U, η
( ∑

n∈Zd

L−nT ξ
)
θ) = (U, ηθ),

for any ξ, η ∈ Ud,T and θ ∈ Dd,T .

(b) We show that UT from (3.6) is a linear and continuous operator between Dd,T and X, i.e. UT ∈

B(Dd,T , X).
For linearity, let us consider the functions θ1, θ2 ∈ Dd,T and α, β ∈ C. Then

UT (αθ1 + βθ2) = (U, ξ(αθ1 + βθ2)) =

= α(U, ξθ1) + β(U, ξθ2) = αUT (θ1) + βUT (θ2).

For continuity of UT we consider the sequence {θk}
∞
k=1 converging to 0 in Dd,T . Because, in this case,

ξθk → 0, (k → ∞) inDd it results

UT (θk) = (U, ξθk)→ 0, (k → ∞).

In this wayD′d,T (X) is linearly continuously embedded in B(Dd,T , X).
Before proving that U 7→ UT is a toplinear isomorphism let us put in evidence the embedding of vector

valued T -periodic summable functions inD′d,T (X).

Proposition 3.1. If UF is a distribution corresponding to the locally integrable X-valued T-periodic func-
tion F, then (UF)T from (3.2) will be expressed by the integral on a parallelepiped of the form

[a, a + T ] = [a1, a1 + T1] × [a2, a2 + T2] × ... × [ad, ad + Td], a ∈ Rd.

Proof. Let F ∈ L1
T (Rd, X) ⊂ L1

loc(Rd, X). Then for the distribution UF ∈ D
′(Rd, X) from (3.2) and θ ∈ Dd,T ,

ξ ∈ Ud,T , a, T ∈ Rd, Ti > 0, we have

(UF)T (θ) = (UF , ξθ) =

∫
Rd

F(t)ξ(t)θ(t)dt =
∑
n∈Zd

∫
[a+nT,a+nT+T ]

F(t)ξ(t)θ(t)dt =

=
∑
n∈Zd

∫
[a,a+T ]

F(t + nT )ξ(t + nT )θ(t + nT )dt =

∫
[a,a+T ]

F(t)θ(t)
∑
n∈Zd

ξ(t + nT )dt =

∫
[a,a+T ]

F(t)θ(t)dt,

because F and θ are T -periodic, and
∑

n∈Rd
ξ(t + nT ) = 1.
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Remark. The map L1
T (X)(⊂ L1

loc(X)) 3 F 7→ UF ∈ D
′
d,T (X) being linear and injective, the space L1

T (X) is
linear continuous embedded inD′d,T (X) through F ≡ UF , where (compare with (3.2) and (3.3))

(UF)T (θ) =

∫
[0,T )

F(t)θ(t)dt, θ ∈ Dd,T . (3.7)

Proposition 3.2. The multiplication of a vector valued T-periodic distribution U ∈ D′d,T (X) with a T-
periodic test function ψ ∈ Dd,T is also a vector valued T-periodic distribution, i.e.

MψU ∈ D′d,T (X).

Proof. We consider the vector valued periodic distribution U ∈ D′d,T (X) and the periodic test function
ψ ∈ Dd,T .

We show that MψU ∈ D′d,T (X). Because (MψU)(ϕ) = U(ϕψ), ϕ ∈ Dd is easy to see that MψU is linear
and continuous as operator fromDd to X. It remains to show that MψU is an X-valued periodic distribution
of period T . Applying LT U = U and LTψ = ψ, we have:

(LTψU)(ϕ) = (ψU)(L−Tϕ) = U(ψL−Tϕ) = U(L−T (LTψ)ϕ) =

= LT U((LTψ)ϕ) = U(ϕψ) = (ψU)(ϕ), ϕ ∈ Dd.

Remark. D′d,T (X) = D′d,TεX.

Indeed, Dd,T have the topology γ, i.e. ((Dd,T )′c)′c = Dd,T , where (Dd,T )′c is the dual of Dd,T endowed
with the uniform convergence topology on the absolutely convex and compact sets fromDd,T , and

(Dd,T (X))′c ≈ Lc(Dd,T , X) ≈ Lε(X′c, (Dd,T )′c) ≈ (Dd,T )′c⊗̂εX

(compare with (Schwartz, 1953a), (Schwartz, 1953b) and (Schwartz, 1957))

Proposition 3.3. The subspaceD′d,T (X) ofD′d(X) is invariant to the derivation operators Dα, α ∈ Nd.

Proof. We successively have
U ∈ D′d,T (X)⇒ LT U = U ⇒

⇒ (DαU)(ϕ) = (−1)|α|U(Dαϕ) = (−1)|α|(LT U)(Dαϕ) = (−1)|α|U(L−T Dαϕ)

and
(LT DαU)(ϕ) = (DαU)(L−Tϕ) = (−1)|α|U(DαL−Tϕ),

respectively.
Because L−T Dαϕ = DαL−Tϕ it follows that LT (DαU) = DαU.

Finally we shall prove that the map constructed in Theorem 3.2,

D′d,T (X) 3 U 7→ UT ∈ B(Dd,T , X) (3.8)

is a toplinear isomorphism.
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By applying the properties of the T -periodic transform $T onDd, because of (3.6), for any ϕ ∈ Dd, we
have (U, ϕ) = UT ($Tϕ) = ($′T UT )(ϕ), i.e.

U = $′T UT . (3.9)

Therefore, for each λ1, λ2 ∈ C and every θ ∈ Dd,T , we have

(λ1U1 + λ2U2)T (θ) = (λ1U1 + λ2U2)(ξθ) =

= λ1U1(ξθ) + λ2U2(ξθ) = (λ1(U1)T + λ2(U2)T ) (θ).

The injectivity results from the successive implications

UT = 0⇒ $′T UT = 0⇒ U = 0.

For continuity we have that

Un
D′d,T
−→ 0⇒ Un(ϕ) −→ 0, ϕ ∈ Dd ⇒ $

′
T (Un)T (θϕ) −→ 0⇒

(Un)T ($Tϕ) −→ 0, ϕ ∈ Dd ⇒ (Un)T (θ) −→ 0, θ ∈ Dd,T ⇒ (Un)T
B(Dd,T ,X)
−→ 0.

Let us consider an element V from B(Dd,T , X) and define U by U(ϕ) = V($Tϕ), ϕ ∈ Dd. So U is an
X-valued T -periodic distribution from D′d(X), i.e. U ∈ D′d,T (X). Indeed U satisfies LT U = U, because,
from

$T (L−Tϕ) = $T (ϕ), ϕ ∈ Dd,

we have:
(LT U)(ϕ) = U(L−Tϕ) = V($Tϕ) = U(ϕ), ϕ ∈ Dd.

Hence we have constructed just the inverse of (3.8), which is easy to see that it is also continuous. Thus
we obtain

Theorem 3.3. The mapping (3.8) is a toplinear isomorphism fromD′d,T (X) onto B(Dd,T , X).

Proof. It only remains to prove that {(Uk)T }
∞
k=1 converges in B(Dd,T , X) to zero then {(Uk)}∞k=1 converges in

D′d(X) to zero. Indeed, for ξ inUd,T and θ inDd,T , we have

(Uk)T (θ) = (Uk, ξθ)→ 0, (k → ∞),

which means Uk → 0 (k → ∞) inD′d(X).
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Romania. pp. 112–117.
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Abstract
Reduced differential transform method (RDTM) is employed to obtain the solution of simple homogeneous advection, Burgers

and coupled Burgers equations exactly. The RDTM produces a solution with few and easy computation. The method is simple,
accurate and efficient.
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1. Introduction

The concept of differential transform method has been introduced to solve linear and non linear ini-
tial value problems in electric circuit analysis, It was first introduced by (Zhou, 1986). Burgers equation
generally appears in fluid mechanics. This equation incorporates both convection and diffision in fluid dy-
namics, and is used to describe the structure of shock waves. Coupled Burgers equation is a simple model
of sedimentation or evalution of scaled volume concentrations of two kinds of particles in fluid suspensions
or colloids under the effect of gravity. Reseachers have used other methods such as tanh method, HAM,
VIM in (Hassan, 2009), (Alomari et al., 2008) and (Abdou & Soliman, 2005) respectively. In this letter,
RDTM is used to obtain the exact solution of simple homogeneous advection equation, Burgers equation
and coupled Burgers equation.

2. Analysis of the method

The basic definitions of reduced differential transform method are introduced as follows:

Definition 2.1. If the function u(x, t) is analytic and differentiated continously with respect to time t and
space X in the domain of interest, then let

Uk(x) =
1
k!

[
∂k

∂tk u(x, t)]t=0 (2.1)

∗Corresponding author
Email address: adekola_razaq@yahoo.com. (Razaq A. Oderinu )



Razaq A. Oderinu / Theory and Applications of Mathematics & Computer Science 2 (1) (2012) 10–14 11

where the t-dimensional spectrum function Uk(x) is the transformed function.

Definition 2.2. The differential inverse transform of Uk(x) is defined as follows

u(x, t) =

∞∑
k=0

Uk(x)tk. (2.2)

The fundamental mathematical operations performed by RDTM as given by (Keskin & c, 2010a) and
(Keskin & c, 2010b) are provided in Table1:

Table 1
The fundamental mathematical operations performed by RDTM.

Functional form Transformed form
u(x, t) Uk(x) = 1

k! [
∂k

∂tk u(x, t)]t=0

w(x, t) = u(x, t) ± v(x, t) Wk(x) = Uk(x) ± Vk(x)
w(x, t) = αu(x, t) Wk = αUk(x) α is a constant

w(x, t) = xmtn Wk = xmδ(k − n), δ(k) =

{
1, k = 0
0 k , 0

w(x, t) = xmtnu(x, t) Wk(x) = xmUk−n(x)
w(x, t) = u(x, t)v(x, t) Wk(x) =

∑k
r=0 VrUk−r(x) =

∑k
r=0 UrVk − r(x)

w(x, t) = ∂r

∂tr (x, t) Wk(x) = (k + 1)...(k + r)Uk+r(x)
w(x, t) = ∂

∂x u(x, t) Wk(x) = ∂
∂x Uk(x)

w(x, t) = ∂2

∂x2 u(x, t) Wk(x) = ∂2

∂x2 Uk(x)

3. Applications

Example1: Consider the homogeneous advection equation given by (Alomari et al., 2008) as,

ut + uux = 0, u(x, 0) = −x. (3.1)

Here ut = −uux. Now taking the reduced differential transform of 3.1 we have

(k + 1)Uk+1 = −

k∑
r=0

Ur
∂

∂x
Uk−r, (3.2)

with U0(x) = −x we can then obtain Uk(x) values successively as U1(x) = U2(x) = U3(x) = ... = Uk(x) =

−x.
Using the differential inverse transform 2.2 we have:

u(x, t) = −x
∞∑

n=0

tn (3.3)

equation 3.3 is a taylor series that converges to

u(x, t) =
x

t − 1
(3.4)

under |t| < 1 which is the exact solution.
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Example2: Consider the one dimensional Burgers equation given by (Alomari et al., 2008), that has
the form

ut + uux − νuxx = 0 (3.5)

subject to the boundary condition

u(x, 0) =
α + β + (β − α)eγ

1 + eγ
, (3.6)

where γ = α( x
ν ) and the parameters α, β, ν are arbitrary constants.

Taking the reduced differential transform of 3.5 we have

(k + 1)Uk+1(x) = −

k∑
r=0

Ur(x)
∂

∂x
Uk−r(x) + ν

∂2

∂x2 Uk(x) (3.7)

U0 =
α+β+(β−α)eγ

1+eγ we then obtain Uk(x) values successively as
U1 = −U0

∂
∂x U0 + ν ∂2

∂x2 U0(x)

=
1α2βeγ

ν(1 + eγ)2

U2 = − 1
2 (U0(x) ∂∂x U1(x) + U1(x) ∂∂x U0(x) + ν ∂2

∂x2 U1(x))

=
α3β2(eγ − 1)eγ

ν2(1 + eγ)3

U3 =
α4β3eγ(1 − 4eγ − e2γ)

3ν3(1 + eγ)4

.

.

.

Using the differential inverse transform 2.2 we have:

u(x, t) =
α + β + (β − α)eγ

1 + eγ
+

1α2βeγ

ν(1 + eγ)2 t +
α3β2(eγ − 1)eγ

ν2(1 + eγ)3 t2 +
α4β3eγ(1 − 4eγ − e2γ)

3ν3(1 + eγ)4 t3 + ... (3.8)

which in its closed form gives

u(x, t) =
α + β + (β − α)e

α
ν (x−βt)

1 + e
α
ν (x−βt)

. (3.9)

Example3: Consider the following system of coupled Burgers equation given in (Alomari et al., 2008) as

ut − uuxx − 2uux + (uv)x = 0, (3.10)

vt − vxx − 2vvx + (uv)x = 0, (3.11)

subject to the initial conditions

u(x, 0) = sin(x), v(x, 0) = sin(x). (3.12)
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Taking the reduced differential differential transform of 3.10 and 3.11, we have

(k + 1)Uk+1(x) =
∂2

∂x2 Uk(x) + 2
k∑

r=0

Ur(x)
∂

∂x
Uk−r −

∂

∂x

k∑
r=0

UrVk−r, (3.13)

(k + 1)Vk+1(x) =
∂2

∂x2 Vk(x) + 2
k∑

r=0

Vr(x)
∂

∂x
Vk−r −

∂

∂x

k∑
r=0

UrVk−r. (3.14)

Using equation 3.13 and 3.14 with
U0 = V0 = sin(x)
we recursively obtain
U1 = V1 = −sin(x),
U2 = V2 = 1

2 sin(x),
U3 = V3 = − 1

6 sin(x),
.
.
.

Using the differential inverse transform 2.2 we have

u(x, t) = sin(x) − sin(x)t +
1
2!

sin(x)t2 −
1
3!

sin(x)t3 + ..., (3.15)

v(x, t) = sin(x) − sin(x)t +
1
2!

sin(x)t2 −
1
3!

sin(x)t3 + ..., (3.16)

which is

u(x, t) = sin(x)(1 − t +
t2

2!
−

t3

3!
+ ...), (3.17)

v(x, t) = sin(x)(1 − t +
t2

2!
−

t3

3!
+ ...), (3.18)

and finally in its closed form gives
u(x, t) = e−t sin(x) (3.19)

and
v(x, t) = e−t sin(x), (3.20)

which are the exact solution of the coupled Burgers equation.

4. Conclusion

Exact solutions of simple homogeneous advection equation, Burgers equation and Coupled Burgers
equation were presented via the reduced differential transform method (RDTM). The method is applied in
a direct way without any linearization or descretization. The computational size of this method is small
compared with those of DTM, HAM, HPM and Adomian decomposition method. Hence, this method is
a powerful and an efficient technique in finding the exact solutions for wide classes of problems, also the
speed of the convergence is very fast.
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Keskin, Y. and G. Oturanç (2010b). Reduced differential transform method for partial differential equation. Mathematical and
Computational Applications 15(3), 382–393.

Zhou, J. K. (1986). Differential Transformation and its Applications for Electrical Circuits. Huarjung University Press, Wuuhahn,
China.



Theory and Applications of Mathematics & Computer Science 2 (1) (2012) 15–22

I-limit Points in Random 2-normed Spaces
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Abstract
In this article we introduce the notion I-cluster points, and investigate the relation between I-cluster points and limit points

of sequences in the topology induced by random 2-normed spaces and prove some important results.
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1. Introduction

Probabilistic metric (PM) spaces were first introduced by Menger (Menger, 1942) as a generalization
of ordinary metric spaces and further studied by Schweizer and Sklar (Schweizer & Sklar, 1960, 1983).
The idea of Menger was to use distribution function instead of non-negative real numbers as values of the
metric. In this theory, the notion of distance has a probablistic nature. Namely, the distance between two
points x and y is represented by a distribution function Fxy; and for t > 0, the value Fxy (t) is interpreted
as the probability that the distance from x to y is less than t. After that it was developed by many authors.
Using this concept, Śerstnev (Śerstnev, 1962) introduced the concept of probabilistic normed space. It pro-
vides an important method of generalizing the deterministic results of linear normed spaces. It has also
very useful applications in various fields, e.g., continuity properties (Alsina et al., 1997), topological spaces
(Frank, 1971), linear operators (Golet, 2005), study of boundedness (Guillén et al., 1999), convergence of
random variables (Guillén & Sempi, 2003), statistical and ideal convergence of probabilistic normed space
or 2-normed space (Karakus, 2007), (Mohiuddine & Savaş, 2012), (Mursaleen, 2010), (Mursaleen & Mohi-
uddine, 2010), (Mursaleen & Mohiuddine, 2012), (Mursaleen & Alotaibi, 2011), (Rahmat & Harikrishnan,
2009), (Tripathy et al., 2012) etc.

The concept of 2-normed spaces was initially introduced by Gähler (Gähler, 1963), (Gähler, 1964) in the
1960’s. Since then, many researchers have studied these subjects and obtained various results (Gunawan &
Mashadi, 2001), (Gürdal & Pehlivan, 2004), (Gürdal, 2006), (Gürdal & Açik, 2008), (Gürdal et al., 2009),
(Savaş, 2011), (Siddiqi, 1980), (Şahiner et al., 2007).

P. Kostyrko et al (cf. (Kostyrko et al., 2000); a similar concept was invented in (Katětov, 1968)) in-
troduced the concept of I-convergence of sequences in a metric space and studied some properties of such

∗Corresponding author
Email addresses: gurdalmehmet@sdu.edu.tr (Mehmet Gürdal), btarhan03@yahoo.com (Mualla Birgül Huban)
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convergence. Note that I-convergence is an interesting generalization of statistical convergence. The notion
of statistical convergence of sequences of real numbers was introduced by H. Fast in (Fast, 1951) and H.
Steinhaus in (Steinhaus, 1951).

There are many pioneering works in the theory of I-convergence. The aim of this work is to introduce
and investigate the relation between I-cluster points and ordinary limit points of sequence in random 2-
normed spaces.

2. Definitions and Notations

First we recall some of the basic concepts, which will be used in this paper.

Definition 2.1. ((Freedman & Sember, 1981), (Fast, 1951)) A subset E of N is said to have density δ (E)
if δ (E) = lim

n→∞
n−1 ∑n

k=1 χE (k) exists. A number sequence (xn)n∈N is said to be statistically convergent
to L if for every ε > 0, δ ({n ∈ N : |xn − L| ≥ ε}) = 0. If (xn)n∈N is statistically convergent to L we write
st-lim xn = L, which is necessarily unique.

Definition 2.2. ((Kelley, 1955), (Kostyrko et al., 2000)) A family I ⊂ 2Y of subsets of a nonempty set Y
is said to be an ideal in Y if (i) ∅ ∈ I; (ii) A, B ∈ I imply A ∪ B ∈ I; (iii) A ∈ I, B ⊂ A imply B ∈ I. A
non-trivial ideal I in Y is called an admissible ideal if it is different from P (N) and it contains all singletons,
i.e., {x} ∈ I for each x ∈ Y.

Let I ⊂ P (Y) be a non-trivial ideal. A class F (I) = {M ⊂ Y : ∃A ∈ I : M = Y\A} is a filter on Y,
called the filter associated with the ideal I.

Definition 2.3. ((Kostyrko et al., 2000), (Kostyrko et al., 2005)) Let I ⊂ 2N be a nontrivial ideal in N.
Then a sequence (xn)n∈N in X is said to be I-convergent to L ∈ X, if for each ε > 0 the set A (ε) =

{n ∈ N : ‖xn − L‖ ≥ ε} belongs to I.

Definition 2.4. ((Gähler, 1963) (Gähler, 1964)) Let X be a real vector space of dimension d, where 2 ≤ d <
∞. A 2-norm on X is a function ‖·, ·‖ : X × X → R which satisfies (i) ‖x, y‖ = 0 if and only if x and y are
linearly dependent; (ii) ‖x, y‖ = ‖y, x‖ ; (iii) ‖αx, y‖ = |α| ‖x, y‖ , α ∈ R; (iv) ‖x, y + z‖ ≤ ‖x, y‖ + ‖x, z‖ . The
pair (X, ‖·, ·‖) is then called a 2-normed space.

As an example of a 2-normed space we may take X = R2 being equipped with the 2-norm ‖x, y‖ := the
area of the parallelogram spanned by the vectors x and y, which may be given explicitly by the formula

‖x, y‖ = |x1y2 − x2y1| , x = (x1, x2) , y = (y1, y2) .

Observe that in any 2-normed space (X, ‖·, ·‖) we have ‖x, y‖ ≥ 0 and ‖x, y + αx‖ = ‖x, y‖ for all x, y ∈ X and
α ∈ R. Also, if x, y and z are linearly dependent, then ‖x, y + z‖ = ‖x, y‖+‖x, z‖ or ‖x, y − z‖ = ‖x, y‖+‖x, z‖ .
Given a 2-normed space (X, ‖·, ·‖) , one can derive a topology for it via the following definition of the limit
of a sequence: a sequence (xn) in X is said to be convergent to x in X if limn→∞ ‖xn − x, y‖ = 0 for every
y ∈ X.

All the concepts listed below are studied in depth in the fundamental book by Schweizer and Sklar
(Schweizer & Sklar, 1983).

Definition 2.5. Let R denotes the set of real numbers, R+ = {x ∈ R : x ≥ 0} and S = [0, 1] the closed unit
interval. A mapping f : R → S is called a distribution function if it is nondecreasing and left continuous
with inft∈R f (t) = 0 and supt∈R f (t) = 1.
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We denote the set of all distribution functions by D+ such that f (0) = 0. If a ∈ R+, then Ha ∈ D+,

where

Ha (t) =

{
1, if t > a,
0, if t ≤ a.

It is obvious that H0 ≥ f for all f ∈ D+.

Definition 2.6. A triangular norm (t-norm) is a continuous mapping ∗ : S × S → S such that (S , ∗) is an
abelian monoid with unit one and c ∗ d ≤ a ∗ b if c ≤ a and d ≤ b for all a, b, c, d ∈ S . A triangle function τ
is a binary operation on D+ which is commutive, associative and τ ( f ,H0) = f for every f ∈ D+.

Definition 2.7. Let X be a linear space of dimension greater than one, τ is a triangle, and F : X × X →
D+. Then F is called a probabilistic 2-norm and (X, F, τ) a probabilistic 2-normed space if the following
conditions are satisfied:

(2.2.1) F(x, y; t) = H0(t) if x and y are linearly dependent, where F(x, y; t) denotes the value of F(x, y)
at t ∈ R,

(2.2.2) F(x, y; t) , H0(t) if x and y are linearly independent,
(2.2.3) F(x, y; t) = F(y, x; t) for all x, y ∈ X,
(2.2.4) F(αx, y; t) = F(x, y; t

|α| ) for every t > 0, α , 0 and x, y ∈ X,
(2.2.5) F(x + y, z; t) ≥ τ(F(x, z; t), F(y, z; t)) whenever x, y, z ∈ X and t > 0,
If (2.2.5) is replaced by
(2.2.5)

′

F(x + y, z; t1 + t2) ≥ F(x, z; t1) ∗ F(y, z; t2) for all x, y, z ∈ X and t1, t2 ∈ R+;
then (X, F, ∗) is called a random 2-normed space (for short, RTN space).

Remark. Note that every 2-norm space (X, ‖., .‖) can be made a random 2-normed space in a natural way,
by setting

(i) F(x, y; t) = H0(t − ‖x, y‖), for every x, y ∈ X, t > 0 and a ∗ b = min {a, b} , a, b ∈ S ;
(ii) F(x, y; t) = t

t+‖x,y‖ for every x, y ∈ X, t > 0 and a ∗ b = ab for a, b ∈ S .

Let (X, F, ∗) be an RTN space. Since ∗ is a continuous t-norm, the system of (ε, λ)-neighborhoods of θ
(the null vector in X)

{Nθ(ε, λ) : ε > 0, λ ∈ (0, 1)} ,

where
Nθ(ε, λ) = {x ∈ X : Fx(ε) > 1 − λ} .

determines a first countable Hausdorff topology on X, called the F-topology. Thus, the F-topology can be
completely specified by means of F-convergence of sequences. It is clear that x− y ∈ Nθ means y ∈ Nx and
vice versa.

A sequence x = (xn) in X is said to be F-convergence to L ∈ X if for every ε > 0, λ ∈ (0, 1) and for each
nonzero z ∈ X there exists a positive integer N such that

xn, z − L ∈ Nθ(ε, λ) for each n ≥ N

or equivalently,
xn, z ∈ NL(ε, λ) for each n ≥ N.

In this case we write F-lim xn, z = L.
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3. The Relation Between I -cluster Points and Ordinary Limit Points in Random 2-Normed Spaces

It is known (see (Fridy, 1993)) that statistical cluster Γx and statistical limit points set Λx of a given
sequence (xn) are not altered by changing the values of a subsequence the index set of which has density
zero. Moreover, there is a strong connection between statistical cluster points and ordinary limit points of a
given sequence. We will prove that these facts are satisfied for I-cluster and I-limit point sets of a given
sequences in the topology induced by random 2-normed spaces

Definition 3.1. Let (X, F, ∗) be an RTN space, I be an admissible ideal and x = (xn) ∈ X.
(i) An element L ∈ X is said to be an I-limit point of the sequence x with respect to the random 2-norm

F (or I2
F (x)-limit point) if there is a set M = {n1 < n2 < ...} ⊂ N such that M < I and F- lim

k→∞
xnk , z = L for

each nonzero z in X. The set of all I2
F-limit points of x is denoted by I

(
Λ2

F (x)
)
.

(ii) An element L ∈ X is said to be an I-cluster point of x with respect to the random 2-norm F (or
I2

F-cluster point) if for each ε > 0, λ ∈ (0, 1) and nonzero z in X

{n ∈ N : xn, z ∈ NL(ε, λ)} < I.

The set of all I2
F-cluster points of x is denoted by I

(
Γ2

F (x)
)
.

Proposition 3.1. Let (X, F, ∗) be an RTN space and I be an admissible ideal. Then for each sequence
x = (xn)n∈N of X we have I

(
Λ2

F (x)
)
⊂ I

(
Γ2

F (x)
)

and the set I
(
Γ2

F (x)
)

is a closed set.

Proof. Let L ∈ I
(
∧2

F (x)
)
. Then there exists a set M = {n1 < n2 < ...} < I such that

F- lim
k→∞

xnk , z = L (3.1)

for each nonzero z in X.According to 3.1, for each ε > 0, λ ∈ (0, 1) and nonzero z in X there exists a positive
integer k0 such that for k > k0 we have xnk , z ∈ NL(ε, λ). Hence

{n ∈ N : xn, z ∈ NL(ε, λ)} ⊃ M\
{
n1, ..., nk0

}
and so

{n ∈ N : xn, z ∈ NL(ε, λ)} < I,

which means that L ∈ I
(
Γ2

F (x)
)
.

Let y ∈ I
(
Γ2

F

)
. Take ε > 0 and λ ∈ (0, 1) . There exists L ∈ I

(
Γ2

F (x)
)
∩Nθ (y, ε, λ) . Choose η > 0 such

that Nθ (L, η, λ) ⊂ Nθ (y, ε, λ) . We obviously have

{n ∈ N : y − xn, z ∈ Nθ(ε, λ)} ⊃ {n ∈ N : L − xn, z ∈ Nθ(η, λ)} .

Hence {n ∈ N : y − xn, z ∈ Nθ(ε, λ)} < I and y ∈ I
(
Γ2

F (x)
)
.

Definition 3.2. Let (X, F, ∗) be an RTN space, I be an admissible ideal and x = (xn)n∈N be a sequence in
X.

If K = {k1 < k2 < ...} ∈ I, then the subsequence xK = (xk)n∈N in X is called I2
F-thin subsequence of the

sequence x in X.
If M = {m1 < m2 < ...} < I, then the subsequence xM = (xm)n∈N in X is called I2

F-nonthin subsequence
of the sequence x in X.
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It is clear that if L is aI2
F-limit point of x ∈ X, then there is aI2

F-nonthin subsequence xM that convergent
to L with respect to the random 2-norm F.

Definition 3.3. Let (X, F, ∗) be an RTN space and x = (xn)n∈N ∈ X. An element L ∈ X is said to be limit
point of the sequence x = (xn) with respect to the random 2-norm F if there is subsequence of the sequence
x which converges to L with respect to the random 2-norm F. By L2

F (x) , we denote the set of all limit points
of the sequence x = (xn) with respect to the random 2-norm F.

It is obviousI
(
Λ2

F (x)
)
⊆ L2

F (x) ,I
(
Γ2

F (x)
)
⊆ L2

F (x) : Take L ∈ I
(
Γ2

F (x)
)
, then {n ∈ N : xn, z ∈ NL (ε, λ)} <

I for each ε > 0, λ ∈ (0, 1) and nonzero z in X. If L < L2
F (x) , then there is ε′ > 0 such thatNL (ε′, λ) contains

only a finite number of elements of x in X. Then {n ∈ N : xn, z ∈ NL (ε′, λ)} ∈ I, but it contradicts to
L ∈ I

(
Γ2

F (x)
)
. Hence x ∈ I

(
Γ2

F (x)
)
. Thus x ∈ L2

F (x) , and so I
(
Γ2

F (x)
)
⊆ L2

F (x) .

Lemma 3.1. Let (X, F, ∗) be an RTN space and I be an admissible ideal. For a sequence x = (xn) ∈ X, if x
is IF-convergent with respect to the random 2-norm F, then I

(
Λ2

F (x)
)

and I
(
Γ2

F (x)
)

are both equal to the
singleton set {IF- lim xn, z} for each nonzero z in X.

Proof. Let IF-limn xn, z = L. Show that L ∈ I
(
Λ2

F (x)
)
. By definition of IF-convergence we have

A (ε, λ) = {n ∈ N : xn, z < NL (ε, λ)} ∈ I

for each ε > 0, λ ∈ (0, 1) and nonzero z ∈ X. Since I is an admissible ideal we can choose the set M =

{n1 < n2 < ...} ⊂ N such that nk < A
(

1
k , λ

)
and xnk , z ∈ NL

(
1
k , λ

)
for all k ∈ N. That is F-limk→∞ xnk , z = L.

Suppose M ∈ I. Since M ⊂ {n ∈ N : xn, z ∈ NL (1, λ)} ,

(N\M) ∩ {n ∈ N : xn, z ∈ NL (1, λ)} = ∅,

but N\M ∈ F (I) and
{n ∈ N : xn, z ∈ NL (1, λ)} ∈ F (I) .

This contradiction gives M < I. Hence we get M = {n1 < n2 < ...} ⊂ N and M < I such that F-
limk→∞ xnk , z = L, i.e., L ∈ I

(
Λ2

F (x)
)
. Since I

(
Λ2

F (x)
)
⊂ I

(
Γ2

F (x)
)
, ξ ∈ I

(
Γ2

F (x)
)
.

Now we suppose there is η ∈ I
(
Γ2

F (x)
)

such that η , L. It is clear that

A =

{
n ∈ N : xn, z < NL

(
|η − L|

2
, λ

)}
∈ I

and

B =

{
n ∈ N : xn, z ∈ NL

(
|η − L|

2
, λ

)}
< I

for λ ∈ (0, 1) and each nonzero z ∈ X. We have B ⊂ A ∈ I. This contradiction shows I
(
Γ2

F (x)
)

= {L}.

Hence from inclusion I
(
Λ2

F (x)
)
⊂ I

(
Γ2

F (x)
)

= {L}, we have I
(
Λ2

F (x)
)

= I
(
Γ2

F (x)
)

= L. The lemma is
proved.

Theorem 3.2. Let (X, F, ∗) be an RTN space, I be an admissible ideal and x = (xn) , y = (yn) are sequences
in X such that

M = {n ∈ N : xn , yn} ∈ I.

Then I
(
Λ2

F (x)
)

= I
(
Λ2

F (y)
)

and I
(
Γ2

F (x)
)

= I
(
Γ2

F (y)
)
.
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Proof. Let M = {n ∈ N : xn , yn} ∈ I. If L ∈ I
(
Λ2

F (x)
)
, then there is a set K = {n1 < n2 < ...} < I such

that F-limk xnk , z = L. Given ε > 0 and λ ∈ (0, 1) there exists N ∈ N such that xnk , z < NL (ε, λ) for k > N
and nonzero z ∈ X. Since K1 = {n ∈ N : n ∈ K ∧ xn , yn} ⊂ M ∈ I,

K2 = {n ∈ N : n ∈ K ∧ xn = yn} < I.

Indeed, if K2 ∈ I, then K = K1 ∪ K2 ∈ I, but K < I. Hence the sequence yK2 = (yn)n∈K2
is an I2

F-nonthin
subsequence of y = (yn)n∈N and yK2 convergent to L with respect to the random 2-norm F. This implies that
L ∈ I

(
Λ2

F (y)
)
. Similarly we can show that I

(
Λ2

F (y)
)
⊂ I

(
Λ2

F (x)
)
. Hence I

(
Λ2

F (y)
)

= I
(
Λ2

F (x)
)
. Now

let L ∈ I
(
Γ2

F (x)
)
. Then

B1 = {n ∈ N : xn, z ∈ NL (ε, λ)} < I

for each ε > 0, λ ∈ (0, 1) and nonzero z ∈ X and

B2 = {n ∈ N : n ∈ B1 ∧ xn = yn} < I.

Therefore, B2 ⊂ {n ∈ N : yn, z ∈ NL (ε, λ)} . It shows that {n ∈ N : yn, z ∈ NL (ε, λ)} < I, i.e., L ∈ I
(
Γ2

F (y)
)
.

The theorem is proved.

The next theorem proves a strong connection between I2
F-cluster and limit points of a given sequence

with respect to the random 2-norm F.

Definition 3.4. (Kostyrko et al., 2000) An admissible ideal I ⊂ P (N) is said to satisfy the property (AP)
if for every sequence (An)n∈N of pairwise disjoint sets of I there are sets Bn ⊂ N, n ∈ N, such that the
symmetric difference An∆Bn is a finite set for every n ∈ N and ∪n∈NBn ∈ I.

Theorem 3.3. Let (X, F, ∗) be an RTN space and I be an admissible ideal with property (AP) and x =

(xn) be a sequence in X. Then there is a sequence y = (yn) ∈ X such that L2
F (y) = I

(
Γ2

F (x)
)

and
{n ∈ N : xn , yn} ∈ I.

Proof. If I
(
Γ2

F (x)
)

= L2
F (x), then y = x and this case is trivial. Let I

(
Γ2

F (x)
)

be a proper subset of

L2
F (x) . Then L2

F (x) \I
(
Γ2

F (x)
)
, ∅ for each L ∈ L2

F (x) \I
(
Γ2

F (x)
)
. There is an I2

F-thin subsequence(
x jk

)
k∈N

of x such that limk x jk ,z = L, i.e., given ε > 0, λ ∈ (0, 1) there exists a positive integer N
such that x jk , z < NL (ε, λ) for k > N and nonzero z ∈ X. Hence there exists an NL (ε, λ) such that
{k ∈ N : xk, z ∈ NL = NL (δ, λ)} ∈ I for each δ > 0, λ ∈ (0, 1) and nonzero z ∈ X.

It is obvious that the collection of all NL ’s is an open cover of L2
F (x) \I

(
Γ2

F (x)
)
. So by Covering

Theorem there is a countable and mutually disjoint subcover
{
N j

}∞
j=1

such that eachN j contains an I2
F-thin

subsequence of (xn) ∈ X.
Now let

A j =
{
n ∈ N : xn, z ∈ N j = N j (δ, λ) , j ∈ N

}
for each δ > 0, λ ∈ (0, 1) and nonzero z ∈ X. It is clear that A j ∈ I ( j = 1, 2, ...) and Ai ∩ A j = ∅. Then
by (AP) property of I there is a countable collection

{
B j

}∞
j=1

of subsets of N such that B = ∪∞j=1B j ∈ I and
A j�B is a finite set for each j ∈ N. Let M = N\B = {m1 < m2 < ...} ⊂ N. Now the sequence y = (yk) ∈ X is
defined by yk = xmk if k ∈ B and yk = xk if k ∈ M. Obviously, {k ∈ N : xk , yk} ⊂ B ∈ I, and so by Theorem
3.2, I

(
Γ2

F (y)
)

= I
(
Γ2

F (x)
)
. Since A j\B is a finite set, the sequence yB = (yk)k∈B has no limit point with

respect to the random 2-norm F that is not also an I2
F-limit point of y, i.e., L2

F (y) = I
(
Γ2

F (y)
)
. Therefore,

we have proved L2
F (y) = I

(
Γ2

F (x)
)
.
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Abstract
In this paper we introduce a new concept of λ-Zweier convergence and λ-statistical Zweier convergence and give some rela-

tions between these two kinds of convergence.
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1. Preliminaries

We write ω for the set of all complex sequences x = (xk)∞k=0 and l∞, c and c0 for the sets of all bounded,
convergent sequences and null sequences, respectively.

A sequence space X with linear topology is called a K -space if each of the maps Pi : X → C defined
by Pi(x) = xi is continuous for i = 1, 2, · · · .

A Fréchet space is a complete linear metric space, or equivalently , a complete totally paranormed space.
In otherwords a locally convex space is called a Fréchet space if it is metrizable paranormed space and the
Fréchet space is complete.

K -space X is called an FK-space if X is complete linear metric space. In otherwords we say that X is
an FK-space if X is Fréchet space with continuous coordinate projection, we mean if x(n) → x (n → ∞)
in the metric of X then x(n)

k → xk (n → ∞) for each k ∈ N. That is, for each k ∈ N, the linear functional
Pk(x) = xk is such that Pk is continuous on X, i.e. X is K-space. Note that ω is a locally convex FK space
with its usual metric. A BK-space is a normed FK-space (Choudhry & Nanda, 1989).

Let A = (ank)∞n,k=0 be an infinite matrix of complex numbers and x ∈ ω. We write

An(x) =
∞∑

k=0

ankxk (n = 0, 1, 2, · · · )

and

∗Corresponding author
Email address: vakhan@math.com (Vakeel A. Khan)
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A(x) = (An(x))∞n=0.

For any subset X of ω, the set

XA = {x = (xk) ∈ ω : A(x) ∈ X}

is called the matrix domain of A in X.
Let λ = (λn) be a non decereasing sequence of positive reals tending to infinity and λ1 = 1 and

λn+1 ≤ λn + 1. The generalized de la Vallee - Poussin means is defined by

tn(x) =
1
λn

∑
k∈In

xk,

where In = [n − λn + 1, n].
A sequence x = (xk) is said to be (V,λ)-summable to a number l if tn(x)→ l as n→ ∞ (Leindler, 1965).

We write
[V, λ]0 = {x = (xk) ∈ ω : lim

n

1
λn

∑
k∈In

|xk| = 0},

[V, λ] = {x = (xk) ∈ ω : lim
n

1
λn

∑
k∈In

|xk − le| = 0, for some l ∈ C},

[V, λ]∞ = {x = (xk) ∈ ω : lim
n

1
λn

∑
k∈In

|xk| < ∞}.

For the sets of sequences that are strongly summable to zero, strongly summable and strongly bounded
by the de la Valle- Poussin method.In the special case when λn = n for n = 1, 2, 3, · · · the sets [V, λ]0, [V, λ]
and [V, λ]∞ reduce the sets w0 , w and w∞ introduced and studied by Maddox (Maddox, 1986).

In (Sengönül, 2007), Sengönül introduced Z and Z0 spaces as the set of all sequences such that £ -
transforms of them are in the spaces c and c0 , respectively , i.e.

Z = {x = (xk) ∈ ω : £ ∈ c},

Z0 = {x = (xk) ∈ ω : £ ∈ c0},

where £ = (znk) , (n, k = 0, 1, 2, · · · ) denotes by the matrix

znk =

{ 1
2 , k ≤ n ≤ k + 1, (n, k ∈ N)
0, otherwise

This matrix is called Zweier matrix.
The concept of statistical convergence was first introduced by Fast (Fast, 1951) and further studied by

Salat in (Salat, 1980), Fridy in (Fridy, 1985), Connor in (Connor, 1988), Kolk in (Kolk, 1996), (Kolk, 1993),
M. K. Khan and C. Orhan in (Khan & Orhan, 2007), Fridy and Orhan in (Fridy & Orhan, 1997), (Fridy &
Orhan, 1993) and many others. Let N be the set of natural numbers and E⊂ N. Then the natural density of
E is denoted by

δ(E) = lim
n→∞

n−1|{k ≤ n : k ∈ E}|,

where the vertical bars denote the cardinality of the enclosed set.
The sequence x = (xk) is said to be statistically convergent to the number l if for every ε > 0, the set
{k : |xk − l| ≥ ε} has natural density 0, and we write l = st − lim x. We shall also write S to denote the set of
all statistically convergent sequences.
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2. Main Results

We introduce the sequence spaces [V, λ]0[Z], [V, λ][Z] and [V, λ]∞[Z] as the set of all sequences such
that Z-transforms of them are in the [V, λ]0, [V, λ] and [V, λ]∞ respectively i.e

[V, λ]0[Z] = {x = (xk) ∈ ω : lim
n

1
λn

∑
k∈In

|
1
2

(xk + xk−1)| = 0},

[V, λ][Z] = {x = (xk) ∈ ω : lim
n

1
λn

∑
k∈In

|
1
2

(xk + xk−1) − l| = 0, for some l ∈ C},

[V, λ]∞[Z] = {x = (xk) ∈ ω : lim
n

1
λn

∑
k∈In

|
1
2

(xk + xk−1)| < ∞},

The £ = (znk)n,k≥0 matrix is well known as a regular matrix (Boos, 2000).Define the sequence y which
will be frequently used, as £ - transform of the sequence x i.e.,

yk =
1
2

(xk + xk−1), (k ∈ N). (2.1)

Theorem 2.1. The sets [V, λ]0[Z], [V, λ][Z] and [V, λ]∞[Z] are the linear spaces with the coordinatewise
addition and scalar multiplication with the norm

||x||[V,λ]0[Z] = ||x||[V,λ][Z] = ||x||[V,λ]∞[Z] = ||£x||λ.

Proof. Suppose that x,y ∈ [V, λ]0[Z] and α, β are complex numbers. Then

lim
n

1
λn

∑
k∈In

|
1
2

[α(xk + xk−1) + β(yk + yk−1)]| ≤ lim
n

1
λn

∑
k∈In

(|
1
2
α(xk + xk−1)| + |

1
2
β(yk + yk−1)|)

= lim
n

α

λn

∑
k∈In

(|
1
2

(xk + xk−1)| + lim
n

β

λn

∑
k∈In

(|
1
2

(xk + xk−1)| = 0, as r → ∞

Furthermore , since for any subset X of ω , the set

XA = {x = (xk) ∈ ω : A(x) ∈ X} (is called matrix domian of A in X),

holds and [V, λ]0, [V, λ] are BK-spaces with respect to the norm defined by

||x||[V,λ] = sup
n

1
λn

∑
k∈In

|xk|

and the matrix £ = (znk) is normal, that is znk , 0, for 0 ≤ k ≤ n and znk = 0 for k > n for all n, k ∈ N and
also by Theorem 4.3.2 of Wilansky (Wilansky, 1984) gives the fact that the spaces [V, λ]0[Z] and [V, λ][Z]
are BK spaces.

Theorem 2.2. The sequence spaces [V, λ]0[Z], [V, λ][Z] and [V, λ]∞[Z] are linearly isomorphic to the spaces
[V, λ]0, [V, λ] and [V, λ]∞ respectively.
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Proof. We want to show the existance of the linear bijection between the spaces [V, λ]0[Z] and [V, λ]0.Consider
the transformation £ defined by (1), from [V, λ]0[Z] to [V, λ]0 by

£ : [V, λ]0[Z]→ [V, λ]0

x→ £x = y, y = (yk), yk =
1
2

(xk + xk−1), (k ∈ N).

The linearity of £ is clear. Further it is trivial that x = 0 when £x = 0 and hence £ is injective. Let y ∈ [V, λ]0

and define the sequence x = (xk) by

xk = 2
k∑

i=0

(−1)k−iyi (n ∈ N).

Then
||x||[V,λ]0[Z] = lim

n→∞

1
λn

∑
k∈In

|
1
2

(xk + xk−1)|

||x||[V,λ]0[Z] = lim
n→∞

1
λn

∑
k∈In

|
1
2

(2
i∑

k=0

(−1)k−iyi + 2
i∑

k=0

(−1)(k−1)−iyi)|

||x||[V,λ]0[Z] = lim
n→∞

1
λn

∑
k∈In

|yi|.

This implies that x ∈ [V, λ]0[Z]. Also

||x||[V,λ]0[Z] = sup
n

1
λn

∑
k∈In

|
1
2

(xk + xk−1)|

||x||[V,λ]0[Z] = sup
n

1
λn

∑
k∈In

|
1
2

(2
i∑

k=0

(−1)i−kyk + 2
i∑

k=0

(−1)i−k−1yk)|

||x||[V,λ]0[Z] = sup
n

1
λn

∑
k∈In

|yk| = ||y||0[V,λ].

Thus we have that x ∈ [V, λ]0[Z] and consequently £ is surjective. Hence £ is linear bijection which therefore
says us that the spaces [V, λ]0[Z] and [V, λ]0 are linearly isomorphic. It is clear here that if the spaces
[V, λ]0[Z] and [V, λ]0 replaced by the spaces [V, λ][Z] and [V, λ] or [V, λ]∞[Z]and [V, λ]∞, respectively. Then

[V, λ][Z] � [V, λ]∞[Z] or [V, λ]∞[Z] � [V, λ]∞.

This completes the proof.

A sequence x = (xk) is said to be λ-statistical Zweir convergent to a number l if for ε > 0.

Rλ[Z] = {
1
λn

∑
k∈In

|£Mλ(ε)| = 0},

where
£Mλ(ε) = {[n − λn + 1, n] : |

1
2

(xk + xk−1) − l ≥ ε|}.
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Let
[n − λn + 1, n]∗ = {[n − λn + 1, n] : |

1
2

(xk + xk−1) − l ≥ ε|} = CMλ(ε)

and
[n − λn + 1, n]∗∗ = {[n − λn + 1, n] : |

1
2

(xk + xk−1) − l| < ε}.

Theorem 2.3. If xk → l[V, λ][Z] =⇒ xk → l(Rλ[Z]).

Proof. Let ε > 0 and xk → l[V, λ][Z], then

1
λn

∑
k∈[n−λn+1,n]

|
1
2

(xk + xk−1) − l|

≥
1
λn

∑
k∈[n−λn+1,n]∗

|
1
2

(xk + xk−1) − l|

≥
1
λn
|£Mλ(ε)|.

This implies that xk → l(Rλ[Z]).

Theorem 2.4. If x ∈ [V, λ]∞[Z] and xk → l[V, λ][Z] =⇒ xk → l(Rλ[Z]).

Proof. Suppose that x ∈ [V, λ]∞[Z] and xk → l[V, λ][Z]. Since supk|
1
2 (xk + xk−1 − l)| < ∞, there exists a

constant T > 0 such that |12 (xk + xk−1) − l| < T for all k. Then we have, for every ε > 0 that

1
λn

∑
k∈[n−λn+1,n]

|
1
2

(xk + xk−1) − l|

=
1
λn

∑
k∈[n−λn+1,n]∗

|
1
2

(xk + xk−1) − l|

+
1
λn

∑
k∈[n−λn+1,n]∗∗

|
1
2

(xk + xk−1) − l|

≤
T
λn
|£Mλ(ε)| + ε,

taking limit as ε → 0. Thus xk → l([V, λ]∞[Z]).

Theorem 2.5. If x ∈ [V, λ]∞[Z] then [V, λ][Z] = Rλ[Z].

Proof. Proof follows from Theorem 2.3 and Theorem 2.4.

Acknowledgments. The author would like to record their gratitude to the reviewer for his careful read-
ing and making some useful corrections which improved the presentation of the paper.
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Leindler, L. (1965). Über die de la vallee pousinsche summierbarkeit allgemeiner orthogonalreihen. Acta math. Hung. (16), 375–
378.

Maddox, I. J. (1986). Sequence spaces defined by a modulus. Math. Camb. Phil. Soc. (100), 161–166.

Salat, T. (1980). On statistically convergent sequences of real numbers. Math. Slovaca (30), 139–150.

Sengönül, M. (2007). On the Zweier sequence space. Demonstratio Mathematica. Warsaw Technical University Institute of Math-
ematics 40(1), 181–196.

Wilansky, A. (1984). Summability through functional analysis. North-Holland Mathematical studies.



Theory and Applications of Mathematics & Computer Science 2 (1) (2012) 29–36

On H–Dichotomy for Skew-Evolution Semiflows in Banach Spaces
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1. Preliminaries

The study of the behaviors of the solutions of evolution equations by means of associated operator fam-
ilies has allowed to obtain answers to some previously open problems by involving techniques of functional
analysis and operator theory.

In the qualitative theory of evolution equations, the exponential dichotomy is one of the most important
asymptotic properties, and in the last years it was treated from various perspectives.

The notion of exponential dichotomy for linear differential equations was introduced by O. Perron in
1930. The classic paper (Perron, 1930) of Perron served as a starting point for many works on the stability
theory. The property of exponential dichotomy for linear differential equations has gained prominence since
the appearance of two fundamental monographs due to J.L. Daleckii and M.G. Krein (see (Daleckii & Krein,
1974)) and J.L. Massera and J.J. Schäffer (see (Massera & Schäffer, 1966)).

Diverse and important concepts of dichotomy for linear skew-product semiflows were studied by C.
Chicone and Y. Latushkin in (Chicone & Latushkin, 1999), S.N. Chow and H. Leiva in (Chow & Leiva,
1995), R.J. Sacker and G.R. Sell in (Sacker & Sell, 1994) as well as G.R. Sell and Y.You in (Sell & You,
2002).

The exponential stability and exponential instability for nonautonomous differential equations are stud-
ied by L. Barreira and C. Valls in (Barreira & Valls, 2008), and, in particular, for linear skew-product
semiflows, by M. Megan, A.L. Sasu and B. Sasu in (Megan et al., 2004).

∗Corresponding author
Email addresses: codruta.stoica@uav.ro (Codruţa Stoica), dianab268@yahoo.com (Diana Borlea)
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We have reconsidered the definitions of asymptotic properties by means of skew-evolution semiflow on
a Banach space, introduced in (Megan & Stoica, 2008a), as an important tool in the stability theory and as
a natural generalization for semigroups of operators, evolution operators and skew-product semiflows.

A skew-evolution semiflow depends on three variables t, t0 and x, while the classic concept of cocy-
cle depends only on t and x, thus justifying a further study of asymptotic behaviors for skew-evolution
semiflows in a more general case, the nonuniform setting (relative to the third variable).

The notion of linear skew-evolution semiflow arises naturally when considering the linearization along
an invariant manifold of a dynamical system generated by a nonlinear differential equation. The notion has
proved itself of interest in the development of the stability theory, in a uniform as well as in a nonuniform
setting, being already adopted by some researchers, as, for example, P. Viet Hai in (Viet Hai, 2010) and
A.J.G. Bento and C.M. Silva in (Bento & Silva, 2012). Some results concerning the asymptotic properties
for skew-evolution semiflows were published in (Megan & Stoica, 2008b), (Megan & Stoica, 2010), (Stoica
& Megan, 2010) and (Stoica, 2010).

In what follows, we will consider a more general case for asymptotic behaviors that does not involve
necessarily exponentials, but, instead, properly defined functions, which allows a non restrained approach.
The aim of this paper is to define and characterize a more general case of dichotomy for skew-evolution
semiflows, called the H–dichotomy, as a tool in the study the behaviors for the solutions of differential
equations that describe processes from engineering, physics or economics, and to emphasize connections
with the classic concept.

The motivation for the approach of the H–dichotomy is due to the fact that the characterizations in this
case do not impose restrictions neither on the matrix A, which defines the system of differential equations,
nor on the solutions, such as bounded growth or decay.

2. Notations. Definitions

Let us denote by X a metric space, by V a Banach space, by V∗ its dual, and by B(V) the space of all
bounded linear operators from V into itself. We consider the set T =

{
(t, t0) ∈ R2

+, t ≥ t0
}
. Let I be the

identity operator on V . We denote Y = X × V and Yx = {x} × V , where x ∈ X.
Let us define the sets

H = {H : R+ → R∗+| H continuous}

and
F = { f : R+ → R+| ∃µ ∈ R such that f (t) = eµt,∀t ≥ 0}

with the subsets F+ and F− for positive, respectively negative values of µ.
We will denote by K the set of all continuous functions h : R+ → [1,∞) such that, for all H ∈ H , there

exist a function f ∈ F and a constant k > 0 with the properties

h(s) ≤ k f (t − s)H(t), and h(2t)h(2s) ≤ H(t + s), ∀t, s ≥ 0.

Remark. As we can consider h(t) = f (t) = eνt and H(t) = e2νt, ν > 0, t ≥ 0, it follows that the set K is not
empty.

Definition 2.1. The mapping C : T × Y → Y defined by the relation

C(t, s, x, v) = (ϕ(t, s, x),Φ(t, s, x)v),

where ϕ : T × X → X has the properties
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(s1) ϕ(t, t, x) = x, ∀(t, x) ∈ R+ × X;
(s2) ϕ(t, s, ϕ(s, t0, x)) = ϕ(t, t0, x),∀(t, s, t0) ∈ T, x ∈ X

and Φ : T × X → B(V) satisfy
(c1) Φ(t, t, x) = I, ∀(t, x) ∈ R+ × X;
(c2) Φ(t, s, ϕ(s, t0, x))Φ(s, t0, x) = Φ(t, t0, x),∀(t, s, t0) ∈ T, x ∈ X,

is called skew-evolution semiflow on Y .

Remark. ϕ is called evolution semiflow and Φ evolution cocycle over the evolution semiflow ϕ.

Remark. If C = (ϕ,Φ) denotes a skew-evolution semiflow and α ∈ R a parameter, then Cα = (ϕ,Φα), where

Φα : T × X → B(V), Φα(t, t0, x) = eα(t−t0)Φ(t, t0, x), (2.1)

is the α-shifted skew-evolution semiflow.

Example 2.1. Let X = R+. The mapping ϕ : T × R+ → R+, ϕ(t, s, x) = t − s + x is an evolution semiflow
on R+. For every evolution operator E : T → B(V) we obtain that

ΦE : T × R+ → B(V), ΦE(t, s, x) = E(t − s + x, x)

is an evolution cocycle on V over the evolution semiflow ϕ. Hence, an evolution operator on V is generating
a skew-evolution semiflow on Y .

Example 2.2. Let f : R+ → (0,∞) be a decreasing function. We denote by X the closure in C, the set of
all continuous functions x : R → R, of the set { ft, t ∈ R+}, where ft(τ) = f (t + τ), ∀τ ∈ R+. The mapping
ϕ0 : R+ × X → X, ϕ0(t, x) = xt, where xt(τ) = x(t + τ), ∀τ ≥ 0, is a semiflow on X. Let V = L2(0, 1)
be a separable Hilbert space with the orthonormal basis {en}n∈N defined by e0 = 1 and en(y) =

√
2 cos nπy,

where y ∈ (0, 1) and n ∈ N. Let us consider the Cauchy problem{
v̇(t) = A(ϕ0(t, x))v(t), t > 0
v(0) = v0.

(2.2)

where A : X → B(V) is a continuous mapping. We consider a C0-semigroup S given by the relation

S (t)v =

∞∑
n=0

e−n2π2t〈v, en〉en,

where 〈·, ·〉 denotes the scalar product in V . The mapping

Φ0 : R+ × X → B(V), Φ0(t, x)v = S
(∫ t

0
x(s)ds

)
v

is a cocycle over the semiflow ϕ0 and C0 = (ϕ0,Φ0) is a linear skew-product semiflow on Y . Also, for all
v0 ∈ D(A), we have that v(t) = Φ0(t, x)v0, t ≥ 0, is a strong solution of system (2.2). Then the mapping

C : T × Y → Y, C(t, s, x, v) = (ϕ(t, s, x),Φ(t, s, x)v),

where
ϕ(t, s, x) = ϕ0(t − s, x) and Φ(t, s, x) = Φ0(t − s, x), ∀(t, s, x) ∈ T × X

is a skew-evolution semiflow on Y . Hence, the skew-evolution semiflows are generalizations of skew-
product semiflows.
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Other examples of skew-evolution semiflows are given in (Stoica & Megan, 2010).

Definition 2.2. C = (ϕ,Φ) has ω–growth if there exists a nondecreasing function ω : R+ → [1,∞) with the
property lim

t→∞
ω(t) = ∞ such that:

‖Φ(t, t0, x)v‖ ≤ ω(t − s) ‖Φ(s, t0, x)v‖ ,

for all (t, s), (s, t0) ∈ T and all (x, v) ∈ Y .

Remark. If C has ω–growth, then the −α-shifted skew-evolution semiflow C−α = (ϕ,Φ−α), α > 0, has also
ω–growth.

Remark. The property of ω–growth is equivalent with the property of exponential growth (see (Stoica,
2010)).

Definition 2.3. C = (ϕ,Φ) has ω–decay if there exists a nondecreasing function ω : R+ → [1,∞) with the
property lim

t→∞
ω(t) = ∞ such that:

‖Φ(s, t0, x)v‖ ≤ ω(t − s) ‖Φ(t, t0, x)v‖ ,

for all (t, s), (s, t0) ∈ T and all (x, v) ∈ Y .

Remark. If C has ω–decay, then the α-shifted skew-evolution semiflow Cα = (ϕ,Φα), α > 0, has also
ω–decay.

Remark. The property of ω–decay is equivalent with the property of exponential decay (see (Stoica, 2010)).

3. Concepts of dichotomy

Definition 3.1. A continuous mapping P : Y → Y defined by

P(x, v) = (x, P(x)v), ∀(x, v) ∈ Y, (3.1)

where P(x) is a linear projection on Yx, is called projector on Y .

Definition 3.2. A projector P on Y is called invariant relative to a skew-evolution semiflow C = (ϕ,Φ) if
following relation holds:

P(ϕ(t, s, x))Φ(t, s, x) = Φ(t, s, x)P(x), (3.2)

for all (t, s) ∈ T and all x ∈ X.

Definition 3.3. Two projectors P and Q, defined by (3.1), are said to be compatible with a skew-evolution
semiflow C = (ϕ,Φ) if:

(t1) each of the projectors is invariant on Y , as in (3.2);
(t2) ∀x ∈ X, the projections P(x) and Q(x) verify the relations

P(x) + Q(x) = I and P(x)Q(x) = 0.
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Definition 3.4. C = (ϕ,Φ) is exponentially dichotomic relative to the compatible projectors P and Q if there
exist α > 0 and two nondecreasing mappings N1,N2 : R+ → [1,∞) such that:

(ed1)
eα(t−s) ‖ΦP(t, t0, x)v‖ ≤ N1(s) ‖ΦP(s, t0, x)v‖ ; (3.3)

(ed2)
eα(t−s)

∥∥∥ΦQ(s, t0, x)v
∥∥∥ ≤ N2(t)

∥∥∥ΦQ(t, t0, x)v
∥∥∥ , (3.4)

for all (t, s), (s, t0) ∈ T and all (x, v) ∈ Y .

Remark. In Definition 3.4, relation (3.3) is the definition for the exponential stability and relation (3.4) for
the exponential instability.

A more general concept of dichotomy is given by

Definition 3.5. C = (ϕ,Φ) is H–dichotomic relative to the compatible projectors P and Q if there exist two
nondecreasing mappings N1,N2 : R+ → [1,∞) such that:

(Hed1)
H(t) ‖ΦP(t, t0, x)v‖ ≤ N1(t0) ‖P(x)v‖ ; (3.5)

(Hed2)
H(s)

∥∥∥ΦQ(s, t0, x)v
∥∥∥ ≤ N2(t)

∥∥∥ΦQ(t, t0, x)v
∥∥∥ , (3.6)

for all (t, s), (s, t0) ∈ T , all (x, v) ∈ Y and all H ∈ H .

Remark. For H(t) = eνt, t ≥ 0, ν > 0 the exponential dichotomy for skew-evolution semiflows is obtained.

Example 3.1. Let us consider the system of differential equations{
u̇ = (−2t sin t − 3)u
ẇ = (t cos t + 2)w

Let X = R+ and V = R2 with the norm ‖(v1, v2)‖ = |v1| + |v2|, v = (v1, v2) ∈ R2. Then the mapping
ϕ : T × R+ → R+ defined by

ϕ(t, s, x) = xt−s

is an evolution semiflow and the mapping Φ : T × R+ → B(R2) given by

Φ(t, s, x)(v1, v2) = (U(t, s)v1,W(t, s)v2) =

= (e2t cos t−2s cos s−2 sin t+2 sin s−3t+3sv1, et sin t−s sin s+cos t−cos s+2t−2sv2),

where U(t, s) = u(t)u−1(s), W(t, s) = w(t)w−1(s), (t, s) ∈ T , and u(t), w(t), t ∈ R+, are the solutions of the
given differential equations, is an evolution cocycle. We obtain that the skew-evolution semiflow C = (ϕ,Φ)
is H–dichotomic relative to the compatible projectors P, Q : R2 → R2, defined by P(x, v) = (v1, 0) and
Q(x, v) = (0, v2), where v = (v1, v2), with

H(u) = eu, N1(s) = e5s+4 and N2(s) = e−t+2.
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In what follows, if P is a given projector, we will denote for every (t, s, x) ∈ T × X

ΦP(t, s, x) = Φ(t, s, x)P(x) and CP = (ϕ,ΦP).

We remark that
(i) ΦP(t, t, x) = P(x), for all (t, x) ∈ R+ × X;
(ii) ΦP(t, s, ϕ(s, t0, x))ΦP(s, t0, x) = ΦP(t, t0, x), for all (t, s), (s, t0) ∈ T , x ∈ X.

The following result is an integral characterization for the concept of H-dichotomy.

Theorem 3.2. Let P, Q : R+ → B(V) be two projectors compatible with C = (ϕ,Φ) with the property that
CP has ω–growth and CQ has ω–decay. Let H ∈ H and h ∈ K . Then C is H–dichotomic if and only if there
exist two mappings M1,M2 : R+ → R∗+ such that:

(i) ∫ t

t0
h(τ)

∥∥∥ΦP(t, τ, x)∗v∗
∥∥∥ dτ ≤ M1(t0)H(t)

∥∥∥P(x)v∗
∥∥∥ , (3.7)

(ii)

h(t0)
∫ t

0

1
H(τ)

∥∥∥ΦQ(τ, t0, x)v
∥∥∥ dτ ≤ M2(t)

∥∥∥ΦQ(t, t0, x)v
∥∥∥ , (3.8)

for all (t, s), (s, t0) ∈ T and all (x, v) ∈ Y, v∗ ∈ V∗ with ‖v∗‖ ≤ 1.

Proof. Necessity. (i) As the skew-evolution semiflow C is H-dichotomic, it implies that the relation (3.5)
of Definition 3.5 holds. There exist a function f ∈ F− and a constant k > 0 such that

h(s) ≤ k f (t − s)H(t), ∀(t, s) ∈ T.

Let us denote f (t) = e−νt, ν > 0. We obtain the inequalities

‖ΦP(t, t0, x)v‖ ≤
N1(t)
H(t)

‖ΦP(s, t0, x)v‖ ≤ k
N1(s)
h(s)

e−ν(t−s) ‖ΦP(s, t0, x)v‖ ,

for all (t, s), (s, t0) ∈ T and all (x, v) ∈ Y . Further we have∫ t

t0
h(τ)

∥∥∥ΦP(t, τ, x)∗v∗
∥∥∥ dτ ≤ kH(t)

∫ t

t0
h(τ)e−ν(t−τ)

∥∥∥ΦP(t, τ, x)∗v∗
∥∥∥ dτ ≤ M1(t0)H(t)

∥∥∥P(x)v∗
∥∥∥ ,

where we have denoted M1(t) = kν−1N1(t), t ≥ 0.
(ii) We have that the relation (3.6) of Definition 3.5 takes place. There exist a function f ∈ F− and a

constant k > 0 such that
h(t0) ≤ k f (s − t0)H(s), ∀(s, t0) ∈ T.

Let us consider f (t) = e−νt, ν > 0. We have∥∥∥ΦQ(s, t0, x)v
∥∥∥ ≤ N2(t)

H(s)

∥∥∥ΦQ(t, t0, x)v
∥∥∥ ≤ k

N2(t)
h(t0)

e−ν(s−t0)
∥∥∥ΦQ(t, t0, x)v

∥∥∥ ≤
≤ k

N2(t)
h(t0)

eνte−ν(s−t0)e−ν(2s−t0)
∥∥∥ΦQ(t, t0, x)v

∥∥∥ ≤ kN2(t)eνte−ν(t−s)
∥∥∥ΦQ(t, t0, x)v

∥∥∥ ,
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for all (t, s), (s, t0) ∈ T and all (x, v) ∈ Y . Further we have

h(t0)
∫ t

t0

1
H(τ)

∥∥∥ΦQ(t, t0, x)v
∥∥∥ dτ ≤ kM

∫ t

t0
e−ν(τ−t0)eδ(t−τ)

∥∥∥ΦQ(t, t0, x)v
∥∥∥ dτ ≤ M2(t) ‖P(x)v‖ ,

where we have denoted M2(t) =
kM
ν + δ

e(ν+δ)t, t ≥ 0, and where we have defined in Definition 2.3 the function

ω(t) = Meδt, M ≥ 1 and δ > 0.
Sufficiency. (i) We suppose that relation (3.7) takes place. Let us first consider the case t ∈ [t0, t0 + 1).

We have, as 0 ≤ t − t0 < 1,
‖ΦP(t, t0, x)v‖ ≤ Meα+δe−α(t−t0) ‖P(x)v‖ ,

for all (x, v) ∈ Y , where we have considered in Definition 2.2 the function ω(t) = Meδt, M ≥ 1 and δ > 0.
On the second hand, we consider the case t ≥ t0 + 1 and s ∈ [t0, t0 + 1]. As H ∈ H and h ∈ K , there

exists a constant α > 0 such that h(s) ≥ e−α(t−s)H(t), for all (t, s ∈ T ). We have

e−(α+δ)
∣∣∣〈v∗, eα(t−t0)ΦP(t, t0, x)v〉

∣∣∣ ≤ e−(α+δ)(τ−t0)
∣∣∣〈v∗, eα(t−t0)ΦP(t, t0, x)v〉

∣∣∣ =

= e−(α+δ)(τ−t0)
∫ t0+1

t0

∣∣∣〈ΦP(t, τ, ϕ(τ, t0, x))∗v∗, eα(t−t0)ΦP(τ, t0, x)v〉
∣∣∣ dτ ≤

≤

∫ t0+1

t0
eα(t−τ)

∥∥∥ΦP(t, τ, ϕ(τ, t0, x))∗v∗
∥∥∥ e−δ(τ−t0) ‖ΦP(τ, t0, x)v‖ dτ ≤

≤ M ‖P(x)v‖
∫ t

t0
eα(t−τ)

∥∥∥ΦP(t, τ, ϕ(τ, t0, x))∗v∗
∥∥∥ dτ ≤

≤ MM1(t0) ‖P(x)v‖
∥∥∥P(x)v∗

∥∥∥ .
By taking supremum relative to ‖v∗‖ ≤ 1 it follows that

‖ΦP(t, t0, x)v‖ ≤ Meα+δM1(t0)e−α(t−t0) ‖P(x)v‖

Thus, we obtain
‖ΦP(t, t0, x)v‖ ≤ Meα+δ [M1(t0) + 1] e−α(t−t0) ‖P(x)v‖ ,

for all (t, t0) ∈ T and (x, v) ∈ Y . Let us now define H(t) = eαt and N1(t0) = Meα+δ [M1(t0) + 1] eαt0 . We
obtain thus relation (3.5).

(ii) For H ∈ H and h ∈ K , there exists a constant β > 0 such that h(s) ≤ e−β(t−s)H(t), ∀(t, s) ∈ T. Let us
denote

K =

∫ 1

0
e−βτω(τ)dτ,

where the function ω is given by Definition 2.3. We have

K ‖Q(x)v‖ =

∫ t0+1

t0
e−β(τ−t0)ω(τ − t0)

∥∥∥ΦQ(t0, t0, x)v
∥∥∥ dτ ≤

≤

∫ t0+1

t0
e−β(τ−t0)

∥∥∥ΦQ(τ, t0, x)v
∥∥∥ dτ ≤ M2(t)eβ(t−t0)

∥∥∥ΦQ(t, t0, x)v
∥∥∥ ,
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for all (t, t0) ∈ T and all (x, v) ∈ Y . This relation implies∥∥∥ΦQ(s, t0, x)v
∥∥∥ ≤ 1

K
M2(t)eβ(t−s)

∥∥∥ΦQ(t, t0, x)v
∥∥∥ ,

for all (t, s), (s, t0) ∈ T and all (x, v) ∈ Y . Let us define H(s) = eβs and N2(t) =
1
K

M2(t)eβt. Relation (3.6) is
thus obtained.

Remark. In Definition 3.5, relation (3.5) gives the definition for the H-stability and relation (3.6) for the
H-instability, characterized, respectively, by the relations (3.7) and (3.8) of Theorem 3.2.

Acknowledgements

The authors gratefully acknowledge helpful suggestions and support from Professor Mihail Megan.
Also, we would like to express our gratitude to the referees for the valuable comments which have improved
the final version of the paper.

References

Barreira, L. and C. Valls (2008). Stability of Nonautonomous Differential Equations. Vol. 1926. Lecture Notes in Math.

Bento, A. J. G. and C. M. Silva (2012). Nonuniform dichotomic behavior: Lipschitz invariant manifolds for odes.
arXiv:1210.7740v1.

Chicone, C. and Y. Latushkin (1999). Evolution Semigroups in Dynamical Systems and Differential Equations. Vol. 70. Mathemat-
ical Surveys and Monographs, Amer. Math. Soc.

Chow, S. N. and H. Leiva (1995). Existence and roughness of the exponential dichotomy for linear skew-product semiflows in
banach spaces. J. Differential Equations 120, 429–477.

Daleckii, J. L. and M. G. Krein (1974). Stability of Solutions of Differential Equations in Banach Spaces. Vol. 43. Translations of
Mathematical Monographs, Amer. Math. Soc.

Massera, J. L. and J. J. Schäffer (1966). Linear differential equations and function spaces. Vol. 21. Academic Press.

Megan, M. and C. Stoica (2008a). Exponential instability of skew-evolution semiflows in banach spaces. Studia Univ. Babeş-Bolyai
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1. Introduction

The notion of a multiset (bag) is well established both in mathematics and computer science (Clements,
1988; Conder et al., 2007; Galton, 2003; Singh et al., 2011; Skowron, 1988; Šlapal, 1993). In mathematics,
a multiset is considered to be the generalization of a set. In classical set theory, a set is a well-defined
collection of distinct objects. If repeated occurrences of any object is allowed in a set, then a mathematical
structure, that is known as multiset (mset, for short), is obtained (Singh, 1994; Singh et al., 2007; Singh &
Singh, 2003; Wildberger, 2003). In various counting arguments it is convenient to distinguish between a
set like {a, b, c} and a collection like {a, a, a, b, c, c}. The latter, if viewed as a set, will be identical to the
former. However, it has some of its elements purposely listed several times. We formalize it by defining a
multiset as a collection of elements, each considered with certain multiplicity. For the sake of convenience
a multiset is written as {k1/x1, k2/x2, . . . , kn/xn} in which the element xi occurs ki times. We observe that
each multiplicity ki is a positive integer.
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Classical set theory states that a given element can appear only once in a set, it assumes that all mathe-
matical objects occur without repetition. Thus there is only one number four, one field of complex numbers,
etc. So, the only possible relation between two mathematical objects is either they are equal or they are
different. The situation in science and in ordinary life is not like this. In the physical world it is observed
that there is enormous repetition. For instance, there are many hydrogen atoms, many water molecules,
many strands of DNA, etc. Coins of the same denomination and year, electrons or grains of sand appear
similar, despite being obviously separate. This leads to three possible relations between any two physical
objects; they are different, they are the same but separate or they coincide and are identical. For the sake
of definiteness we say that two physical objects are the same or equal, if they are indistinguishable, but
possibly separate, and identical if they physically coincide.

Topology, as a branch of mathematics, can be formally defined as the study of qualitative properties of
certain objects called topological spaces that are invariant under certain kinds of transformations called con-
tinuous maps (Galton, 2003; Skowron, 1988; Šlapal, 1993). There are many occasions, however, when one
encounters collections of non-distinct objects. In such situations the term ‘multiset’ is used instead of ‘set’.
In this paper topologies on multisets are provided and they can be useful for measuring the similarities and
dissimilarities between the universes of the objects which are multisets. Moreover, topologies on multisets
can be associated to IC-bags or nk-bags introduced by K. Chakrabarthy (Chakrabarty, 2000; Chakrabarty
& Despi, 2007) with the help of rough set theory. The association of rough seth theory and topologies on
multisets through bags with interval counts (Chakrabarty & Despi, 2007) can be used to develop theoretical
study of covering based rough sets with respect to universe as multisets.

The mset space [X]w is the collection of finite msets whose elements are from X such that no member
of an element of [X]w occurs more than finite number (w) of times. i.e., every msets in the collection [X]w

are finite cardinality with each element having multiplicity atmost w. Different types of collections of msets
such as power msets, power whole msets and power full msets which are submsets of the mset space and
operations under such collections of msets are defined. The notion of M-topological space and the concept
of open multisets are introduced. More precisely, a multiset topology is defined as a set of multisets as
points. The notion of basis, sub basis, closed sets, closure and interior in topological spaces are extended to
M-topological spaces and many related theorems have been proved. The paper concludes with the definition
of continuous mset functions and related properties.

2. Preliminaries and Basic Definitions

In this section some basic definitions, results and notations as introduced by V. G. Cerf et al. (Gostelow
et al., 1972) in 1972, J. L. Peterson (Peterson, 1976) in 1976, R. R. Yager (Yager, 1987, 1986) in 1986,
W. D. Blizard (Blizard, 1989a, 1990, 1989b, 1991) in 1989, K. Chakrabarty et al. (Chakrabarty & Despi,
2007; Chakrabarty et al., 1999b,a; Chakrabarty & Despi, 2007) in 1999, S. P. Jena et al. (Jena et al., 2001)
in 2001 and the authors concepts in (Girish & John, 2009a, 2012, 2009b; Girish & Jacob, 2011; Girish &
John, 2011) are presented.

Definition 2.1. (Girish & John, 2012) An mset M drawn from the set X is represented by a function Count
M or CM defined as CM : X → N where N represents the set of non negative integers.

Here CM(x) is the number of occurrences of the element x in the mset M. We present the mset M drawn
from the set X = {x1, x2, . . . , xn} as M = {m1/x1,m2/x2, . . . ,mn/xn} where mi is the number of occurrences
of the element xi, i = 1, 2, . . . , n in the mset M. However those elements which are not included in the mset
M have zero count.
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Example 2.1. (Girish & John, 2012) Let X = {a, b, c, d, e} be any set. Then M = {2/a, 4/b, 5/d, 1/e} is an
mset drawn from X. Clearly, a set is a special case of an mset.

Let M and N be two msets drawn from a set X. Then, the following are defined in (Girish & John,
2012):

(i) M = N if CM(x) = CN(x) for all x ∈ X.
(ii) M ⊆ N if CM(x) ≤ CN(x) for all x ∈ X.

(iii) P = M ∪ N if CP(x) = Max {CM(x),CN(x)} for all x ∈ X.
(iv) P = M ∩ N if CP(x) = Min {CM(x),CN(x)} for all x ∈ X.
(v) P = M ⊕ N if CP(x) = CM(x) + CN(x) for all x ∈ X.

(vi) P = M 	 N if CP(x) = Max{CM(x) − CN(x), 0} for all x ∈ X where ⊕ and 	 represents mset addition
and mset subtraction respectively.

Let M be an mset drawn from a set X. The support set of M denoted by M∗ is a subset of X and
M∗ = {x ∈ X : CM(x) > 0}. i.e., M∗ is an ordinary set. M∗ is also called root set.

An mset M is said to be an empty mset if for all x ∈ X, CM(x) = 0.
The cardinality of an mset M drawn from a set X is denoted by Card (M) or M and is given by Card

M =
∑

x∈X CM(x).

Definition 2.2. (Girish & John, 2012) A domain X, is defined as a set of elements from which msets are
constructed. The mset space [X]w is the set of all msets whose elements are in X such that no element in the
mset occurs more than w times.

The set [X]∞ is the set of all msets over a domain X such that there is no limit on the number of
occurrences of an element in an mset.

If X = {x1, x2, . . . , xk} then [X]w = {{m1/x1,m2/x2, . . . ,mk/xk} : for i = 1, 2, . . . k; mi ∈ {0, 1, 2, . . .w}}.

Definition 2.3. (Girish & John, 2012) Let X be a support set and [X]w be the mset space defined over
X. Then for any mset M ∈ [X]w, the complement Mc of M in [X]w is an element of [X]w such that
Cc

M(x) = w −CM(x) for all x ∈ X.

Remark 2.1. Using Definition 2.3, the mset sum can be modified as follows:

CM1⊕M2(x) = min{w,CM1(x) + CM2(x)} for all x ∈ X.

Notation 2.1. (Girish & John, 2012) Let M be an mset from X with x appearing n times in M. It is denoted
by x ∈n M. M = {k1/x1, k2/x2, . . . , kn/xn} where M is an mset with x1 appearing k1 times, x2 appearing k2
times and so on. [M]x denotes that the element x belongs to the mset M and |[M]x| denotes the cardinality
of an element x in M.

A new notation can be introduced for the purpose of defining Cartesian product, Relation and its domain
and co-domain. The entry of the form (m/x, n/y)/k denotes that x is repeated m-times, y is repeated n-times
and the pair (x, y) is repeated k times. The counts of the members of the domain and co-domain vary in
relation to the counts of the x co-ordinate and y co-ordinate in (m/x, n/y)/k. For this purpose we introduce
the notation C1(x, y) and C2(x, y). C1(x, y) denotes the count of the first co-ordinate in the ordered pair (x, y)
and C2(x, y) denotes the count of the second co-ordinate in the ordered pair (x, y).

Throughout this paper M stands for a multiset drawn from the multiset space [X]w. We can define the
following types of submets of M and collection of submsets from the mset space [X]w.
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Definition 2.4. (Girish & John, 2012) (Whole submset) A submset N of M is a whole submset of M with
each element in N having full multiplicity as in M. i.e., CN(x) = CM(x) for every x in N.

Definition 2.5. (Girish & John, 2012) (Partial Whole submset) A submset N of M is a partial whole submset
of M with at least one element in N having full multiplicity as in M. i.e., CN(x) = CM(x) for some x in N.

Definition 2.6. (Girish & John, 2012) (Full submset) A submset N of M is a full submset of M if each
element in M is an element in N with the same or lesser multiplicity as in M. i.e., M∗ = N∗ with CN(x) ≤
CM(x) for every x in N.

Note 2.1. (Girish & John, 2012) Empty set ∅ is a whole submset of every mset but it is neither a full submset
nor a partial whole submset of any nonempty mset M.

Example 2.2. (Girish & John, 2012) Let M = {2/x, 3/y, 5/z} be an mset. Following are the some of the
submsets of M which are whole submsets, partial whole submsets and full submsets.

(a) A submset {2/x, 3/y} is a whole submset and partial whole submset of M but it is not full subset of M.
(b) A submset {1/x, 3/y, 2/z} is a partial whole submset and full submset of M but it is not a whole submset

of M.
(c) A submset {1/x, 3/y} is partial whole submset of M which is neither whole submset nor full submset of

M.

Definition 2.7. (Girish & John, 2012) (Power Whole Mset) Let M ∈ [X]w be an mset. The power whole
mset of M denoted by PW(M) is defined as the set of all whole submsets of M. i. e., for constructing power
whole submsets of M, every element of M with its full multiplicity behaves like an element in a classical
set. The cardinality of PW(M) is 2n where n is the cardinality of the support set (root set) of M.

Definition 2.8. (Girish & John, 2012) (Power Full Mset) Let M ∈ [X]w be an mset. Then the power full
mset of M, PF(M), is defined as the set of all full submsets of M. The cardinality of PF(M) is the product
of the counts of the elements in M.

Note 2.2. PW(M) and PF(M) are ordinary sets whose elements are msets.

If M is an ordinary set with n distinct elements, then the power set P(M) of M contains exactly 2n

elements. If M is a multiset with n elements (repetitions counted), then the power set P(M) contains strictly
less than 2n elements because singleton submsets do not repeat in P(M). In the classical set theory, Cantor’s
power set theorem fails for msets. It is possible to formulate the following reasonable definition of a power
mset of M for finite mset M that preserves Cantor’s power set theorem.

Definition 2.9. (Girish & John, 2012) (Power Mset) Let M ∈ [X]w be an mset. The power mset P(M) of M
is the set of all sub msets of M. We have N ∈ P(M) if and only if N ⊆ M. If N = Φ, then N ∈1 P(M); and if
N = Φ, then N ∈k P(M) where k =

∏
z

(
[M]z
[N]Z

)
, the product

∏
z is taken over by distinct elements of z of the

mset N and |[M]z| = m iff z ∈m M, |[N]z| = n iff z ∈n N, then( ∣∣∣[M]z

∣∣∣∣∣∣[N]z

∣∣∣
)

=

(
m
n

)
=

m!
n!(m − n)!

.

The power set of an mset is the support set of the power mset and is denoted by P∗(M). The following
theorem shows the cardinality of the power set of an mset.
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Theorem 2.1 (23). Let P(M) be a power mset drawn from the mset M = {m1/x1, m2/x2, . . . ,mn/xn} and
P∗(M) be the power set of an mset M. Then Card(P∗(M)) =

∏n
i=1(1 + mi).

Example 2.3. (Girish & John, 2012) Let M = {2/x, 3/y} be an mset.
The collection PW(M) = {{2/x}, {3/y},M, ∅}} is a power whole submset of M.
The collection PF(M) = {{2/x, 1/y}, {2/x, 2/y}, {2/x, 3/y}, {1/x, 1/y}, {1/x, 2/y}, {1/x, 3/y}} is a power full
submset of M.
The collection P(M) = {3/{2/x, 1/y}, 3/{2/x, 2/y}, 6/{1/x, 1/y}, 6/{1/x, 2/y}, 2/{1/x, 3/y}, 1/{2/x}, 1/{3/y},
2/{1/x}, 3/{1/y}, 3/{2/y},M, ∅}} is the power mset of M.
The collection P∗(M) = {{2/x, 1/y}, {2/x, 2/y}, {1/x, 1/y}, {1/x, 2/y}, {1/x, 3/y}, {2/x}, {3/y}, {1/x}, {1/y},
{2/y},M, ∅}} is the support set of P(M).

Note 2.3. Power mset is an mset but its support set is an ordinary set whose elements are msets.

Definition 2.10. (Girish & John, 2012) The maximum mset is defined as Z where CZ(x) = Max {CM(x) :
x ∈k M, M ∈ [X]w and k ≤ w}.

Operations under collection of msets. (Girish & John, 2012) Let [X]w be an mset space and {M1,M2, . . . }

be a collection of msets drawn from [X]w . Then the following operations are possible under an arbitrary
collection of msets.

(i) The union ∏
i∈I

Mi = {CMi(x)/x : CMi(x) = max{CMi(x) : x ∈ X}}.

(ii) The intersection
∩i∈I Mi = {C∩Mi(x)/x : C∩Mi(x) = min{CMi(x) : x ∈ X}}.

(iii) The mset addition
⊕i∈I Mi = {C⊕M1(x)/x : C⊕Mi(x) =

∑
i∈I

CMi(x), x ∈ X}.

(iv) The mset complement

Mc = Z 	 M = {CMc(x)/x : CMc(x) = CZ(x) −CM(x), x ∈ X}.

Remark 2.2. Every nonempty set of real numbers that has an upper bound has a supremum and that have a
lower bound has an infimum. Thus, the arbitrary union and arbitrary intersection defined in 2.20 are closed
under the collection {Mi}i∈I , because the collection {Mi}i∈I drawn from [X]m contains elements with finite
cardinality and multiplicity of each element xi in Mi is always less than or equal to m.

Definition 2.11. (Girish & John, 2012) Let M1 and M2 be two msets drawn from a set X, then the Cartesian
product of M1 and M2 is defined as M1 × M2 = {(m/x, n/y)/mn : x ∈m M1, y ∈n M2}.

We can define the Cartesian product of three or more nonempty msets by generalizing the definition of
the Cartesian product of two msets.

Definition 2.12. (Girish & John, 2012) A sub mset R of M ×M is said to be an mset relation on M if every
member (m/x, n/y) of R has a count, product of C1(x, y) and C2(x, y). We denote m/x related to n/y by
m/x R n/y.



42 K. P. Girish, Sunil Jacob John / Theory and Applications of Mathematics & Computer Science 2 (1) (2012) 37–52

The Domain and Range of the mset relation R on M is defined as follows:

Dom R = {x ∈r M : ∃y ∈s M such that r/xRs/y} where CDomR(x) = sup{C1(x, y) : x ∈r M}.
Ran R = {y ∈s M : ∃x ∈r M such that r/xRs/y} where CRanR(y) = sup{C2(x, y) : y ∈s M}.

Example 2.4. (Girish & John, 2012) Let M={8/x, 11/y, 15/z} be an mset. Then R = {(2/x, 4/y)/8, (5/x, 3/x)/15,
(7/x, 11/z)/77, (8/y, 6/x)/48, (11/y, 13/z)/143, (7/z, 7/z)/49, (12/z, 10/y)/120, (14/z, 5/x)/70} is an mset
relation defined on M. Here Dom R = {7/x, 11/y, 14/z} and Ran R = {6/x, 10/y, 13/z}. Also S =

{(2/x, 4/y)/5, (5/x, 3/x)/10, (7/x, 11/z)/77, (8/y, 6/x)/48, (11/y, 13/z)/143, (7/z, 7/z)/49, (12/z, 10/y)/120,
(14/z, 5/x)/70} is a submset of M × M but S is not an mset relation on M because CS ((x, y)) = 5 , 2 × 4
and CS ((x, x)) = 10 , 5 × 3, i.e., count of some elements in S is not a product of C1(x, y) and C2(x, y).

Definition 2.13. (Girish & John, 2012)

(i) An mset relation R on an mset M is reflexive if m/xRm/x for all m/x in M.
(ii) An mset relation R on an mset M is symmetric if m/xRn/y implies n/yRm/x.

(iii) An mset relation R on an mset M is transitive if m/xRn/y, n/yRk/z then m/xRk/z.

An mset relation R on an mset M is called an equivalence mset relation if it is reflexive, symmetric and
transitive.

Example 2.5. (Girish & John, 2012) Let M = {3/x, 5/y, 3/z, 7/r} be an mset. Then the mset relation given
by R = {(3/x, 3/x)/9,
(3/z, 3/z)/9, (3/x, 7/r)/21, (7/r, 3/x)/21, (5/y, 5/y)/25, (3/z, 3/z)/9, (7/r, 7/r)/49, (3/z, 3/x)/9, (3/z, 7/r)/21,
(7/r, 3/z)/21} is an equivalence mset relation.

Definition 2.14. (Girish & John, 2012) An mset relation f is called an mset function if for every element
m/x in Dom f , there is exactly one n/y in Ran f such that (m/x, n/y) is in f with the pair occurring as the
product of C1(x, y) and C2(x, y).

For functions between arbitrary msets it is essential that images of indistinguishable elements of the
domain must be indistinguishable elements of the range but the images of the distinct elements of the
domain need not be distinct elements of the range.

Example 2.6. (Girish & John, 2012) Let M1 = {8/x, 6/y} and M2 = {3/a, 7/b} be two msets. Then an mset
function from M1 to M2 may be defined as f = {(8/x, 3/a)/24, (6/y, 7/b)/42}.

3. Multiset Topology

This section gives the basic definitions and examples introduced in (Girish & John, 2012).

Definition 3.1. (Girish & John, 2012) Let M ∈ [X]w and τ ⊆ P∗(M). Then τ is called a multiset topology
of M if τ satisfies the following properties.

1. The mset M and the empty mset ∅ are in τ.
2. The mset union of the elements of any sub collection of τ is in τ.
3. The mset intersection of the elements of any finite sub collection of τ is in τ.
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Mathematically a multiset topological space is an ordered pair (M, τ) consisting of an mset M ∈ [X]w and
a multiset topology τ ⊆ P∗(M) on M. Note that τ is an ordinary set whose elements are msets. Multiset
Topology is abbreviated as an M-topology.

General topology is defined as a set of sets but multiset topology is defined as a set of multisets. More-
over in general topology τ is a subset of the power set but in M-topology τ is a subset of support set of the
power mset. If M is an M-topological space with M-topology τ, we say that a submset U of M is an open
mset of M if U belongs to the collection τ. Using this terminology, one can say that an M-topological space
is an mset M together with a collection of submsets of M, called open msets, such that ∅ and M are both
open and the arbitrary mset unions and finite mset intersections of open msets are open.

Example 3.1. (Girish & John, 2012) Let M be any mset in [X]w. The collection P∗(M), the support set of
the power mset of M is an M-topology on M and is called the discrete M-topology.

In general topology, discrete topology is the power set but in M-topology, discrete M-topology is the
support set of the power mset.

Example 3.2. (Girish & John, 2012) The collection consisting of M and ∅ only, is an M-topology called
indiscrete M-topology, or trivial M-topology.

Example 3.3. (Girish & John, 2012) If M is any mset in [X]w, then the collection PW(M) is an M-topology
on M.

Example 3.4. (Girish & John, 2012) The collection PF(M) is not an M-topology on M, because ∅ does not
belong to PF(M), but PF(M) ∪ {∅} is an M-topology on M.

Example 3.5. (Girish & John, 2012) The collection τ of partial whole submsets of M is not an M-topology.
Let M = {2/x, 3/y}. Then A = {2/x, 1/y} and B = {1/x, 3/y} are partial whole submsets of M. Now
A∩ B = {1/x, 1/y}, but it is not a partial whole submset of M. Thus τ is not closed under finite intersection.

4. M-Basis and Sub M-Basis

Definition 4.1. (Girish & John, 2012) If M is an mset, then the M-basis for an M- topology on M in [X]w

is a collection B of submsets of M (called M basis elements) such that

1. For each x ∈m M, for some m > 0, there is at least one M-basis element B ∈ B containing m/x.
i.e., for each indistinguishable element in M, there is at least one M-basis element in B having that
element with same multiplicity as in M.

2. If m/x belongs to the intersection of two M-basis elements M and N, then there exists an M-basis
element P containing m/x such that P ⊆ M ∩ N with CP(x) = CM ∩ N(x) and CP(y) ≤ CM∩N(y) for
all y , x.

Remark 4.1. (Girish & John, 2012) If a collection B satisfies the conditions of M-basis, then the M-
topology τ generated by B can be defined as follows. A submset U of M is said to be an open mset in M
(i.e., to be an element of τ) if for each x ∈k U, there is an M-Basis element B ∈ B such that x ∈k B and
CB(y) ≤ CU(y) for all y , x.

Note that each M-basis element is itself an element of τ.

Theorem 4.1. The collection τ generated by an M-basis B is an M-topology on M in [X]w.

Proof. 1. Clearly ∅ and M are in τ.
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2. Let {Uα}α∈J be an indexed family of elements of τ. Then ∗ =
∏
α∈J

Uα belongs to τ. For, given x ∈m U,

m = maxα{CUα(x)}, there is an index α such that Uα containing m/x. Since Uα is an open mset, there
is an M-basis element B containing m/x such that B ⊆ Uα. Then x ∈m B and B ⊆ U, so thatU is an
open mset, by definition.

3. If U1 and U2 are two elements of τ, to prove U1 ∩ U2 belongs to τ. Given x ∈k U1 ∩ U2, k =

min{CU1(x),CU2(x)}. By definition of M-basis, there exists an element B1 containing k/x, such that
B1 ⊆ U1 and another M-basis element B2 containing k/x such that B2 ⊆ U2. The second condition
for an M-basis enables us to choose an M-basis element B3 containing k/x such that B3 ⊆ B1 ∩ B2.
Then x ∈k B3 and B3 ⊆ U1 ∩ U2, so U1 ∩ U2 belongs to τ, by definition.

Finally, by induction it follows that any finite intersection U1 ∩ U2 ∩ · · · ∩ Uk of elements of τ is in τ.
This fact is trivial for k = 1 and to be proved for k = n. Now U1∩U2∩· · ·∩Un = (U1∩U2 · · ·∩Un−1)∩Un.
By hypothesis, U1 ∩ U2 ∩ · · · ∩ Un−1 belongs to τ and by the result proved above, the intersection of
U1 ∩U2 ∩ · · · ∩Un−1 and Un also belongs to τ. Thus the collection of open msets generated by an M-basis
B is, in fact, an M-topology.

Theorem 4.2. Let M be an mset in [X]w and B be an M-basis for an M-topology τ on M. Then τ equals
the collection of all mset unions of elements of the M-basis B.

Proof. Given a collection of elements of B, which are also elements of τ, because τ is an M-topology, their
union is in τ. Conversely, given U ∈ τ, for each m/x in U, there is an element B of B containing m/x,
denoted by Bm/x, such that Bm/x ⊆ U. Then U = ∪Bm/x, so U equals a union of elements of B.

Lemma 4.3. Let M ∈ [X]w be an M-topological space. SupposeM is a collection of open msets of M such
that for each open mset U of M and each element m/x in U, there is an element N ofM containing m/x
such that CN(x) ≤ CU(x). ThenM is an M-basis for the M-topology of M.

Proof. Given x ∈m M, since M itself is an open mset, by hypothesis there is an element N ofM containing
m/x such that N ⊆ M. To check the second condition, let m/x be in N1 ∩ N2, N1 and N2 are elements of
M. Since N1 and N2 are open msets, so is its intersection N1 ∩ N2. Therefore, by hypothesis there exists an
element N3 in C containing m/x such that N3 ⊆ N1 ∩ N2. Hence the collectionM is an M-basis.

Let τ be the collection of open msets of M. Then the M-topology τ′ generated by M equals the M-
topology τ. If U belongs to τ and x ∈m U, then by hypothesis there is an element N ofM containing m/x
such that N ⊆ U. By definition, it follows that U belongs to the M-topology τ′. Conversely, if W belongs
to the M-topology τ′, then W equals a union of elements of M, by theorem 4.4. Since each element M
belongs to τ and τ is an M-topology, W also belongs to τ. Thus the M-topology generated by the M-basis
and M-topology on M are the same.

Definition 4.2. Suppose τ and τ′ are two M-topologies on a given mset M in [X]w. If τ′ ⊂ τ, then we say
that τ′ is finer than τ or τ is coarser than τ′. If τ′ ⊂ τ, then τ′ is strictly finer than τ or τ is strictly coarser
than τ′. Thus τ is comparable with τ′ if either τ′ ⊇ τ or τ ⊇ τ′.

The next theorem gives a criterion for determining whether an M-topology on M is finer than another
in terms of M-basis.

Theorem 4.4. Let B and B′ are M-basis for the M-topologies τ and τ′ on M in [X]w respectively. Then the
following are equivalent:

1. τ′ is finer than τ.
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2. For each x ∈m M and each M-basis element B ∈ B containing m/x, there is an M-basis element
B′ ∈ B′ containing m/x such that CB′(x) ≤ CB(x).

Proof. (1)⇒ (2). Given an element m/x in M and B ∈ B containing m/x, B belongs to τ by definition and
τ ⊆ τ′ by (1). Therefore B ∈ τ′. Since τ′ is generated by B′, there is an M-basis element B′ ∈ B containing
m/x such that CB′(x) ≤ CB(x).

(2)⇒ (1). Given an element U of τ, we show that U ∈ τ′. Let x ∈m U, since B generates τ, there is an
M-basis element B ∈ B containing m/x such that B ⊆ U. From (2), there exists an M-basis element B′ ∈ B′

containing m/x such that B′ ⊆ B. Then B′ ⊆ U and U ∈ τ′.

Example 4.1. The collection {{m/x} : x ∈m M} is an M-basis for the M-topology PW(M).

In general topology {{x} : x ∈ X} is a basis for the discrete topology, but in the case of M-topology the
collection {{m/x} : x ∈m M} is not an M-basis for the discrete M-topology.

Definition 4.3. Let (M, τ) be an M-topological space and N is a submset of M. The collection τN =

{U′ = N ∩ U; U ∈ τ} is an M-topology on N, called the subspace M-topology. With this M-topology, N is
called a subspace of M and its open msets consisting of all mset intersections of open msets of M with N.

Theorem 4.5. IfB is an M-basis for the M-topology of M in [X]w, then the collectionBN = {B∩N : B ∈ B}
is an M-basis for the subspace M-topology on a submset N of M.

Proof. Given U open in M and y ∈m U ∩N, we can choose an element B of B such that y ∈m B ⊆ U. Then,
y ∈m B ∩ N ⊆ U ∩ N. It follows from Lemma 4.5 that BN is an M-basis for the subspace M-topology on
N.

Example 4.2. Let M = {3/a, 4/b, 2/c, 5/d} and τ = {∅,M, {2/c}, {2/a}, {3/a, 2/b}, {2/a, 3/d}, {2/a, 2/c},
{3/a, 3/b, 3/d}, {3/a, 4/b, 2/c}, {2/a, 2/c, 3/d}} is an M-topology on M. If N = {2/a, 2/b, 3/d} ⊆ M, then
τ′ = {∅, {2/a, 2/b, 3/d}, {2/a}, {2/a, 2/b}, {2/a, 3/d}} is an M-topology on N and it is the subspace M-
topology on N.

Definition 4.4. A sub collection P of τ on M is called a sub M-basis for τ, if the collection of all finite
mset intersections of elements of P is an M-basis for τ. The M-topology generated by the sub M-basis P is
defined to be the collection τ of mset union of all finite mset intersections of elements of P.

Note 4.1. The empty mset intersection of the members of sub M-basis is the universal mset.

Theorem 4.6. Let (M, τ) be an M-topological space and P be a collection of submsets of M. Then P is a
sub M-basis for τ if and only if P generates τ.

Proof. Let B be the family of finite intersections of members of P and P be a sub M-basis for τ. It can be
shown that τ is the smallest M-topology on M containing P. Since P ⊆ B and B ⊆ τ, ⊆ τ. Suppose τ∗ is
some other M-topology on M such that P ⊆ τ∗. We have to show that τ ⊆ τ∗. Since P ⊆ τ∗, τ∗ contains all
finite intersections of members of P, i.e., B ⊆ τ∗. Since B is an M-basis, each member of τ can be written
as the union of some members of B and it follows that τ ⊆ τ∗.

Conversely suppose τ is the smallest M-topology containingP. We have to show thatP is a sub M-basis
for τ. i.e., B is an M-basis for τ. Suppose there is an M-topology τ∗ on M such that B is an M-basis for τ∗.
Then every member of τ∗ can be expressed as a union of the sub family of B and so it is in τ since B ⊆ τ.
This means τ∗ ⊆ τ and consequently τ∗ = τ. Since τ is the smallest M-topology containing P, it can be
shown that B is an M-basis for τ and P is a sub M-basis for τ.
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Example 4.3. Let M = {3/a, 5/b, 4/c}. If the collection P = {{3/a, 5/b}, {5/b, 4/c}} is a sub M-basis, then
the collectionB = {{5/b}, {3/a, 5/b}, {5/b, 4/c}} is the corresponding M-basis and τ = {M, ∅, {5/b}, {3/a, 5/b},
{5/b, 4/c}} is the M-topology generated by the M-basis.

If we assume the empty mset intersection of the members of sub M-basis is the universal mset, then we
can give the following example.

Example 4.4. Let M = {3/a, 4/b, 2/c, 5/d}. If the collection
P = {{3/a, 3/b}, {4/d}, {2/a}} is a sub M-basis, then the collection
B = {{3/a, 3/b}, {4/d}, {2/a}, ∅,M} is the corresponding M-basis and
τ = {∅,M, {2/a}, {4/d}, {3/a, 3/b}, {2/a, 4/d}, {3/a, 3/b, 4/d}}
is the M-topology generated by the M-basis.

5. Closed Multisets

Definition 5.1. A sub mset N of an M-topological space M in [X]w is said to be closed if the mset M 	 N
is open.

In discrete M-topology every mset is an open mset as well as a closed mset. In the M-topology PF(M)∪
{∅}, every mset is an open mset as well as a closed mset.

Theorem 5.1. Let (M, t) be an M-topological space. Then the following conditions hold:

1. The mset M and the empty mset ∅ are closed msets.
2. Arbitrary mset intersection of closed msets is a closed mset.
3. Finite mset union of closed msets is a closed mset.

Proof. 1. ∅ and M are closed msets because they are the complements of the open msets M and ∅
respectively.

2. Given a collection of closed msets {Nα}α∈J , we have

CM⊕∩αNα(x) = CM(x) −min
α∈J
{CNα(x)} = max

α∈J
{CM(x) −CNα(x)}

= C∩α(M	)Nα)(x)

From this
M 	 ∩α∈JNα = capα(M	)Nα)

By definition the msets M 	 Nα’s are open. Since the arbitrary union open of msets are open, M 	
∩α∈JNα is an open mset and therefore ∩α∈JNα is a closed mset.

3. Similarly, if Ni is closed, for i = 1, 2, . . . , n, consider

CM	
∏

i Ni(x) = CM(x) −max
i
{CNi(x)} = min

i
{CM(x) −CNi(x)} = C∩i(M⊕Ni)(x).

Thus

M 	
n∏

i=1

Ni = ∩n
i=1(M 	 Ni).

Since finite mset intersections of open msets are open,
∏n

i=1 Ni is a closed mset.
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Theorem 5.2. Let N be a subspace of an M-topological space M in [X]w. Then an mset A is a closed mset
in N if and only if it equals the intersection of a closed mset of M with N.

Proof. Assume A = C∩N where C is a closed mset in M. By the definition of subspace M-topology, M	C
is an open mset in M, so that (M 	 C) ∩ N is an open mset in N. But (M 	 C) ∩ N = N 	 A. Hence N 	 A
is an open mset in N, so that A is a closed mset in N. Conversely, assume that A is closed mset in N. Then
N 	 A is open mset in N, so that by definition it equals the intersection of an open mset U of M with N.
The mset M 	U is a closed mset in M and A = N ∩ (M 	U), so that A equals the intersection of the closed
mset of M with N, as desired.

Theorem 5.3. Let N be a subspace of an M-topological space M in [X]w. If A is a closed mset in N and N
is a closed mset in M, then A is a closed mset in M.

Proof. Proof directly follows from Theorem 5.3.

6. Closure, Interior and Limit Point

Definition 6.1. Given a submset A of an M-topological space M in [X]w, the interior of A is defined as the
mset union of all open msets contained in A and is denoted by Int (A).

i.e., Int (A) = ∪{G ⊆ M : G is an open mset and G ⊆ A} and CInt(A)(x) = max{CG(x) : G ⊆ A}.

Definition 6.2. Given a submset A of an M-topological space M in [X]w, the closure of A is defined as the
mset intersection of all closed msets containing A and is denoted by Cl (A).

i.e., Cl(A) = ∩{K ⊆ M : K is a closed mset and A ⊆ K} and CCl(A)(x) = min{CK(x) : A ⊆ K}.

Definition 6.3. Let (M, τ) be an M-topological space, let x ∈k M and N ⊆ M. Then N is said to be a
neighborhood of k/x if there is an open mset V in τ such that x ∈k V and CV (y) ≤ CN(y) for all y , x.

i.e., a neighborhood of k/x in M means any open mset containing k/x. Here k/x is said to be an interior
point of N.

Definition 6.4. Let A be a submset of the M-topological space M in [X]w. If k/x is an element of M, then
k/x is a limit point of an mset A when every neighborhood of k/x intersects A in some point (point with non
zero multiplicity) other than k/x itself. A′ denotes the mset of all limit points of A.

Theorem 6.1. Let N be a subspace of an M-topological space M in [X]w and A be a submset of an mset N
and Cl(A) denote the closure of an mset A in M. Then the closure of an mset A in N equals Cl(A) ∩ N.

Proof. Let B denote the closure of an mset A in N. If mset Cl(A) is a closed mset in M, then by Theorem
5.3 Cl(A) ∩ N is a closed mset in N. Since Cl(A) ∩ N contains A, and since by definition, B equals the
intersection of all closed submsets of N containing A, we get B ⊆ Cl(A) ∩ N.

On the other hand, B is a closed mset in N. Hence by Theorem 4.4.3, B = C ∩ N for some mset C, a
closed mset in M. Then C is a closed mset of M containing A, because Cl(A) is the intersection of all such
closed msets. We conclude that Cl(A) ⊆ C. Therefore Cl(A) ∩ N ⊆ C ∩ N = B.

Theorem 6.2. Let (M, τ) be an M-topological space, x ∈k M and A ⊆ M, then
1. x ∈k cl (A) if and only if every open mset U containing k/x intersects A.
2. If the M-topology (M, τ) is given by an M-basis B, then, x ∈k Cl (A) if and only if every M-basis element
B ∈ B containing k/x intersects A.
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Proof. 1. If k/x is not in Cl(A), then the mset U = M 	 Cl(A) is an open mset containing k/x that does
not intersect A. Conversely, if there exists an open mset U containing k/x which does not intersect A,
then the mset M 	 U is a closed mset containing A. By the definition of the closure Cl(A), the mset
M 	 U must contain Cl(A). Therefore k/x cannot be in Cl(A).

2. If every open mset containing k/x intersects A, so does every M-basis element B containing k/x,
because B is an open mset.

Conversely, if every M-basis element containing k/x intersects A, so does every open mset U containing
k/x, because U contains an M-basis element that contains k/x.

Theorem 6.3. A submset of an M-topological space is an open mset if and only if it is a neighborhood of
each of its elements with some multiplicity.

Proof. Let M be an M-topological space and N ⊆ M. First suppose N is an open mset. Then clearly N is a
neighborhood of each of its points with some multiplicity. Conversely suppose N is a neighborhood of each
of its points, then for each k/x in N, there is an open mset Vk/x such that x ∈k Vk/x and Vk/x ⊆ N. Clearly,

N =
∏
x∈kN

Vk/x, k = max{CVk/x(x)}.

Since each Vk/x is an open mset so is N.

Theorem 6.4. Let A be a submset of the M-topological space M and A′ be the mset of all limit points of A.
Then CCl (A)(x) = max{CA(x),CA′(x)}.

Proof. If k/x is in A′, then every neighborhood of k/x intersects A. Therefore, by Theorem 4.5.6 k/x
belongs to Cl(A). Hence A′ ⊆ Cl (A). Since by definition A ⊆ Cl (A), it follows that A ∪ A′ = Cl (A).

Conversely suppose k/x is a point of Cl(A), then x ∈k A ∪ A′. If k/x is in A, it is clear that x ∈k

A ∪ A′. Suppose k/x does not belonging to A, since x ∈k Cl (A), we know that every neighborhood U
of k/x intersects A. Thus the mset U must intersect A in a point different from k/x. Hence x ∈k A′ and
x ∈k A ∪ A′.

Corollary 6.5. A submset of an M-topological space is a closed mset if and only if it contains all its limit
points.

Proof. The mset A is a closed mset:

- if and only if A = Cl (A),

- if and only if A = A ∪ A′,

- if and only if A′ ⊆ A.

Theorem 6.6. If A and B are submsets of the M-topological space M in [X]w, then the following properties
hold:

1. If CA(x) ≤ CB(x), then CA′(x) ≤ CB′(x).
2. If CA(x) ≤ CB(x), then CInt (A)(x) ≤ CInt (B)(x).
3. If CA(x) ≤ CB(x), then CCl (A)(x) ≤ CCl (B)(x)
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4. CInt (A∩B)(x) = min{CInt (A)(x),CInt (B)(x)}.
5. CCl(A∪B)(x) = max{CCl (A)(x),CCl (B)(x)}.

Proof. 1. x ∈k A′ if and only if (N 	 {k/x}) ∩ A , ∅, for all open mset N containing k/x. Since B ⊇ A,
(N 	 {k/x})∩B ⊇ (N 	 {k/x})∩A , ∅. So x ∈k A′ implies x ∈k B′. Thus A′ ⊆ B′ and CA′(x) ≤ CB′(x).

2. We have CInt (A)(x) ≤ CA(x) and CInt (B)(x) ≤ CB(x). Since A ⊆ B and CA(x) ≤ CB(x), we get
CInt (A)(x) ≤ CB(x) and Int (A) ⊆ B. Thus Int (A) is an open mset contained in B, but Int (B) is the
largest open mset contained in B. Hence CInt (A)(x) ≤ CInt (B)(x) and Int(A) ⊆ Int (B).

3. We have

CCl (A)(x) = max{CA(x),CA′(x)}, from Theorem 6.8

≤ max{CB(x),CB′(x)}, by (1)

= CCl (B)(x)

Thus Cl(A) ⊆ Cl (B).
4. We have CInt (A∩B)(x) ≤ CInt (A)(x) and CInt (A∩B)(x) ≤ CInt (B)(x).

Therefore CtextInt (A∩B)(x) ≤ min{CInt (A)(x),CInt (B)(x)}. Thus

Int (A ∩ B) ⊆ Int (A) ∩ Int(B) (i)

Also CInt(A)(x) ≤ CA(x) and CInt (B)(x) ≤ CB(x).
Therefore min{CInt (A)(x),CInt (B)(x)} ≤ min{CA(x),CB(x)}.
Thus Int(A)∩ Int(B) ⊆ A ∩ B, but Int (A ∩ B) is the largest open mset contained in A ∩ B, i.e.,
CInt (A∩B)(x) is that largest integer which is less than or equal to CA∩B(x).
Therefore min{CInt (A)(x),CInt (B)(x)} ≤ CInt (A∩B)(x). Thus

Int (A) ∩ Int (B) ⊆ Int (A ∩ B) (ii)

From (i) and (ii) it follows that Int (A ∩ B) = Int(A)∩ Int(B).

5. We have CCl (A)(x) ≤ CCl (A∪B)(x) and CCl (B)(x) ≤ CCl (A∪B)(x). Therefore

max{CCl (A)(x),CCl (B)(x)} ≤ CCl (A∪B)(x) (i)

But CA(x) ≤ CCl (A)(x) and CB(x) ≤ CCl (B)(x).
Therefore max{CA(x),CB(x)} ≤ max{CCl (A)(x),CCl (B)(x)}. Hence

CCl(A∪B)(x) ≤ max{CCl (A)(x),CCl (B)(x)} (ii)

From (i) and (ii) it follows that CCl (A∪B)(x) = max{CCl (A)(x),CCl (B)(x)}.

Thus Cl(A ∪ B) = Cl (A) ∪ Cl (B).

7. Continuous Multiset Functions

Definition 7.1. Let M and N be two M-topological spaces. The mset function f : M → N is said to be
continuous if for each open submset V of N, the mset f −1(V) is an open submset of M, where f −1(V) is the
mset of all points m/x in M for which f (m/x) ∈n V for some n.
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Example 7.1. Let M = {5/a, 4/b, 4/c, 3/d} and N = {7/x, 5/y, 6/z, 4/w} be two msets, τ = {M, ∅, {5/a},
{5/a, 4/b}, {5/a, 4/b, 4/c}} and τ′ = {N, ∅, {7/x}, {5/y}, {7/x, 5/y}, {5/y, 6/z, 4/w}} be two M-topologies on
M and N respectively.

Consider the mset functions f : M → N and g : M → N are given by

f = {(5/a, 5/y)/25, (4/b, 6/z)/24, (4/c, 4/w)/16, (3/d, 6/z)/18},

g = {(5/a, 7/x)/35, (4/b, 7/x)/28, (4/c, 6/z)/24, (3/d, 4/w)/12}.

The mset function f is continuous since the inverse of each member of the M-topology τ′ on N is a member
of the M-topology τ on M. The mset function g is not continuous since {5/y, 6/z, 4/w} ∈ τ′, i.e., an open
mset of N, but its inverse image g−1({5/y, 6/z, 4/w}) = {4/c, 3/d} is not an open submset of M, because the
mset {4/c, 3/d} does not belong to τ.

Example 7.2. Let f : M → N be an mset function and τ = P∗(M), the support set of the power mset of M,
the M-topology on M. Then every mset function f : M → N is continuous for any M-topology on N.

Example 7.3. Let f : M → N be an mset function and τ′ = PF(N) ∪ {∅} be an M-topology on N, then
every mset function f : M → N is continuous for any M-topology τ on M, because open msets in τ′ are
submsets of N whose support set is N∗. Let H and ∅ be open in τ′, then f −1(H) = M and f −1(∅) = ∅. Hence
f is continuous for any τ.

Theorem 7.1. Let M and N be two M-topological spaces and f : M → N be an mset function. Then the
following are equivalent:

1. The mset function f is continuous,
2. For every submset A of M, C f (Cl(A))(x) ≤ CCl ( f (A))(x),
3. For every closed mset B of N, the mset f −1(B) is a closed mset in M,
4. For each x ∈k M and each neighborhood V of f (k/x), there is a neighborhood U of k/x such that

C f (U)(x) ≤ CV (x).

Proof. (1)⇒ (2) Assume that the mset function f is continuous. Let A be a submset of M. We show that if
x ∈k Cl (A), then f (k/x) ∈r Cl ( f (A)) for some r. If V is a neighborhood of f (k/x), then f −1(V) is an open
mset of M containing k/x which intersects A in some point n/y. Then V intersects f (A) in the point f (n/y)
and f (k/x) ∈r Cl( f (A)) for some r.

(2) ⇒ (3) Let B be a closed mset in N and let A = f −1(B). We wish to prove that A is a closed
mset in M; we show that Cl(A) = A. We have f (A) = f ( f −1(B)) ⊆ B. Therefore, if x ∈k Cl (A), then
f (k/x) ∈r f (Cl (A)) ⊆ Cl ( f (A)) ⊆ Cl (B) = B. So that x ∈k f −1(B) = A. Thus Cl(A) ⊆ A, so that Cl
(A) = A.

(3)⇒ (1) Let V be an open mset of N. Set B = N 	 V . Then f −1(B) = f −1(N) 	 f −1(V) = M 	 f −1(V).
Now since B is a closed mset of N, f −1(B) is a closed mset in M by hypothesis so that f −1(V) is an open
mset in M.

(1)⇒ (4) Let x ∈k M and let V be a neighborhood of f (k/x). Then the mset U = f −1(V) is a neighbor-
hood of k/x such that f (U) ⊆ V .

(4) ⇒ (1) Let V be an open mset of N and k/x be a point of f −1(V). Then f (k/x) ∈r V for some r,
so by hypothesis there is a neighborhood Ux of k/x such that f (Ux) ⊆ V . Then Ux ⊆ f −1(V). It follows
that f −1(V) can be written as the union of the open msets Ux. Thus f −1(V) is an open mset of M and f is
continuous.
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Theorem 7.2. If M,N and P are M-topological spaces and f : M → N and g : N → P are continuous
mset functions, then its composition g ◦ f : M → P is a continuous mset function.

Proof. If H is an open mset in P, then g−1(H) is an open mset in N by continuity of g. Now again by
continuity of f , f −1(g−1(H)) = (g ◦ f )−1(H) is an open mset in M. Thus g ◦ f is a continuous mset
function.

Remark 7.1. 1. In general topology, discrete topology is the set of all subsets of X and clearly it contains
2n elements where n is the cardinality of X. But in an M-topology, discrete M-topology P∗(M) is the
support set of the power mset of M in [X]w and it contains

∏n
i=1(1 + mi) < 2n elements where mi is

the occurrence of an element xi in the mset M and n is the cardinality of the mset M.
2. In general topology any function f : X → Y is continuous if X has the discrete topology and Y has

any topology. But in the case of M-topological spaces, every mset function f : M → N is continuous
whenever M-topology of M in [X]w contains

∏n
i=1(1 + mi) < 2n elements and for any M-topology of

N in [X]w where mi is the occurrence of an element xi in the multiset M and n is the cardinality of the
multiset M.

8. Conclusion and Future Work

In this paper the authors focus on topology of multisets. This work extends the theory of general
topology on general sets to multisets. It begins with a brief survey of the notion of msets introduced
by Yager, different types of collections of msets and operations under such collections. It also gives the
definition of mset relation and mset function introduced by the authors. After presenting the preliminaries
and basic definitions the authors introduced the notion of M-topological space. Basis, sub basis, closure,
interior and limit points of multisets are defined and some of the existing theorems are proved in the context
of multisets. Finally the authors have established the relationship between continuous function and discrete
topology in the context of M-topological space.

The concept of topological structures and their generalizations is one of the most powerful notions in
branches of science such as chemistry, physics and information systems. In most applications the topology
is employed out of a need to handle the qualitative information. In any information system, some situations
may occur, where the respective counts of objects in the universe of discourse are not single. In such
situations we have to deal with collections of information in which duplicates are significant. In such
cases multisets play an important role in processing the information. The information system dealing with
multisets is said to be an information multisystem. Thus, information multisystems are more compact when
compared to the original information system. In fact, topological structures on multisets are generalized
methods for measuring the similarity and dissimilarity between the objects in multisets as universes. The
theoretical study of general topology on general sets in the context of multisets can be a very useful theory
for analyzing an information multisystem.

Most of the theoretical concepts of multisets come from combinatorics. Combinatorial topology is
the branch of topology that deals with the properties of geometric figures by considering the figures as
being composed of elementary geometric figures. The combinatorial method is used not only to construct
complicated figures from simple ones but also to deduce the properties of the complicated from the simple.
In combinatorial topology it is remarkable that the only machinery to make deductions is the elementary
process of counting. In such situations we may deal with collections of elements with duplicates. The
theory of M-topology may be useful for studying combinatorial topology with collections of elements with
duplicates.
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Abstract
In this work the estimation of a Global Positioning System satellite orbit is considered. The range and relative velocity of the

satellite is computed in the observer’s local reference frame (topocentric system of coordinates) by including the Earth gravitational
perturbations (up to J3 term) and the solar radiation pressure. Gauss perturbation equations are used to obtain the orbital elements
as a function of time, from which the position vector is derived.

Keywords: GPS Satellite, Gauss Equations, Solar Radiation Pressure, Range.

1. Introduction

Global Positioning System (GPS) satellites are used in a variety of applications such as wireless lo-
cations, navigation, GPS/INS integrations, as well in attitude and orbit estimation (Mikhailov & Vasilév,
2011). GPS satellite orbits are at an altitude of 25, 000 km, with eccentricity ranging from 0.001 to 0.02,
and inclined at 55◦. At such high altitude the atmospheric drag can be disregarded and the dominant forces
affecting the orbital motion are the gravitational and the Solar Radiation Pressure (SRP). Reference (Stelian,
2007) has used fourth-order Runge-Kutta algorithm to numerically integrate the GPS satellite perturbed or-
bit showing that the most dominant orbital perturbation is the Earth oblateness, namely the so called J2 term
of the Earth gravitational potential.

In this work the J2 and J3 orbital gravitational perturbations are considered as well as the solar radiation
pressure. Gaussian planetary differential equations are integrated to quantify the effects of the perturbations
in the orbital elements. The time-varying orbital elements are obtained by rewriting the Gaussian planetary
equations in the orbital coordinate system. Then, from the ephemerides the GPS satellite position and
velocity can be evaluated at any time and in any reference coordinate system. In particular, position and
velocity vectors can be computed in a ground station reference frame, from where the satellite is observed.
This transformation implies the evaluation of the geodetic latitude to consider the Earth an oblate spheroid.
The GPS satellite position and velocity are then evaluated in the Earth-Centered-Inertial (ECI) reference
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frame and then transformed into the topo-centric ground station coordinate system. The final purpose of
this study is to quantify the variation in the GPS satellite range (as seen by an observer in the ground station)
due to the J2 and J3 orbital gravitational and solar pressure perturbations.

2. Coordinate system used

To quantify the range rate effect due to orbital perturbation in the ground reference frame, four coordi-
nates systems are adopted. There are shown in figure 1.

Figure 1. Coordinate systems.

(i) The Earth Centered Inertial ECI coordinate system OXYZ. In this system the X-axis is directed
toward the vernal Equinox, the Y-axis is in the equatorial plane and normal to the X-axis, and the Z-axis is
directed along the rotation axis of the Earth (i.e. normal to the equatorial plane). The unit vectors î, ĵ, k̂ are
taken in the directions of the X-axis, Y-axis and Z-axis respectively. (ii) The Earth Centered Earth Fixed
ECEF coordinate system OXYZ. In this system the X-axis is directed to- ward Greenwich, the Y-axis is in
the equatorial plane and normal to the X-axis, and the Z-axis is directed along the rotation axis of the Earth.
The unit vectors î, ĵ, k̂ are taken in the directions of the X-axis, Y-axis and Z-axis respectively. (iii) The
Orbital Coordinate ORT N coordinate system . In this system the R -axis is directed along the radius vector
of the satellite, the T -axis is in the local orbital plane and normal to the R-axis, and the N-axis is normal
to the orbital plane. The unit vectors êR, êT , êN are taken in the directions of the R-axis, T -axis and N-axis
respectively. (iv) The Topocentric Horizon (SEZ) coordinate system. In this system the fundamental plane
is the observer’s horizon plane, the positive x-axis is directed in the south direction, the y-axis is directed
toward the East and z-axis is directed toward the observer’s zenith.
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3. Earth’s oblateness

Earth is an oblate spheroid. A truncated gravitational potential up J3 is given by:

Ug = −
µR2
⊕

r3

[
J2

(
1 −

3
2

sin2 φ

)
+ J3

R⊕
r

(
5 sin3 φ − 3 sin φ

)]
, (3.1)

where µ is the gravitational constant and φ is the angle between the Earth’s spin axis and satellite radius.
The gradient of this potential gives the perturbing gravitational force in ECI (see (Schaub & Junkins,

2009))

Fg = −
3
2

J2

(
µ

r3

) (R⊕
r

) 
(1 − 5 sin2 φ)x
(1 − 5 sin2 φ)y
(3 − 5 sin2 φ)z

 +

−
1
2

J3

(
µ

r3

) (R⊕
r

)3


5(7 sin3 φ − 3 sin φ)x
5(7 sin3 φ − 3 sin φ)y

(−105 sin4 φ + 30 sin2 φ − 3)z

 (3.2)

and this force is expressed in the orbital frame as

Fg = FR êR + FT êT + FN êN , (3.3)

where, by setting S • = sin(•), and C• = cos(•), and θ = ω + f , the expressions of FR, FT , and FN are

FR = −3µ
R2
⊕

r4

[ J2

2
(1 − 3S 2

i S 2
θ) + J3

R⊕
r

(−15S iS θ − 3S 2
i S 2

θ + 40S 3
i S 3

θ + 30S 4
i S 4

θ − 70S 5
i S 5

θ)
]

FT = −3µ
R2
⊕

r4

{
J2S 2

i S θCθ + J3
R⊕
r

[
5S i(C2

i + S 2
i S 2

θ)(−3 + 7S 2
i S 2

θ) − S 2
i C2

θ (3 − 30S 2
i S 2

θ + 35S 4
i S 4

θ)
]}

FN = −3µ
R2
⊕

r4

{
J2S iS θCi + J3

R⊕
r

[
S 2

i (−15S 3
i S 3

θ) + C2
i (−3 + 30S 2

i S 2
θ − 35S 4

i S 4
θ)
]}
,

where i is the orbit inclination, ω the argument of perigee, f the true anomaly, and êR, êT , and êN are the
unit-vectors of the orbital reference frame axes.

4. Solar radiation pressure

A simplified expression for SRP acceleration vector was given in (Schaub & Junkins, 2009) by

a = −CR P� S m
rs�

r3
s�

= ax î + ay î + az k̂,

where P� ≈ 4.56 · 10−6 Nm−2 is the solar radiation pressure coefficient, S is the surface area, and m the
satellite mass, rs� = r�−r is the position vector of the Sun with respect to the satellite, and CR is the radiation
pressure coefficient, which is a function of the reflectivity coefficient, ε. The reflectivity coefficient becomes
ε = 0 when the satellite surface absorbs all the solar radiation while it becomes ε = 1 when it reflects all the
solar radiation.

Using a pseudo potential function, The acceleration components of the SRP can be expressed in the ECI
frame as 

ax

ay

az

 = −
CRP�S
m rs�


x� − x
y� − y
z� − z

 where


x�
y�
z�

 = rs�


cos λ�

sin λ� cos ε
sin λ� sin ε

 , (4.1)
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where λ� is the sun ecliptic longitude and ε is the obliquity of the ecliptic.
Equations (4.1) are transformed to orbital coordinate system using the transformationêR

êT

êN


T

= R313


î
ĵ
k̂


T

,

where R313 is the transformation matrix that can be expressed by the “3-1-3” Euler sequence

R313 = R3(ω + f ) R1(i) R2(Ω).

So that the SRP force can be expressed as three components in the directions of (êR, êT , êN) coordinate
system as aR, aT , aN .

5. Perturbed motion

In case of unperturbed motion, the angles ω, Ω, and i are constant. These angles are used in the
transformation equations between coordinate systems and also can be used to determine the position and
velocity of the satellite at any given time. The orbit of the satellite undergoes perturbations from several
environmental forces resulting in changes in the elements of the orbits.

The rates of change of the orbital elements (a, e, i, ω,Ω,M) due to a perturbing force

F = FR êR + FT êT + FN êN (5.1)

are given in (Guochang, 2008) and called Gaussian planetary equations. These equations are:

da
dt

=
2

n
√

1 − e2
[e cos f FR + (1 + e cos f ) FT )] (5.2)

de
dt

=

√
1 − e2

na
[sin f FR + (cos E + cos f ) FT ] (5.3)

di
dt

=
(1 − e cos E) cos(ω + f )

na
√

1 − e2
FN (5.4)

dΩ

dt
=

(1 − e cos E) sin(ω + f )

na
√

1 − e2 sin i
FN (5.5)

and

dω
dt

=

√
1 − e2

nae

(
− cos f FR + sin f

2 + e cos f
1 + e cos f

FT

)
− cos i

dΩ

dt
dM
dt

= n −
1 − e2

nae

[
−

(
cos f −

2e
1 + e cos f

)
FR + sin f

2 + e cos f
1 + e cos f

FT

]
,

where a is the semi-major axis, e is the eccentricity of the orbit, n is the mean motion, E is the eccentric
anomaly, and M is the mean anomaly. We solve this system of differential equations to get the elements
(a, e, i,Ω, ω,M) as functions of time. Having these elements one can find the position and velocity at any
time. The angles (i,Ω, ω) are needed for the transformations between coordinate systems. We need to
compute the radius vector r in the ECI reference frame.
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6. Position vector of the ground station

6.1. Position of the ground station in ECI frame

Assuming the Earth is an oblate spheroid, the position vector of the station in the ECI frame has the
components :

Ri = (N + H) cos λE cos θ,

R j = (N + H) cos λE sin θ,

Rk = (N(1 − e2
E) + H) sin λE ,

where N =
aE√

1 − e2
E sin2 λE

, is the Earth’s mean radius, λE is the geodetic longitude of the station and H

is the height of the station.

Figure 2. Ground Station Geodetic Coodinates.

Earth rotates around the k̂-axis with angular velocity ω⊕ = 7.2921158553 · 10−5 rad/s. The angle θ
between the î-axis and the î′-axis is a function of time and is related to ω⊕ by

α(t) = α0 + ω⊕(t − t0).

The angle α, called Greenwich hour angle, is the right ascension of the Greenwich meridian.

6.2. Satellite range

The range of the satellite is given by

ρ = rsat − Rstation.

We have described both rsat and Rstation in the ECI frame. Now we need to have an expression of this
range as seen in the observer’s Topocentric Horizon coordinate system (local, on the Earth surface). In this
reference rame the fundamental plane is the observer’s horizon plane, the positive x̂-axis is taken in the
South direction, the ŷ-axis is pointing toward the East, and ẑ-axis pointing toward the observer’s Zenith.
The frame is referred to as S EZ frame.

The transformation of the range vector from the ECI frame to the S EZ frame is done using the trans-
formation equation

ρS EZ = Atp ρECI
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where the transformation matrix is given as

Atp =

sinψE cos θ sinψE sin θ − cosψE

− sin θ cos θ 0
cosψE cos θ cosψE sin θ sinψE

 ,
where ψE is the angle between the radius vector of the station and the semi-major axis of the spheroidal
Earth. The magnitude of the range is given by

ρ =

√
ρ2

S + ρ2
E + ρ2

Z .

The time derivative of the range gives the relative velocity magnitude of the satellite with respect to the
station in the observer’s local frame (S EZ frame). We have from the above equation

vR = ρ̇ =
1
ρ

(ρS ρ̇S + ρE ρ̇E + ρZ ρ̇Z).

7. Numerical example

Considering a GPS satellite with initial values a = 26, 550 km, e = 0.02, i = 55◦, s/m = 0.02 m2/kg,
Ω = 0◦, ω = 0◦, and M = 0◦. The period of this GPS Satellite is 12 hours and data are computed for 4
days. Figures 3 through 8 show the perturbation in the elements of the orbit. Figure 9 shows the change in
range as seen from the ECI coordinate system and Figure 10 shows the change in range as seen from the
topo-centric coordinate system.

Figure 3. Perturbation in the semi major axis of a GPS satellite.

Figure 4. Perturbation in the eccentricity of a GPS satellite.
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Figure 5. Perturbation in the inclination of a GPS satellite.

Figure 6. Perturbation in the longitude of ascending node of a GPS satellite.

Figure 7. Perturbation in the argument of perigee of a GPS satellite.

Figure 8. Perturbation in the mean anomaly of a GPS satellite.
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Figure 9. Change in the range as it is seen from the ECI coordinate system.

Figure 10. Change in the range as it is seen from the topocentric coordinate system.

8. Conclusion

In this paper we have computed the range and the change in range (relative velocity) of a GPS satellite
as seen by an observer in the ground station. The relative motion of the satellite with respect to the ground
station is affected by the rotation of the Earth and by the perturbation of the satellite. The GPS satellite’s
motion was under the effect of the perturbation of the oblateness of the Earth up to J3 and the perturbation
of the Solar Radiation Pressure force.
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The main aim of this paper is to introduce a new class of sequence spaces which arise from the notion of invariant means,
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establish natural characterization for the underline sequence spaces.
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1. Introduction

Let l∞ and c denote the Banach spaces of bounded and convergent sequences x = (xi), with complex
terms respectively, normed by ‖x‖∞ = sup

i
|xi|, where i ∈ N. Let σ be an injection of the set of positive

integers N into itself having no finite orbits that is to say, if and only if, for all i = 0, j = 0, σ j(i) , i and T
be the operator defined on l∞ by (T (xi)∞i=1) = (xσ(i))∞i=1.

A continuous linear functional φ on l∞ is said to be an invariant mean or σ-mean if and only if

1. φ(x) ≥ 0, when the sequence x = (xi) has xi ≥ 0 for all i,
2. φ(e) = 1, where e = {1, 1, 1, .......} and
3. φ(xσ(i)) = φ(x) for all x ∈ l∞.

The space [Vσ] of strongly σ−convergent sequence was introduced by Mursaleen in (Mursaleen, 1983).
A sequence x = (xk) is said to be strongly σ−convergent if there exists a number L such that

1
k

k∑
i=1

|xσ j(m) − L| → ∞
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as k → ∞ uniformly in m. If we take σ(m) = m + 1 then [Vσ] = [ĉ], which was defined by Maddox in
(Maddox, 1967).

If x = (xi) write T x = (T xi) = (xσ(i)). It can be shown that

Vσ =

{
x = (xi) :

∞∑
m=1

tm,i(x) = L uniformly in i, L = σ − lim x
}

(1.1)

where m ≥ o, i > 0.
tm,i(x) =

xi + xσ(i) + .... + xσm(i)

m + 1
and t−1,i = 0, (1.2)

where, σm(i) denote the mth iterate of σ(i) at i. In the case σ is the translation mapping, σ(i) = i + 1 is
often called a Banach limit and Vσ, the set of bounded sequences of all whose invariant means are equal, is
the set of almost convergent sequence(see (Móricz & Rhoades, 1988)). Subsequently invariant means have
been studied by Ahmad and Mursaleen in (Ahmad & Mursaleen, 1988), (Raimi, 1963) and many others.

The concept of 2-normed spaces was initially introduced by (Gähler, 1963) in the mid of 1960’s. Since
then, many researchers have studied this concept and obtained various results, see for instance (Gähler,
1965, 1964; Gunawan & Mashadi, 2001).

Let X be a real vector space of dimension d, where 2 ≤ d < ∞. A 2-norm on X is a function
‖., .‖ : X × X → R which satisfies the following four conditions (Khan & Tabassum, 2011b, 2010):

(i) ‖x1, x2‖ = 0 if and only if x1, x2 are linearly dependent;
(ii) ‖x1, x2‖ = ‖x2, x1‖;

(iii) ‖αx1, x2‖ = α‖x1, x2‖, for any α ∈ R;
(iv) ‖x + x′, x2‖ ≤ ‖x, x2‖ + ‖x′, x2‖.

The pair (X, ‖., .‖) is then called a 2-normed space.

Exemple 1.1. A standard example of a 2-normed space is R2 equipped with the following 2-norm: ‖x, y‖ :=
the area of the triangle having vertices 0, x, y.

Exemple 1.2. Let Y be a space of all bounded real-valued functions on R. For f , g in Y , define ‖ f , g‖ = 0
if f , g are linearly dependent, ‖ f , g‖ = sup

t∈R
| f (t).g(t)|, if f , g are linearly independent. Then ‖., .‖ is a 2-norm

on Y .

An Orlicz Function is a function M : [0,∞) → [0,∞) which is continuous, nondecreasing and convex
with M(0) = 0, M(x) > 0 for x > 0 and M(x)→ ∞ as x→ ∞.

An Orlicz function M satisfies the ∆2 − condition (M ∈ ∆2 for short ) if there exist constant K ≥ 2 and
u0 > 0 such that M(2u) ≤ KM(u) whenever |u| ≤ u0.

An Orlicz function M can always be represented in the integral form M(x) =
x∫

0
q(t)dt, where q known

as the kernel of M, is right differentiable for t ≥ 0, q(t) > 0 for t > 0, q is non-decreasing and q(t) → ∞ as
t → ∞.

Note that an Orlicz function satisfies the inequality

M(λx) ≤ λM(x) for all λ with 0 < λ < 1,

since M is convex and M(0) = 0.
Lindesstrauss and Tzafriri in (Lindenstrauss & Tzafriri, 1971) used the idea of Orlicz sequence space;

lM :=
{
x ∈ w :

∞∑
k=1

M
(
|xk|

ρ

)
< ∞, for some ρ > 0

}
,
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which is Banach space with the norm

‖x‖M = inf
{
ρ > 0 :

∞∑
k=1

M
(
|xk|

ρ

)
≤ 1

}
.

The space lM is closely related to the space lp, which is an Orlicz sequence space with M(x) = xp for
1 ≤ p < ∞.

Throughout x = (x jk) is a double sequence that is a double infinite array of elements x jk, for j, k ∈ N.
Double sequence have been studied by Vakeel A. Khan and S. Tabassum in (Khan, 2010; Khan &

Tabassum, 2012, 2011b,a, 2010) and many others.
The following inequality will be used throughout

|x jk + y jk|
p jk ≤ D(|x jk|

p jk + |y jk|
p jk ), (1.3)

where x jk and y jk are complex numbers, D = max(1, 2H−1) and H = sup
j,k

p jk < ∞.

Definition 1.1. A double sequence x = (x jk) has Pringsheim limit L (denoted by P − lim x = L) provided
that given ε > 0 there exists N ∈ N such that |x jk − L| < ε whenever j, k > N. We shall describe such an x
more briefly as P − convergent.

Definition 1.2. (Savaş & Patterson, 2007) The four dimensional matrix A = (am,n, j,k) is said to be RH-
regular if it maps every bounded P-convergent sequences into a P-convergent sequence with the same P-
limit.

Theorem 1.3. (Savaş & Patterson, 2007) The four dimensional matrix A = (am,n, j,k) is said to be RH-regular
if and only if

(i) P − lim
m,n

am,n, j,k = 0 for each j, k;

(ii) P − lim
m,n

∞∑
j,k=1

am,n, j,k = 1;

(iii) P − lim
m,n

∞∑
j=1
|am,n, j,k| = 0; for each k;

(iv) P − lim
m,n

∞∑
k=1
|am,n, j,k| = 0; for each j;

(v)
∞∑

j,k=1
|am,n, j,k| is P-convergent and

(vi) there exist positive numbers A and B such that
∑

j,k>B
|am,n, j,k| < A.

2. Main Results

Let M be an Orlicz function P = (p jk) be any factorable double sequence of strictly positive real
numbers. Let A = (am,n, j,k) be a non negative RH-regular summabilty matrix method, (X, ‖., .‖) be 2-norm
space, σ be an injection of the set of positive integers N into itself and p, q ∈ N. We define the following
double sequence spaces:

2Wo(Aσ,M, p, ‖., .‖) =

{
x = (x jk) : P − lim

m,n

∞∑
j,k=0

am,n, j,k

[
M

(‖xσ j(p),σk(q), z‖

ρ

)]p jk

= 0,
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uniformly in p, q, for some ρ > 0 and z ∈ X
}

2W(Aσ,M, p, ‖., .‖) =

{
x = (x jk) : P − lim

m,n

∞∑
j,k=0

am,n, j,k

[
M

(‖xσ j(p),σk(q) − L, z‖

ρ

)]p jk

= 0,

uniformly in p, q, for some ρ > 0, L > 0 and z ∈ X
}

2W∞(Aσ,M, p, ‖., .‖) =

{
x = (x jk) : sup

m,n, j,k

∞∑
j,k=0

am,n, j,k

[
M

(‖xσ j(p),σk(q), z‖

ρ

)]p jk

< ∞,

uniformly in p, q, for some ρ > 0 and z ∈ X
}

Let us consider a few special cases of above definitions:
(i) In particular, when σ(p, q) = (p + 1, q + 1), we have

2Wo(A,M, p, ‖., .‖) =

{
x = (x jk) : P − lim

m,n

∞∑
j,k=0

am,n, j,k

[
M

(‖x j+p,k+q, z‖
ρ

)]p jk

= 0,

uniformly in p, q, for some ρ > 0 and z ∈ X
}

2W(A,M, p, ‖., .‖) =

{
x = (x jk) : P − lim

m,n

∞∑
j,k=0

am,n, j,k

[
M

(‖x j+p,k+q − L, z‖
ρ

)]p jk

= 0,

uniformly in p, q, for some ρ > 0, L > 0 and z ∈ X
}

2W∞(A,M, p, ‖., .‖) =

{
x = (x jk) : sup

m,n, j,k

∞∑
j,k=0

am,n, j,k

[
M

(‖x j+p,k+q, z‖
ρ

)]p jk

< ∞,

uniformly in p, q, for some ρ > 0 and z ∈ X
}

(ii) If M(x) = x then we have

2Wo(Aσ, p, ‖., .‖) =

{
x = (x jk) : P − lim

m,n

∞∑
j,k=0

am,n, j,k‖xσ j(p),σk(q), z‖
p jk = 0,

uniformly in p, q, and z ∈ X
}

2W(Aσ, p, ‖., .‖) =

{
x = (x jk) : P − lim

m,n

∞∑
j,k=0

am,n, j,k‖xσ j(p),σk(q) − L, z‖p jk = 0,

uniformly in p, q and L > 0, z ∈ X
}
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2W∞(Aσ, p, ‖., .‖) =

{
x = (x jk) : sup

m,n, j,k

∞∑
j,k=0

am,n, j,k‖xσ j(p),σk(q), z‖
p jk < ∞,

uniformly in p, q, and z ∈ X
}

(iii) If p jk = 1 for all ( j, k), we have

2Wo(Aσ,M, ‖., .‖) =

{
x = (x jk) : P − lim

m,n

∞∑
j,k=0

am,n, j,k

[
M

(‖xσ j(p),σk(q), z‖

ρ

)]
= 0,

uniformly in p, q, for some ρ > 0 and z ∈ X
}

2W(Aσ,M, ‖., .‖) =

{
x = (x jk) : P − lim

m,n

∞∑
j,k=0

am,n, j,k

[
M

(‖xσ j(p),σk(q) − L, z‖

ρ

)]
0,

uniformly in p, q, for some ρ > 0, L > 0 and z ∈ X
}

2W∞(Aσ,M, ‖., .‖) =

{
x = (x jk) : sup

m,n, j,k

∞∑
j,k=0

am,n, j,k

[
M

(‖xσ j(p),σk(q), z‖

ρ

)]
< ∞,

uniformly in p, q, for some ρ > 0 and z ∈ X
}
.

Definition 2.1. (Savaş & Patterson, 2008) A bounded double sequence x = (x jk) of real number is said to
be (λ̄, σ)-convergent to L provided that

P − lim
r,s

T p,q
r,s = L uniformly in (p, q),

where
T r,s

p,q =
1
λ̄r,s

∑
( j,k)∈ ¯Ir,s

xσ j(p),σk(q).

In this case we write (λ̄, σ) − lim x = L.

One can see that in contrast to the case for single sequences, a P-convergent sequences need not be
(λ̄, σ)−convergent. But it is easy to see that every bounded P-convergent double sequence is (λ̄, σ)−convergent.
In addition, if we letσ(p) = p+1, σ(q) = q+1, and λ̄r,s = rs in the above definition then (λ̄, σ)−convergence
reduces to almost P-convergence which was defined by Moricz and Rhoades in (Móricz & Rhoades, 1988).

Definition 2.2. Let λ = (λr) and µ = (µs) be two non decreasing sequences of positive real numbers both of
which tends to∞ as r, s approach∞, respectively. Also let λr+1 ≤ λr + 1, λ1 = 0 and µs+1 ≤ µs + 1, µ1 = 0.
We write the generalized double de la Valee-Pousin mean by

tr,s(x) =
1

λrµs

∑
j∈Ir

∑
k∈Is

x j,k,

where Ir = [r − λr + 1, r] and Is = [s − µs + 1, s].
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We shall denote λrµs by λ̄rs and ( j ∈ Ir, k ∈ Is) by ( j, k) ∈ Īr,s. Let M be an Orlicz function, x jk be
double sequence space and p = (p jk) be any factorable double sequence of strictly positive real numbers.
Let λ = (λr) and µ = (µs) be the same as defined above and (X, ‖., .‖) be 2-norm space. If we take

ar,s, j,k =

 1
λ̄rs if ( j, k) ∈ Īr,s,

0 otherwise.

We have

[2Vσ, λ̄,M, p, ‖., .‖]o =

{
x = (x jk) : P − lim

r,s

1
λ̄rs

∑
( j,k)∈Īr,s

[
M

(‖xσ j(p),σk(q), z‖

ρ

)]p jk

= 0,

uniformly in p, q, for some ρ > 0 and z ∈ X
}

[2Vσ, λ̄,M, p, ‖., .‖] =

{
x = (x jk) : P − lim

r,s

1
λ̄rs

∑
( j,k)∈Īr,s

[
M

(‖xσ j(p),σk(q) − L, z‖

ρ

)]p jk

= 0,

uniformly in p, q, for some ρ > 0, L > 0 and z ∈ X
}

[2Vσ, λ̄,M, p, ‖., .‖]∞ =

{
x = (x jk) : sup

r,s,p,q

1
λ̄rs

∑
( j,k)∈Īr,s

[
M

(‖xσ j(p),σk(q), z‖

ρ

)]p jk

< ∞,

for some ρ > 0 and z ∈ X
}
.

Definition 2.3. The double lacunary sequence was defined by E. Savaş and R. F. Patterson (Savaş & Patter-
son, 1994) as follows:
The double sequence θr,s = {(kr, ls)} is called double lacunary if there exist two increasing sequence of
integers such that

k0 = 0, hr = kr − kr−1 → ∞ as r → ∞

and
l0 = 0, h̄s = ls − ls−1 → ∞ as s→ ∞.

Notations : kr,s = krls, hr,s = hrh̄s.
The following intervals are determined by θ :

Ir = {(kr) : kr−1 < k < kr}, Is = {(l) : ls−1 < l < ls},

Ir,s = {(k, l) : kr−1 < k < kr and ls−1 < l < ls},

qr =
kr

kr−1
, q̄s =

ls
ls−1

and qr,s = qrq̄s. We will denote the set of all double lacunary sequences by Nθr,s . The
space of double lacunary strongly convergent sequence is defined as follows

Nθr,s =

{
x = (xk,l) : lim

r,s

1
hr,s

∑
(k,l)∈Ir,s

|xk,l − L| = 0 for some L
}



Vakeel A. Khan et al. / Theory and Applications of Mathematics & Computer Science 2 (1) (2012) 61–71 67

see (Savaş & Patterson, 1994).
If we take

ar,s, j,k =

 1
h̄rs

if ( j, k) ∈ Ir,s,

0 otherwise .

We have

[2Wσ, θ,M, p, ‖., .‖]o =

{
x = (x jk) : P − lim

r,s

1
h̄rs

∑
( j,k)∈Ir,s

[
M

(‖xσ j(p),σk(q), z‖

ρ

)]p jk

= 0,

uniformly in p, q, for some ρ > 0 and z ∈ X
}

[2Wσ, θ,M, p, ‖., .‖] =

{
x = (x jk) : P − lim

r,s

1
h̄rs

∑
( j,k)∈Ir,s

[
M

(‖xσ j(p),σk(q) − L, z‖

ρ

)]p jk

= 0,

uniformly in p, q, for some ρ > 0, L > 0 and z ∈ X
}

[2Wσ,M, θ, p, ‖., .‖]o =

{
x = (x jk) : sup

r,s,p,q

1
h̄rs

∑
( j,k)∈Ir,s

[
M

(‖xσ j(p),σk(q), z‖

ρ

)]p jk

< ∞,

for some ρ > 0 and z ∈ X
}
.

Theorem 2.1. Let P = p jk be bounded. Then 2W(Aσ,M, p, ‖., .‖), 2Wo(Aσ,M, p, ‖., .‖) and 2W∞(Aσ,M, p, ‖., .‖)
are linear spaces over the set of complex numbers C.

Theorem 2.2. Let P = p jk be bounded. Then [2Vσ, λ̄,M, p, ‖., .‖]o, [2Vσ, λ̄,M, p, ‖., .‖] and [2Vσ, λ̄,M, p, ‖., .‖]∞
are linear spaces over the set of complex numbers C.

Proof. Let x = (x jk) and y = (y jk) ∈ [2Vσ, λ̄,M, p, ‖., .‖]o and α, β ∈ C then there exist two positive numbers
ρ1, ρ2 such that

P − lim
r,s

1
λ̄rs

∑
( j,k)∈Īr,s

[
M

(‖xσ j(p),σk(q), z‖

ρ1

)]p jk

= 0,

P − lim
r,s

1
λ̄rs

∑
( j,k)∈Īr,s

[
M

(‖yσ j(p),σk(q), z‖

ρ2

)]p jk

= 0,

uniformly in (p, q). Let ρ3 = max{2|α|ρ1, 2|β|ρ2}. Since M is non-decreasing and convex, we have

1
λ̄rs

∑
( j,k)∈Īr,s

[
M

(‖αxσ j(p),σk(q) + βyσ j(p),σk(q), z‖

ρ3

)]p jk

=
1
λ̄rs

∑
( j,k)∈Īr,s

[
M

(‖αxσ j(p),σk(q), z‖

ρ3
+
|βyσ j(p),σk(q), z‖

ρ3

)]p jk

≤
1
λ̄rs

∑
( j,k)∈Īr,s

1
2p jk

[
M

(‖xσ j(p),σk(q), z‖

ρ1

)
+ M

(‖yσ j(p),σk(q), z‖

ρ2

)]p jk

≤
1
λ̄rs

∑
( j,k)∈Īr,s

[
M

(‖xσ j(p),σk(q), z‖

ρ1

)
+ M

(‖yσ j(p),σk(q), z‖

ρ2

)]p jk
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≤ D
1
λ̄rs

∑
( j,k)∈Īr,s

[
M

(‖xσ j(p),σk(q), z‖

ρ1

)]p jk

+ D
1
λ̄rs

∑
( j,k)∈ ¯Ir,s

[
M

(‖yσ j(p),σk(q), z‖

ρ2

)]p jk

.

(From equation (1.1).)
Now since the last inequality tends to zero as (r, s) approaches in Pringsheim sense, uniformly in

(p, q), [2Vσ, λ̄,M, p, ‖., .‖]o is linear. The proof of others follow in similar manner.

Theorem 2.3. Let P = p jk be bounded. Then [2Wσ, θ,M, p, ‖., .‖]o, [2Wσ, θ,M, p, ‖., .‖] and [2Wσ, θ,M, p, ‖., .‖]∞
are linear spaces over the set of complex numbers C.

Theorem 2.4. Let A be non negative RH regular summability matrix method and M be an Orlicz function
which satisfies42 condition. Then 2Wo(Aσ, p, ‖., .‖) ⊂ 2Wo(Aσ,M, p, ‖., .‖), 2W(Aσ, p, ‖., .‖) ⊂ 2W(Aσ,M, p, ‖., .‖)
and 2W(Aσ, p, ‖., .‖)∞ ⊂ 2W(Aσ,M, p, ‖., .‖)∞.

Proof. Let x = (x jk) ∈ 2W(Aσ, p, ‖., .‖), then

P − lim
m,n

∞∑
j,k=0

am,n, j,k‖xσ j(p),σk(q), z‖
p jk → 0, (2.1)

as m, n → ∞ uniformly in (p, q). Let ε > 0 and choose 0 < δ < 1 such that M(t) < ε
2 for 0 ≤ t ≤ δ. Write

y jk = ‖xσ j(p),σk(q), z‖ and consider

∞∑
j,k=0

am,n, j,k[M(y jk)]p jk =
∑

1

am,n, j,k[M(y jk)]p jk +
∑

2

am,n, j,k[M(y jk)]p jk .

Where the first summation is over y jk ≤ δ and the second summation is over y jk > δ. Since M is continuous,
we have ∑

1

am,n, j,k[M(y jk)]p jk ≤ εH
∞∑

j,k=0

am,n, j,k.

For y jk > δ, we use the fact that

y jk <
y jk

δ
≤ 1 +

(y jk

δ

)
.

Since M is non decreasing and convex, it follows that

M(y jk) < M(1 + δ−1y jk) = M
(2
2

+
2
2
δ−1y jk

)
<

1
2

M(2) +
1
2

M(2δ−1y jk).

Since M satisfies ∆2-condition, there is a constant K > 2 such that

M(2δ−1y jk) ≤
1
2

Kδ−1y jkM(2).

Hence ∑
2

[M(y jk)]p jk < max(1, (Kδ−1M(2)))
∞∑

j,k=0

[M(y jk)]p jk .

Thus we have
∞∑

( j,k=0)

[M(y jk)]p jk < max(1, εH)
∞∑

j,k=0

am,n, j,k + max(1, (Kδ−1M(2)))
∞∑

j,k=0

am,n, j,k[M(y jk)]p jk .

Thus (2.1) and R-H Regularity of A grants us 2W(Aσ, p, ‖., .‖) ⊂ 2W(Aσ,M, p, ‖., .‖). Similarly we can prove
the other two inclusion relations.
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3. Double Statistical Convergence

The concept of statistical convergence was first introduced by Fast in (Fast, 1951) and also indepen-
dently by Buck (Buck, 1953) and Schoenberg (Schoenberg, 1959) for real and complex sequences. Further
this concept was studied by Šalát (Tibor, 1980), Fridy in (Fridy, 1985) and many others.

Statistical convergence is a generalization of the usual notion of convergence that parallels the usual
theory of convergence. A sequence x = (xk) is called statistically convergent to L if

lim
n

1
n
|k : |xk − L| ≥ ε, k ≤ n| = 0,

where the vertical bars indicate the number of elements in the enclosed set. In this case we write st1−lim x =

L or xk → L(st1).
The following definition was presented by Mursaleen in (Mursaleen, 2000). A sequence x is said to be

λ−statistical convergent to L, if for ε > 0

lim
n

1
λn
|k ∈ In : |xk − L| ≥ ε, k ≤ n| = 0,

where the vertical bars indicate the number of elements in the enclosed set and In = [n − λn + 1, n]. In this
case we write S λ − lim x = L or xk → L(S λ).

Savaş (Savaş, 2000) presented and studied the concepts of uniformly λ−statistical convergence as fol-
lows: A sequence x is said to uniformly λ−statistical convergent to L , if for ε > 0

lim
n

1
λn

max
m
|k ∈ In : |xk+m − L| ≥ ε| = 0.

In this case we write S λ − lim x = L or xk → L(λ).
A double sequence (x jk) is called statistically convergent to L if

lim
m,n→∞

1
mn
|( j, k) : |x jk − L| ≥ ε, j ≤ m, k ≤ n| = 0,

where the vertical bars indicate the number of elements in the set.(see[10])

Definition 3.1. (Savaş & Patterson, 2008) A double sequence x = (x jk) is said to be uniformly (λ̄, σ)-
statistical convergent to L, provided that for every ε > o

P − lim
r,s

1
λrs

max
p,q
|{( j, k) ∈ Īr,s : |xσ j(p),σk(q) − L| ≥ ε}| = 0.

In this case we write 2S (λ̄,σ) − lim x = L or x jk → L(2S (λ̄,σ)).

Theorem 3.1. Let M be an Orlicz Function and 0 < h = inf p jk ≤ p jk ≤ sup
j,k

p jk = H < ∞ then

[2Vσ, λ̄,M, p, ‖., .‖] ⊂ 2S (λ̄,σ).

Proof. Let x = (x jk) ∈ [2Vσ, λ̄,M, p, ‖., .‖]. Then there exists ρ > 0 such that

1
λ̄rs

∑
( j,k)∈Īr,s

[
M

(‖xσ j(p),σk(q) − L, z‖

ρ

)]p jk

= 0,
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as r, s→ ∞ in the Pringsheim sense uniformly in (p, q).
If ε > 0 and let ε1 = ε

ρ , then we obtain the following:

1
λ̄rs

∑
( j,k)∈Īr,s

[
M

(‖xσ j(p),σk(q) − L, z‖

ρ

)]p jk

=
1
λ̄rs

∑
1

[
M

(‖xσ j(p),σk(q) − L, z‖

ρ

)]p jk

+
1
λ̄rs

∑
2

[
M

(‖xσ j(p),σk(q) − L, z‖

ρ

)]p jk

Where the first summation is over ‖xσ j(p),σk(q) − L, z‖ ≥ ε and the second summation is over ‖xσ j(p),σk(q) −

L, z‖ < ε

≥
1
λ̄rs

∑
1

[
M

(‖xσ j(p),σk(q) − L, z‖

ρ

)]p jk

≥
1
λ̄rs

∑
1

[M(ε1)]p jk ≥
1
λ̄rs

∑
1

min{[M(ε1)]p jk , [M(ε1)]H}

≥
1
λ̄rs
|{( j, k) ∈ Īr,s : |xσ j(p),σk(q) − L, z| ≥ ε}|min{[M(ε1)]h, [M(ε1)]H}.

This implies that x ∈ 2S (λ̄,σ).

Theorem 3.2. Let M be a bounded Orlicz function and 0 < h = inf p jk ≤ p jk ≤ sup
j,k

p jk = H < ∞ then

2S (λ̄,σ) ⊂ [2Vσ, λ̄,M, p, ‖., .‖]

Proof. Since M is bounded there exists an integer K such that M(x) < K for x > 0. Thus

1
λ̄rs

∑
( j,k)∈Īr,s

[
M

(‖xσ j(p),σk(q) − L, z‖

ρ

)]p jk

=
1
λ̄rs

∑
1

[
M

(‖xσ j(p),σk(q) − L, z‖

ρ

)]p jk

+
1
λ̄rs

∑
2

[
M

(‖xσ j(p),σk(q) − L, z‖

ρ

)]p jk

.

Where the first summation is over ‖xσ j(p),σk(q) − L, z‖ ≥ ε and the second summation is over ‖xσ j(p),σk(q) −

L, z‖ < ε ≤ 1
λ̄rs

∑
1

max{Kh,KH} + 1
λ̄rs

∑
2

[
M

(
ε
ρ

)]p jk

≤ max{Kh,KH}
1
λ̄rs
|{( j, k) ∈ Īr,s : |xσ j(p),σk(q) − L, z| ≥ ε}| + max

{[
M

(
ε

ρ

)]h
,
[
M

(
ε

ρ

)]H}
.

Hence x ∈ [2Vσ, λ̄,M, p, ‖., .‖].
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Móricz, F. and B. E. Rhoades (1988). Almost convergence of double sequences and strong regularity of summability matrices.
Mathematical Proceedings of the Cambridge Philosophical Society 104(02), 283–294.

Mursaleen, M. (1983). On some new invariant matrix methods of summability. The Quarterly Journal of Mathematics 34(1), 77–86.

Mursaleen, M. (2000). λ-statistical convergence. Mathematica Slovaca 50(1), 111–115.

Raimi, R. A. (1963). Invariant means and invariant matrix methods of summability. Duke Mathematical Journal 30(1), 81–94.
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Abstract
In this article we introduce the sequence spaces cI

0( f , p), cI( f , p) and lI
∞( f , p) for a modulus function f , p = (pk)

is a sequence of positive reals and study some of the properties of these spaces.

Keywords: Ideal, filter, paranorm, modulus function, I-convergent sequence spaces, Lipschitz function,
I-convergence field.
2010 MSC: 40A05, 40A35, 40C05, 46A45.

1. Introduction

Throughout the articleN, R, C and ω denotes the set of natural,real,complex numbers and the
class of all sequences respectively.

The notion of the statistical convergence was introduced by H. Fast (Fast, 1951). Later on it
was studied by J. A. Fridy (Fridy, 1985, 1993) from the sequence space point of view and linked
it with the summability theory.

The notion of I-convergence is a generalization of the statistical convergence. At the initial
stage it was studied by Kostyrko, Šalát and Wilczyński (P. Kostyrko & Wilczyński, 2000). Later
on it was studied by Šalát, Tripathy and Ziman (T. Šalát & Ziman, 2004, 2005), Esi and Ozdemir
(Esi & Ozdemir, 2012), Hazarika and Esi (Esi & Hazarika, 2012) and Demirci (Demirci, 2001).

Here we give some preliminaries about the notion of I-convergence.
Let N be a non empty set. Then a family of sets I⊆ 2N(power set of N) is said to be an ideal if

I is additive i.e A, B ∈ I ⇒ A ∪ B ∈ I and hereditary i.e A ∈ I, B ⊆ A⇒ B ∈ I.

∗Corresponding author
Email addresses: vakhan@math.com, vakhanmaths@gmail.com (Vakeel A. Khan),

khalidebadullah@gmail.com (Khalid Ebadullah), xmli01267@gmail.com (Xiao-Min Li)
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A non-empty family of sets £(I) ⊆ 2N is said to be filter on N if and only if Φ < £(I),for
A, B ∈ £(I) we have A ∩ B ∈ £(I) and for each A ∈ £(I) and A ⊆ B implies B ∈ £(I).

An Ideal I⊆ 2N is called non-trivial if I, 2N .
A non-trivial ideal I⊆ 2N is called admissible if {x : {x} ∈ N} ⊆I.
A non-trivial ideal I is maximal if there cannot exist any non-trivial ideal J,I containing I as a

subset. For each ideal I, there is a filter £(I) corresponding to I, i.e £(I) = {K ⊆ N : Kc ∈ I},where
Kc = N-K.

Definition 1.1. A sequence (xk) ∈ ω is said to be I-convergent to a number L if for every ε > 0,
{k ∈ N : |xk − L| ≥ ε} ∈ I. In this case we write I-lim xk = L.

The space cI of all I-convergent sequences to L is given by

cI = {(xk) ∈ ω : {k ∈ N : |xk − L| ≥} ∈ I, f or some L ∈ C} .

Definition 1.2. A sequence (xk) ∈ ω is said to be I-null if L = 0 .In this case we write I-lim xk = 0.

Definition 1.3. A sequence (xk) ∈ ω is said to be I-cauchy if for every ε > 0 there exists a number
m = m(ε) such that {k ∈ N : |xk − xm| ≥ ε} ∈ I.

Definition 1.4. A sequence (xk) ∈ ω is said to be I-bounded if there exists M >0 such that {k ∈
N : |xk| > M}.

Definition 1.5. Let (xk), (yk) be two sequences. We say that (xk) = (yk) for almost all k relative to
I (a.a.k.r.I), if {k ∈ N : xk , yk} ∈ I

Definition 1.6. For any set E of sequences the space of multipliers of E, denoted by M(E) is given
by

M(E) = {a ∈ ω : ax ∈ E for all x ∈ E} (see (Simons, 1965)).

Definition 1.7. A map ~ defined on a domain D ⊂ X i.e ~ : D ⊂ X → R is said to satisfy
Lipschitz condition if |~(x)−~(y)| ≤ K|x− y| where Kis known as the Lipschitz constant.The class
of K-Lipschitz functions defined on D is denoted by ~ ∈ (D,K). (Tripathy & Hazarika, 2011).

Definition 1.8. A convergence field of I-convergence is a set

F(I) = {x = (xk) ∈ l∞ : there exists I − lim x ∈ R}.

The convergence field F(I) is a closed linear subspace of l∞ with respect to the supremum
norm, F(I) = l∞ ∩ cI (See (T. Šalát & Ziman, 2005)).

Define a function ~ : F(I) → R such that ~(x) = I − lim x, for all x ∈ F(I), then the function
~ : F(I)→ R is a Lipschitz function (c.f (Dems, 2005; T. Šalát & Ziman, 2004; Gurdal, 2004; Tri-
pathy & Hazarika, 2009, 2011; Khan, 2005; Khan & Ebadullah, 2011b,a, 2012; Vakeel. A. Khan
& Ahmad, 2012).
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Definition 1.9. The concept of paranorm is closely related to linear metric spaces. It is a general-
ization of that of absolute value.
Let X be a linear space. A function g : X −→ R is called paranorm, if for all x, y, z ∈ X,
(PI) g(x) = 0 i f x = θ,
(P2) g(−x) = g(x),
(P3) g(x + y) ≤ g(x) + g(y),
(P4) If (λn) is a sequence of scalars with λn → λ (n → ∞) and xn, a ∈ X with xn → a (n → ∞) ,
in the sense that g(xn − a)→ 0 (n→ ∞) , in the sense that g(λnxn − λa)→ 0 (n→ ∞).

A paranorm g for which g(x) = 0 implies x = θ is called a total paranorm on X, and the pair
(X, g) is called a totally paranormed space. See (Maddox, 1969).

The idea of modulus was structured in 1953 by Nakano. See (Nakano, 1953).

A function f : [0,∞)−→[0,∞) is called a modulus if:

(1) f (t) = 0 if and only if t = 0,
(2) f (t+u)≤ f (t)+ f (u) for all t, u≥0,
(3) f is increasing, and
(4) f is continuous from the right at zero.

Ruckle [17-19] used the idea of a modulus function f to construct the sequence space:

X( f ) = {x = (xk) :
∞∑

k=1

f (|xk|) < ∞}.

This space is an FK space,and Ruckle[19 - 21] proved that that the intersection of all such X( f )
spaces is φ, the space of all finite sequences.

The space X( f ) is closely related to the space l1 which is an X( f ) space with f (x) = x for all
real x ≥ 0. Thus Ruckle[19- 21] proved that, for any modulus f ,

X( f ) ⊂ l1 and X( f )α = l∞

where

X( f )α = {y = (yk) ∈ ω :
∞∑

k=1

f (|ykxk|) < ∞}.

The space X( f ) is a Banach space with respect to the norm

||x|| =
∞∑

k=1

f (|xk|) < ∞. (See[17-19]).

Spaces of the type X( f ) are a special case of the spaces structured by B. Gramsch in (Gramsch,
n.d.). From the point of view of local convexity, spaces of the type X( f ) are quite pathological.
Symmetric sequence spaces, which are locally convex have been frequently studied by D. J. H
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Garling (Garling, 1966, 1968),G. Köthe (Köthe, 1970) and W. H. Ruckle ((Ruckle, 1968), (Ruckle,
1967), (Ruckle, 1973)).

The following subspaces of ω were first introduced and discussed by Maddox ((Maddox,
1986), (Maddox, 1969)):

l(p) = {x ∈ ω :
∑
k
|xk|

pk < ∞},

l∞(p) = {x ∈ ω : sup
k
|xk|

pk < ∞},

c(p) = {x ∈ ω : lim
k
|xk − l|pk = 0, f or some l ∈ C},

c0(p) = {x ∈ ω : lim
k
|xk|

pk = 0},

where p = (pk) is a sequence of strictly positive real numbers.

After then Lascarides ((Lascarides, 1971, 1983)) defined the following sequence spaces:

l∞{p} = {x ∈ ω : there exists r > 0 such that sup
k
|xkr|pk tk < ∞},

c0{p} = {x ∈ ω : there exists r > 0 such that lim
k
|xkr|pk tk = 0 },

l{p} = {x ∈ ω : there exists r > 0 such that
∞∑

k=1
|xkr|pk tk < ∞},

where tk = p−1
k , for all k ∈ N.

We need the following lemmas in order to establish some results of this article.

Lemma 1.1. Let h = inf
k

pk and H = sup
k

pk. Then the following conditions are equivalent.(See

(Lascarides, 1983)).
(a) H < ∞ and h > 0,
(b) c0(p) = c0 or l∞(p) = l∞,
(c) l∞{p} = l∞(p),
(d) c0{p} = c0(p),
(e) l{p} = l(p).

Lemma 1.2. Let K∈ £(I) and M⊆N. If M<I, then M∩K <I. (See (T. Šalát & Ziman, 2004), (Tripathy
& Hazarika, 2011)).

Lemma 1.3. If I ⊂ 2N and M⊆N. If M <I, then M∩K <I. (See (T. Šalát & Ziman, 2004), (Tripathy
& Hazarika, 2011)).



Vakeel A. Khan et al. / Theory and Applications of Mathematics & Computer Science 2 (2) (2012) 1–11 5

Throughout the article l∞, cI , cI
0,m

I and mI
0 represent the bounded, I-convergent, I-null, bounded

I-convergent and bounded I-null sequence spaces respectively.

In this article we introduce the following classes of sequence spaces.

cI( f , p) = {(xk) ∈ ω : f (|xk − L|pk) ≥ ε for some L} ∈ I,

cI
0( f , p) = {(xk) ∈ ω : f (|xk|

pk) ≥ ε} ∈ I,

lI
∞( f , p) = {(xk) ∈ ω : sup

k
f (|xk|

pk) < ∞} ∈ I.

Also we write
mI( f , p) = cI( f , p) ∩ l∞( f , p)

and
mI

0( f , p) = cI
0( f , p) ∩ l∞( f , p).

2. Main Results

Theorem 2.1. Let (pk) ∈ l∞. Then cI( f , p), cI
0( f , p),mI( f , p) and mI

0( f , p) are linear spaces.

Proof. Let (xk), (yk) ∈ cI( f , p) and α, β be two scalars. Then for a given ε > 0 we have:{
k ∈ N : f (|xk − L1|

pk) ≥
ε

2M1
, f or some L1 ∈ C

}
∈ I

{
k ∈ N : f (|yk − L2|

pk) ≥
ε

2M2
, f or some L2 ∈ C

}
∈ I

where

M1 = D.max{1, sup
k
|α|pk}

M2 = D.max{1, sup
k
|β|pk},

and
D = max{1, 2H−1} where H = sup

k
pk ≥ 0.

Let

A1 =

{
k ∈ N : f (|xk − L1|

pk) <
ε

2M1
, f or some L1 ∈ C

}
∈ I,

A2 =

{
k ∈ N : f (|yk − L2|

pk) <
ε

2M2
, f or some L2 ∈ C

}
∈ I

be such that Ac
1, A

c
2 ∈ I.

Then
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A3 = {k ∈ N : f (|(αxk + βyk) − f (αL1 + βL2)|pk) < ε}

⊇ {k ∈ N : |α|pk f (|xk − L1|
pk) <

ε

2M1
|α|pk .D}

∩{k ∈ N : |β|pk f (|yk − L2|
pk) <

ε

2M2
|β|pk .D}.

Thus Ac
3 = Ac

1 ∩ Ac
2 ∈ I. Hence (αxk + βyk) ∈ cI( f , p). Therefore cI( f , p) is a linear space. The

rest of the result follows simililarly.

Theorem 2.2. Let (pk) ∈ l∞. Then mI( f , p) and mI
0( f , p) are paranormed spaces, paranormaed by

g(xk) = sup
k

f (|xk|
pk
M ) where M = max{1, sup

k
pk}

Proof. Let x = (xk), y = (yk) ∈ mI( f , p).
(1) Clearly, g(x) = 0 if and only if x = 0.
(2) g(x) = g(−x) is obvious.
(3) Since pk

M ≤ 1 and M > 1, using Minkowski’s inequality and the definition of f we have:

sup
k

f (|xk + yk|
pk
M ) ≤ sup

k
f (|xk|

pk
M ) + sup

k
f (|yk|

pk
M ).

(4) Now for any complex λ we have (λk) such that λk → λ, (k → ∞).
Let xk ∈ mI( f , p) such that f (|xk − L|pk) ≥ ε.
Therefore, g(xk − L) = sup

k
f (|xk − L|

pk
M ) ≤ sup

k
f (|xk|

pk
M ) + sup

k
f (|L|

pk
M ).

Hence g(λnxk − λL) ≤ g(λnxk) + g(λL) = λng(xk) + λg(L) as (k → ∞).
Hence mI( f , p) is a paranormed space.
The rest of the result follows similarly.

Theorem 2.3. A sequence x = (xk) ∈ mI( f , p) I-converges if and only if for every ε > 0 there exists
Nε ∈ N such that

{k ∈ N : f (|xk − xNε
|pk) < ε} ∈ mI( f , p). (2.1)

Proof. Suppose that L = I − lim x. Then

Bε = {k ∈ N : |xk − L|pk <
ε

2
} ∈ mI( f , p). For all ε > 0.

Fix an Nε ∈ Bε . Then we have

|xNε
− xk|

pk ≤ |xNε
− L|pk + |L − xk|

pk <
ε

2
+
ε

2
= ε,

which holds for all k ∈ Bε .
Hence {k ∈ N : f (|xk − xNε

|pk) < ε} ∈ mI( f , p).
Conversely, suppose that {k ∈ N : f (|xk−xNε

|pk) < ε} ∈ mI( f , p). That is {k ∈ N : (|xk−xNε
|pk) <

ε} ∈ mI( f , p) for all ε > 0. Then the set Cε = {k ∈ N : xk ∈ [xNε
−ε, xNε

+ε]} ∈ mI( f , p) for all ε > 0.
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Let Jε = [xNε
−ε, xNε

+ε]. If we fix an ε > 0 then we have Cε ∈ mI( f , p) as well as C ε
2
∈ mI( f , p).

Hence Cε ∩C ε
2
∈ mI( f , p). This implies that

J = Jε ∩ J ε
2
, φ

that is
{k ∈ N : xk ∈ J} ∈ mI( f , p)

that is
diamJ ≤ diamJε

where the diam of J denotes the length of interval J.
In this way, by induction we get the sequence of closed intervals

Jε = I0 ⊇ I1 ⊇ ..... ⊇ Ik ⊇ ...........

with the property that diamIk ≤
1
2diamIk−1 for (k = 2, 3, 4, .....) and

{k ∈ N : xk ∈ Ik} ∈ mI( f , p) for (k=1,2,3,4,......).
Then there exists a ξ ∈ ∩Ik where k ∈ N such that ξ = I − lim x. So that f (ξ) = I − lim f (x),

that is L = I − lim f (x).

Theorem 2.4. Let H = sup
k

pk < ∞ and I an admissible ideal. Then the following are equivalent.

(a) (xk) ∈ cI( f , p);
(b) there exists(yk) ∈ c( f , p) such that xk = yk, for a.a.k.r.I;
(c) there exists(yk) ∈ c( f , p) and (xk) ∈ cI

0( f , p) such that xk = yk + zk for all k ∈ N and {k ∈ N :
f (|yk − L|pk) ≥ ε} ∈ I ;
(d) there exists a subset K = {k1 < k2....} of N such that K ∈ £(I)
and lim

n→∞
f (|xkn − L|pkn ) = 0.

Proof. (a) implies (b). Let (xk) ∈ cI( f , p). Then there exists L ∈ C such that

{k ∈ N : f (|xk − L|pk) ≥ ε} ∈ I.

Let (mt) be an increasing sequence with mt ∈ N such that

{k ≤ mt : f (|xk − L|pk) ≥ ε} ∈ I.

Define a sequence(yk) as
yk = xk, for all k ≤ m1.

For mt < k ≤ mt+1, t ∈ N.

yk =

{
xk, if |xk − L|pk < t−1,

L, otherwise.

Then (yk) ∈ c( f , p) and form the following inclusion

{k ≤ mt : xk , yk} ⊆ {k ≤ mt : f (|xk − L|pk) ≥ ε} ∈ I.
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We get xk = yk, for a.a.k.r.I.
(b) implies (c).For (xk) ∈ cI( f , p). Then there exists (yk) ∈ c( f , p) such that xk = yk, for a.a.k.r.I.
Let K = {k ∈ N : xk , yk}, then k ∈ I.
Define a sequence (zk) as

zk =

{
xk − yk, if k ∈ K,

0, otherwise.

Then zk ∈ cI
0( f , p) and yk ∈ c( f , p).

(c) implies (d).Let P1 = {k ∈ N : f (|xk|
pk) ≥ ε} ∈ I and

K = Pc
1 = {k1 < k2 < k3 < ...} ∈ £(I).

Then we have lim
n→∞

f (|xkn − L|pkn ) = 0.
(d) implies (a). Let K = {k1 < k2 < k3 < ...} ∈ £(I) and lim

n→∞
f (|xkn − L|pkn ) = 0.

Then for any ε > 0, and Lemma 1.10, we have

{k ∈ N : f (|xk − L|pk) ≥ ε} ⊆ Kc ∪ {k ∈ K : f (|xk − L|pk) ≥ ε}.

Thus (xk) ∈ cI( f , p).

Theorem 2.5. Let (pk) and (qk) be two sequences of positive real numbers. Then mI
0( f , p) ⊇

mI
0( f , q) if and only if lim

k∈K
inf pk

qk
> 0, where Kc ⊆ N such that K ∈ I.

Proof. Let lim
k∈K

inf pk
qk
> 0. and (xk) ∈ mI

0( f , q). Then there exists β > 0 such that pk > βqk, for all

sufficiently large k ∈ K. Since (xk) ∈ mI
0( f , q),for a given ε > 0, we have

B0 = {k ∈ N : f (|xk|
qk) ≥ ε} ∈ I.

Let G0 = Kc ∪ B0 Then G0 ∈ I. Then for all sufficiently large k ∈ G0,

{k ∈ N : f (|xk|
pk) ≥ ε} ⊆ {k ∈ N : f (|xk|

βqk) ≥ ε} ∈ I.

Therefore (xk) ∈ mI
0( f , p).

Theorem 2.6. Let (pk) and (qk) be two sequences of positive real numbers. Then mI
0( f , q) ⊇

mI
0( f , p) if and only if lim

k∈K
inf qk

pk
> 0, where Kc ⊆ N such that K ∈ I.

Proof. The proof follows similarly as the proof of Theorem 2.5.

Theorem 2.7. Let (pk) and (qk) be two sequences of positive real numbers. Then mI
0( f , q) =

mI
0( f , p) if and only if lim

k∈K
inf pk

qk
> 0, and lim

k∈K
inf qk

pk
> 0, where K ⊆ N such that Kc ∈ I.

Proof. On combining Theorem 2.5 and 2.6 we get the required result.
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Theorem 2.8. Let h = inf
k

pk and H = sup
k

pk. Then the following results are equivalent.

(a) H < ∞ and h > 0.
(b) cI

0( f , p) = cI
0.

Proof. Suppose that H < ∞ and h > 0, then the inequalities min{1, sh} ≤ spk ≤ max{1, sH} hold
for any s > 0 and for all k ∈ N. Therefore the equivalent of (a) and (b) is obvious.

Theorem 2.9. Let f be a modulus function. Then cI
0( f , p) ⊂ cI( f , p) ⊂ lI

∞( f , p) and the inclusions
are proper.

Proof. Let (xk) ∈ cI( f , p). Then there exists L ∈ C such that I − lim f (|xk − L|pk) = 0. We have
f (|xk|

pk) ≤ 1
2 f (|xk − L|pk) + 1

2 f (|L|pk). Taking supremum over k both sides we get (xk) ∈ lI
∞( f , p) and

the inclusion cI
0( f , p) ⊂ cI( f , p) is obvious. Hence cI

0( f , p) ⊂ cI( f , p) ⊂ lI
∞( f , p) and the inclusions

are proper.

Theorem 2.10. If H = sup
k

pk < ∞, then for any modulus f , we have lI
∞ ⊂ M(mI( f , p)), where the

inclusion may be proper.

Proof. Let a ∈ lI
∞.This implies that sup

k
|ak| < 1 + K. for some K > 0 and all k. Therefore

x ∈ mI( f , p) implies sup
k

f (|akxk|
pk) ≤ (1 + K)H sup

k
f (|xk|

pk) < ∞. which gives lI
∞ ⊂ M(mI( f , p)).

To show that the inclusion may be proper, consider the case when pk = 1
k for all k. Take ak = k

for all k. Therefore x ∈ mI( f , p) implies sup
k

f (|akxk|
pk) ≤ sup

k
f (|k|

1
k ) sup

k
f (|xk|

pk) < ∞. Thus in this

case a = (ak) ∈ M(mI( f , p)) while a < lI
∞.

Theorem 2.11. The function ~ : mI( f , p)→ R is the Lipschitz function,where mI( f , p) = cI( f , p)∩
l∞( f , p), and hence uniformly continuous.

Proof. Let x, y ∈ mI( f , p),x , y. Then the sets

Ax = {k ∈ N : |xk − ~(x)|pk ≥ ||x − y||} ∈ I,

Ay = {k ∈ N : |yk − ~(y)|pk ≥ ||x − y||} ∈ I.

Here ||x − y|| = sup
k

f (|xk − yk|
pk
M ) where M = max{1, sup

k
pk}

Thus the sets,
Bx = {k ∈ N : |xk − ~(x)|pk < ||x − y||} ∈ mI( f , p),

By = {k ∈ N : |yk − ~(y)|pk < ||x − y||} ∈ mI( f , p).

Hence also B = Bx ∩ By ∈ mI( f , p),so that B , φ.
Now taking k in B,

|~(x) − ~(y)|pk ≤ |~(x) − xk|
pk + |xk − yk|

pk + |yk − ~(y)|pk ≤ 3||x − y||.

Thus ~ is a Lipschitz function. For mI
0( f , p) the result can be proved similarly.
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Theorem 2.12. If x, y ∈ mI( f , p),then (x.y) ∈ mI( f , p) and ~(xy) = ~(x)~(y).

Proof. For ε > 0
Bx = {k ∈ N : |xk − ~(x)|pk < ε} ∈ mI( f , p),

By = {k ∈ N : |yk − ~(y)|pk < ε} ∈ mI( f , p).

Now,
|xkyk − ~(x)~(y)|pk = |xkyk − xk~(y) + xk~(y) − ~(x)~(y)|pk

≤ |xk|
pk |yk − ~(y)|pk + |~(y)|pk |xk − ~(x)|pk . (2.2)

As mI( f , p) ⊆ l∞( f , p),there exists an M ∈ R such that |xk|
pk < M and |~(y)|pk < M.

Using (2.2) we get
|xkyk − ~(x)~(y)|pk ≤ Mε + Mε = 2Mε,

for all k ∈ Bx ∩ By ∈ mI( f .p). Hence (x.y) ∈ mI( f , p) and ~(xy) = ~(x)~(y). For mI
0( f , p) the result

can be proved similarly.

Acknowledgement. The authors would like to record their gratitude to the reviewer for his
careful reading and making some useful corrections which improved the presentation of the paper.
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Abstract
An attempt is made to examine the classical Von Kármán flow problem for a second grade fluid by using a

generalized non-similarity transformation. This approach is different from that of Von Kármán’s evolution of the
flow in such a way that the physical quantities are allowed to develop non-axisymmetrically. The three-dimensional
equations of motion for the second grade fluid are treated analytically yielding the derivation of the exact solutions for
the velocity components. The physical interpretation of the velocity components, vorticity components, shear stresses
and boundary layer thickness are also presented.

Keywords: Non-axisymmetric flow, rotating disk, second grade fluid.
2010 MSC: 76-XX.

1. Introduction

The theoretical study of the flow near a rotating disk of infinite extent can be traced back to
Von Kármán’s similarity analysis. That is why the flow is widely known as Von Kármán flow.
He assumed that the flow possessed axial symmetry, and introduced a similarity transformation
which reduced the Navier-Stokes equation into a system of coupled nonlinear ordinary differential
equations. These equations have been used as a test problem for numerical methods, and in the
study of matched asymptotic expansions. This problem has received considerable attention over
the years and different extensions of Von Kármánn’s swirling flow problem have been made to
address various applications, see for instance (Benton, 1966; Kuiken, 1971; Riley, 1964; Sahoo,
2009; Ariel, 2003). However, the possibility of an exact solution for the flow due to a rotating

∗Corresponding author
Email addresses: (A. A. Farooq), ansari.a@gust.edu.kw (A. R. Ansari), (A. M. Siddiqui)
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disk in a fluid which is at infinity and is rotating rigidly has been implied by Berker (Berker,
1982). Parter and Rajagopal (Parter & Rajagopal, 1984) have established the existence of solutions
which do not possess axial symmetry, to the Navier-Stokes equations for the problem governing
the flow of two infinite disks rotating about a common axis. Based on that work, Huilgol and
Rajagopal(Huilgol & Rajagopal, 1987) have shown that in the case of certain non-Newtonian fluid
models, solutions that lack axisymmetry are possible. Recently, Turkyilmazoglu (Turkyilmazoglu,
2009) has obtained exact solutions to the Navier-Stokes equations for the swirling flow problem
in such a way that the physical quantities are allowed to develop non-axisymmetrically over a
rotating disk.

It is a well-known fact that the Navier-Stokes equations seem to be a weak model for a class
of real fluids, called non-Newtonian fluids. During the last few decades, considerable efforts have
been devoted to the study of flow of non-Newtonian fluids because of their technological appli-
cations. A vast amount of literature is now available for the flow problems associated with non-
Newtonian fluids in a variety of situations. One important and simple model of non-Newtonian
fluids for which one can reasonably hope to obtain analytical solutions is the second grade fluid.
Keeping this in mind, the aim of this work is to extend the analysis of (Turkyilmazoglu, 2009)
for a second grade fluid. Undoubtedly, the equations of motion for a second grade fluid are more
complicated with highly non-linear terms which make the question of well-posedness extremely
difficult to address. Here, it is shown that by using a generalized transformation, the governing
equations for the second grade fluid are transformed into a well posed second order system of
ODEs whose exact solution is straightforward. In solving this problem we have relaxed the ax-
isymmetric condition of the traditional Von Kármán flow. This analysis is important, not only from
a mathematical point of view, but mainly as an essential test for the underlying physical model.
The practical applications that can be envisaged for this problem are in the design of thrust bear-
ings, radial diffusers etc., used in the defence industry for instance. We note that a similar problem
of a Jeffrey Fluid, has been addressed by (Siddiqui et al., 2013).

The following structure is pursued in the rest of the paper. In section two mathematical for-
mulation of the problem is given. Section three concerns with the flow analysis and section four
contains some concluding remarks.

2. Formulation of the problem

Consider the three dimensional flow of an incompressible second grade fluid due to an infinite
disk which rotates in the plane z = 0 about its axis of rotation z with a constant angular velocity Ω.
In cylindrical coordinates (r, θ, z) which rotates with the disk, the governing equations of motion
of the second grade fluid are the laws of conservation of mass and momentum which are

∇.V =0, (2.1)

ρ
dV
dt

= −∇P+∇.σ, (2.2)

where V = (u, v,w) is the velocity vector,
d
dt

is the material time derivative, ρ is the fluid density
and P is the pressure. For the second grade fluid the extra stress tensor σ is given by (Ariel, 1997)

σ =µA1 + α1A2 + α2A2
1, (2.3)
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in which µ is the dynamic viscosity, αi(i = 1, 2) are material constants satisfying α1 ≥ 0, and
α1 + α2 = 0, and A1 and A2 are the kinematic tensors defined through

A1 = ∇V + (∇V)T , A2=
dA1

dt
+A1 (∇V) +(∇V)TA1, (2.4)

where the superscript T is the transpose of the matrix. In the present analysis the flow is assumed
to take place in the semi-infinite space z ≥ 0. Boundary conditions accompanying (2.1)-(2.2) are
such that the fluid adheres to the wall at z = 0 with a given axial velocity and the velocities are
bounded at far distances from the disk.

The flow in this analysis is such that the physical quantities are allowed to develop non-
axisymmetrically and we assume that there is no flow along the normal, thus the velocity field
can be taken in the form

V = [u(r, θ, z), v(r, θ, z), 0] (2.5)

We introduce the following dimensionless variables:

r∗ =
r
L
, z∗ =

z
L
, u∗ =

u
U
, v∗ =

v
U
, P∗ =

P
ρU2 , σi j =

σi j
µU
L

, i, j = r, θ, z, (2.6)

where L is the length scale and U = LΩ. Hence, the dimensionless form of the continuity and the
equations of motion, after dropping the ∗s are given by

∂u
∂r

+
1
r
∂v
∂θ

+
u
r

= 0, (2.7)

u
∂u
∂r

+
v
r
∂u
∂θ
−

v2

r
= −

∂P
∂r

+
1

Re

[
∂σrr

∂r
+

1
r
∂σrθ

∂θ
+
∂σrz

∂z
+
σrr − σθθ

r

]
(2.8)

u
∂v
∂r

+
v
r
∂v
∂θ

+
uv
r

= −
1
r
∂P
∂θ

+
1

Re

[
∂σrθ

∂r
+

1
r
∂σθθ

∂θ
+
∂σθz

∂z
+

2σθθ

r

]
(2.9)

0 = −
∂P
∂z

+
1

Re

[
∂σrz

∂r
+

1
r
∂σθz

∂θ
+
∂σzz

∂z
+
σrz

r

]
(2.10)

In equations (2.7)-(2.10), σrr, σrθ, σrz, σθz, σθθ and σzz, are the components of the stress tensor σ
in (2.3), and are given by

cσrr = 2
∂u
∂r

+ 2λ1


(
u
∂

∂r
+

v
r
∂

∂θ

)
∂u
∂r

+

(
v
r
−
∂v
∂r

) (
∂v
∂r

+
1
r
∂u
∂θ
−

v
r

)
+ 2

(
∂u
∂r

)2


+λ2

4
(
∂u
∂r

)2

+

(
∂v
∂r

+
1
r
∂u
∂θ
−

v
r

)2

+

(
∂u
∂z

)2
 , (2.11)

cσrθ =
∂v
∂r

+
1
r
∂u
∂θ
−

v
r

+ λ1

{(
u
∂

∂r
+

v
r
∂

∂θ

) (
∂v
∂r

+
1
r
∂u
∂θ
−

v
r

)
+ 2

∂u
∂r

(
v
r

+
1
r
∂u
∂θ
−
∂v
∂r

)}
+λ2

{(
∂u
∂z

) (
∂v
∂z

)}
, (2.12)



A. A. Farooq et al. / Theory and Applications of Mathematics & Computer Science 2 (2) (2012) 12–19 15

cσrz =
∂u
∂z

+ λ1

{(
u
∂

∂r
+

v
r
∂

∂θ
+ 3

∂u
∂r

)
∂u
∂z

+
∂v
∂z

(
2
∂v
∂r

+
1
r
∂u
∂θ
−

2v
r

)}
+λ2

{
2
(
∂u
∂r

) (
∂u
∂z

)
+

(
∂v
∂z

) (
∂v
∂r

+
1
r
∂u
∂θ
−

v
r

)}
, (2.13)

cσθz =
∂v
∂z

+ λ1

{(
u
∂

∂r
+

v
r
∂

∂θ

)
∂v
∂z

+
∂u
∂z

(
∂v
∂r

+
2
r
∂u
∂θ
−

v
r

)
− 3

∂u
∂r
∂v
∂z

}
+λ2

{
∂u
∂z

(
∂v
∂r

+
2
r
∂u
∂θ
−

v
r

)
− 2

∂u
∂r
∂v
∂z

}
, (2.14)

cσθθ = −2
(
∂u
∂r

)
+ λ1

4
(
∂u
∂r

)2

+
2
r
∂u
∂θ

(
∂v
∂r

+
1
r
∂u
∂θ
−

v
r

)
− 2

(
u
∂

∂r
+

v
r
∂

∂θ

) (
∂u
∂r

)
+λ2

4
(
∂u
∂r

)2

+

(
∂v
∂r

+
2
r
∂u
∂θ
−

v
r

)2

+

(
∂v
∂z

)2
 , (2.15)

σzz = (2λ1 + λ2)
(∂u
∂z

)2

+

(
∂v
∂z

)2 , (2.16)

where λ1 =
α1Uc

µL
and λ2 =

α2Uc

µL
are the material parameters of the second grade fluid.

3. Flow analysis

In this section we restrict ourselves to the stationary mean flow relative to the rotating disk.

Within this view, via a coordinate transformation ζ =

√
Re
2 z, we assume a solution of the form

(Turkyilmazoglu, 2009)

u = aF(θ, ζ), v = r + aW(θ, ζ),w = 0, P =
r2

2
− ra cos(θ − σ) + a2 p(ζ), (3.1)

such that, non-axisymmetric and periodic solutions with respect to θ of F and W are determined
here, subjected to the pressure field given by (3.1). The parameters a and σ correspond to the polar
representation of a fixed point on the disk surface and p(ζ) is some function of ζ.

The transformations (2.7)-(2.10) along with (2.11)-(2.16), satisfy the continuity equation di-
rectly, and for the momentum equations, the periodicity assumption of F and W with respect to θ,
gives the set of ordinary differential equations

Fζζ + λ1Wζζ + 2W = −2 cos(θ − σ), (3.2)
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Wζζ − λ1Fζζ − 2F = 2 sin(θ − σ), (3.3)

p(ζ) =
(2λ1 + λ2)

2
(F2

ζ + W2
ζ ) + K, (3.4)

where the constant K is determined from the pressure prescribed at the disk surface. The boundary
conditions for the problem reduce to

F = 0, W = 0 at ζ= 0, F,W bounded, as ζ → ∞. (3.5)

Introducing a new function of the form V = F + iW, transforms the pair of equations (3.2)-(3.3)
into a single complex differential equation with real variables

(1 − iλ1)Vζζ − 2iV = −2((cos(θ − σ) − i sin(θ − σ)), (3.6)

whose solution is bounded with respect to ζ and can be immediately expressed as

V = Cemζ − i (cos((θ − σ) − i sin(θ − σ)) , (3.7)

where, C is a complex integration constant depending on θ and is determined by using the
no-slip condition on the wall and the constant m = −

√
2

1+λ2
1
(i − λ1). Equating real and imaginary

parts of the solution given in (3.7), F and W are found to be

F(ζ, θ) = f (ζ) cos(θ − σ) + g(ζ) sin(θ − σ), (3.8)

W(ζ, θ) = − f (ζ) sin(θ − σ) + g(ζ) cos(θ − σ), (3.9)

where
f (ζ) = sin(d2ζ)e−d1ζ , g(ζ)= −1+ cos(d2ζ)e−d1ζ , (3.10)

and where

d1 =

√√√√√(
−λ1 +

√
(1 + λ2

1)
)

(1 + λ2
1)

, d2 =

√√√√√(
λ1 +

√
(1 + λ2

1)
)

(1 + λ2
1)

. (3.11)

As ζ → ∞ we note from (3.10), that the velocities far away from the disk turn out to be u =

−a sin(θ − σ), v = r − a cos(θ − σ) different from the no-slip velocities. In order to see the effects
of the material parameter of the second grade fluid on the flow, graphs of f and −g are plotted for
various values of λ1 in Figure 1. These graphs clearly indicate that the flow exhibits a boundary
layer like behavior near the disk. It is also seen that when λ1 increases, the oscillatory behavior
of the flow becomes more prominent and can be seen up to a considerable distance from the disk.
It should be noted that when λ1 = 0, our results are in agreement with those of (Turkyilmazoglu,
2009) without suction and injection. Moreover, (3.10) shows that the velocity distribution is in the
form of an Ekman spiral representing the flow over a disk in a rotating system similar to (Siddiqui
et al., 2013).
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Figure 1. Variation of f and −g with η for different values of λ1.

The effects of viscosity in the fluid adjacent to the disk tends to develop some tangential shear
stress which opposes the rotation of the disk. There is also a surface shear stress in the radial
direction. The dimensionless expressions for the tangential and radial stresses are given as

σθz = a
[
Wζ − λ1Fζ

]
ζ=0

= a

√
Re
2

[(−d2 + λ1d1) cos(θ − σ) − (d1 + λ1d2) sin(θ − σ)] , (3.12)

σrz = a
[
Fζ + λ1Wζ

]
ζ=0

= −a

√
Re
2

[(−d2 + λ1d1) sin(θ − σ) + (d1 + λ1d2) cos(θ − σ)] . (3.13)

In the particular case when θ = σ, we obtain σθz = a
√

Re
2 (−d2 + λ1d1) and σrz = −a

√
Re
2 (d1 +

λ1d2). Moreover, when σ = 0, the results obtained point out the fact that maximum resistance due
to viscosity of the fluid will take place at the locations θ = tan−1

(
−d2+λ1d1
d1+λ1d2

)
and θ = tan−1

(
−d2+λ1d1
d1+λ1d2

)
+

π for the tangential stress and at the locations θ = tan−1
(

d1+λ1d2
d2−λ1d1

)
and θ = tan−1

(
d1+λ1d2
d2−λ1d1

)
+ π for the

radial stress. From the above equations one can easily find out the locations at which the minimum
and maximum skin friction occurs against the flow.

The fluid dynamic thickness in radial and tangential directions are evaluated as

δr =

∫ ∞

0
f (ζ)dζ =

d2

d2
1 + d2

2

, δθ =

∫ ∞

0
(1 + g(ζ))dζ =

d1

d2
1 + d2

2

. (3.14)

Hence, an increase in λ1 results in an increase in the boundary layer thickness, this is clearly
because as λ1 increases d1 and d2 decrease and tend to zero.

The vorticity components (ωr, ωθ, ωz) = ∇ × V that exists within the fluid can be found out
exactly with the help of equations (3.8)-(3.10), which are respectively

ωr = −
∂v
∂z

= −a

√
Re
2

Wζ , ωθ=
∂u
∂z

=a

√
Re
2

Fζ , ωz= 2 (3.15)
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Figure 2. Variation of ωr and ωθ with η for different values of Re keeping λ1 = 0.5.

Figure 3. Variation of ωr and ωθ with η for different values of λ1 when Re = 1.

In order to get the nature of the vorticity near the disk the expressions for ωr and ωθ are plotted for
different values of Re and λ1 when σ = θ. It is observed from Figure 2 that both the components
increase near the disk with increasing values of Re and show oscillatory behavior before approach-
ing the asymptotic limits. Figure 3 is to demonstrate the effects of λ1 on ωr and ωθ. It is noted that
ωr decreases whereas ωθ increases near the disk with increasing values of λ1. However, a large
gradient is observed for ωr near the wall. Actually, these vorticity components are responsible for
driving the motion of fluid flow considered in the current study.
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4. Concluding remarks

In this article, an exact solution for three-dimensional equations governing the incompressible
second grade fluid flow over a single rotating disk has been obtained in such a way that the phys-
ical quantities are allowed to develop non-axisymmetrically within a no-normal flow assumption.
We have worked through cylindrical coordinates which rotate with the disk, whose polar represen-
tation is (a, σ). The particular case a = 0 is associated with the rigid body rotation. The non-zero
choice of a has enabled us to achieve the solutions bounded away from the disk. These results
point out that a boundary layer structure develops near the surface of the disk whose far away be-
havior is distinct from the near wall solutions. It is observed that increases in λ1 cause an increase
in the boundary layer thickness. There is no effect of the material parameter λ2 on the velocity
field since both the disk and the fluid rotate with the same speed. We also note that this technique
can also be applied to other non-Newtonian fluid flow problems successfully.
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Abstract
This paper proposes a novel inference mechanism for an interval type-2 Takagi-Sugeno-Kang fuzzy logic control

system (IT2 TSK FLCS). This paper focuses on control applications for case both plant and controller use A2-C0 TSK
models. The defuzzified output of the T2FLS is then obtained by averaging the defuzzified outputs of the resultant
four embedded T1FLSs in order to reduce the computational burden of T2 TSK FS. A simplified T2 TSK FS based
on a hybrid structure of four type-1 fuzzy systems (T1 TSK FS). A simulation example is presented to show the
effectiveness of this method.

Keywords: Fuzzy control systems, simplified type-2 fuzzy logic system, double inverted pendulums.

1. Introduction

Fuzzy systems of Takagi-Sugeno (T-S) models (Takagi & Sugeno, 1985) have become an ef-
fective method to represent nonlinear system by fuzzy sets and fuzzy reasoning. In (Echanobe
et al., 2005) presented some important aspects concerning the analysis and implementation of a
piecewise linear (PWL) fuzzy model with universal approximation capability. Reference (Sadighi
& jong Kim, 2010) presented a combination of a Sugeno fuzzy model and neural networks. In
(Guechi et al., 2010) presented a new technique for tracking-error model-based Parallel Dis-
tributed Compensation (PDC) control and stabilizing controller by solved by LMI conditions for
the tracking-error model.

A new stability analysis method for nonlinear processes with T-S fuzzy logic controllers
(FLCs) without process linearization and without using the quadratic Lyapunov functions in the
derivation and proof of the stability conditions was designed in (Tomescu et al., 2007). In (Precup
et al., 2009) studied a new framework for the design of generic two-degree-of-freedom (2-DOF),
linear and fuzzy, controllers dedicated to a class of integral processes specific to servo systems.
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Fuzzy systems first introduced by Zadeh. The membership degree of Type-1 fuzzy set is crisp
value but it isT1FS in the Type-2 fuzzy sets (Mendel, 2001; Wu & Mendel, 2001; Mendel, 2007).
Researchers have shown that T1FLS have difficulty in modeling and minimizing the effect of
uncertainties (Zadeh, 1975).

In (Biglarbegian et al., 2010), the WuMendel uncertainty bounds (WM UBs) to design stable
interval type-2 TSK fuzzy logic control systems (IT2 TSK FLCS). Proposed Inference Methods for
IT2 TSK FLCSs in (Mohammad, 2010). In (Ren et al., 2011) showed IT2 TSK FLSs analyzes the
sensibility of the outputs of a type-2 TSK fuzzy system, and discusses the approximation capacities
of type-2 TSK FLS and its type-1 counterpart. In (Wu & Tan, 2004) the study is conducted by
utilizing a type-2 FLC, evolved by a genetic algorithm(GA), to control a liquid-level process.The
proposed algorithm of interval type-2 TSK FLS has been used in fuzzy modeling and uncertainty
prediction in high precision manufacturing (Ren et al., 2009).

In this paper, Proposed the new inference mechanisms. we reduced the computational burden
of T2 TSK FS.A simplified T2 TSK FS have a hybrid structure of four type-1 fuzzy systems (T1
TSK FS).The final output of the T2 TSK FLS is then obtained by averaging the defuzzified outputs
of each T1 TSK FLC. The rest of the chapter is organized as follows: Section II, we present an
overview of dynamic Takagi Sugeno systems. In this section, deals with analytical design of
Type-2 TSK fuzzy control and introduces the proposed simplified implementation of T2 TSK FLS
using four embedded T1FSs. Some simulations are executed to verify the validity of the proposed
approach in Section III. Section IV concludes the paper.

2. Takagi-sugeno fuzzy model

A dynamic T-S fuzzy model is described by a set of fuzzy IF THEN rules with fuzzy sets in
the antecedents and dynamic linear time-invariant systems in the consequents. A generic T-S plant
rule can be written as follows (Dorato et al., 1995; Khaber et al., 2006):

ithPlant Rule : IFx1 (t) is Mi1 . . . , xn (t) is Min T HEN ẋ = Aix + Biu,

where xn×1 is the state vector, r is the number of rules, Mi j are input fuzzy sets, um×1 is the
input and An×n , Bn×m are state matrix and input matrix respectively. Using singleton fuzzifier,
max-product inference and center average defuzzifier, we can write the aggregated fuzzy model
as:

ẋ =

∑r
i=1 ωi(x)(Aix + Biu)∑r

i=1 ωi(x)
, (2.1)

with the term ωi is defined by:

ωi (x) =

n∏
j=1

µi j(x j), (2.2)
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where µi j is the membership function of the jth fuzzy set in the ith rule. Defining the coeffi-
cients αi as:

αi =
ωi∑r

i=1 ωi
(2.3)

we can write (2.1) as:

ẋ =

r∑
i=1

αi(x)(Aix + Biu)i = 1, . . . , r, (2.4)

where αi > 0 and
r∑

i=1
αi (x) = 1.

Using the same method for generating T-S fuzzy rules for the controller, we have:

ithcontrollerRule :

IFx1 (t) is Mi
1 and . . . xn(t) is Mi

n then u (t) = −Kix (t) , i = 1, . . . , r,

The over all controllers would be

u = −

r∑
i=1

αi (x) Kix. (2.5)

Replacing (2.5) in (2.4), we obtain the following equation for the closed loop system:

ẋ =

r∑
i=1

r∑
j=1

αi (x)α j (x) (Aix + Biu) x. (2.6)

3. IT2 TSK FLSs

This chapter first presents the design of IT2 TSK FLSs for modeling and control applica-
tions. Second, WM UBs are introduced and third, a new inference engines for IT2 TSK FLSs
are introduced. The general structure of an interval A2-C0 TSK model for a system is as follows
(Mohammad, 2010):

I f x1 is F̃ i
1 and x2 is F̃ i

2 and . . . xn is F̃ i
n, Then yi = ai

0x1 + ai
0x2 + . . . + ai

nxn (3.1)

where F̃ i
j, i = 1, . . . ,M represents the IT2 FS of input state j in rule i, x1, . . . ., xn are states,

ai
0, . . . , a

i
n are the coefficients of the output function for rule i (and hence are crisp numbers, i.e.,

type-0 FSs), yi is the output of the ith rule, and M is the number of rules. The above rules allow us
to model the uncertainties encountered in the antecedents.

In an IT2 TSK A2-C0 model, f̄ i (x) and f i (x) , lower and upper firing strengths of the ith rule,
respectively, are given by

f̄ i (x∗) = µ̄F̃i
1
(x1) ? . . . ? µ̄F̃i

n
(xn) , (3.2)



Hodeiseh Gordan et al. / Theory and Applications of Mathematics & Computer Science 2 (2) (2012) 20–30 23

f i (x∗) = F̃i
1
(x1) ? . . . ? F̃i

n
(xn) , (3.3)

where µ
F̃i

j

and µ̄F̃i
j
represent the jth ( j = 1 . . . M) lower and upper MFs of rule i, and ”?” is a

t-norm operator. State vector is defined as

x = [x1, x2, . . . , xn]T (3.4)

The final output of the IT2 TSK A2-C0 is given as:

YTS K/A2−C0 =
[
yl, yr

]
= ∫

f 1∈
[
f 1, f̄ 1

] . . . ∫
f M∈

[
f M , f̄ M

] 1
/∑M

k=1 f i(x)yi∑M
k=1 f i(x)

, (3.5)

where yi is given by the consequent part of (3.1). YTSK/A2−C0 is an interval T1 set and only
depends on its left and right end-points yl, yr, which can be computed using the iterative KM
algorithms. Therefore, the final output is given as The final output of the IT2 TSK A2-C0 is given
as:

Youtput (x) =
yr (x) + yl (x)

2
. (3.6)

KM Algorithm (Mohammad, 2010):
The KM algorithm presents iterative procedures to compute yl, yr in as follows:

Set yi = yi
l (or yi

r ) for i = 1, . . . ,N;

Arrange yi in ascending order;

Set f i =
f i+ f̄ i

2 fori = 1, . . . ,N;

y′ =
∑N

i=1 yi f i∑N
i=1 f i ;

Do

y′′ = y′;

Find k ∈ [1,N − 1] such that yk ≤ y′ ≤ yk+1;

Set f i = f̄ i (or i ) for i ≤ k;

Set f i = f i (or f̄ i ) for i ≥ k + 1 ;

y′ =
∑N

i=1 yi f i∑N
i=1 f i ;

While y
′

, y
′′

yl (or yr) = y′.

It has been proven that this iterative procedure can converge in at most N iterations (Mohammad,
2010).
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4. A simplified implementation of T2 TSK FS

As shown in the Figure 1, each T2MF can represents by two T1MFs, upper MF and lower MF.
Therefore, each one of two neighbor T2MFs intersects each other in four points and object to get
four MFs, upper MF, lower MF, left MF and right MF showing in Figure 2 (Hameed et al., 2011).
Thus four T1 TSK Fuzzy controller supplanted are used discretely. The MFs in each controller
supplanted by upper MF, lower MF, left MF and right MF, and will create upper fuzzy controller
(UFC), lower fuzzy controller (LFC), left fuzzy controller (LEFTFC) and right fuzzy controller
(RFC) respectively.

Figure 1. Illustration of decomposing T2MFs into 4 T1MFs.

The defuzzified output of the T2FLS is then obtained by averaging the defuzzified outputs of
the resultant four embedded T1FLSs, as shown in Figure 3.

Y (x) =
1
4

yupper (x) +
1
4

ylower (x) +
1
4

yle f t (x) +
1
4

yright (x) . (4.1)

5. Simulation

A two-inverted pendulum system is shown in Figure 4. It consists of two cart-pole inverted
pendulums. The inverted pendulums are linked by a spring in the middle. The carts will move to
and from during the operation. The control objective is to balance the inverted pendulums verti-
cally despite the movings of the spring and carts by applying forces to the tips of the pendulums.
Referring to Figure 4, M and m are the masses of the carts and the pendulums, respectively, m=10
kg and M =100 kg. L =1 m is the length of the pendulums. The spring has a stiffness constant
k = 1N/m. y1(t) = sin(2t) and y2(t) = L + sin(3t) are the trajectories of the moving carts. u1(t)
and u2(t) are the forces applied to the pendulums. θ1(t) and θ2(t) are the angular displacements of
the pendulums measured from the vertical. The dynamic equation of the two-inverted pendulum
system can be written as follows (Lam et al., 2000):

Ẋ = A (x (t)) x (t) + Bu(t) (5.1)
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Figure 2: (a) Membership functions of upper intersection points. (b) Membership functions of left intersection points.
(c) Membership functions of lower intersection points, and (d) Membership functions of right intersection points.

Where

X (t) =


x1(t)
x2(t)
x3(t)
x4(t)

 =


θ1(t)
θ̇1(t)
θ2(t)
θ̇2(t)

 , x1 ∈ [x1minx1max] =
[
−π2

π
2

]
, x3 ∈ [x3minx3max] =

[
−π2

π
2

]
,

A (x (t)) =


0

f1 (x1 (t))
0
0

1
0
0
0

0
0
0

f2 (x3 (t))

0
0
1
0

 , B =


0
λ
0
0

0
0
0
λ

 and u (t) =

[
u1(t)
u2(t)

]
,

f1 (t) = 2
L −

m
M sin (x1 (t)) x1 (t) , f2 (t) = 2

L −
m
M sin (x3 (t)) x3 (t) and λ = 2

mL2 .
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Figure 3. Simplified type-2 TSK fuzzy Logic Controller.

Figure 4. Two-inverted pendulum system.

A four-rule TS-fuzzy plant model is used to represent the two inverted pendulum system. The
i-th rule of the TS-fuzzy plant model is given by

Rule i = IF f1 (x1 (t)) is Mi1 and f2 (x3 (t)) is Mi2 then Ẋ = Aix (t) + Bu (t) , i = 1, 2, 3, 4 (5.2)

where Mi is a fuzzy term of rule i, i = 1, 2, 3, 4. Then, the system dynamics is described by

Ẋ =

4∑
i=1

wi [Aix (t) + Bu (t)] , (5.3)

where

A1 =


0

f1min

0
0

1
0
0
0

0
0
0

f2min

0
0
1
0

 , A2 =


0

f1min

0
0

1
0
0
0

0
0
0

f2max

0
0
1
0

 ,
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A3 =


0

f1max

0
0

1
0
0
0

0
0
0

f2min

0
0
1
0

 , A4 =


0

f1max

0
0

1
0
0
0

0
0
0

f2max

0
0
1
0

 ,
wi =

µMi
1
( f1 (x1 (t))) × µMi

2
( f2 (x3 (t)))∑4

i=1

(
µMi

1
( f1 (x1 (t))) × µMi

2
( f2 (x3 (t)))

) ,
µMβ

1
( f1 (x1 (t))) =

− f1(x1(t))+ f1max
f1max− f1min

for β = 1, 2 and µMδ
1

( f1 (x1 (t))) = 1−µM1
1

( f1 (x1 (t))) for δ = 3, 4

µMε
1

( f2 (x3 (t))) =
− f2(x3(t))+ f2max

f2max− f2min
for ε = 1, 3 and µM∅1

( f2 (x3 (t))) = 1−µM1
2

( f2 (x3 (t))) for δ = 2, 4
f1max = 2

L + x1max and f1min = 2
L + x1min, f2max = f1max and f2min = f1min.

Figure 5 shows a controller in which the inputs are the states x(k) and the output is u(k). For
this system, the general i-th rule has the following form:

Figure 5. Closed-loop T2 TSK fuzzy control system.

To compare the performance of the IT2 TS FLC with the T1 controller, the model of the
plant is kept as a T1 TS and only the controller is replaced with an IT2 TS model. To make a
fair comparison, the parameters of the plants and controllers are kept unchanged for four control
systems, and only the MFs for the IT2 controller are designed. MFs for this Example showed
Figures 1 and 2. In this paper, the simplified Type 2 TSK Fuzzy controller of scaling factors are
tuned by trial-and-error approach. A four-rule fuzzy controller is designed as following equation
(Lam et al., 2000).

Rule i = I f x1 (t) is M̃i
1 and x3 (t) is M̃i

2 then u (t) = G jx (t) j = 1, 2, 3, 4.

The feedback gains for each fuzzy controller are then chosen as:

G1 =

[
−116.6410
−79.0293

−119.7827
−40.024

−95.0589
−260.5216

−39.6463
−180.2173

]
,

G2 =

[
−116.6410
−97.0293

−119.7827
−40.024

−95.0589
−260.5216

−39.6463
−180.2173

]
,
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G3 =

[
−179.4729
−97.0293

−119.7827
−40.024

−95.0589
−260.5216

−39.6463
−180.2173

]
and

G4 =

[
−179.4729
−97.0293

−119.7827
−40.024

−95.0589
−323.3534

−39.6463
−180.2173

]
The zero-input responses of the system under the initial conditions:

x (0) (rad) = [
88π
180

0 −
88π
180

0].

The responses for T1 TSK Fuzzy and simplified T2 TSK Fuzzy controllers are shown in Fig-
ures 6-7 comparison between the two types of TSK FLCs have done. The reciprocal of the Root
squared error (RMSE) of the response showed in Table I.

Figure 6: Responses of (solid line) and (dotted line) of the two-inverted pendulum system under T1 TSK FLC and
Simplified T2 TSK FLC with M = 100 kg.

Table 1
RMSE of the responses

RMSE X1(t) X2(t) X3(t) X4(t)
T1 TSK FLC 6.8299 3.8769 6.3953 5.1933
T2 TSK FLC 6.7483 4.0474 6.3542 5.3271
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Figure 7: Responses of (solid line) and (dotted line) of the two-inverted pendulum system under T1 TSK FLC and
Simplified T2 TSK FLC with M = 100 kg.

6. Conclusion

The nonlinear, T1, and IT2 controllers are capable of stabilizing the system. With attention to
table. 1 in before section, value RMSE reduced in the X1(t) and X3(t) in the T2 TSK FLC with
respect to T1 TSK FLC. Therefore output system is robustness. In this case study, it is shown
that the proposed IT2 TSK FLC is capable of stabilizing the coupled two inverted pendulum while
achieving a better performance compared to its T1 TSK FLC

References

Biglarbegian, M., W. W. Melek and J. M. Mendel (2010). On the stability of interval type-2 TSK fuzzy logic control
systems. Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on 40(3), 798 –818.

Dorato, P., C.T . Abdallah and V. Cerone (1995). Linear Quadratic Control: An Introduction. PrenticeHall, Englewood
Cliffs, NJ.

Echanobe, J., I. del Campo and J.M. Tarela (2005). Issues concerning the analysis and implementation of a class of
fuzzy controllers. Fuzzy Sets and Systems 155(2), 252 – 271.

Guechi, El-Hadi, Jimmy Lauber, Michel Dambrine, Gregor Klančar and Saso Blažič (2010). PDC control design for
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Abstract
A generalized framework for a class of second order (Φ,Ψ, ρ, η, θ)−invexities is developed, and then some para-

metric sufficient efficiency conditions for multiobjective fractional programming problems are established. The ob-
tained results generalize and unify a wider range of investigations in the literature on applications to other results on
multiobjective fractional programming.
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1. Introduction

Zalmai and Zhang (see (Zalmai & Zhang, 2007a)) have established a set of necessary efficiency
conditions and a fairly large number of global nonparametric sufficient efficiency results under
various frameworks for generalized (η, ρ)−invexity for semi-infinite discrete minimax fractional
programming problems. Recently, Verma (see (Verma, 2013)) developed a general framework for
a class of (ρ, η, θ)−invex functions to examine some parametric sufficient efficiency conditions for
multiobjective fractional programming problems for weakly ε−efficient solutions. On the other
hand, the work of Kim, Kim and Lee (see (Kim et al., 2011)) extends the results of Kim and
Lee (see (Kim & Lee, 2013)) on ε−optimality theorems for a convex multiobjective optimization
problem to a multiobjective fractional optimization problem, while this has been followed by other
research advances. They also applied the generalized Abadie constraint qualification to the context
of the optimal solvability of a semi-infinite discrete minimax fractional programming problems.
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Based on the recent advances in the study of ε−optimality and weak ε−optimality conditions
for multiobjective fractional programming problems, we first generalize the (ρ, η, θ)−invexities
to second order (Φ,Ψ, ρ, η, θ)−invexities, and we introduce some parametric sufficient efficiency
conditions for multiobjective fractional programming to achieve ε−efficient solutions to multiob-
jective fractional programming problems. The results established in this communication, not only
generalize the results on weak ε−efficiency conditions for multiobjective fractional programming
problems, but also generalize the second order invexity results in general setting. The notion of the
second order (Φ,Ψ, ρ, η, θ)−invexities encompass most of the existing notions of the generalized
invexities (see (Ben-Israel & Mond, 1986), (Caiping & Xinmin, 2009), (Hanson, 1981) (Jeyaku-
mar, 1985), (Liu, 1999), (Mangasarian, 1975), (Mishra, 1997), (Mishra, 2000), (Mishra & Rueda,
2000), (Mishra & Rueda, 2006), (Mond & Weir, 1981-1983), (Mond & Zhang, 1995), (Mond &
Zhang, 1998), (Patel, 1997), (Srivastava & Bhatia, 2006), (Srivastava & Govil, 2000), (Suneja et
al., 2003), (Vartak & Gupta, 1987), (Yang, 1995), (Yang, 2009),(Yang & Hou, 2001), (Yang et
al., 2004a), (Yang et al., 2003), (Yang et al., 2005), (Yang et al., 2008), (Yang et al., 2004b),
(Yokoyama, 1996), (Zalmai, 2007), (Zalmai, 2007), (Zhang & Mond, 1996), (Zhang & Mond,
1997)). There exists a vast literature on higher order generalized invexity and duality models in
mathematical programming. For more details, we refer the reader (see (Verma, 2012), (Verma,
2013), (Zalmai, 2012), (Zalmai & Zhang, 2007b), (Zeidler, 1985)).

We consider under the general framework of (Φ,Ψ, ρ, η, θ)−invexities of functions, the follow-
ing multiobjective fractional programming problem:

(P)

Minimize
( f1(x)
g1(x)

,
f2(x)
g2(x)

, · · ·,
fp(x)
gp(x)

)
subject to x ∈ Q = {x ∈ X : H j(x) ≤ 0, j ∈ {1, 2, · · ·,m}},

where X is an open convex subset of <n (n-dimensional Euclidean space), fi and gi for i ∈
{1, · · ·, p} and H j for j ∈ {1, · · ·,m} are real-valued functions defined on X such that fi(x) ≥ 0,
gi(x) > 0 for i ∈ {1, · · ·, p} and for all x ∈ Q. Here Q denotes the feasible set of (P).

Next, we observe that problem (P) is equivalent to the nonfractional programming problem:
(Pλ)

Minimize
(

f1(x) − λ1g1(x), · · ·, fp(x) − λpgp(x)
)

subject to x ∈ Q with

λ =
(
λ1, λ2, · · ·, λp

)
=

( f1(x∗)
g1(x∗)

,
f2(x∗)
g2(x∗)

, · · ·,
fp(x∗)
gp(x∗)

)
,

where x∗ is an efficient solution to (P).

General Mathematical programming problems serve a significant useful purpose, especially in
terms of applications to game theory, statistical analysis, engineering design (including design of
control systems, design of earthquakes-resistant structures, digital filters, and electronic circuits),
random graphs, boundary value problems, wavelet analysis, environmental protection planning,
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decision and management sciences, optimal control problems, continuum mechanics, robotics,
and others.

2. Generalized second order invexities

In this section, we develop some concepts and notations for the problem on hand. Let X be an
open convex subset of<n (n-dimensional Euclidean space). Let 〈·, ·〉 denote the inner product, and
let η : X×X →<n be a function. Suppose that f is a real-valued twice continuously differentiable
function defined on X, and that 5 f (y) and ∇2 f (y) denote, respectively, the gradient and hessian of
f at y.

Definition 2.1. A twice differentiable function f : X → < is said to be (Φ,Ψ, ρ, η, θ)−invex
at x∗ of second order if there exist a superlinear function Φ : <n → <, a sublinear function
Ψ : <n → < and a function η : <n × <n → <n such that for each x ∈ X, ρ : X × X → <,
θ : X × X →<n and z ∈ <n,

Φ
(

f (x) − f (x∗)
)
≥ 〈5 f (x∗), η(x, x∗)〉 +

1
2
〈z,∇2 f (x∗)z〉 + ρ(x, x∗)‖θ(x, x∗)‖2.

Definition 2.2. A twice differentiable function f : X → < is said to be (Φ,Ψ, ρ, η, θ)−pseudo-
invex at x∗ of second order if there exist a superlinear function Φ : <n → <, a sublinear function
Ψ : <n → < and a function η : <n × <n → <n such that for each x ∈ X, ρ : X × X → <,
θ : X × X →<n and z ∈ <n,

〈5 f (x∗), η(x, x∗)〉 +
1
2
〈z,∇2 f (x∗)z〉 + ρ(x, x∗)‖θ(x, x∗)‖2 ≥ 0⇒ Φ

(
f (x) − f (x∗)

)
≥ 0.

Definition 2.3. A twice differentiable function f : X → < is said to be strictly (Φ,Ψ, ρ, η, θ)−
pseudo-invex at x∗ of second order if there exists a function η : <n ×<n →<n such that for each
x ∈ X, ρ : X × X →<, θ : X × X →<n and z ∈ <n,

〈5 f (x∗), η(x, x∗)〉 +
1
2
〈z,∇2 f (x∗)z〉 + ρ(x, x∗)‖θ(x, x∗)‖2 ≥ 0⇒ Φ

(
f (x) − f (x∗)

)
> 0.

Definition 2.4. A twice differentiable function f : X → < is said to be prestrictly (Φ,Ψ, ρ, η, θ)−
pseudo-invex at x∗ of second order if there exists a function η : <n ×<n →<n such that for each
x ∈ X, ρ : X × X →<, θ : X × X →<n and z ∈ <n,

〈5 f (x∗), η(x, x∗)〉 +
1
2
〈z,∇2 f (x∗)z〉 + ρ(x, x∗)‖θ(x, x∗)‖2 > 0⇒ Φ

(
f (x) − f (x∗)

)
≥ 0.

Definition 2.5. A twice differentiable function f : X →< is said to be (Φ,Ψ, ρ, η, θ)−quasi-invex
at x∗ of second order if there exists a function η : <n × <n → <n such that for each x ∈ X,
ρ : X × X →<, θ : X × X →<n and z ∈ <n,

Ψ
(
f (x) − f (x∗)

)
≤ 0⇒ 〈5 f (x∗), η(x, x∗)〉 +

1
2
〈z,∇2 f (x∗)z〉 + ρ(x, x∗)‖θ(x, x∗)‖2 ≤ 0.
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Definition 2.6. A twice differentiable function f : X →< is said to be strictly (Φ,Ψ, ρ, η, θ)−quasi-
invex at x∗ of second order if there exists a function η : <n ×<n → <n such that for each x ∈ X,
ρ : X × X →<, θ : X × X →<n and z ∈ <n,

Ψ
(
f (x) − f (x∗)

)
≤ 0⇒ 〈5 f (x∗), η(x, x∗)〉 +

1
2
〈z,∇2 f (x∗)z〉 + ρ(x, x∗)‖θ(x, x∗)‖r < 0.

Definition 2.7. A twice differentiable function f : X → < is said to be prestrictly (Φ,Ψ, ρ, η, θ)−
quasi-invex at x∗ of second order if there exists a function η : <n × <n → <n such that for each
x ∈ X, ρ : X × X →<, θ : X × X →<n and z ∈ <n,

Ψ
(
f (x) − f (x∗)

)
< 0⇒ 〈5 f (x∗), η(x, x∗)〉 +

1
2
〈z,∇2 f (x∗)z〉 + ρ(x, x∗)‖θ(x, x∗)‖r ≤ 0.

We observe that the second order generalized (Φ,Ψ, ρ, η, θ)−invexities can be specialized to
second order (ρ, η, θ)−invexities.

Definition 2.8. A twice differentiable function f : X → < is said to be (ρ, η, θ)−pseudo-invex
at x∗ of second order if there exist a function η : <n × <n → <n such that for each x ∈ X,
ρ : X × X →<, θ : X × X →<n and z ∈ <n

〈5 f (x∗), η(x, x∗)〉 +
1
2
〈z,∇2 f (x∗)z〉 + ρ(x, x∗)‖θ(x, x∗)‖2 ≥ 0⇒ f (x) − f (x∗) ≥ 0.

Definition 2.9. A twice differentiable function f : X → < is said to be strictly (ρ, η, θ)−pseudo-
invex at x∗ of second order if there exists a function η : <n ×<n → <n such that for each x ∈ X,
ρ : X × X →<, θ : X × X →<n and z ∈ <n

〈5 f (x∗), η(x, x∗)〉 +
1
2
〈z,∇2 f (x∗)z〉 + ρ(x, x∗)‖θ(x, x∗)‖2 ≥ 0⇒ f (x) − f (x∗) > 0.

Definition 2.10. A twice differentiable function f : X →< is said to be prestrictly (ρ, η, θ)−pseudo-
invex at x∗ of second order if there exists a function η : <n ×<n → <n such that for each x ∈ X,
ρ : X × X →<, θ : X × X →<n and z ∈ <n

〈5 f (x∗), η(x, x∗)〉 +
1
2
〈z,∇2 f (x∗)z〉 + ρ(x, x∗)‖θ(x, x∗)‖2 > 0⇒ f (x) − f (x∗) ≥ 0.

Definition 2.11. A twice differentiable function f : X → < is said to be (ρ, η, θ)−quasi-invex
at x∗ of second order if there exists a function η : <n × <n → <n such that for each x ∈ X,
ρ : X × X →<, θ : X × X →<n and z ∈ <n

f (x) − f (x∗) ≤ 0⇒ 〈5 f (x∗), η(x, x∗)〉 +
1
2
〈z,∇2 f (x∗)z〉 + ρ(x, x∗)‖θ(x, x∗)‖2 ≤ 0.

Definition 2.12. A twice differentiable function f : X → < is said to be strictly (ρ, η, θ)−quasi-
invex at x∗ of second if there exists a function η : <n × <n → <n such that for each x ∈ X,
ρ : X × X →<, θ : X × X →<n and z ∈ <n

f (x) − f (x∗) ≤ 0⇒ 〈5 f (x∗), η(x, x∗)〉 +
1
2
〈z,∇2 f (x∗)z〉 + ρ(x, x∗)‖θ(x, x∗)‖2 < 0.
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Definition 2.13. A twice differentiable function f : X →< is said to be prestrictly (ρ, η, θ)−quasi-
invex at x∗ of second order if there exists a function η : <n ×<n → <n such that for each x ∈ X,
ρ : X × X →<, θ : X × X →<n and z ∈ <n

f (x) − f (x∗) < 0⇒ 〈5 f (x∗), η(x, x∗)〉 +
1
2
〈z,∇2 f (x∗)z〉 + ρ(x, x∗)‖θ(x, x∗)‖2 ≤ 0.

3. The ε−Solvability Conditions

Now we consider the ε−solvability conditions for (P) and (Pλ) problems motivated by the
publications (see (Kim et al., 2011)), where they have investigated the ε−efficiency as well as
the weak ε−efficiency conditions for multiobjective fractional programming problems under con-
straint qualifications. Based on these developments in the literature, first we introduce a second
order generalization of (Φ,Ψ, ρ, η, θ)−invexities to the existing notion of (ρ, η, θ)−invexities, and
then using the parametric approach, we develop some parametric sufficient ε−efficiency conditions
for multiobjective fractional programming problem (P) under this framework. We need to recall
some auxiliary results crucial to the problem on hand.

Definition 3.1. A point x∗ ∈ Q is an ε−efficient solution to (P) if there does not exist an x ∈ Q
such that

fi(x)
gi(x)

≤
fi(x∗)
gi(x∗)

− εi ∀ i = 1, · · ·, p,

f j(x)
g j(x)

<
f j(x∗)
g j(x∗)

− ε j, some j ∈ {1, · · ·, p},

where εi=(ε1, · · ·, εp) is with εi ≥ 0 for i = 1, · · ·, p.

For ε = 0, Definition 3.1 reduces to the case that x∗ ∈ Q is an efficient solution to (P).

Definition 3.2. A point x∗ ∈ Q is an efficient solution to (P) if there exists no x ∈ Q such that

fi(x)
gi(x)

≤
fi(x∗)
gi(x∗)

∀ i = 1, · · ·, p.

Next to this context, we have the following auxiliary problem:
(Pλ̄)

minimizex∈Q( f1(x) − λ̄1g1(x), · · ·, fp(x) − λ̄pgp(x)),

subject to x ∈ Q,
where λ̄i for i ∈ {1, · · ·, p} are parameters, ε∗i = εigi(x∗) and λ̄i =

f( x∗)
gi(x∗) − εi.

Next, we introduce the ε∗−solvability conditions for (Pλ̄) problem.

Definition 3.3. A point x∗ ∈ Q is an ε∗−efficient solution to (Pλ̄) if there does not exist an x ∈ Q
such that

fi(x) − λ̄igi(x) ≤ fi(x∗) − λ̄igi(x∗) − ε∗i ∀ i = 1, · · ·, p,

f j(x) − λ̄ jg j(x) < f j(x∗) − λ̄ jg j(x∗) − ε∗j , some j ∈ {1, · · ·, p},

where λ̄i =
fi(x∗)
gi(x∗) − εi, and ε∗i = εigi(x∗) with ε = (ε1, · · ·, εp), εi ≥ 0 for i = 1, · · ·, p.
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For ε = 0, it reduces to the case that x∗ is an efficient solution to (P) if there exists no x ∈ Q
such that

(
f1(x)
g1(x)

,
f2(x)
g2(x)

, · · ·,
fp(x)
gp(x)

) ≤ (
f1(x∗)
g1(x∗)

,
f2(x∗)
g2(x∗)

, · · ·,
fp(x∗)
gp(x∗)

).

Lemma 3.1. (Kim et al., 2011) Let x∗ ∈ Q. Suppose that fi(x∗) ≥ εigi(x∗) for i = 1, · · ·, p. Then the
following statements are equivalent:

(i) x∗ is an ε−efficient solution to (P).

(ii) x∗ is an ε∗−efficient solution to (Pλ̄), where

λ̄ = (
f1(x∗)
g1(x∗)

− ε1, · · ·,
fp(x∗)
gp(x∗)

− εp)

and ε∗ = (ε1g1(x∗), · · ·, εpgp(x∗)).

Lemma 3.2. (Kim et al., 2011) Let x∗ ∈ Q. Suppose that fi(x∗) ≥ εigi(x∗) for i = 1, · · ·, p. Then the
following statements are equivalent:

(i) x∗ is an ε−efficient solution to (P).

(ii) There exists c = (c1, · · ·, cp) ∈ <p
+ \ {0} such that

Σ
p
i=1ci[ fi(x) −

( fi(x∗)
gi(x∗)

− εi

)
gi(x)] ≥ 0 = Σ

p
i=1ci[ fi(x∗) −

( fi(x∗)
gi(x∗)

− εi

)
gi(x∗)] − Σ

p
i=1ciεigi(x∗),

for any x ∈ Q.

Lemma 3.3. Let x∗ ∈ Q. Suppose that fi(x∗) ≥ εigi(x∗) for i = 1, · · ·, p. Then the following
statements are equivalent:

(i) x∗ is an ε∗−efficient solution to (Pλ̄).

(ii) There exists c = (c1, · · ·, cp) ∈ <p
+ \ {0} such that

Σ
p
i=1ci[ fi(x) −

( fi(x∗)
gi(x∗)

− εi

)
gi(x)] ≥ 0 = Σ

p
i=1ci[ fi(x∗) −

( fi(x∗)
gi(x∗)

− εi

)
gi(x∗)] − Σ

p
i=1ciεigi(x∗),

for any x ∈ Q.

4. Auxiliary results on Parametric sufficiency conditions

This section deals with some auxiliary parametric sufficient ε− efficiency conditions for prob-
lem (P) under the generalized frameworks for generalized invexity. We start with real-valued
functions Ei(., x∗, u∗) and B j(., v) defined by

Ei(x, x∗, u∗) = ui[ fi(x) −
( fi(x∗)
gi(x∗)

− εi

)
gi(x)], i ∈ {1, · · ·, p},
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and
B j(., v) = v jH j(x), j = 1, · · ·,m.

Verma (see (Verma, 2013))) recently established the following result based on parametric suf-
ficient weak ε− efficiency conditions for problem (P) under the generalized (ρ, η, θ) frameworks
for generalized invexities. These results are significant to developing our main results on hand.

Theorem 4.1. Let x∗ ∈ Q. Let fi, gi for i ∈ {1, · · ·, p} with fi(x∗) ≥ εigi(x∗), gi(x∗) > 0 and H j for
j ∈ {1, · · ·,m} be differentiable at x∗ ∈ Q, and let there exist u∗ ∈ U = {u ∈ <p : u > 0,Σp

i=1ui = 1}
and v∗ ∈ <m

+ such that

〈Σ
p
i=1u∗i [5 fi(x∗) − (

fi(x∗)
gi(x∗)

− εi) 5 gi(x∗)] + Σm
j=1v∗j 5 H j(x∗), η(x, x∗)〉 ≥ 0 , (4.1)

and
v∗jH j(x∗) = 0, j ∈ {1, · · ·,m}. (4.2)

Suppose, in addition, that any one of the following assumptions holds (for ρ(x, x∗) ≥ 0) :

(i) Ei(. ; x∗, u∗) ∀ i ∈ {1, · · ·, p} are (ρ, η, θ)−pseudo-invex at x∗, and B j(. , v∗) ∀ j ∈ {1, · · ·,m}
are (ρ, η, θ)−quasi-invex at x∗.

(ii) Ei(. ; x∗, u∗) ∀ i ∈ {1, · · ·, p} are prestrictly (ρ, η, θ)−pseudo-invex at x∗, and B j(. , v∗) ∀ j ∈
{1, · · ·,m} are strictly (ρ, η, θ)−quasi-invex at x∗.

(iii) Ei(. ; x∗, u∗) ∀ i ∈ {1, · · ·, p} are prestrictly (ρ, η, θ)−quasi-invex at x∗, and B j(. , v∗) ∀ j ∈
{1, · · ·,m} are strictly (ρ, η, θ)−pseudo-invex at x∗.

(iv) For each i ∈ {1, · · ·, p}, fi is (ρ1, η, θ)−invex and −gi is (ρ2, η, θ)−invex at x∗. H j(. , v∗) ∀ j ∈
{1, · · ·,m} is (ρ3, η, θ)−quasi-invex at x∗, and Σm

j=1v∗jρ3 + ρ∗ ≥ 0 for ρ∗ = Σ
p
i=1u∗i (ρ1 + φ(x∗)ρ2)

and for φ(x∗) =
fi(x∗)
gi(x∗) − εi.

Then x∗ is a weakly ε−efficient solution to (P).

Next, we recall the following result (see (Verma & Zalmai, 2012)) that is crucial to developing
the results for the next section based on second Order (Φ,Ψ, ρ, η, θ)−invexities.

Theorem 4.2. Let x∗ ∈ F and λ∗ = max1≤i≤p fi(x∗)/gi(x∗), for each i ∈ p, let fi and gi be twice
continuously differentiable at x∗, for each j ∈ q, let the function z→ G j(z, t) be twice continuously
differentiable at x∗ for all t ∈ T j, and for each k ∈ r, let the function z → Hk(z, s) be twice
continuously differentiable at x∗ for all s ∈ S k. If x∗ is an optimal solution of (P), if the second
order generalized Abadie constraint qualification holds at x∗, and if for any critical direction y,
the set cone

{
(
∇G j(x∗, t), 〈y,∇2G j(x∗, t)y〉

)
: t ∈ T̂ j(x∗), j ∈ q}

+ span{
(
∇Hk(x∗, s), 〈y,∇2Hk(x∗, s)y〉

)
: s ∈ S k, k ∈ r},

where T̂ j(x∗) ≡ {t ∈ T j : G j(x∗, t) = 0},
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is closed, then there exist u∗ ∈ U ≡ {u ∈ Rp : u ≥ 0,
∑p

i=1 ui = 1} and integers ν∗0 and ν∗, with
0 ≤ ν∗0 ≤ ν

∗ ≤ n + 1, such that there exist ν∗0 indices jm, with 1 ≤ jm ≤ q, together with ν∗0 points
tm ∈ T̂ jm(x∗), m ∈ ν∗0, ν

∗ − ν∗0 indices km, with 1 ≤ km ≤ r, together with ν∗ − ν∗0 points sm ∈ S km for
m ∈ ν∗\ν∗0, and ν∗ real numbers v∗m, with v∗m > 0 for m ∈ ν∗0, with the property that

p∑
i=1

u∗i [∇ fi(x∗) − λ∗(∇gi(x∗)] +

ν∗0∑
m=1

v∗m[∇G jm(x∗, tm) +

ν∗∑
m=ν∗0+1

v∗m∇Hk(x∗, sm) = 0, (4.3)

〈y,
[ p∑

i=1

u∗i [∇2 fi(x∗) − λ∗∇2gi(x∗)] +

ν∗0∑
m=1

v∗m∇
2G jm(x∗, tm) +

ν∗∑
m=ν∗0+1

v∗m∇
2Hk(x∗, sm)

]
y〉 ≥ 0, (4.4)

where T̂ jm(x∗) = {t ∈ T jm : G jm(x∗, t) = 0}, U = {u ∈ Rp : u ≥ 0,
∑p

i=1 ui = 1}, and ν∗\ν∗0 is the
complement of the set ν∗0 relative to the set ν∗.

5. Second Order (Φ,Ψ, ρ, η, θ)−invexities

This section deals with some parametric sufficient ε− efficiency conditions for problem (P)
under the generalized frameworks of (Φ,Ψ, ρ, η, θ)−invexities for generalized invex functions. We
start with real-valued functions Ei(., x∗, u∗) and B j(., v) defined by

Ei(x, x∗, u∗) = ui[ fi(x) −
( fi(x∗)
gi(x∗)

− εi

)
gi(x)], i ∈ {1, · · ·, p}

and
B j(., v) = v jH j(x), j = 1, · · ·,m.

Theorem 5.1. Let x∗ ∈ Q. Let fi, gi for i ∈ {1, · · ·, p} with fi(x∗) ≥ εigi(x∗), gi(x∗) > 0 and H j for
j ∈ {1, · · ·,m} be twice continuously differentiable at x∗ ∈ Q, and let there exist u∗ ∈ U = {u ∈
<p : u > 0,Σp

i=1ui = 1}, v∗ ∈ <m
+ and z ∈ <n such that

Σ
p
i=1u∗i [5 fi(x∗) − (

fi(x∗)
gi(x∗)

− εi) 5 gi(x∗)] + Σm
j=1v∗j 5 H j(x∗) = 0, (5.1)

〈
z,

[ p∑
i=1

u∗i [∇2 fi(x∗) − (
fi(x∗)
gi(x∗)

− εi)∇2gi(x∗)] +

m∑
j=1

v∗j∇
2H j(x∗)

]
z
〉
≥ 0, (5.2)

and

v∗jH j(x∗) = 0, j ∈ {1, · · ·,m}. (5.3)

Suppose, in addition, that any one of the following assumptions holds (for ρ(x, x∗) ≥ 0):

(i) Ei(. ; x∗, u∗) ∀ i ∈ {1, · · ·, p} are (Φ,Ψ, ρ, η, θ)−pseudo-invex at x∗, and B j(. , v∗) ∀ j ∈ {1, · ·
·,m} are (Φ,Ψ, ρ, η, θ)−quasi-invex at x∗ for Φ(a) ≥ 0⇒ a ≥ 0 and b ≤ 0⇒ Ψ(b) ≤ 0.
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(ii) Ei(. ; x∗, u∗) ∀ i ∈ {1, · · ·, p} are prestrictly (Φ,Ψ, ρ, η, θ)−pseudo-invex at x∗, and B j(. , v∗)
∀ j ∈ {1, · · ·,m} are strictly (Φ,Ψ, ρ, η, θ)−quasi-invex at x∗ for Φ(a) ≥ 0 ⇒ a ≥ 0 and
b ≤ 0⇒ Ψ(b) ≤ 0.

(iii) Ei(. ; x∗, u∗) ∀ i ∈ {1, · · ·, p} are strictly (Φ,Ψ, ρ, η, θ)−pseudo-invex at x∗, and B j(. , v∗)
∀ j ∈ {1, · · ·,m} are strictly (Φ,Ψ, ρ, η, θ)−quasi-invex at x∗ for Φ(a) ≥ 0 ⇒ a ≥ 0 and
b ≤ 0⇒ Ψ(b) ≤ 0.

(iv) For each i ∈ {1, · · ·, p}, fi is (Φ,Ψ, ρ1, η)−invex and −gi is (Φ,Ψ, ρ2, η)−invex at x∗. H j(. , v∗)
∀ j ∈ {1, · · ·,m} is (Φ,Ψ, ρ3, η)−quasi-invex at x∗, Φ(a) ≥ 0⇒ a ≥ 0 and b ≤ 0⇒ Ψ(b) ≤ 0,
and Σm

j=1v∗jρ3 + ρ∗ ≥ 0 for ρ∗ = Σ
p
i=1u∗i (ρ1 + φ(x∗)ρ2) and for φ(x∗) =

fi(x∗)
gi(x∗) − εi.

Then x∗ is an ε−efficient solution to (P).

Proof. If (i) holds, and if x ∈ Q, then it follows from (5.1) and (5.2) that

〈Σ
p
i=1u∗i [5 fi(x∗) − (

fi(x∗)
gi(x∗)

− εi) 5 gi(x∗)], η(x, x∗〉 + 〈Σm
j=1v∗j 5 H j(x∗), η(x, x∗)〉 = 0∀ x ∈ Q, (5.4)

〈
z,

[ p∑
i=1

u∗i [∇2 fi(x∗) − (
fi(x∗)
gi(x∗)

− εi)∇2gi(x∗)] +

m∑
j=1

v∗j∇
2H j(x∗)

]
z
〉
≥ 0. (5.5)

Since v∗ ≥ 0, x ∈ Q and (5.3) holds, we have

Σm
j=1v∗jH j(x) ≤ 0 = Σm

j=1v∗jH j(x∗),

and in light of the (Φ,Ψ, ρ, η, θ)−quasi-invexity of B j(., v∗) at x∗, and assumptions on Ψ, we find

Ψ
(
Σm

j=1v∗jH j(x) − Σm
j=1v∗jH j(x∗)

)
≤ 0,

which results in

〈5H j(x∗), η(x, x∗)〉 +
1
2
〈z,∇2H j(x∗)z〉 + ρ(x, x∗)‖θ(x, x∗)‖2 ≤ 0. (5.6)

It follows from (5.3), (5.4), (5.5) and (5.6) that

〈Σ
p
i=1u∗i [5 fi(x∗) − ( fi(x∗)

gi(x∗) − εi) 5 gi(x∗)], η(x, x∗〉 + 1
2

〈
z,

∑p
i=1 u∗i [∇2 fi(x∗)z − ( fi(x∗)

gi(x∗) − εi)∇2gi(x∗)z]
〉

≥ ρ(x, x∗)‖θ(x, x∗)‖2. (5.7)

As a result, since ρ(x, x∗) ≥ 0, applying the (Φ,Ψ, ρ, η, θ)− pseudo-invexity at x∗ to (5.7) and
assumptions on Φ, we have

Φ
(
Σ

p
i=1u∗i [ fi(x) − (

fi(x∗)
gi(g∗)

− εi)gi(x)] − Σ
p
i=1u∗i [ fi(x∗) − (

fi(x∗)
gi(x∗)

− εi)gi(x∗)]
)
≥ 0,
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which implies

Σ
p
i=1u∗i [ fi(x) − (

fi(x∗)
gi(x∗)

− εi)gi(x)] ≥ Σ
p
i=1u∗i [ fi(x∗) − (

fi(x∗)
gi(x∗)

− εi)gi(x∗)]

≥ Σ
p
i=1u∗i [ fi(x∗) − (

fi(x∗)
gi(x∗)

− εi)gi(x∗)] − Σ
p
i=1u∗i εigi(x∗) = 0.

Thus, we have

Σ
p
i=1u∗i [ fi(x) − (

fi(x∗)
gi(x∗)

− εi)gi(x)] ≥ 0. (5.8)

Since u∗i > 0 for each i ∈ {1, · · ·, p}, we conclude that there does not exist an x ∈ Q such that

fi(x)
gi(x)

− (
fi(x∗)
gi(x∗)

− εi) ≤ 0 ∀ i = 1, · · ·, p,

and
f j(x)
g j(x)

− (
f j(x∗)
g j(x∗)

− ε j) < 0, some j ∈ {1, · · ·, p}.

Hence, x∗ is an ε−efficient solution to (P).
Next, if (ii) holds, and if x ∈ Q, then it follows from (5.1) and (5.2) that

〈Σ
p
i=1u∗i [5 fi(x∗) − (

fi(x∗)
gi(x∗)

− εi) 5 gi(x∗)], η(x, x∗〉 + 〈Σm
j=1v∗j 5 H j(x∗), η(x, x∗)〉 = 0∀ x ∈ Q, (5.9)

〈
z,

[ p∑
i=1

u∗i [∇2 fi(x∗) − (
fi(x∗)
gi(x∗)

− εi)∇2gi(x∗)] +

m∑
j=1

v∗j∇
2H j(x∗)

]
z
〉
≥ 0. (5.10)

Since v∗ ≥ 0, x ∈ Q and (5.3) holds, we have

Σm
j=1v∗jH j(x) ≤ 0 = Σm

j=1v∗jH j(x∗),

and in light of the strict (Φ,Ψ, ρ, η, θ)−quasi-invexity of B j(., v∗) at x∗, and assumptions on Ψ,
we find

Ψ
(
Σm

j=1v∗jH j(x) − Σm
j=1v∗jH j(x∗)

)
≤ 0,

which results in

〈5H j(x∗), η(x, x∗)〉 +
1
2
〈z,∇2H j(x∗)z〉 + ρ(x, x∗)‖θ(x, x∗)‖2 < 0. (5.11)
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It follows from (5.3), (5.9), (5.10) and (5.11) that

〈Σ
p
i=1u∗i [5 fi(x∗) − (

fi(x∗)
gi(x∗)

− εi) 5 gi(x∗)], η(x, x∗〉

+
1
2

〈
z,

p∑
i=1

u∗i [∇2 fi(x∗)z − (
fi(x∗)
gi(x∗)

− εi)∇2gi(x∗)z]
〉

> ρ(x, x∗)‖θ(x, x∗)‖2. (5.12)

As a result, since ρ(x, x∗) ≥ 0, applying the prestrict (Φ,Ψ, ρ, η, θ)−pseudo-invexity at x∗ to (5.12)
and assumptions on Φ, we have

Φ
(
Σ

p
i=1u∗i [ fi(x) − (

fi(x∗)
gi(g∗)

− εi)gi(x)] − Σ
p
i=1u∗i [ fi(x∗) − (

fi(x∗)
gi(x∗)

− εi)gi(x∗)]
)
≥ 0,

which implies

Σ
p
i=1u∗i [ fi(x) − (

fi(x∗)
gi(x∗)

− εi)gi(x)] ≥ Σ
p
i=1u∗i [ fi(x∗) − (

fi(x∗)
gi(x∗)

− εi)gi(x∗)]

≥ Σ
p
i=1u∗i [ fi(x∗) − (

fi(x∗)
gi(x∗)

− εi)gi(x∗)] − Σ
p
i=1u∗i εigi(x∗) = 0.

Thus, we have

Σ
p
i=1u∗i [ fi(x) − (

fi(x∗)
gi(x∗)

− εi)gi(x)] ≥ 0. (5.13)

Since u∗i > 0 for each i ∈ {1, · · ·, p}, we conclude that there does not exist an x ∈ Q such that

fi(x)
gi(x)

− (
fi(x∗)
gi(x∗)

− εi) ≤ 0 ∀ i = 1, · · ·, p,

and
f j(x)
g j(x)

− (
f j(x∗)
g j(x∗)

− ε j) < 0, some j ∈ {1, · · ·, p}.

Hence, x∗ is an ε−efficient solution to (P).
The proofs applying (iii) is similar to that of (ii), so we just need to include the proof using (iv)

as follows: since x ∈ Q, it follows that H j(x) ≤ H j(x∗), which implies Ψ
(
H j(x) − H j(x∗)

)
≤ 0.

Then applying the (Φ,Ψ, ρ3, η)−quasi-invexity of H j at x∗ and v∗ ∈ Rm
+ , we have

〈Σm
j=1v∗j 5 H j(x∗), η(x, x∗)〉 +

1
2

〈
z,Σm

j=1v∗j∇
2H j(x∗)z

〉
≤ −Σm

j=1v∗jρ3‖θ(x, x∗)‖2.

Since u∗ ≥ 0 and fi(x∗) ≥ εigi(x∗), it follows from (Φ,Ψ, ρ3, η)−invexity assumptions that
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Φ
(
Σ

p
i=1u∗i [ fi(x) − (

fi(x∗)
gi(x∗)

− εi)gi(x)]
)

= Φ
(
Σ

p
i=1u∗i {[ fi(x) − fi(x∗)] − (

fi(x∗)
gi(x∗)

− εi)[gi(x) − gi(x∗)] + εigi(x∗)}
)

≥ Σ
p
i=1u∗i {〈5 fi(x∗) − (

fi(x∗)
gi(x∗)

− εi) 5 gi(x∗), η(x, x∗)〉}

+
1
2
〈z,Σp

i=1u∗i [∇2 fi(x∗)z − (
fi(x∗)
gi(x∗)

− εi)∇2gi(x∗)z〉]

+ Σ
p
i=1u∗i [ρ1 + φ(x∗)ρ2]‖θ(x, x∗)‖2 + Σ

p
i=1u∗i εigi(x∗)

≥ −
[
〈Σm

j=1v∗j 5 H j(x∗), η(x, x∗)〉 +
1
2

〈
z,Σm

j=1v∗j∇
2H j(x∗)z

〉]
+ Σ

p
i=1u∗i [ρ1 + φ(x∗)ρ2]‖θ(x, x∗)‖2 + Σ

p
i=1u∗i εigi(x∗)

≥ (Σm
j=1v∗jρ3 + Σ

p
i=1u∗i [ρ1 + φ(x∗)ρ2])‖θ(x, x∗)‖2 + Σ

p
i=1u∗i εigi(x∗)

= (Σm
j=1v∗jρ3 + ρ∗)‖θ(x, x∗)‖2 + Σ

p
i=1u∗i εigi(x∗)

≥ (Σm
j=1v∗jρ3 + ρ∗)‖θ(x, x∗)‖2,

where φ(x∗) =
fi(x∗)
gi(x∗) − εi and ρ∗ = Σ

p
i=1u∗i (ρ1 + φ(x∗)ρ2).

We note that Theorem 5.1 can be specialized to the context of second order (ρ, η, θ)− invexities
as follows:

Theorem 5.2. Let x∗ ∈ Q. Let fi, gi for i ∈ {1, · · ·, p} with fi(x∗) ≥ εigi(x∗), gi(x∗) > 0 and H j for
j ∈ {1, · · ·,m} be twice continuously differentiable at x∗ ∈ Q, and let there exist u∗ ∈ U = {u ∈
<p : u > 0,Σp

i=1ui = 1} and v∗ ∈ <m
+ such that

Σ
p
i=1u∗i [5 fi(x∗) − (

fi(x∗)
gi(x∗)

− εi) 5 gi(x∗)] + Σm
j=1v∗j 5 H j(x∗) = 0 (5.14)

〈
z,

[ p∑
i=1

u∗i [∇2 fi(x∗) − (
fi(x∗)
gi(x∗)

− εi)∇2gi(x∗)] +

m∑
j=1

v∗j∇
2H j(x∗)

]
z
〉
≥ 0, (5.15)

and
v∗jH j(x∗) = 0, j ∈ {1, · · ·,m}. (5.16)

Suppose, in addition, that any one of the following assumptions holds (for ρ(x, x∗) ≥ 0):
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(i) Ei(. ; x∗, u∗) ∀ i ∈ {1, · · ·, p} are (ρ, η, θ)−pseudo-invex at x∗, and B j(. , v∗) ∀ j ∈ {1, · · ·,m}
are (ρ, η, θ)−quasi-invex at x∗.

(ii) Ei(. ; x∗, u∗) ∀ i ∈ {1, · · ·, p} are prestrictly (ρ, η, θ)−pseudo-invex at x∗, and B j(. , v∗) ∀ j ∈
{1, · · ·,m} are strictly (ρ, η, θ)−quasi-invex at x∗.

(iii) Ei(. ; x∗, u∗) ∀ i ∈ {1, · · ·, p} are strictly (ρ, η, θ)−pseudo-invex at x∗, and B j(. , v∗) ∀ j ∈
{1, · · ·,m} are strictly (ρ, η, θ)−quasi-invex at x∗.

(iv) For each i ∈ {1, · · ·, p}, fi is (ρ1, η, θ)−invex and −gi is (ρ2, η, θ)−invex at x∗. H j(. , v∗) ∀ j ∈
{1, · · ·,m} is (ρ3, η, θ)−quasi-invex at x∗, and Σm

j=1v∗jρ3 + ρ∗ ≥ 0 for ρ∗ = Σ
p
i=1u∗i (ρ1 + φ(x∗)ρ2)

and for φ(x∗) =
fi(x∗)
gi(x∗) − εi.

Then x∗ is an ε−efficient solution to (P).

Proof. If (i) holds, and if x ∈ Q, then it follows from (5.1) and (5.2) that

〈Σ
p
i=1u∗i [5 fi(x∗) − (

fi(x∗)
gi(x∗)

− εi) 5 gi(x∗)], η(x, x∗〉 + 〈Σm
j=1v∗j 5 H j(x∗), η(x, x∗)〉 = 0∀ x ∈ Q, (5.17)

〈
z,

[ p∑
i=1

u∗i [∇2 fi(x∗) − (
fi(x∗)
gi(x∗)

− εi)∇2gi(x∗)] +

m∑
j=1

v∗j∇
2H j(x∗)

]
z
〉
≥ 0. (5.18)

Since v∗ ≥ 0, x ∈ Q and (5.3) holds, we have

Σm
j=1v∗jH j(x) ≤ 0 = Σm

j=1v∗jH j(x∗),

and in light of the (ρ, η, θ)−quasi-invexity of B j(., v∗) at x∗, we have

〈5H j(x∗), η(x, x∗)〉 +
1
2
〈z,∇2H j(x∗)z〉 + ρ(x, x∗)‖θ(x, x∗)‖2 ≤ 0. (5.19)

It follows from (5.19) that

〈Σ
p
i=1u∗i [5 fi(x∗) − (

fi(x∗)
gi(x∗)

− εi) 5 gi(x∗)], η(x, x∗〉

+
1
2

〈
z,

p∑
i=1

u∗i [∇2 fi(x∗)z − (
fi(x∗)
gi(x∗)

− εi)∇2gi(x∗)z]
〉

≥ ρ(x, x∗)‖θ(x, x∗)‖2. (5.20)

As a result, since ρ(x, x∗) ≥ 0, applying the (ρ, η, θ)− pseudo-invexity at x∗ to (5.20), we have

Σ
p
i=1u∗i [ fi(x) − (

fi(x∗)
gi(x∗)

− εi)gi(x)] ≥ Σ
p
i=1u∗i [ fi(x∗) − (

fi(x∗)
gi(x∗)

− εi)gi(x∗)]

≥ Σ
p
i=1u∗i [ fi(x∗) − (

fi(x∗)
gi(x∗)

− εi)gi(x∗)] − Σ
p
i=1u∗i εigi(x∗) = 0.
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Thus, we have

Σ
p
i=1u∗i [ fi(x) − (

fi(x∗)
gi(x∗)

− εi)gi(x)] ≥ 0. (5.21)

Since u∗i > 0 for each i ∈ {1, · · ·, p}, we conclude that there does not exist an x ∈ Q such that

fi(x)
gi(x)

− (
fi(x∗)
gi(x∗)

− εi) ≤ 0 ∀ i = 1, · · ·, p,

and
f j(x)
g j(x)

− (
f j(x∗)
g j(x∗)

− ε j) < 0, some j ∈ {1, · · ·, p}.

Hence, x∗ is an ε−efficient solution to (P).
Next, if (ii) holds, and if x ∈ Q, then it follows from (5.1) and (5.2) that

〈Σ
p
i=1u∗i [5 fi(x∗) − (

fi(x∗)
gi(x∗)

− εi) 5 gi(x∗)], η(x, x∗〉

+ 〈Σm
j=1v∗j 5 H j(x∗), η(x, x∗)〉 = 0∀ x ∈ Q, (5.22)

〈
z,

[ p∑
i=1

u∗i [∇2 fi(x∗) − (
fi(x∗)
gi(x∗)

− εi)∇2gi(x∗)] +

m∑
j=1

v∗j∇
2H j(x∗)

]
z
〉
≥ 0. (5.23)

Since v∗ ≥ 0, x ∈ Q and (5.3) holds, we have

Σm
j=1v∗jH j(x) ≤ 0 = Σm

j=1v∗jH j(x∗),

and in light of the strict (ρ, η, θ)−quasi-invexity of B j(., v∗) at x∗, we find

〈5H j(x∗), η(x, x∗)〉 +
1
2
〈z,∇2H j(x∗)z〉 + ρ(x, x∗)‖θ(x, x∗)‖2 < 0. (5.24)

It follows from (5.23) and (5.24) that

〈Σ
p
i=1u∗i [5 fi(x∗) − (

fi(x∗)
gi(x∗)

− εi) 5 gi(x∗)], η(x, x∗〉

+
1
2

〈
z,

p∑
i=1

u∗i [∇2 fi(x∗)z − (
fi(x∗)
gi(x∗)

− εi)∇2gi(x∗)z]
〉
> ρ(x, x∗)‖θ(x, x∗)‖2. (5.25)

As a result, since ρ(x, x∗) ≥ 0, applying the prestrict (ρ, η, θ)−pseudo-invexity at x∗ to (5.25), we
have

Σ
p
i=1u∗i [ fi(x) − (

fi(x∗)
gi(x∗)

− εi)gi(x)] ≥ Σ
p
i=1u∗i [ fi(x∗) − (

fi(x∗)
gi(x∗)

− εi)gi(x∗)]

≥ Σ
p
i=1u∗i [ fi(x∗) − (

fi(x∗)
gi(x∗)

− εi)gi(x∗)] − Σ
p
i=1u∗i εigi(x∗) = 0.
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Thus, we have

Σ
p
i=1u∗i [ fi(x) − (

fi(x∗)
gi(x∗)

− εi)gi(x)] ≥ 0. (5.26)

Since u∗i > 0 for each i ∈ {1, · · ·, p}, we conclude that there does not exist an x ∈ Q such that

fi(x)
gi(x)

− (
fi(x∗)
gi(x∗)

− εi) ≤ 0 ∀ i = 1, · · ·, p,

and
f j(x)
g j(x)

− (
f j(x∗)
g j(x∗)

− ε j) < 0, some j ∈ {1, · · ·, p}.

Hence, x∗ is an ε−efficient solution to (P).

6. Concluding Remarks

We observe that the obtained results in this communication can be generalized to the case of
multiobjective fractional subset programming with generalized invex functions, for instance based
on the work of Mishra et al. (see (Mishra et al., 2010)) and Verma (see (Verma, 2013))) to the
case of the ε− efficiency and weak ε−efficiency conditions to the context of minimax fractional
programming problems involving n-set functions.
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1. Introduction and main results

Ditizian-Totik moduli of smoothness have become a standard tool in approximation theory.
This is true in particular for second order moduli which play a crucial role in approximation by
positive linear operators. For their properties and many applications see (Z. Ditzian, 1987). For
f ∈ C[0, 1] the second order Ditzian-Totik modulus is defined by

ω
ϕ
2( f , h) = sup{|∆2

ρϕ(x) f (x)|, x ± ρϕ(x) ∈ [0, 1], 0 < ρ ≤ h.} (1.1)

Here ϕ(x) =
√

x(1 − x), and ∆2
η f (y) = f (y − η) − 2 f (y) + f (y + η) if η > 0 and y ± η ∈ [0, 1] and

as 0 otherwise. In the sequel we will use the following notation:

ACloc[0, 1] := {h : h is absolutely continuous in [a, b] for every 0 < a < b < 1};

Wϕ
2,∞[0, 1] := {g : g′ ∈ ACloc[0, 1] and ‖ϕ2g′′‖∞ < ∞}.

The related K-functional Kϕ
2 ( f , h2) is given by

Kϕ
2 ( f , h2) := inf

g
{‖ f − g‖∞ + h2‖ϕ2g′′‖∞}. (1.2)
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Here the infimum is taken over all f ∈ Wϕ
2,∞[0, 1]. The definitions of the second order Ditzian-Totik

modulus of smoothness and related K-functional can be generalized in a natural way for all r ≥ 1.
The equivalence between these two constructive characteristics is well-known (see Theorem 6.2
in (DeVore & Lorentz, 1993)). We cite it here as

Theorem A There are constants c1, c2 > 0, which depend only on r, such that for all f ∈ C[0, 1]

c1ω
ϕ
r ( f , h) ≤ Kϕ

r ( f , hr) ≤ c2ω
ϕ
r ( f , h), 0 < h ≤ (2r)−1. (1.3)

In many problems in approximation theory it is a difficult task to prove direct or inverse
estimates directly in terms of the Ditzian-Totik moduli of smoothness. Instead of this, the K-
functionals have become a powerful tool to establish such statements. However, the main dis-
advantage of the latter, is the fact, that practically it is impossible to calculate the value of the
K-functional for a given function f . Therefore, the usual way is first to prove direct or inverse
estimates in terms of the K-functional, and after this using Theorem A to reformulate the results
in terms of the moduli of smoothness. This explains how important is to have a good information
about the magnitude of the constants c1, c2. To the best of our knowledge the problem to find
the best possible values of c2 and c1 (in the sense c2-minimal and c1-maximal in (1.3)) is still not
solved. Hardly anything appears to be known about the explicit description of the size of c1 and
c2 for r = 1, 2 and about their asymptotic dependence on r for r > 2. The first attempt in this
direction is Theorem 3.5 in (Gonska & Tachev, 2003) which we cite here as

Theorem B For m ≥ 2, h ∈
[ √

2
md(m) ,

√
2

(m−1)d(m−1)

]
the following inequalities hold for any f ∈

C[0, 1]:
1

16
ω
ϕ
2( f , h) ≤ Kϕ

2 ( f , h2) ≤ c2(m)ωϕ
2( f , h),

where

c2(m) := 1 +

( m
m − 1

)2 48
d2(m − 1)

,

and the sequence d(m) is defined as

d(m) =

√
m4 + m2 + 1 − 1

√
m4 + m2 + 1 + m2

, d(m)→
1
2
, m→ ∞.

It is clear that lim
m→∞

c2(m) = 193. If we restrict our attention to values h ≤ 1, as a corollary from
Theorem B we get

1
16
ω
ϕ
2( f , h) ≤ Kϕ

2 ( f , h2) ≤ 404 · ωϕ
2( f , h). (1.4)

The difficulties in the proof of Theorem B are connected with the construction of an appropriate
auxiliary function g in the definition of Kϕ

2 . Actually we apply a ”smoothing” technique to the lin-
ear interpolant on certain places near the points of interpolation to obtain an appropriate quadratic
C1-spline based upon the knot sequence. This method was developed in (Gonska & Kovacheva,
1994; Gonska & Tachev, 2003; H. Gonska, 2002) and further refined in (Gavrea, 2002). In this
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note we essentially improve the value of the constant 404 in (1.4). Our main result states the fol-
lowing:

Theorem 1 The following inequalities hold for any f ∈ C[0, 1], h ∈ (0, 1]:

1
16
ω
ϕ
2( f , h) ≤ Kϕ

2 ( f , h2) ≤ (5 + 2
√

2) · ωϕ
2( f , h). (1.5)

In Section 2 we give the proof of Theorem 1. In Section 3 we apply Theorem 1 to obtain
quantitative estimates in terms of second order Ditzian-Totik modulus of smoothness for approx-
imation by genuine Bernstein-Durrmeyer operator, considered in (P. E. Parvanov, 1994) and also
for pointwise estimates, established in (Felten, 1998). In the last section we consider the case
r = 1, which is closely related to piecewise linear interpolation at specific knot sequence.

2. Proof of Theorem 1

To obtain as small as possible value of the constant c2 in (1.3) we need an appropriate auxiliary
function g in the definition of the K-functional. We use the construction, developed by Gavrea
in (Gavrea, 2002) and based on the ideas from (Gonska & Kovacheva, 1994; Gonska & Tachev,
2003). Let m be fixed natural number, m ≥ 1. The patition ∆m of the interval [0, 1] is given by

∆m : 0 = x0 < x1 < · · · < x2m+2 = 1,

where
xk = sin2 kπ

4(m + 1)
, k = 0, 1, . . . , 2m + 2. (2.1)

We denote by S m( f ) a piecewise linear interpolant with interpolation knots-the points xk, k =

0, 1, . . . , 2m + 2. Each point (xk, S m( f , xk)), k = 1, 2, . . . , 2m + 1 we associate with two other points
(ak, S m( f , ak)), (bk, S m( f , bk)) such that

a1 =
x1

2
, b1 − x1 = x1 − a1,

and
ak =

xk + xk−1

2
, bk − xk = xk − ak, k = 1, 2, . . . , 2m + 1.

The function g is defined as follows:
For x ∈ [0, a1] ∪ [b2m+1, 1] we set g(x) = S m( f , x).
For x ∈ [ak, bk], k = 1, . . . , 2m + 1, g(x) is the 2nd degree Bernstein polynomial over the

interval [ak, bk], determined by the ordinates S m( f , ak), f (xk), S m( f , bk).
For x ∈ [bk, ak+1], k = 1, 2, . . . , 2m we set g(x) = S m( f , x). Thus g(x) is uniquely determined

by the interpolation conditions and is C1-continuous. For this function the following two crucial
estimates are proved in Theorem 6 in (Gavrea, 2002):

‖ f − g‖∞ ≤ ω
ϕ
2

(
f , sin

π

2(m + 1)

)
, (2.2)
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‖ϕ2g′′‖∞ ≤
1

sin2 π
4(m+1)

· ω
ϕ
2

(
f , sin

π

2(m + 1)

)
. (2.3)

For any positive number h ∈ (0, 1] there exists a natural number m ≥ 1, such that

h ∈
[
sin

π

2(m + 1)
, sin

π

2m

]
.

Hence (2.2) and (2.3) imply
‖ f − g‖∞ ≤ ω

ϕ
2( f , h), (2.4)

h2‖ϕ2g′′‖∞ ≤
sin2 π

2m

sin2 π
4(m+1)

· ω
ϕ
2( f , h). (2.5)

It is easy to verify that the sequence

c(m) :=
sin2 π

2m

sin2 π
4(m+1)

is monotone decreasing, i.e. c(m) ≤ c(1) = 4 + 2
√

2. Consequently the right-hand side of (1.5)
is proved. Lastly we point out that the constant 1

16 in (1.5) could be derived from Theorem 6.1 in
(DeVore & Lorentz, 1993). Thus the proof of Theorem 1 is completed.

3. Applications

1. The genuine Bernstein-Durrmeyer operator. As first application of Theorem 1 let us con-
sider the so-called genuine Bernstein-Durrmeyer operator, introduced by Goodman and Sharma in
(Goodman & Sharma, 1991) and given by

Un( f , x) = f (0)pn,0(x) + f (1)pn,n(x) + (n − 1)
n−1∑
k=1

pn,k(x)
∫ 1

0
pn−2,k−1(t) f (t)dt,

where pn,k(x) =
(

n
k

)
xk(1− x)n−k, k = 0, . . . , n, are the fundamental Bernstein polynomials. Parvanov

and Popov proved in (P. E. Parvanov, 1994) in an elementary and very elegant manner a direct and
a strong converse inequality of type A, thus completely characterizing the approximation speed of
the operators. The main result in (P. E. Parvanov, 1994) states the following:

For any f ∈ C[0, 1] we have

1
2
‖Un f − f ‖∞ ≤ Kϕ

2 ( f ,
1

2n
) ≤ (4 +

√
2)‖Un f − f ‖∞. (3.1)

As a corollary from Theorem 1 and (3.1) we obtain

1

2(5 + 2
√

2)
‖Un f − f ‖∞ ≤ ω

ϕ
2( f ,

1
√

2n
) ≤ 16(4 +

√
2)‖Un f − f ‖∞. (3.2)
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2. The Bernstein operator The classical Bernstein operator Bn( f , x) for a given function
f ∈ C[0, 1] is defined by

Bn( f , x) =

n∑
k=0

f (
k
n

)pn,k(x).

Let Φ : [0, 1] → R, Φ , 0 be a function such that Φ2 is concave. Then the pointwise approxima-
tion

|Bn( f , x) − f (x)| ≤ 2Kϕ
2

(
f , n−1 ϕ

2(x)
Φ2(x)

)
, x ∈ [0, 1], (3.3)

holds true for all f ∈ C[0, 1], n ∈ N. This result was proved by Felten in (Felten, 1998). As a
straightforward corollary from Theorem 1 we get

|Bn( f , x) − f (x)| ≤ 2(5 + 2
√

2)ωϕ
2

(
f , n−

1
2
ϕ(x)
Φ(x)

)
, x ∈ [0, 1]. (3.4)

4. The case r = 1

In this section we consider the interval [−1, 1] instead of [0, 1]. After a linear transformation
it is clear that each estimate in one of these two cases can be obtained from the other. The weight
function over [−1, 1] is now ϕ(x) =

√
1 − x2. Let ∆n : −1 = x0 < x1 < · · · < xn = 1 be a partition

of the interval [−1, 1] such that the inequalities

c3(xk+1 − xk) ≤
ϕ(x)

n
≤ c4(xk+1 − xk) (4.1)

are satisfied for k = 1, 2, . . . , n − 2, x ∈ [xk, xk+1], and also

c3(x + 1) ≤
ϕ(x)

n
≤ c4(x + 1), x ∈ [x0, x1],

c3(1 − x) ≤
ϕ(x)

n
≤ c4(1 − x), x ∈ [xn−1, xn],

where ci, i = 3, 4 are absolute positive constants independent of n. The function g in the definition
of Kϕ

1 we define as the linear interpolant of f ∈ C[−1, 1] with knots {xk}. For x ∈ [xk, xk+1], k =

1, . . . , n − 2, from the properties of linear interpolation it follows that

|g(x)− f (x)| ≤ ω1( f , xk+1−xk) = sup{| f (x+
h
2

)− f (x−
h
2

)|, x, x±
h
2
∈ [xk, xk+1]} ≤ ωϕ

1( f ,
1

c3n
). (4.2)

Let x ∈ [−1, x1]. The case x ∈ [xn−1, 1] is analogous. Obviously

|g(x) − f (x)| ≤ sup
{
| f (x +

h
2

) − f (x −
h
2

)|, x, x ±
h
2
∈ [−1, x1]

}
.

The inequality x − h
2 ≥ −1 yields h ≤ 2(x + 1) ≤ 2

c3

ϕ(x)
n , which follows from (4.1). To summarize

we proved

‖ f − g‖∞ ≤ ω
ϕ
1( f ,

2
c3n

). (4.3)
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Next we evaluate the second term in the definition of the K-functional.
For x ∈ [xk, xk+1], k = 1, 2, . . . , n − 2, it is easy to verify that

1
n
|ϕ(x)g′(x)| =

ϕ(x)
n(xk+1 − xk)

| f (xk) − f (xk+1)|.

Using (4.1) and (4.2) we get

1
n
‖ϕg′‖L∞[x1,xn−1] ≤ c4ω

ϕ
1( f ,

1
c3n

).

It remains to consider x ∈ [−1, x1]. In this case we observe that

ϕ(x)
n
≤ c4(x + 1).

Therefore for x ∈ [−1, x1] we have

1
n
|ϕ(x)g′(x)| ≤ c4ω

ϕ
1( f ,

2
c3n

).

Finally we arrive at
1
n
‖ϕg′‖ ≤ c4ω

ϕ
1( f ,

2
c3n

). (4.4)

For every 0 < t < 1 there exists n ≥ 2 such that

2
c3n

< t <
2

c3(n − 1)
.

Combining (4.3) and (4.4) we get

Kϕ
1 ( f , t) ≤

[
1 +

2c4

c3

( n
n − 1

)]
ω
ϕ
1( f , t). (4.5)

It is clear that the condition number c4
c3

of our system of knots determines the value of the constant
in front of the modulus. By the previous considerations we have shown the validity of

Theorem 2. For f ∈ C[−1, 1], n ≥ 2, t ≤ 1
2 we have

1
8
ω
ϕ
1( f , t) ≤ Kϕ

1 ( f , t) ≤ c2(n)ωϕ
1( f , t), (4.6)

where

c2(n) =

[
1 +

2c4

c3

( n
n − 1

)]
.

Remark 1. The constant 1
8 in the left side of (4.6) follows easily if we verify the computations

made in Theorem 6.1 in Chapter 6 in (DeVore & Lorentz, 1993).
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Remark 2. If we strictly follow the construction in the proof of Theorem 2, it is possible to im-
prove the value of c2(n), i.e. to obtain the value of the latter as small as possible. In order to do
this, we would find an optimal set of knots, satisfying (4.1) with a condition number as small as
possible. In this case we formulate the following

Open problem. Find the optimal set {xk} satisfying (4.1) in the sense that the condition number c4
c3

is minimal.

Here we give two examples of knots.

Example A. In this example we choose {xk} to be the well-known zeros of the Chebyshev
polynomial of the first kind

xk = cos θk, θk :=
(2k − 1)π

2n
, k = 1, . . . , n, xn+1 := −1, x0 := 1.

Following (7.7-7.8) in Chapter 8 in [1] we get c3 = 1
3π , c4 = 3π. The condition number is 9π2.

Example B. Here we choose the extremal points of the Chebyshev polynomial of the first kind

xk = cos(
kπ
n

), k = 0, . . . , n.

This is the same set of interpolation knots , considered in Section 2 for the interval [0, 1]. In this
case we compute c3 = 1

2π , c4 = 2π. The condition number is 4π2-better as in Example A.
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Goodman, T. N. T. and A. Sharma (1991). A Bernstein-type operator on the Simplex. Math. Balkanica 5(2), 129–145.
H. Gonska, G. Tachev (2002). On the constants inωϕ2- inequalities. Rend. Circ. Mat. Palermo (2) Suppl. (68), 467–477.
P. E. Parvanov, B. D. Popov (1994). The limit case of Bernstein’s operators with Jacobi-weights. Math. Balkanica

8(2-3), 165–177.
Z. Ditzian, V. Totik (1987). Moduli of Smoothness. Springer, New York.



Theory and Applications of Mathematics & Computer Science 2 (2) (2012) 55–66

Guidelines for Improvement Information Processes in
Commerce by Implementing the Link Between a Web Application

and Cash Registers

Julian Vasileva,∗

aVarna University of economics, Department of Informatics, 77, Kniaz Boris I, blvd., Varna, Bulgaria.

Abstract
The main task of the article is clarifying the content of different types of costs (which are associated with provid-

ing information about business processes) and on this basis an identification of opportunities for their reduction may
be found. In this regard, this paper examines business processes in retail in rendering account of sales. A special place
in the article is devoted to the analysis of existing models of information technology systems in commercial enter-
prises. The important question for the adaptation of web applications in commercial enterprises has been developed.
Factors contributing adaptation of Web applications in business practices are taken in account. Factors hindering their
adaptation (such as the relationship of a web application with cash registers a problem that is not widely discussed) are
also reviewed. A discussion of various options for improving both the technological model of the information system
in enterprises and specific guidelines for the quantification of the proposed approaches to reduce costs is made.
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1. Introduction

Reducing the cost of providing information for business processes can be made after a thor-
ough analysis of the performed information processing. The study of information processes is
performed in order to reduce the cost of hardware and software. An especially acute problem
is the problem for measuring the cost of hardware and software (for purchase, maintenance and
power supply). Under current conditions, operating costs of buying and maintaining hardware and
software are distinct from an accounting point of view, but they are not subject of extensive study
by a managerial perspective. This feature prevents their full, thorough and objective study to find
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specific ways for their reduction.

Rationalization of IT processes as an indirect effect gives rise to conditions for reducing man-
agerial costs. Even though the cost of computer hardware and software declines steadily, com-
panies do not report cost reductions. The article gives specific suggestions for reducing the cost
of buying and maintaining hardware and software systems in commercial enterprises. Despite the
fact that the costs of buying and maintaining hardware and software systems in commercial en-
terprises have relatively small share of total expenditures, these costs are subject to monitoring by
managers. The article discusses concrete opportunities to reduce these costs in implementing the
managerial processes. Several approaches for cost reduction are discussed. Options for rational-
ization of communication processes are considered.

At this stage, information systems used for sales in stores (known as POS systems) are gener-
ally associated with a cash register or a fiscal printer. The Bulgarian market offers a wide variety
of both: (1) cash registers and fiscal printers and (2) software to track sales. It should be noted
that some software products to track sales technologically implement the connection with a cash
register. In the rest of software products for tracking sold goods the sales registering process is
done twice at a computer and at a cash register. It is obvious that connecting an electronic cash
register (ECR) with fiscal memory (or a fiscal printer) to a computer is not an easy task. There are
examples of software companies where programmers applying for jobs are not approved because
they do not know how to connect software to record sales with an ECR or a fiscal printer.

The purpose of this article is to improve the existing technology model of an information sys-
tem for recording sales in retail outlets in order to reduce the cost of hardware and software. To
achieve the objective we have to solve the following tasks: (1) to examine the current technologi-
cal models, (2) to make a proposal for improvement, (3) to demonstrate the need to connect a web
application with cash registers (4) to explore existing ICT and (5) to develop a specific program to
connect a web application with cash registers. The subject of this study is information technology
for development of web applications. The objects of this study are communication technologies
(both low and high level) for communication between software (both desktop application and web
application) and cash registers.

The paper is organized as follows. Section 2 expresses an analysis of existing technologies for
providing information for retail business. Two existing technology models of information systems
in retail are described. Section 3 presents several guidelines for improving the model of infor-
mation support of commercial processes. Subsection 3.1 contains a new (enhanced) model the
second technology model is further developed. Thin clients are used instead of desktop computers.
The adoption of the enhanced model and the link between a desktop application and cash registers
are described in subsection 3.2. Software aspects for the implementation the link between a web
application and fiscal printers are illustrates in subsection 3.3. The conclusions are outlined in
Section 4.
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2. Analysis of existing technologies for providing information for retail business

Commercial processes are widely known both at home and abroad. The need for rapid record-
ing of sales leads to adaptation of sales software systems. In the course of time many experts have
studied the business processes. They have offered a variety of improvements. The use of barcodes
for automatic identification of goods and materials is a nice example. Sales are registered in a
database. Nowadays analogues of barcodes and databases are not found.

In the early 90-ies of XX century, some software companies connect their automated infor-
mation system (AIS) with a cash register. The technological achievement is significant and it is
appreciated by retailers. For software developers (Application Software Providers ASP) the im-
plementation of such a system leads to realization a significant revenue for a short period of time
(having in mind that the software market does not offer similar products). Normally other software
vendors also try to enter the market as an attempt to connect their AIS with a fiscal printer (FP).
The available technical documentation offered 20 years ago by producers of fiscal printers (and
ECRs) in Bulgaria is clear that a FP is connected to COM port via RS-232. Most modern laptops
do not have a COM port.

Unfortunately manufacturers of FPs for a long period of time do not offer the communication
protocol extremely necessary to developers of application software to connect their AIS with FPs.
Users of specialized software fall into a situation where they have to enter one and the same data
in two places in their AIS and on their ECR. Such duplicate data entry takes considerable time
and it is a prerequisite for admission of technical errors. There are two possibilities to users of
POS systems: (1) to ask the software vendor to enhance his software system so that it connects
with a FP or (2) to change the POS system with another POS system offered by another software
provider (ASP). Examples from both directions may be given.

There are two recognized process models of software systems for recording sales in retail
outlets. It is typical for the first technology model of retail that sales are recorded in a cash register
and in a local database. A cash receipt is printed. At the end of the day records from local databases
are merged on the server database (Figure 1).

The mentioned approach guarantees quick registering of sales. The first technology model of a
software system for recording sales in cash desks zone is adopted in many enterprises in Bulgaria.
We have to highlight that each POS terminal consists of a computer with an installed operating
system, a database management system (DMBS), a local database (for registering sales at each
cash desk) and a software module which transfers sales transactions from local databases to the
server database offline. The first technology model is characterized with high performance and
reliability of the software system for registering sales transactions. The high speed of the software
is due to the fact the software system is undependable from the local area network (LAN). A
significant drawback is the operability of the transmission of data and up to date information
on the server. Because data is transferred offline (not online), operational managers do not have
updated information about sales. If a manager wants to obtain information online, he cannot obtain
it. Such organization of work is suitable for small and medium-sized shops.

To overcome the shortcomings of the first technology model a number of companies apply a
different technological model for recording sales that we would conditionally call second technol-
ogy model (Figure 2).



58 Julian Vasilev / Theory and Applications of Mathematics & Computer Science 2 (2) (2012) 55–66

Figure 1. First technology model of a software system for recording sales in cash desks zone.

Figure 2. Second technology model of a software system for recording sales in cash desks zone.

In the second approach, data is maintained in a centralized database, which improves the op-
erability of data. In this case, the manager receives updated information about sales. A significant
advantage of the second approach is the absence of the need for: (1) the use of a local database
and (2) transfer of sales transactions made at the end of the day to the server database.

It should be noted that the second technology model uses a server database. There is no need
to install client side DBMS on local workstations. At each cash desk there is a computer with an
installed operating system and application software that communicates with the server database
(it derives price and the name of a specific item by its barcode and it records sale transactions in
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the database). The second technology model is a typical example of an online recording system of
sales working in client-server mode.

For its reliability of great importance is the availability of secure network connection between
the server (which stores the database) and separate workstations. The cost of implementing the
second technology model (which is popular in business practice) requires fewer resources than
the first one. Several saving of costs are achieved. As an example we mention costs for licenses
of DBMS on individual client machines and the cost of software which periodically transfers
the data from different workstations to the server. At the first glance, the second model has no
disadvantages. That is why it is widely spread in practice. However, our research continues to seek
improvements in the development of the second model. Later in the text we provide guidelines for
improvement the model of information support of commercial processes.

3. Guidelines for improving the model of information support of commercial processes

3.1. The use of thin clients
The current status of information systems used in retail outlets is an adequate implication of

the second approach. Despite many years of experience of the application of information systems
in retail, we can seek guidelines to improve existing technological models. Some possibilities
for cost reduction can be found in the following areas: reducing the cost of application software,
system software, hardware and power supply. Further, the text puts forward concrete proposals to
enhance the second model, in which some costs for both hardware and software may be saved.

It makes an impression that a centralized database (located on the server) is maintain in both
approaches. As noted, an analogue of the centralized database cannot be recommended. In terms
of software, desktop applications are mostly used in Bulgaria. It is typical for them that they are
installed on each workstation. This feature requires the use of a personal computer on every work
place. In order to reduce the cost of electricity it is possible to use thin clients.

Using thin client does not allow the installation of desktop applications. To be able to use
software system for recording sales on hardware devices such as thin clients, there should be a
change in the application software to shift from desktop applications to Web app to record sales.
In this case, the technological model for recording of sales is as follows (Figure 3).

The recommended third technological model for sales recording is used in some European
retail shops, but it is not popular in Bulgaria. The use of an intranet software system for recording
sales allows the work of web applications within a corporate local area network. The application
software is installed only on a server. It is accessible to workstations through a web browser.

The third technology model is done to reduce costs in the following areas: (1) energy (one
thin client spends significantly less electricity than a desktop computer), (2) cost of installation
and maintenance of a license for application software on each workstation (application software
(software product for recording sales) only be installed on server) and (3) the maintenance costs of
hardware thin clients have significantly fewer parts than a desktop computer hence their tendency
to damage is lower than a personal computer. Indirectly labor costs are reduced because fewer
people are needed to maintain the hardware and software in the third model.

In terms of costs, the application of the represented third technology model leads to cost sav-
ings for hardware, software and power supply. Hardware savings are in the following areas. In
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Figure 3. Third (enhanced) technology model of a software system for recording sales in cash desks zone.

the first and second model each workstation computer is configured with a hard disk, a central
processing unit (CPU), RAM memory, a monitor, a keyboard and a mouse. The third approach
suggests the installation of a thin client (which does not have a hard disk drive) and it is much more
compact than a desktop computer. Furthermore, the thin client consumes significantly less power
than a standard computer. In terms of software, the time for installation of application software is
saved, because it is only installed on the server.

In all three approaches (three technological models) sales data are recorded in a database and a
cash register receipt is printed. For the end user the technological model of the information system
for recording of sales remains hidden, but the manager is interested in the costs and reliability of
the software system.

3.2. Adoption of the enhanced model. The use of middle tier software for implementation the link
between desktop applications and cash registers

Elaboration of the software, so that it is connected with a FP (fiscal printer) is not an easy
task. When ASP do not provide specification of FPs, including protocol for communication and
describing how to send commands to the FP, the form and content of the response, received from
the FP, it is a difficult task to write sales software working with a FP. In this case, developers use a
specialized software system that communicates with a FP. To monitor the communication between
the PC and a FP specialized software may be used called sniffer to eavesdrop the communication
between two devices.

When using a software system to record sales, it sends commands to the FP and the program
sniffer captures packets from the computer to the FP and packets from the FP to the computer.
Using software from the class of sniffers is considered as a hacking technique, but it can be used to
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establish communication between the operating system and the FP, in case there is no documenta-
tion for FPs.

Observations in business practices indicate that some of the POS systems for recording sales
in Bulgaria are connected to fiscal printers (FP). Some software systems are not connected with
FPs. In 2012 the situation on the FP market changed. Many businesses need to use a new type
of FPs directly connected to the NRA (National Revenue Agency) by GPRS (because the taken
by the Government of Bulgaria legislative initiative aimed at displaying the light of the informal
sector). This situation has led to an increase in sales of FPs, but also an increase in competition
both on the FP market and the software market.

In response to increasing competition some companies, selling cash registers, have published
on their website the communication protocol for communication between software for registering
sales and a cash register (or fiscal printer). In this case, software developers can download the
specification, inspect it and test the connection (communication) with FP on COM port. For
testing of the software it is recommended to use a non-fiscal printer.

The new situation provides tremendous opportunities for software providers (ASP) to extend
the functionality of their software. It should be noted that a number of other AIS are built to input
data and then a cash receipt is issued (as an example we note the payment of interest and fees on
credit institutions). A wide range of software vendors can extend the functionality offered by their
software so that they connect with a FP. The initiative for further developing the software can be
both from the software vendor and from the end customer (the user of the software product). To
connect sales recording software with a FP, developers can implement two approaches.

First, communicating directly to a COM port by sending hexadecimal commands directly to
the FP (www.daisy.bg, 2013a), (www.datecs.bg, 2013a), (www.tremol.bg, 2013a). The FP returns
response: (1) with a successfully executed command or (2) an error code. In this case, the AIS
should use a pointer to a COM port that is in standby mode to receive messages from the cash
register. After sending the command from the AIS to the FP, the AIS should wait for 100 ms, to
get an answer from the FP. In the first approach programmer sends ”low” level commands form
the AIS to the FP. To record a sale at one cash register, a series of hexadecimal commands should
be sent. The reply by the FP has to be read.

The specification of some FPs describes the communication between a FP and a PC. The
format of the messages between the Host (PC) and Slave (FP), between Slave and Host is given.
A description of various types of commands, error codes and status flags for FP are also given.
Because the format and content of commands is rather complex, we do not include an example.
It has to be marked that only a high qualified programmer can make the communication between
Host and Slave. He will write the software for communication between the sales software and
the FP. He has to be very familiar with COM port communication. From his side it is required
considerable effort and energy to connect the POS system to record sales with a FP, which means
that the cost of the software system (Total Cost of Ownership TCO) is increased.

Second, by using intermediate software (middle-tier software), developed by the FP provider
and available for: (1) downloading from the company’s website (selling FPs) and (2) free to use
(www.daisy.bg, 2013b), (www.datecs.bg, 2013b), (www.tremol.bg, 2013b), (www.orgtechnica.bg,
2013). The middle-tier software stands between software for recording sales and the FP. In the
second approach, the sales recording software prepares a text file with the sale and the software
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copies the text file to the folder where the middleware software is installed. It stays resident in
RAM on the workstation. Every 100 ms it inspects for a text file with a sale. If a text file is found
the middle tier software prints the sale the middle tier software sends the sale to the FP. After
sending sales to the FP, the sales recording software deletes the text file.

The second approach is much easier to implement from the programmer’s perspective. A
programmer sends a set of commands as a text file. It is structured very similarly to the sale. After
that the file is printed. Individual lines in the text file are filled with, items, quantities and prices. It
is possible to generate a cash receipt for a sale by departments. In the second approach, the work
to print a cash receipt to a FP is significantly easier than the first approach. The cost of developing
the software for the second approach is lower than the first approach.

Writing the program logic in the second approach is ”high” level. The number of lines of code
(LOC) that must be written to communicate with FP is significantly less than the number of LOC
for communication with the application of the first approach. The fewer lines of code to write,
the likelihood of errors is less and less time to implement fixes (design, programming, debugging,
testing and deployment) is shorter.

Most of the software products offered on the Bulgarian market which can communicate with
a FP are typically desktop applications (Graphic User Interface - GUI applications). Despite the
serious boom in the development of Internet technology, leading to the development of a number
of web-based applications, a majority of the POS systems continue to be GUI applications. Most
of the web-based e-commerce solutions do not offer a traditional connection with a cash register.
If necessary to update the software (replacing EXE file on the server), the application software
(installed on POS terminals) must be closed on all workstations. It means stopping work with the
sales software system.

For now we can say that single software companies attempt to connect their web-based appli-
cations for tracking sales with FPs. The reason is quite simple. To print a cash receipt, desktop
applications generate a text file (the second approach) or they communicate directly with the COM
port (the first approach) on the local machine that is running a GUI application to track sales.

3.3. Linking a web application for registering sales with fiscal printers. Software aspects for the
implementation the link

Proposals for improvement (third (advanced) technology model) can be adjusted in business
practices. There is a problem with the communication of web application for reporting sales with
cash registers.

Web applications are server applications. Web applications are run on a server. Web appli-
cations have access to hardware resources of the server. They do not have access to hardware
resources on the client machines (workstations). Web applications have access to each user ses-
sion. The problem is how to create a text file on the workstation by the web application or how
the web application communicates with a COM port on the client machine. Most of the integrated
development environments (IDEs) do not allow web applications (1) to generate a text file on the
client machine and (2) cannot communicate with a COM port on the client machine.

As we know, web applications can be created through a number of IDEs. For this study we
should seek an appropriate IDE for developing web applications that allows the generation of
a text file on a client machine or sending commands from a server to the COM port (again on
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the client machine). Previous experience in web applications allows us to choose the Intraweb
technology (or VCL for the web developed by Atozed software (www.atozedsoftware.com, 2013)
and Embarcadero technologies (www.embarcadero.com, 2013)) for developing web applications.
Web applications created by Intraweb technology can generate a text file on the client machine.
The paper shows how a web application for recording of sales (installed on the server) can generate
cash receipt on a FP connected to the client machine. The approach is new, innovative and it is still
not popular in Bulgarian business practices. Its implementation will lead to a significant multiplier
effect. In order to clarify our proposal, the third technology model of the software system for
recording sales is further developed.

Suppose that at a POS terminal sales web-based application is used. By pressing a button (or
link) ”Save sale and print a cash receipt”, the sale shall be recorded in a sales database (DB) by
sending an INSERT request to the DB) and a cash receipt is printed. Saving data in a DB through a
web form is described in most textbooks on development of web applications. That is why we will
not present the information process on generating SQL clauses and sending them to the database.
More interesting is to show how to connect a web application with FPs.

When entering sales in a web form, they are recorded in a tabular form and they can be seen
on the screen of a workstation. The data from the tabular part of the document (of the sale) can
be saved in a special type of variable: a list of strings (TStringList). When using the method
SaveToFile the list of strings is stored on the server, which is not a suitable option in our case.
Here most developers give up their assignment or leave the software company, because they do
not know how to save a list of strings (containing information about a sale) on the client machine.

If a desktop application (running in client-server mode) is used, the SaveToFile method writes
on the client machine. It means that there is no problem: (1) a sale to be recorded in the server
database and (2) a text file may be generated on the client machine and it can be passed to the
middleware software. And it prints a cash receipt on the FP, which is connected to the client
machine.

Quite differently information processes are carried out in web application. As noted, web apps
are server applications. It means that they are executed on the server. There is not a problem with
writing to a server database. Web applications for recording sales are server applications. In this
case, data is recorded on the server. A significant problem remains how to generate a text file on
the client machine from a web application. If the web application calls the method SaveToFile for
an object of type TStringList, strings (contained in the object type TStringList) are recorded on the
server. This approach is working very embarrassing because a web application can write to a text
file on the server. The web app can be associated with only one cash register and not at a cash desk,
but in a separate room where the server is located. This approach is extremely uncomfortable and
it is not applied in business practice. Therefore the research has to be continued in order to find
a solution of the marked problem how to generate a text file on the client machine from a web
application installed on a server.

Most software products for recording sales are desktop applications (GUI). Software applica-
tions from the class of web applications built to record sales in Bulgaria are not connected to FPs
so far. Therefore, to solve the problem posed in this work, we suggest a specific approach for
connecting a web application with FPs. To realize the information link (between the web appli-
cation (which is located on the server) and FPs, which are at workstations) the web application
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for reporting sales has to generate a text file on the client machine. The technological solution
(offered in this work) was developed in IDE Delphi using the technology Intraweb. A temporary
file (with a unique name for the session) is generated on the server. Then the file is sent to the
client machine. On closing the web application, all temporary files are deleted.

In the procedure that saves web form data in the database, the following variables are declared
(Listing 1).

Listing 1. Declaration of variables.
aRow : I n t e g e r ;
f : T e x t F i l e ;
Line , F i le Name : S t r i n g ;

The source code is as follows (Listing 2).

Listing 2: Source code in Delphi for generating a text file from the web application and sending it to the client
machine.
/ / The name o f t h e f i l e i s t h e s e s s i o n number + ’ t x t ’ e x t e n s i o n .
/ / The f i l e i s saved on t h e s e r v e r i n a f o l d e r where t h e web
/ / a p p l i c a t i o n i s s t a r t e d .
Fi le Name := E x t r a c t F i l e P a t h ( ParamStr ( 0 ) ) + WebAppl i ca t ion . AppID + ’ . t x t ’ ;
/ / The t emporary f i l e i s d e l e t e d .
D e l e t e F i l e ( F i le Name ) ;
/ / A s s i g n i n g t h e p o i n t e r F t o t h e name o f t h e f i l e , s t o r e d
/ / i n t h e Fi le Name v a r i a b l e .
A s s i g n F i l e ( F , F i le Name ) ;
/ / The f i l e i s c r e a t e d and opened f o r append ing da ta .
Rewrite ( F ) ;
/ / The s a l e i s w r i t t e n i n t h e t e x t f i l e on t h e s e r v e r .
f o r aRow := 0 to C l i e n t S i d e D a t a s e t . Data . Count − 1 do

Begin / / a c y c l e by rows o f t h e t a b l e i n t h e web form
/ / a s a l e by d e p a r t m e n t
Line := ’E , 1 , , , ; ; % . 2 f ; ; 1 ; 1 ; % d ; 0 ; 0 ; ’
/ / W r i t i n g t h e sum o f t a x group ( d e p a r t m e n t ) i n t h e s a l e s row
/ / Line := Format ( Line , [ Sum , D e p a r t a m e n t s a l e ] ) ;
/ / W r i t i n g one row i n t h e t e x t f i l e
WriteLn ( F , Line ) ;

End ; / / f o r
/ / End o f t h e f i s c a l r e c e i p t ( cash r e c e i p t )
Line := ’T , 1 , , , ; ’ ;
/ / W r i t i n g a marker f o r t h e end o f t h e cash r e c e i p t i n t h e t e x t f i l e
WriteLn ( F , Line ) ;
/ / C l o s i n g t h e f i l e
C l o s e F i l e ( F ) ;
/ / Send ing t h e f i l e from t h e s e r v e r t o t h e w o r k s t a t i o n

WebAppl i ca t ion . S e n d F i l e ( Fi le Name , ’ ’ , ’ ’ ) ;
/ / D e l e t i n g t h e t emporary f i l e on t h e s e r v e r
D e l e t e F i l e ( F i le Name ) ;
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4. Conclusion

This work proposes an advanced technology model of a software system for recording sales in
retail outlets. The problem for connecting a web application with cash registers is solved. The pro-
posed innovative approaches have significant multiplier effects because several costs are reduced
energy costs, computer hardware and software costs. Preconditions for software enhancements of
wide range of web applications are created. A new functionality of Web applications (to connect
a web based system with fiscal printers) may be added.

Increasing the effectiveness of commercial enterprises depends not only on good managerial
and logistics practice, but also on the costs for computer hardware and software. With the imple-
mentation of the proposed advanced technology model of companys information system a serious
problem occurs how to connect a web app with cash registers. Because last literature sources do
not provide a technological solution to the problem, the solution is given in this work. A ”white
spot” in the field of informatics is enlightened. Specific attention is given to the source software
code in Pascal language (Delphi), describing how to connect a web application with cash registers.

As a result, the study concludes that many costs can be reduced. In particular it comes to
energy, hardware and software costs. An argument proposal to streamline the existing process
models of an information system in stores is made.

The most important factor in reducing the cost of adopting new technology models is the cost
of providing information for commercial business processes. The proposed technology model and
a software solution enable to make guidelines that can be perceived by businesses to streamline IT
processes and reduce a number of expenses.

The result of the study showed that in times of crisis managers can find ways to reduce costs.
Therefore, in parallel with the proposal to improve the technological model of an information
system in the trading business a proposal for communication between a web application and cash
registers is formulated and thoroughly described. The proposals for improvement do not cover
all possible ways to reduce the cost of providing information for commercial processes. In the
future it is necessary to explore new approaches to reduce costs and streamline IT processes. A
new research should be made to look for other ways to reduce costs and other ways to improve the
implementation of information process and in terms of the managerial process. These approaches
(which we do have not covered in this work) may be the subject of a further systematic and
thorough study.

The adaptation of the proposals in business practice makes the processes for maintenance of
software systems simpler and easier. The ideas formulated and grounded in this paper may have
broader continuity not only because of their innovativeness but mostly because of cost savings.
As a guideline for future development of this work we may note the improvement of managerial
processes in adaptation of new technological models of software systems in the trading business.
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Abstract
In this paper, we consider a mean-variance portfolio selection problem with inflation hedging strategy for a

defined contributory pension scheme. We establish the optimal wealth which involves a cash account and two risky
assets for the pension plan member (PPM). The efficient frontier is obtained for the three asset classes which gives
the PPM the opportunity to decide his or her own risk and wealth. It was found that inflation-linked bond is a suitable
asset for hedging inflation risks in an investment portfolio.
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1. Introduction

A mean-variance optimization is a quantitative method that is adopted by fund managers, con-
sultants and investment advisors to construct portfolios for the investors. When the market is
less volatile, mean-variance model seems to be a better and more reasonable way of determining
portfolio selection problem. One of the aims of mean-variance optimization is to find portfolio
that optimally diversify risk without reducing the expected return and to enhance portfolio con-
struction strategy. This method is based on the pioneering work of Markowitz (Markowitz, 1952,
1959). The optimal investment allocation strategy can be found by solving a mean and variance
optimization problem.

There are extensive literature that exist on the area of accumulation phase of a DC pension
plan and optimal investment strategies. For some of the literature, see for instance, (Cairns et al.,
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2006), (Di Giacinto et al., 2011), (Haberman & Vigna, 2002), (Vigna, 2010), (Gao, 2008), (Nkeki,
2011), (Nkeki & Nwozo, 2012).

In the context of DC pension plans, the problem of finding the optimal investment strategy
involving a riskiness asset and two distinct risky assets, and inflation hedging strategy under mean-
variance efficient approach has not been reported in published articles. Bjarne Hφjgaard and Elena
Vigna (Hφjgaard & Vigna, 2007) and Vigna (Vigna, 2010)assumed a constant flow of contributions
into the pension scheme. This paper follows the same assumption.

In the literature, the problem of determining the minimum variance on trading strategy in
continuous-time framework has been studied by Richardson (Richardson, 1989) via the Martin-
gale approach. (Li & Ng, 2000) solved a mean-variance optimization problem in a discrete-time
multi-period framework. (Zhou & Li, 2000) considered a mean-variance in a continuous-time
framework. They shown the possibility of transforming the difficult problem of mean-variance
optimization problem into a tractable one, by embedding the original problem into a stochastic
linear-quadratic control problem, that can be solved using standard methods. These approaches
have been extended and used by many in the financial literature, see for instance, Vigna (2010),
(Bielecki et al., 2005), (Hφjgaard & Vigna, 2007), (Chiu & Li, 2006), (Josa-Fombellida & Rincn-
Zapatero, 2008). In this paper, we study a mean-variance approach (MVA) to portfolio selection
problem with inflation protection strategy in accumulation phase of a DC pension scheme. Our
result shows that inflation-linked bond can be used to hedge inflation risk that is associated with
the PPM’s wealth. We found that our optimal portfolio is efficient in the mean-variance approach.

The remainder of this paper is organized as follows. In section 2, we present the financial mar-
ket model problem. In section 3, we present the optimal portfolio and optimal expected terminal
wealth of the PPM. The efficient frontier is presented in section 4. In section 5, some numerical
examples were presented. Finally, section 6 concludes the paper.

2. The Problem

Let (Ω,F ,P) be a probability space. Let F(F ) = {Ft : t ∈ [0,T ]}, where Ft = σ(S (s), I(s) :
s ≤ t), where S (t) is stock price process at time s ≤ t, I(t) is the inflation index at time s ≤ t.
The Brownian motions W(t) = (W I(t),WS (t))′, 0 ≤ t ≤ T is a 2-dimensional process, defined on
a given filtered probability space (Ω,F ,F(F ),P), where P is the real world probability measure
and σS and σI are the volatility vectors of stock and volatility of the inflation-linked bond with
respect to changes in WS (t) and W I(t), respectively. µ is the appreciation rate for stock. Moreover,
σS and σI are the volatilities for the stock and inflation-linked bond respectively, referred to as the
coefficients of the market and are progressively measurable with respect to the filtration F .

We assume that the investor faces a market that is characterized by a risk-free asset (cash
account) and two risky assets, all of whom are tradeable. In this paper, we allow the stock price to
be correlated to inflation. The dynamics of the underlying assets are given by (2.1) to (2.3)

dC(t) = rC(t)dt,C(0) = 1 (2.1)

dS (t) = µS (t)dt + σS
1 S (t)dW I(t) + σS

2 S (t)dWS (t), S (0) = s0 > 0 (2.2)

dF(t, I(t)) = (r + σ1θ
I)F(t, I(t))dt + σIF(t, I(t))dW(t), F(0) = F0 > 0 (2.3)
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where, r is the nominal interest rate, θI is the price of inflation risk, C(t) is the price process of the
cash account at time t, S (t) is stock price process at time t, I(t) is the inflation index at time t and
has the dynamics: dI(t) = E(q)I(t)dt + σI I(t)dW(t), where E(q) is the expected rate of inflation,
which is the difference between nominal interest rate, r and real interest rate R (i.e. E(q) = r − R).
F(t, I(t)) is the inflation-indexed bond price process at time t and σI = (σ1, 0).
Then, the volatility matrix

Σ :=
(
σ1 0
σS

1 σS
2

)
(2.4)

corresponding to the two risky assets and satisfies det(Σ) = σ1σ
S
2 , 0. Therefore, the market is

complete and there exists a unique market price θ satisfying

θ :=
(
θI

θS

)
=

 θI

µ−r−θIσS
1

σS
2

 (2.5)

where θS is the market price of stock risks and θI is the market price of inflation risks (MPIR).

3. The Wealth Process

Let X(t) be the wealth process at time t, where ∆(t) = (∆I(t),∆S (t)) is the portfolio process
at time t and ∆I(t) is the proportion of wealth invested in the inflation-linked bond at time t and
∆S (t) is the proportion of wealth invested in stock at time t. Then, ∆0(t) = 1 − ∆I(t) − ∆S (t) is the
proportion of wealth invested in cash account at time t. Let c be the contribution rate of PPM.

Definition 3.1. The portfolio process ∆ is said to be self-financing if the corresponding wealth
process X(t), t ∈ [0,T ], satisfies

dX(t) = ∆S (t)X(t)
dS (t)
S (t)

+ ∆I(t)X(t)
dF(t, I(t))
F(t, I(t))

+ (1 − ∆S (t) − ∆I(t))X(t)
dC(t)
C(t)

+ cdt,

X(0) = x0. (3.1)

(3.1) can be re-written in compact form as follows:

dX(t) = (X(t)(r + ∆(t)A) + c)dt + X(t)(Σ∆′(t))′dW(t)],
X(0) = x0, (3.2)

where, A = (σ1θ
I , µ − r)′ and Σ =

(
σ1 0
σS

1 σS
2

)
. The amount x0 is the initial fund paid in by

the PPM. This amount can be null, if the PPM has just joined the pension scheme without any
transfer fund. The PPM enters the plan at initial time, 0 and contributes for T years, thereafter
he or she retires and withdraws all his or her entitlement (or converts it into annuity). The aim of
the PPM is pursued the two conflicting objectives of maximum expected terminal wealth together
with minimum variance of the terminal wealth. PPM seeks to minimize the vector

[−E(X(T )),Var(X(T ))].
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Definition 3.2. (Hφjgaard & Vigna, 2007) The mean-variance optimization problem is defined as

Minimize(Ψ1(∆(·)); Ψ2(∆(·))) ≡ (−E(X(T )),Var(X(T )))

subject to
{

∆(·) admissible
X(·),∆(·) satis f y (3.2).

(3.3)

An admissible strategy ∆∗(·) is called an efficient strategy if there exists no admissible strategy ∆(·)
such that

Ψ1(∆(·)) ≤ Ψ1(∆∗(·)),Ψ2(∆(·)) ≤ Ψ2(∆∗(·)) (3.4)

and at least one of the inequalities holds strictly. In this case, the point (Ψ1(∆(·)),Ψ2(∆(·))) ∈ R2

is called an efficient point and the set of all efficient points is called the efficient frontier.

Hφjgaard and Vigna (Hφjgaard & Vigna, 2007) established that solving (3.3) will address the
following problem

min
∆(·)

[−E(X(T )) + δVar(X(T ))], (3.5)

where δ > 0. (3.5) is not easy to tackle with standard stochastic control techniques, see (Hφjgaard
& Vigna, 2007). Zhou and Li (Zhou & Li, 2000) and Li and Ng (Li & Ng, 2000) shown that it is
possible to transform (3.5) into a tractable one. They were able to show that (3.5) is equivalent to
the following problem

min
∆(·)

E[δX(T )2 + ωX(T )], (3.6)

which is a linear-quadratic control problem. Zhou and Li (Zhou & Li, 2000) and Li and Ng (Li &
Ng, 2000) further show that if ∆(·) is a solution of (3.5), then it is a solution of (3.6) with

ω∗ = 1 + 2δE(X∗(T )). (3.7)

Our aim now is to solve

Minimize(Ψ(∆(·)), δ, ω) ≡ E[δX(T )2 + ωX(T )]

subject to
{

∆(·) admissible
X(·),∆(·) satisfy (3.2)

(3.8)

3.1. Optimal Portfolio Process
We now follow the approach presented by Zhou and Li (Zhou & Li, 2000) and Hφjgaard and

Vigna (Hφjgaard & Vigna, 2007). Let η = ω∗

2δ and Φ(t) = X(t) − η. It therefore resulted that our
problem is equivalent to solving

min
∆(·)

E
[
1
2
δΦ(T )2

]
= min

∆(·)
Ψ(∆(·); δ), (3.9)

where Φ(t) satisfies the stochastic differential equation

dΦ(t) = ((Φ(t) + η)(∆(t)A + r) + c)dt + (Φ(t) + η)(Σ∆′(t))′dW(t),
Φ(0) = x0 − η.

(3.10)
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We now adopt the dynamic programming approach to solve the standard stochastic optimal control
problem (3.9) and (3.10). Let define the value function

U(t,Φ) = inf
∆(·)

Et,Φ

[
1
2
δΦ(T )2

]
= min

∆(·)
Ψ(∆(·); δ). (3.11)

Then U which is assume to be a convex utility function of Φ, satisfies the Hamilton-Jacobi-
Bellmann (HJB) equation

inf∆∈R
{
Ut + ((Φ + η)(∆(t)A + r) + c)UΦ + 1

2 (Φ + η)2Σ∆(t)Σ′∆′(t)UΦΦ

}
= 0,

U(T,Φ) = 1
2δΦ

2.
(3.12)

LetH be the Hamiltonian such that

H = ((Φ + η)(∆(t)A + r) + c)UΦ +
1
2

(Φ + η)2Σ∆(t)Σ′∆′(t)UΦΦ. (3.13)

Then,
∂H

∂∆(t)
= (Φ + η)AUΦ + (Φ + η)2ΣΣ′∆′(t)UΦΦ = 0

Therefore,

∆
′∗(t) = −

(ΣΣ′)−1AUΦ

(Φ + η)UΦΦ

. (3.14)

Substituting (3.14) into (3.12), we obtain the following non-linear partial differential equation for
the value function

Ut + (r(Φ + η) + c)UΦ −
1
2

M
U2

Φ

UΦΦ

= 0, (3.15)

where, M = [(ΣΣ′)−1A]′A. Let assume the solution of the form, see Hφjgaard and Vigna (2007)
and Vigna (2010),

U(t,Φ) = P(t)Φ2 + Q(t)Φ + R(t). (3.16)

Finding the partial derivatives of U in (3.16) with respect to Ut, UΦ and UΦΦ and then substitute
into (3.15), we have the following system of ordinary differential equations (ODEs):

P′(t) + (2r − M)P(t) = 0
Q′(t) + 2(rη + c)P(t) + (r − M)Q(t) = 0
R′(t) + (r + rη + c)Q(t) − 1

4 M Q(t)2

P(t) = 0

 (3.17)

with boundary conditions

P(T ) =
1
2
δ,Q(T ) = 0,R(T ) = 0.

Solving the system of ODEs (3.17) using the boundary conditions P(T ) = 1
2δ,Q(T ) = 0,R(T ) = 0,

we have

P(t) = δ
2 exp[(2r + M)(T − t)

Q(t) =
δ(c+rη)
2M+r exp[−(M − r)(T − t)](exp[(2M + r)(T − t)] − 1)

R(t) =
∫ T

t

(
(r + rη + c)Q(s) − 1

4 M Q(s)2

P(s)

)
ds

 (3.18)
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Hence, replacing the partial derivatives of U in (3.14), the optimal fraction of portfolio to be
invested in the two risky assets at time time t, becomes

∆
′∗(t) = −

(ΣΣ′)−1A
Φ + η

G∆(t), (3.19)

where,

G∆(t) = Φ + η −
η(2M + r) − (rη + c)(1 − exp[−(2M + r)(T − t)])

2M + r
.

Now, replacing Φ + η with x in (3.19), we have

∆
′∗(t) = −

(ΣΣ′)−1A
x

[
x −

η(2M + r) − (rη + c)(1 − exp[−(2M + r)(T − t)])
2M + r

]
(3.20)

Simplifying (3.20), we have

∆
′∗(t) = −

(ΣΣ′)−1A
x

Ḡ(t), (3.21)

where,

Ḡ(t) = x −
η(2M + exp[−(2M + r)(T − t)])

(2M + r)
+

c(1 − exp[−(2M + r)(T − t)])
2M + r

.

3.2. Expected Optimal Wealth
In this subsection, we determine the expected wealth that will accrued to the PPM at the final

time horizon. We also consider in this subsection, the second moment of the expected final wealth
of the PPM. These will enable us to established the efficient frontier in the next section.

Substituting (3.20) into (3.2), we have that the evolution of wealth of the PPM under optimal
control X∗(t) is obtained as follows:

dX∗(t) = {(r − M)X∗(t) +
ηM(2M − exp[−(2M + r)(T − t)])

2M + r

+
cM(1 − exp[−(2M + r)(T − t)])

2M + r
+ c}dt − Σ−1A{X∗(t)

−
η(2M + exp[−(2M + r)(T − t)])

2M + r
+

c(1 − exp[−(2M + r)(T − t)])
2M + r

}dW(t).

(3.22)

Then, applying Itô lemma to (3.22), we obtain the SDE that satisfies the evolution of X∗2(t):

dX∗2(t) = {(2r − M)X∗2(t) + 2cX∗(t) + M[
η(2M + exp[−(2M + r)(T − t)])

2M + r

+
c(1 − exp[−(2M + r)(T − t)])

2M + r
]2}dt − 2Σ−1A{X∗2(t)

−
ηX∗(t)(2M − exp[−(2M + r)(T − t)])

2M + r

+
cX∗(t)(1 − exp[−(2M + r)(T − t)])

2M + r
}dW(t)

(3.23)
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Taking the mathematical expectation on both sides of (3.22) and (3.23), we have the following
expected value of the optimal wealth and the expected value of its square:

dE(X∗(t)) = E[(r − M)X∗(t) +
ηM(2M − exp[−(2M + r)(T − t)])

2M + r

+
cM(1 − exp[−(2M + r)(T − t)])

2M + r
+ c]dt,

E(X(0)) = x0.

(3.24)

dE(X∗2(t)) = E[(2r − M)X∗2(t) + 2cX∗(t)

+ M
(
η(2M + exp[−(2M + r)(T − t)])

2M + r
+

c(1 − exp[−(2M + r)(T − t)])
2M + r

)2

]dt,

E(X∗2(t)) = x2
0.

(3.25)

Solving (3.24) and (3.25), we have the following:

E(X∗(t)) = x0 exp[−(M − r)t] +
2M2η

(M − r)(2M + r)
(1 + exp[−(M − r)t])

+
c

3(2M + r)
exp[−2MT − r(T − t)](exp[−Mt] − exp[2Mt])

+
c(3M + r)

(M − r)(2M + r)
(1 − exp[−(M − r)t])

−
η exp[−Mt − r(T − t)]

3(2M + r)
(exp[−3M(T − t)] − exp[−2MT ]),

(3.26)

E(X∗2(t)) = x2
0 exp[−(M − 2r)t] +

c2 exp[−2r(T − t) − M(4T + t)](exp[5Mt] − 1)
5(2M + r)2

+
2c2(3M + r) exp[−(M − r)t]

r(M − r)(2M + r)
−
η2 exp[−2r(T − t) − M(4T + t)]

5(2M + r)2

+
12cM2η

(2M + r)2(M2 − 3Mr + 2r2)
−

c2(4M + r)(3M + 2r) exp[−Mt + 2rt]
r(M − 2r)(2M + r)2 + D1(t)

+
c2(13M2 + 9Mr + 2r2)

(2M + r)2(M2 − 3Mr + 2r2)
+ D2(t) −

2cη
5(2M + r)2

(exp[−2r(T − t) − M(4T + t)] − exp[−2(2M + r)(T − t)])

−
2cη exp[−(2MT + Mt) − r(T − t)]

r(6M + 3r)
−

2cη(M(5 + 6M) + r) exp[−(2M + r)(T − t)]
3(3M − r)(2M + r)2

+
4c(M(M + r + Mr))η exp[−(M − r)t − r(T − t) − 2MT ]

r(3M − r)(2M + r)2 +

2cx0

r
exp[−(M − r)t](1 − exp[rt])

−
2cη exp[−(M − r)t]
r(r2 + Mr − 2M2)

−
4M2η

(M − 2r)(2M + r)2

(
Mη +

2c(M + r)
r

)
exp[−(M − 2r)t]

(3.27)
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where,

D1(t) =
2c2 exp[−r(T − t) − M(2T + t)]

3r(3M − r)(2M + r)2

× (6M2 + Mr(1 + 5 exp[3Mt]) − r2(1 − exp[3Mt]) − 6M(M − r) exp[rt]),
(3.28)

D2(t) = −
4M2η2 exp[−r(T − t) − M(2T + t)](exp[3Mt] − exp[rt])

(3M − r)(2M + r)2

+
η2(exp[−2(2M + r)(T − t)] + 20M3

M−2r )
5(2M + r)2

(3.29)

At terminal time, that is, at t = T , we have:

E(X∗(T )) = x0 exp[−(M − r)T ] +
2M2η

(M − r)(2M + r)
(1 + exp[−(M − r)T ])

+
c

3(2M + r)
(exp[−3MT ] − 1) +

c(3M + r)
(M − r)(2M + r)

(1 − exp[−(M − r)T ])

−
η exp[−MT ]
3(2M + r)

(1 − exp[−2MT ]),

(3.30)

E(X∗2(T )) = x2
0 exp[−(M − 2r)T ] +

4M3η2

(M − 2r)(2M + r)2 (1 − exp[−(M − 2r)T ])

+
(η + c)2

5(2M + r)2 (1 − exp[−5MT ]) −
4M2η2

(3M − r)(2M + r)2 (1 − exp[−3MT + rT ])

−

(
c2(4M + r)(3M + 2r)
r(M − 2r)(2M + r)2 +

8cM2η(M + r)
r(M − 2r)(2M + r)2

)
exp[−(M − 2r)T ]

−
2c
r

(
x0(1 + exp[rT ]) +

η

r2 + Mr − 2M2 −
c(3M + r)

r(M − r)(2M + r)

)
exp[−(M − r)T ]

+
4c2M2 exp[−3MT ](1 − (1 − r

M +
rη
c ) exp[rT ])

r(3M − r)(2M + r)2 +
12ηM2c

(2M + r)2(
1

(M − r)(M − 2r)
−

1
3(3M − r)

)
+

c2(13M2 + 9Mr + 2r2)
(M − r)(M − 2r)(2M + r)2

+
2c(c(M − r) exp[−3MT ] + 5M(c − η) + r(c − η))

3(3M − r)(2M + r)2

−
2cη exp[−3MT ]

2M + r

(
1
3r
−

2M
(3M − r)(2M + r)

(M
r

+ 1
)

exp[rT ]
)
.

(3.31)

Since η = ω∗

2δ and ω∗ is as defined in (3.7), we have that

η =
3(M − r)(2M + r)

3(M − r)(2M + r) − 6M2(1 + exp[−(M − r)T ]) + (M + r) exp[−MT ](1 − exp[−2MT ])

×

(
1
2δ

+ x0 exp[−(M − r)T ] +
c(exp[−3MT ] − 1)

3(2M + r)
+

c(3M + r)(1 − exp[−(M − r)T ])
(M − r)(2M + r)

)
.

(3.32)
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Observe that η is a decreasing function of δ. Therefore, the expected optimal terminal wealth
of the PPM can be re-express in terms of δ as follows:

E(X∗(T )) =

×

(
1 +

6M2(1 + exp[−(M − 2r)T ]) − (M − r) exp[−MT ](1 − exp[−2MT ])
3(M − r)(2M + r) − 6M2(1 + exp[−(M − r)T ]) + (M + r) exp[−MT ](1 − exp[−2MT ])

)
×

(
x0 exp[−(M − r)T ] +

c(exp[−3MT ] − 1)
3(2M + r)

+
c(3M + r)(1 − exp[−(M − r)T ])

(M − r)(2M + r)

)
+

6M2(1 + exp[−(M − 2r)T ]) − (M − r) exp[−MT ](1 − exp[−2MT ])
2δ(3(M − r)(2M + r) − 6M2(1 + exp[−(M − r)T ]) + (M + r) exp[−MT ](1 − exp[−2MT ]))

(3.33)
Observe that the expected optimal terminal wealth for the PPM is the sum of the wealth that

invested would get for investing the whole portfolio always in both the riskless and the risky assets
plus a term,

6M2(1 + exp[−(M − 2r)T ]) − (M − r) exp[−MT ](1 − exp[−2MT ])
2δ(3(M − r)(2M + r) − 6M2(1 + exp[−(M − r)T ]) + (M + r) exp[−MT ](1 − exp[−2MT ]))

.

This term depends both on the goodness of the risky assets with respect to the riskless asset and
on the weight given to the minimization of the variance. Hence, the higher the value of M (which
is the Sharpe ratio of the risky assets, stock and inflation-linked bond), the higher the expected
optimal terminal wealth, everything else being equal. The higher the parameter given to the mini-
mization of the variance of the terminal wealth, δ, the lower its mean.

4. The Efficient Frontier

We now establish the efficient frontier for the three classes of assets in the investment portfolio.
From (3.30), we have that

E(X∗(T )) = x0 exp[−(M − r)T ] + λ, (4.1)

where,

λ =
2M2η

(M − r)(2M + r)
(1 + exp[−(M − r)T ])

+
c

3(2M + r)
(exp[−3MT ] − 1) +

c(3M + r)
(M − r)(2M + r)

(1 − exp[−(M − r)T ])

−
η exp[−MT ]
3(2M + r)

(1 − exp[−2MT ]).

(4.2)

E(X∗2(T )) = x2
0 exp[−(M − 2r)T ] + ψ, (4.3)
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where,

ψ =
4M3η2

(M − 2r)(2M + r)2 (1 − exp[−(M − 2r)T ])

+
(η + c)2

5(2M + r)2 (1 − exp[−5MT ]) −
4M2η2

(3M − r)(2M + r)2 (1 − exp[−3MT + rT ])

−

(
c2(4M + r)(3M + 2r)
r(M − 2r)(2M + r)2 +

8cM2η(M + r)
r(M − 2r)(2M + r)2

)
exp[−(M − 2r)T ]

−
2c
r

(
x0(1 + exp[rT ]) +

η

r2 + Mr − 2M2 −
c(3M + r)

r(M − r)(2M + r)

)
exp[−(M − r)T ]

+
4c2M2 exp[−3MT ](1 − (1 − r

M +
rη
c ) exp[rT ])

r(3M − r)(2M + r)2 +
12ηM2c

(2M + r)2

×

(
1

(M − r)(M − 2r)
−

1
3(3M − r)

)
+

c2(13M2 + 9Mr + 2r2)
(M − r)(M − 2r)(2M + r)2

+
2c(c(M − r) exp[−3MT ] + 5M(c − η) + r(c − η))

3(3M − r)(2M + r)2

−
2cη exp[−3MT ]

2M + r

(
1
3r
−

2M
(3M − r)(2M + r)

(M
r

+ 1
)

exp[rT ]
)
. (4.4)

Therefore,

Var(X∗(T )) = x2
0 exp[−(M − 2r)T ] + ψ − (E(X∗(T )))2

= x2
0 exp[rT ] exp[−(M − r)T ] + ψ − (E(X∗(T )))2

= x0 exp[rT ](E(X∗(T )) − λ) + ψ − (E(X∗(T )))2

= x0 exp[rT ]E(X∗(T ) − λx0 exp[rT ] + ψ − (E(X∗(T )))2

= E(X∗(T ))(x0 exp[rT ] − x0 exp[−(M − r)T ] − λ) + ψ − λx0 exp[rT ]
= E(X∗(T ))(x0 exp[rT ](1 − exp[−MT ]) − λ) + ψ − λx0 exp[rT ].

Therefore,

E(X∗(T )) =
λx0 exp[rT ] − ψ

x0 exp[rT ](1 − exp[−MT ]) − λ
+

σ2(X∗(T ))
x0 exp[rT ](1 − exp[−MT ]) − λ

. (4.5)

This show that the expected terminal wealth of the PPM is a function of its variance. The efficient
frontier in the mean-variance diagram is a straight line with gradient 1

x0 exp[rT ](1−exp[−MT ])−λ which
measures the rate at which the terminal wealth will increase or decrease as the variance increases
by one unit. If x0 exp[rT ](1 − exp[−MT ]) < λ, we have a negative gradient. If x0 exp[rT ](1 −
exp[−MT ]) > λ, we have a positive gradient. If x0 exp[rT ](1 − exp[−MT ]) = λ, we have an
infinite gradient. Note that if the gradient is negative, it implies that the mean will increase as the
variance decreases. If the gradient is positive, it implies that the mean will increase as the variance
increases. If the gradient is infinite, we have that the mean will tends to negative infinity. Observe
that if the PPM entered the scheme with no initial endowment, then (4.5) will become

E(X∗(T )) =
ψ̄

λ
−
σ2(X∗(T ))

λ
. (4.6)
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where,

ψ̄ =
4M3η2

(M − 2r)(2M + r)2 (1 − exp[−(M − 2r)T ])

+
(η + c)2

5(2M + r)2 (1 − exp[−5MT ]) −
4M2η2

(3M − r)(2M + r)2 (1 − exp[−3MT + rT ])

−

(
c2(4M + r)(3M + 2r)
r(M − 2r)(2M + r)2 +

8cM2η(M + r)
r(M − 2r)(2M + r)2

)
exp[−(M − 2r)T ]

−
2c
r

(
η

r2 + Mr − 2M2 −
c(3M + r)

r(M − r)(2M + r)

)
exp[−(M − r)T ]

+
4c2M2 exp[−3MT ](1 − (1 − r

M +
rη
c ) exp[rT ])

r(3M − r)(2M + r)2 +
12ηM2c

(2M + r)2

×

(
1

(M − r)(M − 2r)
−

1
3(3M − r)

)
+

c2(13M2 + 9Mr + 2r2)
(M − r)(M − 2r)(2M + r)2

+
2c(c(M − r) exp[−3MT ] + 5M(c − η) + r(c − η))

3(3M − r)(2M + r)2

−
2cη exp[−3MT ]

2M + r

(
1
3r
−

2M
(3M − r)(2M + r)

(M
r

+ 1
)

exp[rT ]
)
. (4.7)

In this case, the gradient of the mean-variance portfolio selection becomes − 1
λ

and the intercept
is ψ̄

λ
.
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Figure 1: Efficient Frontier. We take x0 = 1, δ = 0.05, T = 5, µ = 0.092, σ1 = 0.35, σS
1 = 0.38, σS

2 = 0.45, θI = 0.30,
r = 0.04, c = 0.07, and α = 0.05.

Figure 1 shows the efficient frontier of portfolios in the mean-variance plan and reports the
points (σ2(X∗(T )), E(X∗(T ))) for each strategy under consideration. Observe that figure 1 has
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negative gradient of −0.979322 and intercept of 3.45372. Observe that the higher the variance, the
lower the mean and vice versa. But, with that presents of inflation-linked bond as one of the risky
assets, the variance could be minimized.

5. Numerical Example

Suppose a market involve a cash account with nominal annual interest rate 4%, an inflation-
linked bond with a nominal annual appreciation rate r +σIθ

I , where r = 4% is the nominal annual
interest rate, σI = 35% is the inflation volatility and θI = 30% is the market price of inflation risks,
and a stock with a nominal annual appreciation rate 9.2% and a standard deviations arising from
inflation and stock market 38% and 45% respectively. Suppose also that the following parameters
(which have been defined earlier) take the values as follows: c = 0.07 million, x0 = 1 million,
δ = 0.05 and T = 5 (years), we have the following results.

A PPM who contributes a constant flow of 0.07 million and have initial wealth x0 = 1 million
in the pension scheme and wishes to obtain an expected wealth between 0 − 2.5 million has a
portfolio value in inflation-linked bond as obtain in figure 2 and stock as obtain in figure 3 for 5
year period. Under the same strategy but for a period of 30 years, we have the results for inflation-
linked bond and stock in figure 4 and 5, respectively.

In particular, at the initial time t = 0, ∆S (0, x0) = 0.280635 million and ∆I(0, x0) = −1.60143
million. These imply that the inflation-linked bond needs to be shorten for an amount 1.60143
million and then invest into cash account which is already having an amount 0.617935 million
together with the initial endowment 1 million. It implies that at t = 0, a total of 3.219365 million
should be invested in cash account.

We take x0 = 1, δ = 0.05, T = 5, µ = 0.092, σ1 = 0.35, σS
1 = 0.38, σS

2 = 0.45, θI = 0.30,
r = 0.04, c = 0.07, α = 0.05 and X∗ = 2.5.
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Figure 2: Portfolio Value in Inflation-linked Bond. We take x0 = 1, δ = 0.05, T = 5, µ = 0.092, σ1 = 0.35, σS
1 = 0.38,

σS
2 = 0.45, θI = 0.30, r = 0.04, c = 0.07, α = 0.05 and X∗ = 2.5.
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Figure 3: Portfolio Value in Stock. We take x0 = 1, δ = 0.05, T = 5, µ = 0.092, σ1 = 0.35, σS
1 = 0.38, σS

2 = 0.45,
θI = 0.30, r = 0.04, c = 0.07, α = 0.05 and X∗ = 2.5.
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Figure 4: Portfolio Value in Inflation-linked Bond. We take x0 = 1, δ = 0.05, T = 30, µ = 0.092, σ1 = 0.35,
σS

1 = 0.38, σS
2 = 0.45, θI = 0.30, r = 0.04, c = 0.07, α = 0.05 and X∗ = 2.5.

Table 1: EPMV at Different Value of c
c ∆I∗(T ) ∆S ∗(T ) E(X∗(T )) Var(X∗(T ))

0.07 2.11382 -0.370427 2.24252 1.23677
0.10 2.16595 -0.379561 2.40778 1.17607
0.18 2.30494 -0.403918 2.84850 1.02772
0.50 2.86089 -0.501344 4.61135 0.63131
1.00 3.72958 -0.653573 7.36580 0.64283
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Figure 5: Portfolio Value in Stock. We take x0 = 1, δ = 0.05, T = 30, µ = 0.092, σ1 = 0.35, σS
1 = 0.38, σS

2 = 0.45,
θI = 0.30, r = 0.04, c = 0.07, α = 0.05 and X∗ = 2.5.

where, EPMV stands for Expected Portfolio, Mean and Variance

Table 2: EPMV at Different Value of θI

θI ∆I∗(T ) ∆S ∗(T ) E(X∗(T )) Var(X∗(T ))
-0.40 1.04336 -0.62614 -0.73204 1.92241
-0.30 -0.0528 0.036369 0.63063 1.46643
-0.20 -0.7444 0.672109 2.08936 1.05585
-0.10 -0.1036 0.218662 1.95446 0.44016
0.12 -18.9559 -0.69169 -1.8832 161.417
0.20 -0.56135 0.052899 1.57551 0.00502
0.30 2.11382 -0.370427 2.24252 1.23677
0.40 0.36761 -0.081166 0.84008 1.92241

Table 3: EPMV at Different Value of x0

x0 ∆I∗(T ) ∆S ∗(T ) E(X∗(T )) Var(X∗(T ))
1.00 2.11382 -0.370427 2.24252 1.236770
2.00 2.36116 -0.413770 3.02677 0.839136
2.24 2.42114 -0.424282 3.21697 0.823284
2.25 2.42299 -0.424606 3.22284 0.823295
3.00 2.60849 -0.457113 3.81103 0.976339
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Table 4: EPMV at Different Value of δ
δ ∆I∗(T ) ∆S ∗(T ) E(X∗(T )) Var(X∗(T ))

5.00000 -1.34329 0.235398 1.1806 0.253598
0.50000 -1.02901 0.180323 1.27714 0.155583
0.05000 2.11382 -0.370427 2.24252 1.23677
0.00500 33.5421 -5.87793 11.8963 218.182
0.00050 347.825 -60.953 108.434 23001
0.00005 3490.66 -611.704 1073.81 2312170

5.1. Discussion of the Results in the Tables
From table 1, observe that as the contributions of the PPM increases, the portfolio value in

inflation-linked bond increases while the portfolio value in stock decreases. Observe also that
as the contributions increases, the expected terminal wealth increases and the variance decreases,
which is an interesting result since the aim of an investor is to maximize wealth and minimize
risks. The reason for this, is that the inflation risks in the investment profile have been hedged by
the inflation-linked bond. This shows that inflation risks on the contributions of the PPM can be
hedged by the inflation-linked bond. We conclude that the higher the contributions of the PPM,
the higher the expected wealth and vice versa, which is an expected result. The expected optimal
wealth (as in above) can be actualized only when the entire portfolio is invested in inflation-linked
bond.

From table 2, we found that, when the market price of inflation risks, θI , is -0.40, the portfolio
value in inflation-linked bond, ∆I(T ) at T = 5, is 1.04336 million and stock, ∆S (T ) is -0.62614
million. This means that the portfolio value in stock should be shorten by an amount 0.62614
million and invest it in inflation-linked bond. Observe also that when θI = −0.40, the expected
wealth is -0.73204 million and variance 1.92241 million. This shows negative expected wealth
with high variance. Similar interpretation go to when θI = −0.30,−0.20, and -0.10. Observe that
at θI = 0.12, ∆I(T ) = −18.9559 million and ∆S (T ) = −0.69169 million. This implies that that
the entire portfolio values of the PPM should remain only in cash account. This is because the
risks associated with the portfolio in stock and inflation-linked bond are very high. At θI = 0.20,
∆I(T ) = −0.56135 million and ∆S (t) = 0.052899 with expected wealth of 1.57551 million and
variance of 0.00502. This means that the entire portfolio should remain in stock and cash account.
Observe also that the PPM will have a higher expected wealth at θI = 0.30. This occur when the
entire portfolio is invested in inflation-linked bond.

From table 3, observe that the higher the initial endowment of the PPM, the higher the portfolio
value in inflation-linked bond and the expected wealth, the lower the variance, which is an inter-
esting result since the aim of an investor is to minimize risks and maximize wealth. The reason
for the gradual reduction of the variance is because the inflation risks on the initial endowment has
be hedged due to the presents of an inflation-linked bond in the investment profile. We therefore
conclude that inflation-linked bond is an ”inflation risks fighter”.

From table 4, observe that the higher the weight given to the minimization of the variance, the
lower the portfolio value in stock and inflation-linked bond, and vice versa, which is an expected
result. Therefore, it is optimal to invest the entire portfolio into cash account when δ = +∞. We
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found that the lower the value of δ, higher the portfolio value in inflation-linked bond and expected
wealth. This also lead to high variance.

6. Conclusion

In this paper, we have considered a mean-variance portfolio selection problem in the accumu-
lation phase of a defined contribution pension scheme. The optimal portfolio and optimal expected
terminal wealth for the pension plan member (PPM) were established. The efficient frontier was
obtained for the three assets class. It was found that inflation-linked bond is an ”inflation risks
fighter”.
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Drăgoi 2, Arad - 310330, Romania

Abstract
We prove in this letter that the general method of solving gauge models with high symmetries proposed by

Cotăescu several years ago can predict precisely two distinct classes of S U(4)L ⊗ U(1)Y electroweak models. Their
fermion representations with respect to this gauge group are exactly obtained in rach case.
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1. Introduction

One of the most stringent topics in modern theoretical particle physics is to find the proper
extension of the Standard Model (SM) able to accommodate (or even to predict) the new and
richer observed phenomenology at colliders or in cosmology such as: (i) neutrino oscillation,
(ii) 126 GeV Higgs signal at CERN-LHC, (iii) new Z′gauge boson. etc. More than a decade
ago, Cotăescu (Cotăescu, 1997) proposed a general method for solving chiral gauge models of
the type S U(3)c ⊗ S U(N)L ⊗ U(1)Y that undergo a spontaneous symmetry breaking (SSB) in
its electroweak sector. Based on a particular parametrization of the scalar sector leading to an
unusual Higgs mechanism to accomplish the SSB, the method established itself as a successful
tool in investigating the phenomenology of interest at present facilities (CERN-LHC, Tevatron,
LEP etc). Also, it can give some estimates of the expected processes.

We focus in this letter on the classification job the method supplies in the case of the S U(3)c ⊗

S U(4)L ⊗ U(1)Y gauge models, subject to a sustained research (R. Foot & Tran, 1994), (Pisano &
Pleitez, 1995), (Doff & Pisano, 1999), (Doff & Pisano, 2001), (Fayyazuddin & Riazuddin, 2004),
(W. A. Ponce & Sanchez, 2004), (L. A. Sanchez & Ponce, 2004), (Ponce & Sanchez, 2004),
(L. A. Sanchez & Zuluaga, 2008), (Riazuddin & Fayyazuddin, 2008), (Palcu, 2009c), (Palcu,
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Email address: adrian.palcu@uav.ro (Adrian Palcu)
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2009a), (Nisperuza & Sanchez, 2009), (Palcu, 2009e), (Palcu, 2009d), (Villada & Sanchez, 2009),
(Palcu, 2009b), (Jaramillo & Sanchez, 2011), (Palcu, 2012) lately. More precisely, we obtain
all the classes allowed by the general method when applied to this particular gauge group. Of
course, in all these models the S U(3)c group is the color group of chromodynamics and it remains
vector-like as usual, contributing in the case at hand only to the cancellation of the axial anomaly.
Therefore it will be no longer mentioned, as the extension takes place only in the electroweak
sector.

The paper is organized as follows: Sec. 2 briefly displays the main results of the general
method with a special emphasise on the charge operators which are worked out in detail, while in
Sec.3 our conclusions are sketched.

2. Charge operators in SU(4)L ⊗ U(1)Y models

To begin with, we present some general results of the method involved here with a particular
focus on the charge operators and their concrete expressions.

2.1. Main results of the general method
2.1.1. Irreducible representations of S U(N)L ⊗ U(1)Y

When constructing a gauge model, one must consider proper fermion representations of the
S U(N)L ⊗ U(1)Y gauge group. usually, these are the fundamental irreducible unitary representa-
tions (irreps) n and n∗ of the S U(N)group. They supply different classes of tensors of ranks (r, s)
as direct products like (⊗n)r ⊗ (⊗n∗)s. These tensors exhibit r lower and s upper indices for which
the notation i, j, k, · · · = 1, · · · , n. The irrep ρ of S U(N) by indicating its dimension, nρ. The
su(n) Lie algebra can have different parameterizations , but we prefer here a hybrid basis (see Ref.
(Cotăescu, 1997)) consisting of n − 1 diagonal generators of the Cartan sub-algebra, Dî, labeled
by indices î, ĵ, ... ranging from 1 to n − 1, and the generators Ei

j = Hi
j/
√

2, i , j, related to the
off-diagonal real generators Hi

j. We got thus the elements ξ = Dîξ
î + Ei

jξ
j
i ∈ su(n) now parame-

terized by n − 1 real parameters, ξ î, and by n(n − 1)/2 c-number ones, ξi
j = (ξ j

i )∗, for i , j. That
is a suitable choice since the parameters ξi

j can be directly associated to the c-number gauge fields
due to the factor 1/

√
2 which gives their correct normalization. In addition, this basis ensures a

convenient trace orthogonality relations:

Tr(DîD ĵ) =
1
2
δî ĵ, Tr(DîE

i
j) = 0 , Tr(Ei

jE
k
l ) =

1
2
δi

lδ
k
j . (2.1)

If one deals with different irreps, ρ of the su(n) algebra one denotes ξρ = ρ(ξ) for each ξ ∈ su(n)
such that the corresponding basis-generators of the irrep ρ become Dρ

î
= ρ(Dî) and Eρ i

j = ρ(Ei
j).

2.1.2. Fermion sector
The U(1)Y transformations corresponding to the new hypercharge are simply phase factor mul-

tiplications. Therefore - once the coupling constants g for S U(n)L and g′ for the U(1)Y are estab-
lished - the transformation rule of the fermion tensor Lρ with respect to the whole gauge group
yields:

Lρ → U(ξ0, ξ)Lρ = e−i(gξρ+g′ychξ
0)Lρ (2.2)
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where ξ =∈ su(n) and ych is the chiral hypercharge defining the irrep of the U(1)Y group parametrized
by ξ0. In order to simplify the notations, the general method used to deal with the character
y = ychg′/g instead of the chiral hypercharge ych. This small mathematical artifice does not alter
at all the results. The irreps of the whole gauge group S U(n)L ⊗ U(1)Y are uniquely determined
by identifying the dimension of the S U(n) tensor and its character y for particular representations
ρ = (nρ, yρ) of interest in each case.

2.1.3. Electric and neutral charges
In order to introduce specific interaction among fermions, a proper mechanism to conceive

couplings must be set up. This goal is achieved by postulating the covariant derivatives in the
manner: DµLρ = ∂µLρ − ig(Aa

µT
ρ
a + yρA0

µ)L
ρ. Here T ρ

a are generators (regardless they are diagonal
or off-diagonal) defining the su(n) algebra, expressed in the representation ρ. The gauge fields in
our notation are A0

µ = (A0
µ)
∗ and Aµ = A+

µ ∈ su(n) respectively.
The charge spectrum of the general method is essentially related to the problem of finding the

basis of the physical neutral bosons after separating the electromagnetic massless Aem
µ . It corre-

sponds to the residual U(1)em symmetry, that is to the one-dimensional subspace of the parameters
ξem in the parameter space {ξ0, ξ î} of the whole Cartan sub-algebra. It is uniquely determined by
the n − 1 - dimensional unit vector ν and the angle θ giving the subspace equations ξ0 = ξem cos θ
and ξ î = νîξ

em sin θ.
The remaining massive neutral gauge fields A′ îµ will exhibit non-diagonal mass matrix succes-

sively the SSB via a proper Higgs mechanism (whose details we will overpass here). The mass
basis can be reached by resorting to a S O(n − 1) transformation, namely A

′ î
µ = ωî ·

· ĵ
Z ĵ
µ where Z î

µ are
the physical neutral bosons with well-defined masses. Explicitly, this S O(n − 1) transformation
works in the manner:

A0
µ = Aem

µ cos θ − νîω
î ·
· ĵZ

ĵ
µ sin θ,

Ak̂
µ = νk̂Aem

µ sin θ +
(
δk̂

î − ν
k̂νî(1 − cos θ)

)
ωî ·
· ĵZ

ĵ
µ. (2.3)

It connects the gauge basis (A0
µ, A

î
µ) to the physical one (Aem

µ ,Z
î
µ). This transformation ω is called

the generalized Weinberg transformation (gWt).
At this stage, one can easily identify the charges of the fermions involved with respect to the

above determined physical bosons. The spinor multiplet Lρ acquires the following electric charge
matrix:

Qρ = g
[
(Dρ · ν) sin θ + yρ cos θ

]
, (2.4)

and n − 1 neutral charge matrices:

Qρ(Z î) = g
[
Dρ

k̂
− νk̂(D

ρ · ν)(1 − cos θ) − yρνk̂ sin θ
]
ωk̂ ·
· î (2.5)

each corresponding to the n − 1 neutral physical fields, Z î
µ.
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2.2. S U(4)L ⊗ U(1)Y gauge group
In the particular S U(4)L ⊗U(1)Y gauge model one has to properly identify the diagonal gener-

ators and set up the possible options for the versor ν. For our purpose, the standard generators Ta

of the su(4) algebra are the Hermitian diagonal generators of the Cartan sub-algebra, namely D1 =

T3 = 1
2diag(1,−1, 0, 0), D2 = T8 = 1

2
√

3
diag(1, 1,−2, 0), and D3 = T15 = 1

2
√

6
diag(1, 1, 1,−3).

We will prefer in the following to denote the irreps of the gauge group by ρ = (nρ, yρch) indicat-
ing the genuine chiral hypercharge ych instead of y. Hence, the multiplets of the 3-4-1 model under
consideration here - subject to anomaly cancellation in order to keep renormalizable the whole
theory - will be denoted by (ncolor,nρ, yρch). The condition e = g sin θW established in the SM is
valid throughout.

In principle, there will be three distinct cases in choosing the versors. They are:

• versors ν1 = 1, ν2 = 0, ν3 = 0,

• versors ν1 = 0, ν2 = 1, ν3 = 0,

• versors ν1 = 0, ν2 = 0, ν3 = 1.

2.2.1. Class A (ν1 = 1, ν2 = 0, ν3 = 0)
The lepton quadruplet obeys the fundamental irrep of the gauge group ρ = (4, 0) . Eq. (2.4)

yields:

Q(4,0) = eT (4)
3

sin θ
sin θW

, (2.6)

which denotes the lepton representation
(

ec
α, eα, να, Nα

)T

L
∼ (4, 0) if and only if sin θ =

2 sin θW holds.
In the quark sector there are two families (i = 1, 2) transforming similarly under the gauge

group
(

Ji, ui, di, Di

)T

L
∼ (4∗,−1/3) and a third one transforming as

(
J3, d3, u3, U3

)T

L
∼

(4,+2/3). Their electric charge operators will take, respectively, the forms

Q(4∗,− 1
3 ) = e

[
T (4∗)

3
sin θ

sin θW
−

1
3

(
g′

g

)
cos θ
sin θW

]
, (2.7)

Q(4,+ 2
3 ) = e

[
T (4)

3
sin θ

sin θW
+

2
3

(
g′

g

)
cos θ
sin θW

]
, (2.8)

Now, in order to get the known electric charges of the quarks one must enforce the coupling match:

g′

g
=

sin θW√
1 − 4 sin2 θW

. (2.9)

The anomaly-free content in the fermion sector of this class of 3-4-1 models stands:
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Lepton families

fαL =


ec
α

eα
να
Nα


L

∼ (1, 4, 0) (2.10)

Quark families

QiL =


Ji

ui

di

Di


L

∼ (3, 4∗,−1/3) Q3L =


J3

−d3

u3

U3


L

∼ (3, 4,+2/3) (2.11)

(d3L)c, (diL)c, (DiL)c,∼ (3, 1,+1/3) (2.12)

(u3L)c, (uiL)c, (U3L)c ∼ (3, 1,−2/3) (2.13)

(J3L)c ∼ (3, 1,−5/3) (JiL)c ∼ (3, 1,+4/3) (2.14)

with α = 1, 2, 3 and i = 1, 2.
The capital letters J label some exotic quarks included in each family. They exhibit exotic

electric charges ±4/3 and ±5/3.
Based on Eq.(2.5) one can compute the neutral charges for the above model A. They are pre-

sented in Table 1. Obviously, the SM fermions exhibit the same neutral charges as they do in the
SM framework with respect to the Z boson.

2.2.2. Class B (ν1 = 0, ν2 = 1, ν3 = 0)
Due to T8 = 1

2
√

3
diag(1, 1,−2, 0) there is no room for a plausible electric charge operator, since

there is only 0 and ±e allowed in the lepton quadruplets. Therefore, this case must be ruled out
from phenomenological reasons.

2.2.3. Class C (ν1 = 0, ν2 = 0, ν3 = −1)
In this case, one can assign two different chiral hypercharges −1

4 and −3
4 respectively for the

lepton quadruplet. Hence, we get two sub-cases leading to two different versions of this class. The
coupling matching yields the same relation in both sub-cases.

The lepton sector’s electric charge operator for the first choice stands as

Q(4∗,− 1
4 ) = e

[
−T (4∗)

15
sin θ

sin θW
−

1
4

(
g′

g

)
cos θ
sin θW

]
, (2.15)

for the first sub-case. This leads to the lepton representation
(

eα, να, Nα, N′α
)T

L
∼ (4∗,−1

4 )
including two new kinds of neutral leptons (Nα, N′α) possibly right-handed neutrinos.
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Table 1. Coupling coefficients of the neutral currents in 3-4-1 in Model A
Particle\Coupling(e/ sin 2θW) Z f̄ f Z′ f̄ f Z′′ f̄ f

νeL, νµL, ντL 1 −

√
1−4 sin2 θW
√

3
cos θW√

6

eL, µL, τL 2 sin2 θW − 1 −

√
1−4 sin2 θW
√

3
cos θW√

6

eR, µR, τR −2 sin2 θW
2
√

1−4 sin2 θW
√

3
cos θW√

6

NeL,NµL,NτL 0 0 −

√
3
2 cos θW

uL, cL 1 − 4
3 sin2 θW

1
√

3

(
1−2 sin2 θW√

1−4 sin2 θW

)
−

cos θW√
6

dL, sL −1 + 2
3 sin2 θW

1
√

3

(
1−2 sin2 θW√

1−4 sin2 θW

)
−

cos θW√
6

tL 1 − 4
3 sin2 θW -

(
1
√

3

)
1√

1−4 sin2 θW

cos θW√
6

bL −1 + 2
3 sin2 θW −

(
1
√

3

)
1√

1−4 sin2 θW

cos θW√
6

TL −4
3 sin2 θW −

(
4
√

3

)
sin2 θW√

1−4 sin2 θW

−

√
3
2 cos θW

D1L,D2L
2
3 sin2 θW

(
2
√

3

)
sin2 θW√

1−4 sin2 θW

√
3
2 cos θW

uR, cR, tR,T R −4
3 sin2 θW

(
4
√

3

)
sin2 θW√

1−4 sin2 θW

0

dR, sR, bR,DiR +2
3 sin2 θW −

(
2
√

3

)
sin2 θW√

1−4 sin2 θW

0

J1L, J2L
8
3 sin2 θW −

(
2
√

3

)
1−5 sin2 θW√

1−4 sin2 θW

- cos θW√
6

J1R, J2R
8
3 sin2 θW −

(
8
√

3

)
sin2 θW√

1−4 sin2 θW

0

J3L −10
3 sin2 θW

(
2
√

3

)
1−6 sin2 θW√

1−4 sin2 θW

cos θW√
6

J3R −10
3 sin2 θW

(
10
√

3

)
sin2 θW√

1−4 sin2 θW

0



Adrian Palcu / Theory and Applications of Mathematics & Computer Science 2 (2) (2012) 83–93 89

For the second choice, the lepton electric charge operator is represented as

Q(4,− 1
4 ) = e

[
−T (4)

15
sin θ

sin θW
−

3
4

(
g′

g

)
cos θ
sin θW

]
, (2.16)

allowing for lepton families such as
(
να, e−α, E−α , E′−α

)T

L
∼ (4,−3

4 ). A phenomenological
analysis in this sub-case must assume some new kind of charged lepton (E−α , E′−α ). possibly very
heavy.

After a little algebra the coupling matching for both sub-cases arises:

g′

g
=

sin θW√
1 − 3

2 sin2 θW

. (2.17)

For the quark sector the electric charge operator takes the following representations

Q(4∗, 5
12 ) = e

[
−T (4∗)

15
sin θ

sin θW
+

5
12

(
g′

g

)
cos θ
sin θW

]
(2.18)

Q(4,− 1
12 ) = e

[
−T (4)

15
sin θ

sin θW
−

1
12

(
g′

g

)
cos θ
sin θW

]
(2.19)

2.2.4. Fermion content of Model C1
A natural fermion outcome occurs in this first choice, namely:
Lepton families

fαL =


eα
να
Nα

N′α


L

∼ (1, 4∗,−1
4 ) (eαL)c

∼ (1, 1, 1) (2.20)

Quark families

QiL =


ui

di

Di

D′i


L

∼ (3, 4,−1/12) Q3L =


−d3

u3

U
U′


L

∼ (3, 4∗, 5/12) (2.21)

(d3L)c, (diL)c, (DiL)c, (D′iL)c ∼ (3, 1,+1/3) (2.22)

(u3L)c, (uiL)c, (UL)c, (U′L)c ∼ (3, 1,−2/3) (2.23)

with α = 1, 2, 3 and i = 1, 2.
Based on Eq.(2.5) one can compute the neutral charges for model C1. They are presented in

Table 2. The outcome is suitable too: the SM fermions exhibit the same neutral charges as they do
in the SM framework with respect to the Z boson.
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Table 2. Coupling coefficients of the neutral currents in 3-4-1 in Model C1
Particle\Coupling(e/ sin 2θW) Z f̄ f Z′ f̄ f Z′′ f̄ f

νeL, νµL, ντL 1 1−3 sin2 θW

2
√

2−3 sin2 θW

0

eL, µL, τL 2 sin2 θW − 1 1−3 sin2 θW

2
√

2−3 sin2 θW

0

NeL,NµL,NτL 0 −
3 cos2 θW

2
√

2−3 sin2 θW

− cos θW

N′eL,N
′
µL,N

′
τL 0 −

3 cos2 θW

2
√

2−3 sin2 θW

cos θW

uL, cL 1 − 4
3 sin2 θW

2−9 cos2 θW

2
√

2−3 sin2 θW

0

dL, sL −1 + 2
3 sin2 θW

2−9 cos2 θW

2
√

2−3 sin2 θW

0

tL 1 − 4
3 sin2 θW

2+9 cos2 θW

2
√

2−3 sin2 θW

0

bL −1 + 2
3 sin2 θW

2+9 cos2 θW

2
√

2−3 sin2 θW

0

uR, cR, tR,U1R,U′iR −4
3 sin2 θW

4 sin2 θW

3
√

2−3 sin2 θW

0

dR, sR, bR,DiR,D′iR +2
3 sin2 θW −

2 sin2 θW

3
√

2−3 sin2 θW

0

D1L,D2L
2
3 sin2 θW

−4+9 cos2 θW

6
√

2−3 sin2 θW

cos θW

D′1L,D
′
2L

2
3 sin2 θW

−4+9 cos2 θW

6
√

2−3 sin2 θW

− cos θW

U3L −4
3 sin2 θW

8−9 cos2 θW

6
√

2−3 sin2 θW

− cos θW

U′3L −4
3 sin2 θW

8−9 cos2 θW

6
√

2−3 sin2 θW

cos θW
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2.2.5. Fermion content of Model C2
Some strange charged fermions occur in the second choice, but it is still plausible since these

could come very massive.
Lepton families

fαL =


να
e−α
E−α
E′−α


L

∼ (1, 4,−3/4) (eαL)c, (EαL)c, (E′αL)c ∼ (1, 1, 1) (2.24)

Quark families

QiL =


di

−ui

Ui

U′i


L

∼ (3, 4∗, 5/12) Q3L =


u3

d3

D
D′


L

∼ (3, 4,−1/12) (2.25)

(d3L)c, (diL)c, (DL)c, (D′L)c ∼ (3, 1,+1/3) (2.26)

(u3L)c, (uiL)c, (UiL)c, (U′iL)c ∼ (3, 1,−2/3) (2.27)

with α = 1, 2, 3 and i = 1, 2.
Based on Eq.(2.5) one can compute the neutral charges for model C1. They are presented in

Table 3. As in the previous cases the SM fermions come out with the same neutral charges as they
do in the SM framework with respect to the Z boson.

3. Concluding remarks

In this letter we obtained all the possible 3-4-1 models allowed by the general method of solv-
ing gauge models with high symmetries that undergo a spontaneous symmetry breaking. All in
all, they are three different 3-4-1 models: one belonging to the Class A and two to the Class
C. For the three classes of 3-4-1 gauge models the neutral charges (couplings to neutral bosons
of the model) are obtained along with the electric corresponding charges. If we restrict ourself
to non-exotic electric charges,then only Class C survives. Even more, if heavy charged leptons
are still unobserved experimentally, then only subclass A1 remains to be further analyzed from
phenomenological point of view. However, all fermion contents are anomaly-free and hence the
theoretical models they account for are renormalizable. After some algebraic computations for
all the representations involved therein this statement is proved immediately. Therefore, the phe-
nomenological predictions in this promising framework can be valuable indeed. Furthermore, the
phenomenology (to be confirmed at present facilities) can be analyzed in detail once each partic-
ular model is taken into consideration.
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Table 3. Coupling coefficients of the neutral currents in 3-4-1 in Model C2
Particle\Coupling(e/ sin 2θW) Z f̄ f Z′ f̄ f Z′′ f̄ f

νeL, νµL, ντL 1 1−3 sin2 θW

2
√

2−3 sin2 θW

0

eL, µL, τL 2 sin2 θW − 1 1−3 sin2 θW

2
√

2−3 sin2 θW

0

EeL, EµL, EτL 0 −
3 cos2 θW

2
√

2−3 sin2 θW

cos θW

E′eL, E
′
µL, E

′
τL 0 −

3 cos2 θW

2
√

2−3 sin2 θW

− cos θW

uL, cL 1 − 4
3 sin2 θW

2−9 cos2 θW

2
√

2−3 sin2 θW

0

dL, sL −1 + 2
3 sin2 θW

2−9 cos2 θW

2
√

2−3 sin2 θW

0

tL 1 − 4
3 sin2 θW

2+9 cos2 θW

2
√

2−3 sin2 θW

0

bL −1 + 2
3 sin2 θW

2+9 cos2 θW

2
√

2−3 sin2 θW

0

uR, cR, tR,U1R,U′iR −4
3 sin2 θW

4 sin2 θW

3
√

2−3 sin2 θW

0

dR, sR, bR,DiR,D′iR +2
3 sin2 θW −

2 sin2 θW

3
√

2−3 sin2 θW

0

D3L
2
3 sin2 θW

−4+9 cos2 θW

6
√

2−3 sin2 θW

cos θW

D′3L
2
3 sin2 θW

−4+9 cos2 θW

6
√

2−3 sin2 θW

− cos θW

U1L,U2L −4
3 sin2 θW

8−9 cos2 θW

6
√

2−3 sin2 θW

− cos θW

U′1L,U
′
2L −4

3 sin2 θW
8−9 cos2 θW

6
√

2−3 sin2 θW

cos θW
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