

SYLLABUS

1. Program Information

1.1 Higher education institution	AUREL VLAICU UNIVERSITY OF ARAD
1.2 Faculty	ENGINEERING
1.3 Department	DEPARTMENT OF AUTOMATION, INDUSTRIAL ENGINEERING AND TEXTILES
1.4 Field of study	AUTOMATION, APPLIED INFORMATICS AND INTELLIGENT SYSTEMS
1.5 Cycle of studies	BACHELOR OF SCIENCE
1.6 Study Programme/Qualification	AUTOMATION AND APPLIED INFORMATICS (IN ENGLISH) (AIA-E)

2. Course Information

2.1 Name of the discipline	LINEAR ELECTRONIC CIRCUITS
2.2 Course activity holder	Prof.univ.habil.dr.eng. Marius M. BĂLAS
2.3 Instructor of the laboratory activity	Senior Lecturer dr.eng. Flavius Maxim PETCUT
2.4 Year of study	2
2.5 Semester	1
2.6 Type of assessment	Summative: EXAMINATION
2.7 Discipline regime	DS-compulsory

3. Estimated total time (hours per semester of teaching activities)

3.1 Number of hours per week	4	of which 3.2 course	2	3.3 laboratories	2
3.4 Total hours in the curriculum	56	of which 3.5 course	28	3.6 laboratories	28
Distribution of the time fund					hours
Study by textbook, course material, bibliography and notes					25
Additional documentation in the library, on specialized electronic platforms and in the field					24
Preparation of seminars/laboratories, assignments, papers, portfolios and essays					16
Tutorial					2
Examination					2
Other activities...					
3.7 Total hours of individual study					69
3.8 Total hours per semester					125
3.9 Number of credits					5

4. Preconditions (where applicable)

4.1 of curriculum	Electrical Engineering, Physics, Chemistry, Mathematical Analysis, Linear Algebra, Numerical Methods, Calculus Programming.
4.2 of competences	Basic concepts in Electrical Engineering, Physics and Mathematics.

5. Conditions (where applicable)

5.1 course	Interactive whiteboard, Microsoft Office, Matlab.
5.2 laboratory	General Purpose Electronic Laboratory Equipment and various electronic circuits. Infinit Technologies stand. Software: Electronics Workbench (free).

6. Specific competences acquired

Professional competences	<p>C2. Design electronic systems: Is able to identify, describe and creatively apply the operating principles of linear electronic circuits (R-L-C networks, operational amplifiers, filters, amplifiers, linear oscillators, signal sources, industrial integrated circuits, etc.) It can analyze linear electronic circuits in steady and transient modes, using mathematical methods, CAD and simulation software.</p> <p>C7. Perform laboratory tests: Plan and execute engineering experiments using specific laboratory equipment. Analyzes and interprets experimental data to validate hypotheses or technical performances. Is able to correctly and creatively use laboratory instrumentation (oscilloscope, signal generator, frequency analyzer, etc.) for testing and performance evaluation.</p> <p>Methodological and organizational skills:</p> <ul style="list-style-type: none"> • Is able to plan and carry out experimental laboratory activities according to established procedures. • Demonstrates the ability to organize and manage the human and technical resources necessary for design, testing and automated production.
Transversal competences	<p>CT3. Think analytically:</p> <ul style="list-style-type: none"> • Think analytically. • Think critically. • Think creatively.

7. Learning Outcomes

Knowledge	<ul style="list-style-type: none"> • Knowledge of electronic schematics and methods of designing electronic systems. • Knowledge in electronic circuit simulation programs. • Use of specific laboratory equipment. • Data analysis and interpretation. • Think creatively and innovatively.
Skills	<ul style="list-style-type: none"> • Make electronic schematics and printed circuit boards using specialized software. • Perform simulations to verify the functionality and viability of systems designed before manufacturing. • Plan and execute engineering experiments using specific laboratory equipment. • Analyzes and interprets experimental data to validate hypotheses or technical performance. • Think analytically, critically and creatively.

Responsibilities and autonomy	<ul style="list-style-type: none"> Evaluates and optimizes the performance of the designed system, taking responsibility for choosing technical solutions. Can work independently or in a team to implement and test automation solutions in a real professional environment. Has the ability to manage technical projects responsibly and meet deadlines. It has availability for continuous learning and professional adaptation in emerging fields (intelligent automation, IoT, AI control). Approach problems critically.
-------------------------------	---

8. Objectives of the discipline (resulting from the grid of specific competences accumulated)

8.1 General objective of the discipline	The field of Systems Engineering encompasses all three directions of study in Automation: automated driving, hardware and software. The Linear Electronic Circuits discipline has the role of introducing students into hardware and is an essential precondition for other subjects studied further: digital electronics, power electronics, etc.
8.2 Specific objectives	<ul style="list-style-type: none"> Knowledge of passive and active electronic devices, with one, two or three junctions and their mathematical modeling; Knowledge of electronic amplifiers and their analysis in time (oscillograms) and frequency (frequency characteristics); Negative reaction and stability of amplifiers; Operational amplifiers and their applications; Acquisition of the competence to design elementary linear electronic circuits (amplifiers, filters, oscillators, etc.); Develop practical laboratory skills for the installation, testing and measurement of the characteristics of electronic circuits in the line; Correlation of the heuristic models with experimental results, by interpreting and analyzing the obtained data; Familiarity with the use of electronic instrumentation (oscilloscope, signal generator, frequency analyzer, etc.) and standard test procedures.

9. Course Content

9.1 Course	Teaching methods	Observations
1. Semiconductors, p-n junctions, diodes	Interactive whiteboard display	4 hours
2. Bipolar transistors and transistors MOS, IS-MOS, D-MOS, V-MOS and IGBT	Interactive whiteboard display	4 hours
3. Electronic circuits, parameters, mathematical models	Interactive whiteboard display	4 hours
4. Frequency Circuit Analysis	Interactive whiteboard display	4 hours
5. Negative reaction amplifiers, frequency stability criterion	Interactive whiteboard display	4 hours
6. Operational Amplifiers	Interactive whiteboard display	2 hours
7. AO circuits, industrial integrated circuits	Interactive whiteboard display	6 hours

	TOTAL	28 hours
--	--------------	-----------------

Course bibliography	<ol style="list-style-type: none"> 1. J. Lueke. "Analog and Digital Circuits for Electronic Control System Applications", Newnes Elsevier, 2005. 2. M. Bălaș. „Introducere în electronică. Circuite electronice liniare.” Editura Universității Aurel Vlaicu din Arad, 2013. 3. M. Bălaș. „Linear Electronic Circuits.” Course material, electronic version, 2025.
----------------------------	---

9.2 Laboratory	Teaching methods	Observations
<ol style="list-style-type: none"> 1. Labor protection in the electronics laboratory 2. Oscilloscope 3. Passive component 4. Semiconductor diodes – static characteristics 5. Bipolar transistors – static characteristics 6. MOS-FET transistor 7. The transistor as an amplifier 8. Analysis of periodic signals by Fourier series decomposition 9. Amplifier's frequency characteristics 10. Negative reaction in amplifiers 11. Operational Amplifiers 12. Circuits with AO 13. Industrial Integrated Circuits 14. Verification 	Interactive whiteboard displays, circuit design and testing.	Each laboratory takes 2 hours
	TOTAL	
Laboratory bibliography	<ol style="list-style-type: none"> 1. M. Bălaș. „Linear Electronic Circuits.” Laboratory support, electronic version, 2025. 2. „Advanced Power Electronics Trainer It-9500-1. Experiment Manual.” Infinit Technologies. 	

10. Corroboration/validation of the contents of the discipline with the expectations of the representatives of the epistemic community, professional associations and employers' representatives in the field related to the program

The content of the discipline is in line with what is done in other universities in the country and abroad. In order to better adapt the content of the discipline to the requirements of the labor market, meetings were held both with representatives of the business environment and with other specialized professors from other higher education centers in the country or abroad.

The discipline is developed on the basis of internationally recognized field textbooks.

- some of the examples presented during the course, laboratory and seminar were debated at national and international conferences and lectures;
- the promotion of the teaching degree to the position of teacher was made on the basis of publications in the field.

11. Assessment

Type of activity	Evaluation criteria	Evaluation method	Percentage of final grade
11.1 Course	Acquiring theoretical knowledge, understanding the fundamental principles (electronic components, linear, operating modes, mathematical models). The ability to solve problems and analyze the time and frequency of their electronic signals. The ability to synthesize and design simple linear circuits.	Written exam. Questions with topics taken from the course. Course activity.	70%
11.2 Laboratory	Theoretical training and prior documentation, practical work in the laboratory, compliance with safety regulations, quality and accuracy of the samples, documentation and reporting of results.	Verification along the way. Elaboration of an application report on an electronic circuit.	30%

11.3 Minimum performance standard: In order to obtain the minimum passing grade in Linear Electronic Circuits, the student must demonstrate the fulfillment of the following minimum performance standards, in accordance with the learning outcomes declared for the discipline:

1. Knowledge and understanding of fundamental concepts: The student must demonstrate an understanding of the basics regarding: the general functionality of linear electronic devices (diodes, bipolar transistors and MOSFETs in linear active mode, operational amplifiers).

2. Ability to apply standard methods of analysis: The student must be able to correctly use the basic methods for solving linear circuits such as: the use of Kirchoff's laws in the time or complex domain, the principles of Thevenin/Norton superposition and equivalences, modeling by equivalent circuits, frequency characteristics and negative reaction.

3. Solving some basic problems: The student must be able to solve completely or partially problems of low difficulty, such as: determining voltages and currents in elementary linear circuits, calculating the amplification of a simple stage with a transistor, analyzing an operational amplifier in standard configurations (inverter, non-inverter, adder).

4. Correct use of technical terminology: The student must adequately use the terminology specific to linear electronics, including: notions of impedance, admittance, gain, input/output

impedance, operating regions of semiconductor devices, standard amplification configurations, fundamentals of linearity, saturation, polarization. Major conceptual errors or confusion between fundamental concepts are not compatible with promotion.

5. Interpretation of the results and correlation with physical phenomenology: The student must be able to: interpret the values obtained in the analysis of a circuit, physically argue the behavior of a simple circuit, identify probable causes of improper functioning of a simple amplifier.

Students must obtain a grade greater than or equal to 5 in both the written exam (weight 66%) as well as in the laboratory (34% share).

Date of completion Signature of the course holder Signature of the laboratory instructor
20.09.2025 Prof.univ.habil.Marius Mircea Bălaș Senior lect.dr.eng.Flavius Maxim Petcuț

Date of approval in the department Signature of the department director
26.09.2025 Assoc.prof. dr.eng. Valentin Dan Muller

Date of approval in the faculty council Approval from the Dean
29.09.2026 Senior lecturer.dr.eng. Corina-Anca Mnerie

SYLLABUS

1. Program Information

1.1 Higher education institution	AUREL VLAICU UNIVERSITY OF ARAD
1.2 Faculty	ENGINEERING
1.3 Department	AUTOMATION, INDUSTRIAL ENGINEERING, TEXTILES AND TRANSPORT
1.4 Field of study	AUTOMATION, APPLIED INFORMATICS AND INTELLIGENT SYSTEMS
1.5 Study Cycle	BACHELOR OF SCIENCE
1.6 Study Programme/Qualification	AUTOMATION AND APPLIED INFORMATICS (IN ENGLISH) (AIA-E)

2. Course Information

2.1 Course Title	MEASUREMENTS AND TRANSDUCERS
2.2 Course activity holder	Prof.univ.habil.dr.eng. Valentina E. BĂLAS
2.3 Laboratory activity instructor	Assistant, drd.eng. Daniel ALEXUȚĂ
2.4 Year of study	2
2.5 Semester	2
2.6 Type of assessment	EXAMINATION
2.7 Discipline regime	DS-compulsory

3. Estimated Total Time (hours per semester of didactic activities)

3.1 Number of hours per week	4	of which	3.2	2	3.3 Laboratory	2
3.4 Total hours in the curriculum	56	of which	3.5	28	3.6 Laboratory	28
Distribution of the time fund						Hours
Study by textbook, course material, bibliography and notes						20
Additional documentation in the library, on specialized electronic platforms and in the field						5
Preparation of seminars/laboratories, assignments, papers, portfolios and essays						5
Tutorial						7
Examination						3
Other activities...						4
3.7 Total hours of individual study						44
3.8 Total hours per semester						100
3.9 Number of credits						4

4. Preconditions (where applicable)

4.1 of curriculum	Numerical Methods, Electrical Engineering, Physics, Linear Electronic Circuits, Programming and Use of Calculations.
4.2 of competences	Basic concepts in Physics, Electrical Engineering, Electronics, and Mathematics.

5. Conditions (where applicable)

5.1 Course	Interactive whiteboard, laptop and appropriate software.
------------	--

5.2 Conducting the laboratory	Laboratory room, properly equipped: computers, network, Internet connection, specialized software.
-------------------------------	--

6. Specific competencies acquired

Professional competencies	<p>C7. Perform laboratory tests: Plan and execute engineering experiments using specific laboratory equipment. Analyzes and interprets experimental data to validate hypotheses or technical performances. He is able to correctly and creatively use laboratory instrumentation (oscilloscope, signal generator, frequency analyzer, etc.) for testing and performance evaluation.</p> <p>C8. Model and simulate sensors: Use modeling and simulation environments (MATLAB/Simulink, etc.) to analyze transient and stationary responses. Validation by comparison between simulation and experimental data.</p>
Transversal competencies	<p>CT3. Think analytically:</p> <ul style="list-style-type: none"> • Think analytically. • Think critically. • Think creatively.

7. Learning Outcomes

Knowledge	<ul style="list-style-type: none"> • Knows and knows how to use specific laboratory equipment. • Has knowledge of data analysis and interpretation. • He knows how to mathematically model dynamical systems. • Has basic knowledge of sensors and measuring equipment.
Skills	<ul style="list-style-type: none"> • Plans and executes engineering experiments using specific laboratory equipment. • Analyzes and interprets experimental data to validate hypotheses or technical performances. • Develop functional models for sensors and interface circuits using simulation software. • Evaluate the system's response to variations in physical parameters through numerical simulation. • Think creatively.
Responsibilities and autonomy	<ul style="list-style-type: none"> • Evaluates and optimizes the performance of the designed system, asul am responsible for choosing technical solutions. • Can work independently or in a team to implement and test automation solutions in a real professional environment. • Has the ability to manage technical projects responsibly and on time. • It has availability for continuous learning and professional adaptation in emerging fields (intelligent automation, IoT, AI in control). • Approaches problems critically.

8. Objectives of the discipline (resulting from the grid of specific competences accumulated)

8.1 General Purpose of the Plina Disc	<p>The discipline aims to study the main notions of metrology, the theory of measurements and errors as well as the main measuring devices used and common types of transducers, frequently encountered in industrial processes. Notions related to data acquisition are also presented.</p> <p>The practical work carried out within the discipline aims to acquire theoretical notions related to the theory of errors, but also practical experiments as well as the habit of working with different sensors.</p>
8.2 Specific objectives	<p>At the end of the course, the student must be able to:</p> <ul style="list-style-type: none"> Understands the fundamental principles of measurement: the concepts of physical quantity, calibration, uncertainty, measurement error, sensitivity. Describe the structure of a measurement chain. Identify and describe the main types of transducers: classify the transducers according to the measured size, the principle of operation and the nature of the signal. Explain the principles of conversion for electrical, electronic and mechatronic translators. Use transducers and measuring equipment correctly: apply appropriate procedures for connecting, powering and checking transducers, select the right instruments and methods for a specific measurement application. Process and interpret experimental data: apply statistical methods to evaluate measurement results and graph experimental characteristics and interpret deviations from the model. Select the right transducer for a specific application: analyse the requirements of an application (domain, precision, dynamic response) and argue the choice of the optimal transducer. Use analysis and acquisition software: use specific programs for data retrieval and processing.

9. Course Contents

9.1 Course	Teaching methods	Observations
8. Introduction to measurement theory. Notions of metrology. Apparatus and transducers. Method of measurement. Categories of measurements. Quality indicators of measurement. General characteristics of measuring devices and transducers. Choice of transducers.	Exhibition on the interactive whiteboard, discussions to clarify concepts	6 hours
9. Theory of errors	Exhibition on the interactive whiteboard, discussions to clarify concepts	2 hours
10. General characteristics of electronic means of measurement. Behavior of the means of measurement.	Exhibition on the interactive whiteboard, discussions to clarify concepts	4 hours

11. Electromechanical measuring devices	Exhibition on the interactive whiteboard, discussions to clarify concepts	2 hours
12. Osciloscoape catodice	Exhibition on the interactive whiteboard, discussions to clarify concepts	2 hours
13. Signal converters	Exhibition on the interactive whiteboard, discussions to clarify concepts	2 hours
14. Measuring amplifiers	Exhibition on the interactive whiteboard, discussions to clarify concepts	2 hours
15. Analog Numeric and Analog Numeric Converters	Exhibition on the interactive whiteboard, discussions to clarify concepts	2 hours
16. Sensors and transducers, presentation of the ral eyelashes. Adapters and converters.	Exhibition on the interactive whiteboard, discussions to clarify concepts	2 hours
17. Transducers for electrical, geometric, velocity, acceleration, vibration, momentum, force, pressure, level, flow, radiation,intelligent translators. Virtual tools.	Exhibition on the interactive whiteboard, discussions to clarify concepts	4 hours
	TOTAL	28 hours
Course bibliography	1. Valentina E. Balas. Measurements and transducers, course support – updated electronic version. 2025. 2. Valentina E. Balas. Smart Sensors with Internal Model and Fuzzy Techniques, Ed. Politehnica Timișoara, 2004.	

9.2 Laboratory	Teaching methods	Observations
1. The equipment in the automation laboratory. General notions. Labor protection.	Troubleshooting	2 hours
2. Statistical processing of measurements. Theory of errors	Problem solving, data processing	4 hours
3. Oscilloscope	Specific measurements	2 hours
4. Calibration of the devices. Multimeter. Signal Converters	Performing calibration tests	6 hours
5. Proximity sensors, temperature sensors, torometers, displacement transducers	Problem solving and bad modelingand computer simulation in Workbench. Practical achievements	10 hours
6. Modeling of virtual tools.	Modeling in Labview	2 hours
7. Recovery session. Submission of reports.	Presentation of reports	2 hours

	TOTAL	28 hours
Laboratory bibliography		3. Valentina E. Balas. Measurements and transducers, course support – updated electronic version. 2025. 4. Daniel Alexuta - Measurements and transducers, laboratory support – updated electronic version, 2025.

10. Corroboration/validation of the contents of the discipline with the expectations of the representatives of the epistemic community, professional associations and employers representative in the field related to the program

The content of the discipline is in line with what is done in other university centers in the country and abroad. In order to better adapt the content of the discipline to the requirements of the labor market, meetings were held both with representatives of the business environment and with other specialized professors from other higher education centers in the country or abroad.

The discipline is developed on the basis of internationally recognized field textbooks.

- some of the examples presented during the course, laboratory and seminar were debated at national and international conferences and lectures;
- the promotion of the teaching degree to the position of teacher was made on the basis of publications in the field.

11. Assessment

Type of activity	Evaluation criteria	Evaluation methods	Percentage of final grade
11.1. Course	Understanding the basic principles and acquiring theoretical knowledge. The ability to solve will problems.	Written exam. In-business with topics taken from the course. Course activity.	50%
11.2 Laboratory	Theoretical training and prior documentation, practical work in the laboratory, compliance with safety regulations, quality and accuracy of the samples, documentation and reporting of results.	Hair check, control homework, scientific activities. Evaluation of reports from laboratory work	50%

11.3 Minimum Performance Standard

In order to obtain the minimum passing grade in Measurements and Translators, the student must demonstrate the fulfillment of the following minimum performance standards, in accordance with the learning outcomes declared for the subject:

1. Theoretical knowledge and understanding (minimum level). The student must demonstrate that he/she can: define the fundamental concepts: measurement, error, uncertainty, sensitivity, resolution, repeatability, can schematically describe the structure of a measurement chain and the role of the main blocks, and can recognize the main types of transducers and their operating principles.

2. Minimum practical skills. The student must be able to perform a basic measurement with a standard instrument (voltmeter, oscilloscope, multimeter, simple sensor), correctly connect

a transducer and read the value obtained under normal laboratory conditions, and perform calibrations, using a given standard or reference.

3. Data processing and interpretation. The student must be able to calculate an absolute and relative error based on simple measurements, graphically represent a static feature and visually identify any major deviations.

5. Compliance with laboratory procedures and rules. The student must use the equipment according to the minimum safety instructions and correctly fill in a basic measurement report (data, values, simple conclusions).

Students must obtain a grade greater than or equal to 5 in both the written exam (50% weight) and the laboratory (50% weight).

Date of completion Signature of the course holder Signature of the laboratory instructor

20.09.2025 Prof.habil.dr.eng. Valentina E. Balas As.drd.eng. Daniel Alexuță

Date of approval in the department Signature of the department director

26.09.2025 Assoc.Prof. dr.eng. Valentin Dan Muller

Date of approval in the faculty council Approval from the Dean
29.09.2026 Senior lecturer.dr.eng. Corina-Anca Mnerie

SYLLABUS

1. Program Information

1.1 Higher Education Institution:	AUREL VLAICU UNIVERSITY OF ARAD
1.2 Faculty:	FACULTY OF ENGINEERING
1.3 Department:	AUTOMATION, INDUSTRIAL ENGINEERING, TEXTILES AND TRANSPORTS
1.4 Field of Study:	AUTOMATION, APPLIED INFORMATICS AND INTELLIGENT SYSTEMS
1.5 Study Cycle:	BACHELOR OF SCIENCE
1.6 Study Program / Qualification:	AUTOMATION AND APPLIED INFORMATICS (IN ENGLISH) (AIA-E)

2. Course Information

2.1 Course Title:	SYSTEMS THEORY		
2.2 Course Lecturer:	Prof.univ.habil.dr.eng. Valentina Emilia BĂLAS		
2.3 Seminar/Laboratory Instructor:	Senior Lecturer dr.eng. Corina-Anca MNERIE		
2.4 Year of Study:	2		
2.5 Semester	2		
2.6 Type of Assessment:	EXAMINATION		
2.7 Course Status:	Compulsory/DS		

3. Estimated Total Time (hours per semester of didactic activities)

3.1 Hours per week:	6	of which 3.2 lecture	3	3.3 seminar/laboratory	3
3.4 Total hours in the study plan	84	of which 3.5 lecture	42	3.6 seminar/laboratory	42
Time allocation:					hours
Study based on course materials, bibliography					15
Additional documentation in library, specialized databases, or field work					10
Preparation for seminars/labs, essays, portfolios					10
Tutoring					2
Examinations					3
Other activities...					1
3.7 Total hours of individual study					41
3.8 Total hours per semester					125
3.9 Number of credits					5

4. Preconditions (where applicable)

4.1 of curriculum	Physics, Electrical Engineering, Mechanics, Chemistry, Mathematical Analysis, Linear Algebra, Numerical Methods, Linear Electronic Circuits.
4.2 of competences	The continued practical application of the acquired knowledge enables a gradual progression through the chapters, in close connection with the topics of the previously studied subjects.

5. Conditions (where applicable)

5.1 of conducting the course	Interactive whiteboard, Microsoft Office, Matlab–Simulink.
5.2 of conducting the seminar and laboratory	Laboratory equipment – Quanser workstations, Matlab–Simulink.

6. Specific Competences Acquired

Professional Competences	- C1 – Performs analytical mathematical computations
Transversal Competences:	- CT3 – Thinks analytically

7. Learning Outcomes

Knowledge	<ul style="list-style-type: none"> - Understands and identifies mathematical methods (linear algebra, numerical analysis) for modelling and solving engineering problems. - Is familiar with specific software tools (e.g., MATLAB) used to automate analytical computations and to validate mathematical solutions in real-world contexts. - Processes information, ideas, and concepts - Solves problems - Thinks creatively and innovatively
Skills	<ul style="list-style-type: none"> - Apply advanced mathematical methods (linear algebra, numerical analysis) for modelling and solving engineering problems. - Use specific software tools (e.g., MATLAB) to automate analytical computations and to validate mathematical solutions in real-world contexts. - Thinks analytically - Thinks critically
Responsibilities and autonomy	<ul style="list-style-type: none"> - Evaluates and optimizes the performance of the designed system, assuming responsibility for the selection of technical solutions. - Can work independently or as part of a team in the implementation and testing of automation solutions within a real professional environment. - Demonstrates the ability to manage technical projects with responsibility and adherence to deadlines. - Shows openness to continuous learning and professional adaptation in emerging fields (intelligent automation, IoT, AI in control). - Problems approach in a critical manner - Analyzes experimental laboratory data

8. Objectives of the discipline (resulting from the grid of specific competences accumulated)

8.1 General objective of the discipline	The Systems Theory course has the general objective of developing students' ability to analyze, model, and evaluate the behavior of dynamic systems, using mathematical tools
---	---

	and engineering methods, for the purpose of designing and optimizing automation systems.
8.2 Specific objectives	<p>SO1 — Understanding fundamental concepts:</p> <ul style="list-style-type: none"> • To explain basic notions: system, inputs, outputs, structure, causality, stability, linearity. • To identify types of systems: continuous/discrete, SISO/MIMO, deterministic/stochastic. <p>SO2 — Modelling dynamic systems:</p> <ul style="list-style-type: none"> • To develop mathematical models using differential equations, transfer functions, and state-space equations. • To simplify and linearize systems around operating points. <p>SO3 — Analyzing system properties:</p> <ul style="list-style-type: none"> • To determine stability, transient response, and steady-state behavior. • To apply stability criteria and analysis methods in the time/frequency domain (Routh–Hurwitz, Nyquist, Bode). <p>SO4 — Interpreting and using graphical representations:</p> <ul style="list-style-type: none"> • To construct and interpret Bode diagrams, Nyquist plots, step/impulse responses, etc. • To use analysis and simulation software tools (MATLAB/Simulink). <p>SO5 — Applying Systems Theory to industrial scenarios:</p> <ul style="list-style-type: none"> • To apply the studied methods to real systems: mechatronic, electrical, thermal, industrial processes, etc.

9. Course Content

9.1 Course	Teaching methods	Observations
CHAPTER 1 DYNAMIC SYSTEMS (Preliminaries) 1.1 The concept of a system. The concept of a signal. Terminology. 1.2 Signal modelling. 1.3 System modelling. 1.4 System interconnections. Control systems and regulation systems. 1.5 Operating regimes.	Presentation using multimedia tools, debates, and discussions based on concrete examples to clarify the concepts presented.	12 hours
CHAPTER 2. CHARACTERIZATION OF LINEAR SYSTEMS IN THE TIME DOMAIN AND IN THE OPERATIONAL DOMAIN 2.1 Linear systems. Transfer matrices and transfer functions. 2.2 Derivation of formulas for the impulse response and transfer function. 2.3 Block-diagram manipulation for fundamental interconnections. 2.4 Discretization issues. 2.5 Systems with time delay.	Presentation using multimedia tools, debates, and discussions based on concrete examples to clarify the concepts presented.	12 hours

2.6 System realizations. State transformations.		
CHAPTER 3. STEADY-STATE REGIMES 3.1 Constant steady-state regime. 3.2 Harmonic steady-state regime.	Presentation using multimedia tools, debates, and discussions based on concrete examples to clarify the concepts presented.	3 hours
CHAPTER 4. STABILITY, CONTROLLABILITY, AND OBSERVABILITY OF SYSTEMS 4.1 System stability. 4.2 System controllability. 4.3 System observability.	Presentation using multimedia tools, debates, and discussions based on concrete examples to clarify the concepts presented.	12 hours
CHAPTER 5. ELEMENTS OF NONLINEAR SYSTEM ANALYSIS	Presentation using multimedia tools, debates, and discussions based on concrete examples to clarify the concepts presented.	3 hours
	TOTAL	42 hours

Bibliography course:

1. Valentina E. Balas, Systems Theory, Aurel Vlaicu University Publishing House, 2013.
2. Valentina E. Balas, Systems Theory, Course Support – Updated Electronic Version, 2025.
3. Ioan Dumitache (Ed.), Automation, Romanian Academy Publishing House, Bucharest, 2009.
4. T.L. Dragomir, Elements of Systems Theory, Vol. 1, Politehnica, 2004.
5. Mihail Voicu, Introduction to Automation, Polirom, 2002.
6. L. Sebastian, Automation, Didactic and Pedagogical Publishing House, Bucharest, 1973.
7. V. Ionescu, Systems Theory, EDP, 1985.
8. T.L. Dragomir, Systems Theory – Applications 2, Politehnica Publishing House, 2006.
9. Richard C. Dorf, Robert H. Bishop, Modern Control Systems, Pearson Educational International, 2005.
10. C. Pozna, Theory of Automatic Systems, MatrixRom, Bucharest, 2004.
11. C. Ilias, Theory of Automatic Control Systems, MatrixRom, Bucharest, 2001.
12. A. Filipescu, S. Stamatescu, Systems Theory, MatrixRom, Bucharest, 2002.
13. N. E. Leonard, S. W. Levine, Using MATLAB to Analyze and Design Control Systems, Addison-Wesley Publishing Company, 1995.
14. D. Popescu, C. Voloșencu, S. Nanu, A.-M. Dan, L. Peană, T.L. Dragomir, Systems Theory. Applications 1, Politehnica Publishing House, 2005.
15. Mircea Cristea, Șerban Agachi, Elements of Systems Theory, Risoprint Publishing House, Cluj-Napoca, 2002.
16. Sorin Larionescu, Systems Theory, MatrixRom, Bucharest, 2006.
17. Ștefan Dan, Systems Theory, MatrixRom, Bucharest, 2005.
18. Dumitru Popescu et al., Industrial Automation, AGIR Publishing House, Bucharest, 2006.
19. Biswa Nath Datta, Numerical Methods for Linear Control Systems: Design and Analysis, Elsevier Academic Press, 2004.

20. Rajeeb Dey, Goshaidas Ray, Valentina E. Balas, Stability and Stabilization of Linear and Fuzzy Time-Delay Systems, Intelligent Systems Reference Library, Vol. 141, Springer, 2018.

9.2 Laboratory	Teaching methods	Observations
1. Occupational safety. Laboratory presentation. Introduction to the Matlab/Simulink programming environment.	Solving problems and performing computer-based modelling and simulation using the MATLAB–Simulink environment. Laboratory equipment – Quanser workstations.	4 hours
2. Analog and discrete signals.	Solving problems and performing computer-based modelling and simulation using the MATLAB–Simulink environment. Laboratory equipment – Quanser workstations.	2 hours
3. Modelling systems in continuous time and discrete time. First-order and second-order systems. MM-II, Transfer function.	Solving problems and performing computer-based modelling and simulation using the MATLAB–Simulink environment. Laboratory equipment – Quanser workstations.	4 hours
4. Modelling systems in continuous time and discrete time. First-order and second-order systems. MM-ISI, Transfer function.	Solving problems and performing computer-based modelling and simulation using the MATLAB–Simulink environment.	4 hours

	Laboratory equipment – Quanser workstations.	
5. Study of interconnected systems. Study of systems in transient and steady-state regimes.	Solving problems and performing computer-based modelling and simulation using the MATLAB–Simulink environment. Laboratory equipment – Quanser workstations.	4 hours
6. Discretization of linear systems	Solving problems and performing computer-based modelling and simulation using the MATLAB–Simulink environment. Laboratory equipment – Quanser workstations.	2 hours
7. Study of linear systems in the frequency domain.	Solving problems and performing computer-based modelling and simulation using the MATLAB–Simulink environment. Laboratory equipment – Quanser workstations.	2 hours
8. Stability analysis criteria.	Solving problems and performing computer-based modelling and simulation using the MATLAB–Simulink environment. Laboratory equipment – Quanser workstations.	2 hours
9. Frequency-domain techniques for stability analysis. Make-up sessions.	Solving problems and performing computer-based modelling and simulation using the MATLAB–Simulink environment. Laboratory equipment – Quanser workstations.	4 hours
	TOTAL	28 hours

Laboratory bibliography:

1. Valentina E. Balas, Systems Theory, Aurel Vlaicu University Publishing House, 2013.
2. Valentina E. Balas, Systems Theory, Course Support – Updated Electronic Version, 2025.
3. Corina Anca Mnerie, Systems Theory, Laboratory Support – Updated Electronic Version, 2025.
4. Ioan Dumitrasche (Ed.), Automation, Romanian Academy Publishing House, Bucharest, 2009.
5. T.L. Dragomir, Elements of Systems Theory, Vol. 1, Politehnica, 2004.
6. Mihail Voicu, Introduction to Automation, Polirom, 2002.

7. L. Sebastian, Automation, Didactic and Pedagogical Publishing House, Bucharest, 1973.
8. V. Ionescu, Systems Theory, EDP, 1985.
9. T.L. Dragomir, Systems Theory – Applications 2, Politehnica Publishing House, 2006.
10. Richard C. Dorf, Robert H. Bishop, Modern Control Systems, Pearson Educational International, 2005.
11. C. Pozna, Theory of Automatic Systems, MatrixRom, Bucharest, 2004.
12. C. Ilias, Theory of Automatic Control Systems, MatrixRom, Bucharest, 2001.
13. A. Filipescu, S. Stamatescu, Systems Theory, MatrixRom, Bucharest, 2002.
14. N. E. Leonard, S. W. Levine, Using MATLAB to Analyze and Design Control Systems, Addison-Wesley Publishing Company, 1995.
15. D. Popescu, C. Volosencu, S. Nanu, A.-M. Dan, L. Peană, T.L. Dragomir, Systems Theory. Applications 1, Politehnica Publishing House, 2005.
16. Mircea Cristea, Șerban Agachi, Elements of Systems Theory, Risoprint Publishing House, Cluj-Napoca, 2002.
17. Sorin Larionescu, Systems Theory, MatrixRom, Bucharest, 2006.
18. Ștefan Dan, Systems Theory, MatrixRom, Bucharest, 2005.
19. Dumitru Popescu et al., Industrial Automation, AGIR Publishing House, Bucharest, 2006
20. Biswa Nath Datta, Numerical Methods for Linear Control Systems: Design and Analysis, Elsevier Academic Press, 2004.
21. Rajeeb Dey, Goshaidas Ray, Valentina E. Balas, Stability and Stabilization of Linear and Fuzzy Time-Delay Systems, Intelligent Systems Reference Library, Vol. 141, Springer, 2018.

9.3 Seminar	Teaching methods	Observations
1. Analog signals and digital signals. Laplace Transform and Z Transform.	Solving problems	2 hours
2. Mathematical modelling of physical systems in continuous time and discrete time. Transfer function.	Solving problems	2 hours
3. Mathematical modelling of linear system interconnections. Study of the dynamic regimes of linear systems.	Solving problems	2 hours
4. Study of continuous-time linear systems in harmonic regime.	Solving problems	2 hours
5. System stability, application of algebraic criteria, and application of frequency-domain techniques.	Solving problems	2 hours
6. Observability, controllability.	Solving problems	2 hours
7. Make-up sessions, Test.	Solving problems	2 hours
	TOTAL	14 hours

Seminar bibliography:

1. Valentina E. Balas, Systems Theory, Aurel Vlaicu University Publishing House, 2013.

2. Valentina E. Balas, Systems Theory, Course Support – Updated Electronic Version, 2025.
3. Corina Anca Mnerie, Systems Theory, Seminar Support – Updated Electronic Version, 2025.
4. Ioan Dumitrasche (Ed.), Automation, Romanian Academy Publishing House, Bucharest, 2009.
5. T.L. Dragomir, Elements of Systems Theory, Vol. 1, Politehnica, 2004.
6. Mihail Voicu, Introduction to Automation, Polirom, 2002.
7. L. Sebastian, Automation, Didactic and Pedagogical Publishing House, Bucharest, 1973.
8. V. Ionescu, Systems Theory, EDP, 1985.
9. T.L. Dragomir, Systems Theory – Applications 2, Politehnica Publishing House, 2006.
10. Richard C. Dorf, Robert H. Bishop, Modern Control Systems, Pearson Educational International, 2005.
11. C. Pozna, Theory of Automatic Systems, MatrixRom, Bucharest, 2004.
12. C. Ilias, Theory of Automatic Control Systems, MatrixRom, Bucharest, 2001.
13. A. Filipescu, S. Stamatescu, Systems Theory, MatrixRom, Bucharest, 2002.
14. N. E. Leonard, S. W. Levine, Using MATLAB to Analyze and Design Control Systems, Addison-Wesley Publishing Company, 1995.
15. D. Popescu, C. Voloșencu, S. Nanu, A.-M. Dan, L. Peană, T.L. Dragomir, Systems Theory. Applications 1, Politehnica Publishing House, 2005.
16. Mircea Cristea, Șerban Agachi, Elements of Systems Theory, Risoprint Publishing House, Cluj-Napoca, 2002.
17. Sorin Larionescu, Systems Theory, MatrixRom, Bucharest, 2006.
18. Ștefan Dan, Systems Theory, MatrixRom, Bucharest, 2005.
19. Dumitru Popescu et al., Industrial Automation, AGIR Publishing House, Bucharest, 2006.
20. Biswa Nath Datta, Numerical Methods for Linear Control Systems: Design and Analysis, Elsevier Academic Press, 2004.
21. Rajeeb Dey, Goshaidas Ray, Valentina E. Balas, Stability and Stabilization of Linear and Fuzzy Time-Delay Systems, Intelligent Systems Reference Library, Vol. 141, Springer, 2018.

10. Corroboration/validation of the course content with the expectations of representatives of the epistemic community, professional associations, and representative employers in the field related to the program

The content of the discipline is aligned with the curricula of other university centers in the country and abroad. To better adapt the discipline to labor market requirements, meetings were held both with representatives of the business environment and with other specialized professors from higher education institutions in Romania and abroad. The discipline is developed based on internationally recognized textbooks in the field. Some of the examples presented during the course, laboratory, and seminar have been discussed at national and international conferences and lectures. The promotion to the academic rank of Professor was based on publications in the field of Systems Theory.

11. Assessment

Type of activity	Evaluation criteria	Evaluation methods	Percentage of final grade	
11.1 Course	knowledge	Written exam. Questions based on topics covered in the course. Course participation.	60%	
	understanding			
11.2 Seminar 11.3 Laboratory	<ul style="list-style-type: none"> - knowledge and understanding; - ability to explain and interpret; - complete and correct solving of the requirements. 	<ul style="list-style-type: none"> - applied activities: assessments/laboratory/practical work/project, etc.; - tests administered throughout the semester; - assignments (control tasks); - scientific activities. 	Final seminar evaluation 10%	
			Evaluation of laboratory activities 20%	
			Active participation 10%	
11.4 Minimum Performance Standard				
<p>The student knows the main concepts, recognizes them, defines them correctly, and solves a simple application.</p> <p>The specialized terminology is simple but correctly used.</p> <p>A minimum grade of 5 on the tests given in the seminar and laboratory.</p>				

Date of completion Signature of the course holder Signature of the seminar/laboratory
instructor

20.09.2025 Prof.habil.dr.eng. Valentina E. Balas Senior lecturer.dr.eng. Corina-Anca Mnerie

Date of approval in the department

Signature of the department director

26.09.2025

Assoc. Prof. dr. eng. Valentin Dan Muller

Date of approval in the faculty council
29.09.2026

SYLLABUS

1. Program Information

1.1 Higher education institution	AUREL VLAICU UNIVERSITY OF ARAD
1.2 Faculty	FACULTY OF ENGINEERING
1.3 Department	AUTOMATION, INDUSTRIAL ENGINEERING, TEXTILES AND TRANSPORT
1.4 Field of study	AUTOMATION, APPLIED INFORMATICS AND INTELLIGENT SYSTEMS
1.5 Study Cycle	BACHELOR OF SCIENCE
1.6 Study Programme/Qualification	AUTOMATION AND APPLIED INFORMATICS (IN ENGLISH) (AIA-E)

2. Course Information

2.1 Course Title	COMPUTER ARCHITECTURE
2.2 Course Lecturer	Assoc.prof.dr.eng. Cornel BARNA
2.3 Laboratory Instructor	Assoc.prof.dr.eng. Cornel BARNA
2.4 Year of study	2
2.5 Semester	2
2.6 Type of Assessment	EXAMINATION
2.7 Course Status	DS-compulsory

3. Total estimated time (hours per semester of teaching activities)

3.1 Hours per week	4	of which 3.2 lecture	2	3.3 Laboratory	2
3.4 Total hours in the study plan	56	of which 3.5 lecture	28	3.6 Laboratory	28
Time allocation					Hours
Study based on course materials, bibliography					10
Additional documentation in library, specialized databases, or field work					18
Preparation for seminars/labs, essays, portfolios					10
Tutoring					2
Examinations					4
Other activities...					0
3.7 Total hours of individual study					44
3.8 Total hours per semester					100
3.9 Number of credits					4

4. Preconditions (where applicable)

4.1 of curriculum	Notions of electronics, Numeracy basics
4.2 of competences	Computer skills

5. Conditions (where applicable)

5.1 of conducting the course	Classroom, equipped with laptop, video projector (if necessary) and appropriate software.
5.2 of conducting the laboratory	Classroom, equipped with laptop, video projector (if necessary) and appropriate software.

6. Specific Competencies Acquired

Professional competencies	C6. Establish Data Processes – Use ICT tools to apply mathematical, algorithmic, or other data manipulation processes to create information.
Transversal competencies	CT2. Comply with regulations.

7. Learning Outcomes

Knowledge	<p>Know algorithms for data processing and analysis.</p> <p>Knows programming languages (e.g. C++, C#).</p> <p>Understanding algorithms and data structures, programming paradigms and languages used in the field of automation.</p> <p>Know the principles of professional ethics and deontology.</p>
Skills	<p>Create algorithms for data processing and analysis in industrial and engineering applications.</p> <p>Use programming languages (e.g. Python, R) and ICT tools to transform raw data into useful information.</p> <p>Correctly apply activity-specific regulations, procedures, and instructions.</p> <p>Propose solutions to improve compliance with rules and procedures.</p>
Responsibilities and autonomy	<p>Evaluates and optimizes the performance of the designed system, taking responsibility for choosing technical solutions.</p> <p>Can work independently or in a team to implement and test automation solutions in a real professional environment.</p> <p>Has the ability to manage technical projects responsibly and on time.</p> <p>It has availability for continuous learning and professional adaptation in emerging fields (intelligent automation, IoT, AI in control).</p> <p>Respects the principles of professional ethics in all activities carried out.</p>

8. Objectives of the discipline (resulting from the grid of specific competences accumulated)

8.1 General objective of the discipline	<p>Understanding the notions of logic circuit.</p> <p>Training of computer component design skills.</p> <p>Knowledge of the methods of designing computing equipment.</p> <p>Forming the skills of using the machine code.</p>
8.2 Specific objectives	<p>Students will know how it is carried out and what are the steps of a digital subassembly design.</p> <p>Students will know how to foresee, from the specification and design phase, the creation of cases of information processing units.</p> <p>Students will know how to use the tools for simulating logic circuits.</p> <p>Students will know the design cases of processing units for different sets of instructions.</p>

9. Course Content

9.1 Course	Teaching methods	Observations
1 Introduction, Brief History	Presented theoretically, Example	4 hours
2 Serial and parallel adders	Oral presentations and Screenings.	4 hours
3 Roberson binary multiplication devices		2 hours
4 Booth Binary Multiplication Devices		2 hours
5 Binary Multiplication Devices by Modified Booth Method		2 hours
6 Execution Unit Design Methods		2 hours
7 Matrix Propagation Circuits		2 hours
8 Binary Splitting Devices		2 hours
9 Architecture of a minimal computer		2 hours
10 Structure of the necessary execution units		2 hours
11 Wired Control Unit Design		2 hours
12 Introduction to Microprogrammed Computing Systems		2 hours
13 Structure of a Microprogrammed Control Memory		2 hours
14 Microprogrammed Design Optimization		
	Total	28 hours
Course bibliography	1. C. Fox Computer Architecture Ed.No starch press 2024. 2. S. P. Wang, Computer Architecture and Organization, Ed.Springer 2021. 3. M.Murdocka, Principles of Computer Architecture, Ed.Prentice Hall, 1999. 4. D.Patterson,J.Hennessy: The Organization and Design of Computers, All Publishing House, 2002. 5. Barna Cornel, course note in electronic format, 2025.	

9.2 Laboratory	Teaching methods	Observations
Laboratory exemplification	Exemplification on the computer. Simulation of logic circuits	28 hours
	Total	28 hours

Laboratory bibliography	<ol style="list-style-type: none">1. C. Fox Computer Architecture Ed.No starch press 2024.2. S. P. Wang, Computer Architecture and Organization, Ed.Springer 2021.3. M.Murdocka, Principles of Computer Architecture, Ed.Prentice Hall, 1999.4. D.Patterson,J.Hennessy: The Organization and Design of Computers, All Publishing House, 2002.5. Barna Cornel, laboratory note in electronic format, 2025.
--------------------------------	---

10. Corroboration/validation of the course content with the expectations of representatives of the epistemic community, professional associations, and representative employers in the field related to the program

11. Assessment			
Type of activity	Evaluation criteria	Evaluation methods	Percentage of final grade
11.1 Course	Course knowledge. Understanding the notions and principles that define the architecture of computing systems.	Written Paper	60%
11.2 Laboratory	Knowledge and understanding. Ability to explain and interpret. Complete and correct resolution of requirements.	Evaluation of laboratory activity. Active presence at class and laboratory.	40%
11.3 Minimum Performance Standard			

Date of completion	Signature of the course holder	Signature of the laboratory instructor
20.09.2026	Assoc.prof.dr.eng. Cornel Barna	Assoc.prof.dr.eng. Cornel Barna

Date of approval in the faculty council Approval from the Dean
29.09.2026 Senior lecturer dr. eng. Corina-Anca Mnerie

SYLLABUS

1. Program Information

1.1 Higher education institution	AUREL VLAICU UNIVERSITY OF ARAD
1.2 Faculty	FACULTY OF ENGINEERING
1.3 Department	AUTOMATION, INDUSTRIAL ENGINEERING, TEXTILES AND TRANSPORT
1.4 Field of study	AUTOMATION, APPLIED INFORMATICS AND INTELLIGENT SYSTEMS
1.5 Study Cycle	BACHELOR OF SCIENCE
1.6 Study Programme/Qualification	AUTOMATION AND APPLIED INFORMATICS (IN ENGLISH) (AIA-E)

2. Course Information

2.1 Course Title	ANALYSIS AND SYNTHESIS OF NUMERICAL DEVICES		
2.2 Course Lecturer	Assoc.prof.dr.eng. Cornel BARNA		
2.3 Laboratory Instructor	Assoc.prof.dr.eng. Cornel BARNA		
2.4 Year of study	2		
2.5 Semester	1		
2.6 Type of Assessment	EXAMINATION		
2.7 Course Status	DS-compulsory		

3. Estimated Total Time (hours per semester of didactic activities)

3.1 Hours per week	4	of which 3.2 lecture	2	3.3 Laboratory	1
3.4 Total hours in the study plan	42	of which 3.5 lecture	28	3.6 Laboratory	14
Time allocation					Hours
Study based on course materials, bibliography					15
Additional documentation in library, specialized databases, or field work					20
Preparation for seminars/labs, essays, portfolios					15
Tutoring					4
Examinations					4
Other activities...					0
3.7 Total hours of individual study					58
3.8 Total hours per semester					100
3.9 Number of credits					4

4. Preconditions (where applicable)

4.1 of curriculum	Notions of electronics, Numeracy basics
4.2 of competences	Computer skills

5. Conditions (where applicable)

5.1 of conducting the course	Classroom, equipped with laptop, video projector (if necessary) and appropriate software.
5.2 of conducting the laboratory	Classroom, equipped with laptop, video projector (if necessary) and appropriate software.

6. Specific competencies acquired

Professional competencies	C2. Design electronic systems - Sketch and design electronic systems, products and components, using computer aided design (CAD) software and equipment. Perform a simulation so that an assessment of the viability of the product can be carried out and that the physical parameters can be examined before the actual construction of the product.
Transversal competencies	

7. Learning Outcomes

Knowledge	He has knowledge of electronic schematics and methods of designing electronic systems. He has knowledge in simulation programs.
Skills	Make electronic schematics and printed circuit boards using specialized software. Perform simulations to verify the functionality and viability of systems designed prior to manufacturing.
Responsibilities and autonomy	Evaluates and optimizes the performance of the designed system, taking responsibility for choosing technical solutions. Can work independently or in a team to implement and test automation solutions in a real professional environment. Has the ability to manage technical projects responsibly and on time. It has availability for continuous learning and professional adaptation in emerging fields (intelligent automation, IoT, AI in control). Has the ability to manage technical projects responsibly and on time.

8. Objectives of the discipline (resulting from the grid of specific competences accumulated)

8.1 General objective of the discipline	Understanding the notions of logic circuit Training of computer component design skills. Knowledge of the methods of designing computing equipment. Forming the skills of using the machine code.
8.2 Specific objectives	Students will know how it is carried out and what are the steps of a digital subassembly design. Students will know how to foresee, from the specification and design phase, the creation of cases of information processing units. Students will know how to use the tools for simulating logic circuits. Students will know the design cases of processing units for different sets of instructions.

9. Curs Content

9.1 Course	Teaching methods	Observations
Introduction Presentation of the field and scope of applicability, main notions, connection with other disciplines, brief history.	Presented theoretically, exemplification, Oral presentations and screenings.	4 hours
Mathematical principles Numbering bases, conversion from one base to another for integers and fractionals, Practical examples. Operations of addition, subtraction, multiplication and division with numbers represented in various bases. Binary, octal and hexadecimal base. Fast conversions between them. Particularities of elementary operations in these numbering bases.		4 hours
Binary number representation formats. Boolean algebra, axioms, and logical functions. Truth tables, canonical disjunctive and conjunctive analytic expressions. Simplification of functions, through analytical, graphical and algorithmic methods.		4 hours
Combinational circuits Description of logical portions. Realization of digital circuits based on logic functions using logic gates and PLA circuits.		4 hours
Description of multiplexers, demultiplexers, encoders and decoders. Examples of design with these circuits. ROM memories. The use of these logic circuits to perform logic functions.		4 hours
Sequential circuits The notion of sequential circuit, differences from combinational circuits. Presentation of bistable types, making circuits using bistable		4 hours
Vending machine design The notion of sequential automaton, the stages of designing and realizing a sequential automatic circuit. Reducing the number of states of an automaton. State encoding.		4 hours

	Total	28 hours
Course bibliography		<p>1. Gh. Stefan, Digital Integrated Circuits, Ed. Didactica 1983.</p> <p>2. M. Sampalean Circuite ptr. Data Conversion, Ed. Tehnica 1980.</p> <p>3. R Oberman Electronic Counts, Technical Publishing House, 1978.</p> <p>4. M. Murdocca, Principles of Computer Architecture Ed. Prentice Hall 1999.</p> <p>5. Barna Cornel, course note on online platform, 2025.</p>

9.2 Laboratory	Teaching methods	Observations
Laboratory exemplification	Exemplification on the computer. Simulation of logic circuits	14 hours
	Total	14 hours
Laboratory bibliography	<p>1. Gh. Stefan, Digital Integrated Circuits, Ed. Didactica 1983.</p> <p>2. M. Sampalean Circuite ptr. Data Conversion, Ed. Tehnica 1980.</p> <p>3. R Oberman Electronic Counts, Technical Publishing House, 1978.</p> <p>4. M. Murdocca, Principles of Computer Architecture, Ed. Prentice Hall 1999.</p> <p>5. Barna Cornel, laboratory note on online platform, 2025.</p>	

10. Corroboration/validation of the course content with the expectations of representatives of the epistemic community, professional associations, and representative employers in the field related to the program.

11. Assessment

Type of activity	Evaluation criteria	Evaluation methods	Percentage of final grade
11.1 Course	Course knowledge. Understanding the notions and principles that define the architecture of computing systems	Written Paper	60%

11.2 Laboratory	Knowledge and understanding ; Ability to explain and interpret; Complete and correct resolution of requirements.	Evaluation of laboratory activity Active presence at class and laboratory	40%
11.3 Minimum Performance Standard			

Date of completion
instructor

20.09.2025 Assoc.prof.dr.eng. Cornel Barna Assoc.prof.dr.eng. Cornel Barna

Date of approval in the department
26.09.2025

Signature of the department director
Assoc.prof.dr.eng. Valentin Dan Muller

Date of approval in the faculty council
29.09.2026

Approval from the Dean
Senior lecturer.dr.eng. Corina-Anca Mnerie

SYLLABUS

1. Program Information

1.1. Higher education institution	AUREL VLAICU UNIVERSITY OF ARAD
1.2. Faculty	ENGINEERING
1.3. Department	AUTOMATION, INDUSTRIAL ENGINEERING, TEXTILES and TRANSPORT
1.4. Field of study	AUTOMATION, APPLIED INFORMATICS AND INTELLIGENT SYSTEMS
1.5. Cycle of studies	LICENSE
1.6. Study Programme/Qualification	AUTOMATION AND APPLIED INFORMATICS (IN ENGLISH) (AIA-E)

2. Course Information

2.1. Course Title	APPLIED INFORMATICS II
2.2. Course Lecturer	Senior Lecturer .dr.eng. Daniel DRAGU
2.3. Laboratory and Project Instructor	Assistant drd. Bogdana Tania GAVRILĂ
2.4. Year of study	2
2.5. Semester	1
2.6. Type of Assessment	VERIFICATION
2.7. Course Status	DF-compulsory

3. Estimated Total Time (hours per semester of didactic activities)

3.1. Hours per week	5	of which	3.2	1	3.3	2+2
lecture		Laboratory+Project				
3.4. Total hours in the study plan	70	of which	3.5	14	3.6	56
lecture		Laboratory+Project				
Time allocation						
Study based on course materials, bibliography						
Additional documentation in library, specialized databases, or field work						
Preparation for seminars/labs, essays, portfolios						
Tutoring						
Examinations						
Other activities						
3.7 Total hours of individual study						
3.8 Total hours per semester						
3.9 Number of credits						

4. Preconditions (where applicable)

4.1. of curriculum	- Introductory notions of computer science and programming languages.
4.2. of competences	- Use a development environment for creating simple programs

5. Conditions (where applicable)

5.1. of conducting the course	Classroom, equipped with laptop, smart board and appropriate software, local/online
-------------------------------	---

5.2 of conducting the laboratory and project	Properly equipped laboratory room: computers, network, Internet connection, specialized / online software
--	---

6. Specific Competencies Acquired

Professional competencies	<ul style="list-style-type: none"> • C6 – Establish data processes • C9 – Develop Open Source Software
Transversal competencies	<ul style="list-style-type: none"> • CT3 – Think Analytically

7. Learning Outcomes

Knowledge	<ul style="list-style-type: none"> • Understanding algorithms and data structures, programming paradigms and languages used in the field of automation • Identify open-source platforms and libraries for the development of technical software applications
Skills	<ul style="list-style-type: none"> • Use programming languages and ICT tools to transform raw data into useful information. • It uses open-source platforms and libraries for the development of technical software applications.
Responsibilities and autonomy	<ul style="list-style-type: none"> • Evaluates and optimizes the performance of the designed system, taking responsibility for choosing technical solutions. • Has the ability to manage technical projects responsibly and on time.

8. Objectives of the discipline (resulting from the grid of specific competences accumulated)

8.1. General objective of the discipline	<p>To develop the fundamental knowledge and practical skills necessary to</p> <ul style="list-style-type: none"> • understanding and applying numerical bases and methods of representing numbers in computing systems • designing and developing software applications, both for desktop and mobile environments, in the context of engineering in Automation and Applied Informatics.
8.2. Specific objectives	<p>The student will be able to:</p> <ul style="list-style-type: none"> • Explain and apply the basic concepts of numeral systems • Use methods of representing signed integers • Apply the principles of representing real numbers in floating-point • Develop basic desktop and mobile software applications • Work efficiently, both individually and in a team • Apply good programming practices and ethical norms in software development

9. Course content

9.1 Course	Teaching methods	Observations
1. Numeracy basics		2 hours

2. Representation of signed integers	Exposition, description, explanations, examples, dialogue, interaction	2 hours
3. Floating Point Numbers Representation		2 hours
4. Desktop Apps		4 hours
5. Mobile Apps		4 hours
	TOTAL	14 hours

Course Bibliography

1. Daniel Dragu, Applied Informatics II – course and laboratory notes, electronic version, 2025.
2. Frans Kaashoek, Operating System Engineering, Massachusetts Institute of Technology, MIT Open CourseWare, 2012.
3. C# Programming Guide, <https://learn.microsoft.com/en-us/dotnet/csharp/programming-guide/>.

9.2 Laboratory	Teaching methods	Observations
1. Numeracy basics. Conversions between number bases	Computer exemplification	4 hours
2. Console apps		4 hours
3. Desktop Apps		8 hours
4. Port communication		4 hours
5. Mobile Apps		8 hours
	TOTAL	28 hours

Laboratory Bibliography

1. Daniel Dragu, Applied Informatics II – course and laboratory notes, electronic version, 2025.
2. C# Programming Guide, <https://learn.microsoft.com/en-us/dotnet/csharp/programming-guide/>.
3. P. Nastase, B. Ionescu, F. Berbec, The Basics of Information and Communication Technology, Infomega Publishing House, Bucharest, 2010.

9.3 Project	Teaching methods	Observations
1. Desktop Apps	Design, implementation, testing	28 hours
2. Microcontroller Applications		
3. Mobile Apps		
	TOTAL	28 hours

Project Bibliography

1. Daniel Dragu, Applied Informatics II – course and laboratory notes, electronic version, 2025.
2. C# Programming Guide, <https://learn.microsoft.com/en-us/dotnet/csharp/programming-guide/>.
3. P. Nastase, B. Ionescu, F. Berbec, The Basics of Information and Communication Technology, Infomega Publishing House, Bucharest, 2010.

10. Corroboration/validation of the course content with the expectations of representatives of the epistemic community, professional associations, and representative employers in the field related to the program

The content of the discipline is in accordance with the discipline sheets of the discipline from other universities in the country and abroad. In order to better adapt the content of the discipline to the requirements of the labor market, meetings were held with both representatives of the business environment and other specialized professors.

The teaching material was developed on the basis of representative textbooks of the field, recognized and appreciated by the academic community.

The examples presented in the course and laboratory applications aim to familiarize students with the customs of the field.

11. Assessment

Type of activity	Evaluation criteria	Evaluation methods	Percentage in the final grade
11.1 Course	Knowledge and understanding of theoretical concepts, ability to apply	Written Paper / Grid Test	50%
11.2 Laboratory	<ul style="list-style-type: none">• Correct and effective application of concepts in problem solving• Active participation	Applicative activities / practical works	20% + 10%
11.3 Project	<ul style="list-style-type: none">• Correct and effective application of concepts in problem solving	Presentation, support	20%
11.3 Minimum Performance Standard			
<ol style="list-style-type: none">1. The student knows the main concepts, defines them correctly and builds a simple application;2. The specialized language is simple, but correctly used;3. Minimum grade of 5 in the laboratory;4. To solve a minimum of topics well – questions and applications.			

Date of completion Signature of the course holder Signature of the laboratory instructor

20.09.2025 Senior lecturer.dr.eng. Daniel Dragu Assist.drd. Bogdana Tania Gavrilă

Date of approval in the department

26.09.2025

Signature of the department director

Assoc.Prof.dr.eng. Valentin Dan Muller

Date of approval in the faculty council

29.09.2026

Approval from the Dean

Senior lecturer.dr.eng. Corina-Anca Mnerie

SYLLABUS

12. Program Information

1.1. Higher education institution	AUREL VLAICU UNIVERSITY OF ARAD
1.2. Faculty	FACULTY OF ENGINEERING
1.3. Department	AUTOMATION, INDUSTRIAL ENGINEERING, TEXTILES AND TRANSPORT
1.4. Field of study	AUTOMATION, APPLIED INFORMATICS AND INTELLIGENT SYSTEMS
1.5. Study Cycle	BACHELOR OF SCIENCE
1.6. Study Programme/Qualification	AUTOMATION AND APPLIED INFORMATICS (IN ENGLISH) (AIA-E)

13. Course Information

2.1. Course Title	ALGORITHM DESIGN
2.2. Course Lecturer	Senior Lecturer dr.eng. Daniel DRAGU
2.3. Laboratory Instructor	Senior Lecturer dr.eng. Daniel DRAGU
2.4. Year of study	2
2.5. Semester	1
2.6. Type of assessment	VERIFICATION
2.7. Course Status	DS-compulsory

14. Estimated Total Time (hours per semester of didactic activities)

3.1. Hours per week	3	of which	3.2	2	3.3 Laboratory	1
3.4. Total hours in the study plan	42	of which	3.5	28	3.6 Laboratory	14
Time allocation						Hours
Study based on course materials, bibliography						15
Additional documentation in library, specialized databases, or field work						12
Preparation for seminars/labs, essays, portfolios						20
Tutoring						5
Examinations						3
Other activities						3
3.7 Total hours of individual study						58
3.8 Total hours per semester						100
3.9 Number of credits						4

15. Preconditions (where applicable)

4.1. of curriculum	-
4.2. of competences	-

16. Conditions (where applicable)

5.1. of conducting the course	Classroom equipped with laptop, smart board and appropriate software, local/online
-------------------------------	--

5.2. of conducting the laboratory	Properly equipped laboratory room: computers, network, Internet connection, specialized / online software
-----------------------------------	---

17. Specific competencies acquired

Professional competencies	<ul style="list-style-type: none"> • C9 – Develop Open Source Software
Transversal competencies	<ul style="list-style-type: none"> • CT3 – Think Analytically

18. Learning Outcomes

Knowledge	<p>Student/graduate:</p> <ul style="list-style-type: none"> • Identify open-source platforms and libraries for the development of technical software applications • Think creatively and innovatively
Skills	<p>Student/graduate:</p> <ul style="list-style-type: none"> • It uses open-source platforms and libraries for the development of technical software applications. • Think critically
Responsibilities and autonomy	<p>Student/graduate:</p> <ul style="list-style-type: none"> • Has the ability to manage technical projects responsibly and on time. • Approach issues critically • Analyze experimental laboratory data • Develop new installations

19. Objectives of the discipline (resulting from the grid of specific competences accumulated)

8.1.General objective of the discipline	Forming students' skills to design and implement the main algorithm models, as well as developing students' analytical capacity and their abilities to correctly apply the accumulated knowledge.
8.2.Specific objectives	<p>Students are able to</p> <ul style="list-style-type: none"> • Explain and apply the fundamental paradigms of algorithm design; • Develop algorithms that use recursive calls and evaluate when this technique is effective; • Build and implement algorithmic solutions using fundamental data structures; • Analyze the complexity of the proposed algorithms and optimize solutions according to available resources; • Apply algorithmic notions in concrete contexts and in practical projects; • Document and clearly communicate the proposed algorithmic solutions, justifying the choices made.

20. Course Content

9.1 Course	Teaching methods	Observations
1. Introduction to PA. Algorithm, properties of algorithms		2 hours

2. Algorithm Design Paradigms	Exposition, description, explanations, examples, dialogue, interaction	2 hours
3. Recursion.		4 hours
4. Divide and rule		4 hours
5. Backtracking		6 hours
6. Data Structures		6 hours
7. Lists, Stacks		4 hours
	TOTAL	28 hours

Course Bibliography

4. Daniel Dragu, Algorithm Design – Lecture and Laboratory Notes, electronic version, 2025.
5. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein, Introduction to Algorithms", MIT Press, 2009.

9.2 Laboratory work	Teaching methods	Observations
1-7. Practical aspects based on the topics discussed in the course	Exemplification on the computer. Functionality testing.	14 hours
	TOTAL	14 hours

Laboratory Bibliography

4. Daniel Dragu, Algorithm Design – Lab Notes, 2025.
5. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein, Introduction to Algorithms", Third Edition, MIT Press, 2009.

21. Corroboration/validation of the course content with the expectations of representatives of the epistemic community, professional associations, and representative employers in the field related to the program

The content of the discipline is in accordance with the discipline sheets of the discipline from other universities in the country and abroad. In order to better adapt the content of the discipline to the requirements of the labor market, meetings were held with both representatives of the business environment and other specialized professors.

The teaching material was developed on the basis of representative textbooks of the field, recognized and appreciated by the academic community.

The examples presented in the course and laboratory applications aim to familiarize students with the customs of the field.

22. Assessment

Type of activity	Evaluation criteria	Evaluation methods	Percentage of final grade
------------------	---------------------	--------------------	---------------------------

11.1 Course	Knowledge and understanding of theoretical concepts, ability to apply	Written Paper / Grid Test	50%
11.2 Laboratory	Correct and effective application of concepts in problem solving Active participation	Applicative activities / practical works	40% + 10%
11.3 Minimum Performance Standard			<ol style="list-style-type: none"> 1. The student knows the main concepts, defines them correctly and builds a simple application; 2. The specialized language is simple, but correctly used; 3. Minimum grade of 5 in the laboratory; 4. To solve a minimum of topics well – questions and applications.

Date of completion Signature of the course holder Signature of the laboratory instructor

20.09.2025 Senior lecturer.dr.eng. Daniel Dragu Senior lecturer.dr.eng. Daniel Dragu

Date of approval in the department Signature of the department director

26.09.2025 Assoc. Prof. dr. eng. Valentin Dan Muller

Date of approval in the faculty council
29.09.2026

Approval from the Dean
Senior lecturer.dr.eng. Corina-Anca Mnerie

SYLLABUS

1. Program Information

1.1 Higher education institution	AUREL VLAICU UNIVERSITY OF ARAD
1.2 Faculty	FACULTY OF ENGINEERING
1.3 Department	AUTOMATION, INDUSTRIAL ENGINEERING, TEXTILES AND TRANSPORT
1.4 Field of Study	AUTOMATION, APPLIED INFORMATICS AND INTELLIGENT SYSTEMS
1.5 Study Cycle	BACHELOR OF SCIENCE
1.6 Study Programme/Qualification	AUTOMATION AND APPLIED INFORMATICS (IN ENGLISH) (AIA-E)

2. Course Information

2.1 Course Title	SPECIAL MATHEMATICS		
2.2 Course Lecturer	Assoc. Prof. Dr. Păstorel GAŞPAR		
2.3 Seminar Instructor	Assistant. Drd. Sorin HOARĂ		
2.4 Year of study	2		
2.5 Semester	1		
2.6 Type of Assessment	EXAMINATION		
2.7 Course Status	DF-compulsory		

3. Estimated Total Time (hours per semester of didactic activities)

3.1 Hours per week	4	of which 3.2 lecture	2	3.3 Seminar	2
3.4 Total hours in the study plan	56	of which 3.5 lecture	28	3.6 Seminar	28
Time allocation					Hours
Study based on course materials, bibliography					20
Additional documentation in library, specialized databases, or field work					10
Preparation for seminars/labs, essays, portfolios					10
Tutoring					
Examinations					4
Other activities...					
3.7 Total hours of individual study					44
3.8 Total hours per semester					100
3.9 Number of credits					4

4. Preconditions (where applicable)

4.1 of curriculum	Mathematical analysis on R and R^2, Linear algebra
4.2 of competences	-

5. Conditions (where applicable)

5.1 of conducting the course	Classroom equipped with blackboard (optional video projector)
5.2 of conducting the seminar	Seminar room equipped with blackboard (optional video projector)

6. Specific Competencies Acquired

Professional competencies	C1. Perform analytical mathematical calculations
Transversal competencies	-

7. Learning Outcomes

Knowledge	<p>Graduate:</p> <ul style="list-style-type: none"> • Knows and identifies mathematical methods (linear algebra, numerical analysis) for modeling and solving engineering problems. • Uses specific software tools (e.g. MATLAB) to automate analytical calculations and verify mathematical solutions in real contexts.
Skills	<p>Graduate:</p> <ul style="list-style-type: none"> • Apply advanced mathematical methods (linear algebra, numerical analysis) for modeling and solving engineering problems. • Uses specific software tools (e.g. MATLAB) to automate analytical calculations and verify mathematical solutions in real contexts.
Responsibilities and autonomy	<p>Graduate:</p> <ul style="list-style-type: none"> • Evaluates and optimizes the performance of the designed system, assuming responsibility for choosing technical solutions. • Can work independently or in a team to implement and test automation solutions in a real professional environment. • Has the ability to manage technical projects responsibly and on time. • Has availability for continuous learning and professional adaptation in emerging fields (intelligent automation, IoT, AI in control). • Manifestation of ethical behavior and a professional attitude in the engineering activity.

8. Objectives of the discipline (resulting from the grid of specific competences accumulated)

8.1 General objective of the discipline	Use of the theoretical foundations of mathematics and formal models.
8.2 Specific objectives	<ol style="list-style-type: none"> 1. Assimilation of knowledge of Fourier analysis; 2. Acquiring the habit of working with Fourier series and coefficients; 3. Knowledge of the fundamental concepts regarding the Laplace transform; 4. Application of Laplace transform and Fourier analysis in solving some differential equations and signal modeling.

9. Course Content

9.1 Course	Teaching methods	Observations
------------	------------------	--------------

1. Laplace transform: definition, examples, properties Elementary 2. Properties of the Laplace transform: derivation of the transform Laplace, Heaviside's function, inverse Laplace transform, limit theorems, impulse function, periodic functions 3. The product of convolution and applications to differential equations 4. Higher-order differential equations with constant coefficients. 5. Fourier series: Fourier coefficients, particular forms for odd and even functions 6. Vibrating string problem. 7. The Heat Problem	Exposure to the board and/or with overhead projector; Exemplification of the notions introduced	Average 4 hours/theme 4 hours 4 hours 4 hours 4 hours 4 hours 4 hours 4 hours 4 hours
Total	28 hours	
Course bibliography		
1. P.: An Introduction to Laplace Transforms and Fourier Series, 2nd Edition, Springer, New York, 2014. 2. U. Graf: Applied Laplace Transforms and z-Transforms for Scientists and Engineers, Springer, Basel, 2004. 3. E. Stade: Fourier Analysis, John Wiley & Sons, New Jersey, 2005.		

9.2 Seminar	Teaching methods	Observations
1. Laplace transform: definition, examples, properties Elementary 2. Properties of the Laplace transform: derivation of the transform Laplace, Heaviside's function, inverse Laplace transform, limit theorems, impulse function, periodic functions 3. The product of convolution and applications to differential equations 4. Higher-order differential equations with constant coefficients. 5. Fourier series: Fourier coefficients, particular forms for odd and even functions 6. Vibrating string problem. 7. The Heat Problem	Exposure to the board and/or with overhead projector; Exemplification of the notions introduced	Average 4 hours/theme 4 hours 4 hours 4 hours 4 hours 4 hours 4 hours 4 hours 4 hours
Total		28 hours

Seminar bibliography	
	<ol style="list-style-type: none">1. P.: An Introduction to Laplace Transforms and Fourier Series, 2nd Edition, Springer, New York, 2014.2. U. Graf: Applied Laplace Transforms and z-Transforms for Scientists and Engineers, Springer, Basel, 2004.3. E. Stade: Fourier Analysis, John Wiley & Sons, New Jersey, 2005.

10. Corroboration/validation of the course content with the expectations of representatives of the epistemic community, professional associations, and representative employers in the field related to the program

The content of the course is in line with what is done in other university centers in the country and abroad. For a better

To adapt the content of the discipline to the requirements of the labor market, meetings were held with representatives of the Arad industrial environment.

11. Assessment

Type of activity	Evaluation criteria	Evaluation methods	Percentage of final grade
11.1 Course	<ul style="list-style-type: none"> - correctness and completeness of knowledge; - logical coherence; - the degree of assimilation of the specialized language; 	Final written evaluation (in the (Examination)	40%
11.2 Seminar	<ul style="list-style-type: none"> - the ability to operate with the assimilated knowledge; - the ability to apply in practice; 	Final written evaluation (in the (Examination)	60%

Date of completion
20.09.2025

Signature of the course holder
Assoc. Prof. dr. Pastor Gaşpar

Signature of the seminar instructor
Assist.drd. Sorin Hoara

Date of approval in the department
26.09.2025

Signature of the department director
Assoc. Prof. dr. eng. Valentin Dan Muller

Date of approval in the faculty council
29.09.2026

SYLLABUS

1. Program Information

1.1 Higher Education Institution	AUREL VLAICU UNIVERSITY OF ARAD
1.2 Faculty	FACULTY OF ENGINEERING
1.3 Department	AUTOMATION, INDUSTRIAL ENGINEERING, TEXTILES AND TRANSPORT
1.4 Field of Study	AUTOMATION, APPLIED INFORMATICS AND INTELLIGENT SYSTEMS
1.5 Study Cycle	BACHELOR OF SCIENCE
1.6 Study Programme/Qualification	AUTOMATION AND APPLIED INFORMATICS (IN ENGLISH) (AIA-E)

2. Course Information

2.1 Course Title	PHYSICAL EDUCATION AND SPORT 3			
2.2 Course Lecture				
2.3 Seminar Instructor	Assistant drd. Vlad Adrian GEANTĂ			
2.4 Year of study	2			
2.5 Semester	1			
2.6 Type of assessment	VERIFICATION			
2.7 Course status	DC-compulsory			

3. Estimated Total Time (hours per semester of didactic activities)

3.1 Hours per week	2	of which 3.2 lecture	0	3.3 Seminar	2
3.4 Total hours in the study plan	28	of which 3.5 lecture	0	3.6 Seminar	28
Time allocation					Hours
Study based on course materials, bibliography					9
Additional documentation in library, specialized databases, or field work					
Preparation for seminars/labs, essays, portfolios					8
Tutoring					2
Examinations					2
Other activities...					1
3.7 Total hours of individual study					22
3.8 Total hours per semester					50
3.9 Number of credits					2

4. Preconditions (where applicable)

4.1 of curriculum	
4.2 of competences	

5. Conditions (where applicable)

5.1 of conducting the course	
5.2 of conducting the seminar	Gym, Sports Field

6. Specific competencies acquired

Professional competencies	
---------------------------	--

Transversal competencies	CT1. Work in teams - Work confidently within a group, each doing his or her part in serving the whole. CT2. Comply with regulations - Comply with the rules, regulations and guidelines related to a particular field or sector and apply them in their daily work.
--------------------------	--

7. Learning Outcomes

Knowledge	<p>Know the principles and stages of teamwork.</p> <p>Know ways to communicate and collaborate effectively.</p> <p>Know the principles of professional ethics and deontology.</p> <p>He is familiar with the applicable procedures and quality standards.</p>
Skills	<p>Actively participates in team activities, contributing to the achievement of common goals.</p> <p>Demonstrates the ability to negotiate and resolve conflicts constructively.</p> <p>Correctly apply activity-specific regulations, procedures, and instructions.</p> <p>Propose solutions to improve compliance with rules and procedures.</p>
Responsibilities and autonomy	<p>They take on their own tasks and respect the deadlines set in the team.</p> <p>Contribute to a positive and productive team climate.</p> <p>Respects the principles of professional ethics in all activities carried out</p> <p>It contributes to the promotion of an organizational culture based on compliance and integrity.</p> <p>Manifestation of ethical behavior and a professional attitude in the engineering activity.</p>

8. Objectives of the discipline (resulting from the grid of specific competences accumulated)

8.1 General objective of the discipline	<p>Development of generic theoretical and practical skills in engineering sciences.</p> <p>Providing the engineering knowledge fund specific to the field of systems engineering.</p> <p>Development of competences and abilities for the research, development, design and implementation of specific processes, products and services.</p> <p>Development of the knowledge necessary for technical-economic analyses.</p> <p>Development of strategic partnerships with the business environment to facilitate the access and insertion of graduates on the local, national and European labor market.</p>
8.2 Specific objectives	Fundamental engineering training.

	<p>Ensure knowledge of computer graphics and computer-aided graphic design skills.</p> <p>Provide general technical knowledge in the field of systems engineering.</p> <p>Ability to conceive, promote and carry out group projects.</p> <p>Acquire the skills to integrate technical knowledge specific to all categories of processes and products.</p> <p>Acquiring the ability to direct the quality of products from the design stage, to control and verify the final quality of products and processes.</p>
--	--

9. Course content

9.1 Course	Teaching methods	Observations
Course bibliography		

9.2 Seminar	Teaching methods	Observations
Athletics: elements from the school of running and jumping.	Presentations, Demonstrations, Intuitive Demonstrations, Explanations with Demonstrations	8 hours
Fitness/Jogging	Presentations, Demonstrations, Intuitive Demonstrations, Explanations with Demonstrations	8 hours
Elements of gymnastics: front exercises and formations	Presentations, Demonstrations, Intuitive Demonstrations, Explanations with Demonstrations	3 hours
Table tennis	Presentations, Demonstrations, Intuitive Demonstrations, Explanations with Demonstrations	3 hours
Sports games: basketball, volleyball, football	Presentations, Demonstrations, Intuitive Demonstrations, Explanations with Demonstrations	3 hours
Combat/Self-defense	Presentations, Demonstrations, Intuitive Demonstrations, Explanations with Demonstrations	3 hours
	Total	28 hours
Seminar bibliography:	<ol style="list-style-type: none"> 1. Bushman, B., 2011, Complete guide to fitness and health, Human Kinetics, Champaign, IL; 2. CORBIN, B. C., RUTH, L., 2007, Fitness for life, Human Kinetics, Champaign, IL. 	

3. DRAGNEA, A., BOTA, A., 1999, Theory of Motor Activities, Didactic and Pedagogical Publishing House, Bucharest.
4. IONESCU, A., MAZILU, V., 1971, Physical Exercise in the Service of Health, Stadion Publishing House, Bucharest.
5. SCARLAT, E., SCARLAT, M. B., 2011, Treatise on Physical Education, Didactic and Pedagogical Publishing House, Bucharest.
6. ULMEANU, I., 1966, Notions of Physiology with Applications to Physical Exercises, UCFS Publishing House, Bucharest.
7. Vlad bag – electronic laboratory on the SUMS platform, 2025.

10. Corroboration/validation of the course content with the expectations of representatives of the epistemic community, professional associations, and representative employers in the field related to the program

Through its contents, the discipline has a pronounced pragmatic character, contributing to the training of specialists in the field of specialization through the following: harmonious development of the body; optimizing health; preventing the onset of global and segmental physical deficiencies, forming and maintaining correct body attitudes; stimulating students' interest in the systematic and independent practice of physical exercise individually and collectively on a daily or weekly basis; creating the habit of observing the rules of sports hygiene and accident prevention; developing the capacity for self-defense and self-improvement.

11. Assessment

Type of activity	Evaluation criteria	Evaluation methods	Percentage of final grade
11.1 Course			
11.2 Seminar	Active participation in classes Disposition to physical and intellectual effort Suitable equipment Appropriate attitude for teamwork	Execution of exercises as number and correctness; Continuous evaluation during the activity; Tests during the semester and their grading; Reports for those exempted	70% 10% 10% 10%

11.3 Minimum Performance Standard

Minimum 5 attendances at Physical Education and Sports classes

Control Tests:

Speed Running 20m

Squats: 20 reps

Long jump from the spot without momentum

Date of completion:

20.09.2025

Signature of the course holder

Signature of the seminar instructor

Assist.drd. Vlad Andrei Geantă

Date of approval in the department

Signature of the department director

26.09.2025

Assoc.Prof. dr.eng. Valentin Dan Muller

Date of approval in the faculty council
29.09.2026

Approval from the Dean
Senior lecturer.dr.eng. Corina-Anca Mnerie

SYLLABUS

23. Program Information

1.1. Higher education institution	AUREL VLAICU UNIVERSITY OF ARAD
1.2. Faculty	FACULTY OF ENGINEERING
1.3. Department	AUTOMATION, INDUSTRIAL ENGINEERING, TEXTILES and TRANSPORT
1.4. Field of study	AUTOMATION, APPLIED INFORMATICS AND INTELLIGENT SYSTEMS
1.5. Study Cycle	BACHELOR OF SCIENCE
1.6. Study Program/Qualification	AUTOMATION AND APPLIED INFORMATICS (IN ENGLISH) (AIA-E)

24. Course Information

2.1. Course Title	AUTOMATION AND MICROPROGRAMMING			
2.2. Course Lecturer	Senior Lecturer dr.eng. Corina Anca MNERIE			
2.3. Laboratory Instructor	Senior Lecturer dr.eng. Corina Anca MNERIE			
2.4. Year of Study	2			
2.5. Semester	2			
2.6. Type of Assessment	EXAMINATION			
2.7. Course Status:	DS-compulsory			

25. Estimated Total Time (hours per semester of didactic activities)

3.1. Hours per week	4	of which 3.2 lecture	2	laboratory	2
3.4. Total hours in the study plan	56	of which 3.2 lecture	28	laboratory	28
Time allocation					Hours
Study based on course materials, bibliography					15
Additional documentation in library, specialized databases, or field work					10
Preparation for seminars/labs, essays, portfolios					10
Tutoring					3
Examinations					4
Other activities...					2
3.7.Total hours of individual study					44
3.9.Total hours per semester					100
3.10.Number of credits					4

26. Preconditions (where applicable)

4.1. of curriculum	Physics, Electrical Engineering, Linear Electronic Circuits.
4.2. of competences	The continuity of the applicative capitalization of the acquired knowledge allows a gradual passage of the chapters, in close relation with the theme of the previously studied subjects.

27. Conditions (where applicable)

5.1. of conducting the course	Classroom, equipped with laptop, video projector (if necessary) and appropriate software.
5.2. of conducting the laboratory	Properly equipped laboratory room: computers, network, Internet connection, specialized software, programmable controllers, specific stands with PLC and appropriate software

28. Specific skills acquired

Professional Competencies	C5. Design control systems
Transversal Competencies	CT3. Think analytically

29. Learning Outcomes

Knowledge	<ol style="list-style-type: none"> 1. The student understands the basic principles of automatic control (feedback, feedforward, tuning) and their application in the design of automatic systems. 2. Know the structure, operation and interaction of hardware and software components in an industrial control system – in particular a PLC 3. Identify the languages, functions, algorithms used in PLC programming. 4. Solve problems.
Skills	<ol style="list-style-type: none"> 1. Integrate and configure hardware and software components into a functional system with PLC and simulation. 2. Plan and execute engineering experiments using specific laboratory equipment. 3. Analyzes and interprets experimental data to validate hypotheses or technical performances. 4. Think analytically and creatively.
Responsibilities and autonomy	<ol style="list-style-type: none"> 1. Evaluates and optimizes the performance of the projected system, assuming responsibility for choosing technical solutions. 2. Has the ability to manage technical projects responsibly and on time. 3. Can work independently or in a team to implement and test automation solutions in a real professional environment. 4. It analyzes experimental data, develops new projects.

30. Objectives of the discipline (resulting from the grid of specific competences accumulated)

8.1. General objective of the discipline	The main objective of the "Automata and Microprogramming" course, provided in the specialized training plan, is to familiarize the students of the Automation and Applied Informatics specialization in the field of programmable logic automata as well as with their programming languages defined in the standards.
8.2. Specific objectives	<ul style="list-style-type: none"> • Knowledge of the hardware construction of programmable vending machines and understanding their operation • knowledge and understanding of the ways of preloading programmable machines • Ability to interpret and explain automation diagrams • Ability to create simple programs for programmable controllers used in practice

31. Course Content

9.1 Course	Teaching methods	Observations
1. General.	Oral presentations.	2 hours
2. Description of an automation		4 hours
3. Vector Vending Machines. Structure. Features	Powerpoint projections and computer	2 hours
4. AP Input Modules		2 hours
5. AP Output Modules		2 hours
6. Making automation graphs	simulations using the video	6 hours
7. Programming Programmable Vending Machines	projector or in the network	6 hours
8. Concrete automation solutions with AP		4 hours
TOTAL		28 hours

Course bibliography:

- ✓ [1] Mnerie Corina, Automata and mycoprogramming, course and laboratory notes, electronic format, 2025.
- ✓ [2] Mărgineanu Ioan, Programmable Automata. Hardware peculiarities and programming languages <http://www.infopam.net/>
- ✓ [3] Ivănescu Andrei Nick, Automata și microprogramare, Ed. Politehnica Press.
- ✓ [4] Th. Borangiu, A.-N. Ivanescu and S. Brotac, Programmable Automata. Theory and Solved Problems, Princeech Publishing House, Bucharest 2002.
- ✓ [5] Frank D. Petruzella – Activities Manual for Programmable Logic Controllers-McGraw-Hill Education (2016)
- ✓ [6] Frank D. Petruzella – Programmable Logic Controllers-McGraw-Hill Education (2016)
- ✓ [7] <https://www.mitsubishielectric.com/fa/assist/e-learning/eng.html>

9.2 Laboratory	Teaching methods	Observations
Solving automation problems using PLCs programmed with the Ladder diagram. Basic programming.		
1. Occupational protection measures in the microsystems laboratory. Behavior and action in emergency situations		2 hours

Examples of Simple Representative Automations	Mitsubishi – FX Trainer – simulation software	PCs with the right software	
2. Presentation of the AP equipment from the Microsystems laboratory. Identification of the component parts of different types of APs (different manufacturers, monobloc or modular). Presentation of industrial automation problems with AP. Posing the problem.		AP Mitsubishi FX3u-16M	4 hours
3. Presentation of the MELSEC FX Trainer Mitsubishi simulation software.		AP Mitsubishi FX3-30MT	2 hours
4. Using the basic objects of the LADDER language and implementing simple combinational logic functions. Lab AP Programming			4 hours
5. Using timers in apps. The traffic light			4 hours
6. Using Counters in Apps			4 hours
7. Conveyor and loading/unloading control solutions using Programmable Vending Machines			4 hours
8. Making automation graphs. Case studies			2 hours
9. Completion of works.			2 hours
TOTAL			28 hours

Laboratory bibliography:

[1] Mnerie Corina, Automata and mycoprogramming, course and laboratory notes, electronic format, 2025.

[2] Mărgineanu Ioan, Programmable Automata. Hardware peculiarities and programming languages <http://www.infopam.net/>

[3] Ivănescu Andrei Nick, Automata și microprogramare, Ed. Politehnica Press.

[4] Th. Borangiu, A.-N. Ivanescu and S. Brotac, Programmable Automata. Theory and Solved Problems, Princeech Publishing House, Bucharest 2002.

[5] Frank D. Petruzella – Activities Manual for Programmable Logic Controllers-McGraw-Hill Education (2016)

[6] <https://www.mitsubishielectric.com/fa/assist/e-learning/eng.html>

32. Corroboration/validation of the course content with the expectations of representatives of the epistemic community, professional associations, and representative employers in the field related to the program

The content of the discipline is in accordance with the discipline sheets of the discipline from other universities in the country and abroad. In order to better adapt the content of the discipline to the requirements of the labor market, meetings were held both with representatives of the business environment and with other specialized professors from other higher education centers in the country or abroad.

The teaching material was developed on the basis of representative textbooks of the field, recognized and appreciated by the academic community.

Some of the examples presented in the laboratory applications course originate from communications, lectures, project topics and other similar materials.

33. Assessment

Type of activity	Evaluation criteria	Evaluation methods	Percentage of final grade
11.1 Course	Knowledge, understanding and ability to apply the notions and concepts presented in the course.	Written paper or grid test	50%
	Solving homework within the imposed deadline	Evaluation along the way	25%
11.2 Laboratory	Participation, involvement and resolution of the problems proposed in the laboratory.	Evaluation along the way and final	25%
11.3 Minimum Performance Standard			<ol style="list-style-type: none"> 1. The student knows what the main concepts are, recognizes them, defines them correctly and solves a simple application. 2. Specialized language is simple, but correctly used. 3. To solve well a minimum of theoretical topics and applications. 4. Performing laboratory work.

Date of completion

Signature of the course holder

Signature of the laboratory instructor

20.09.2025 Senior lecturer.dr.eng. Corina Anca Mnerie Senior lecturer.dr.eng. Corina Anca Mnerie

Date of approval in the department

26.09.2025

Signature of the department director

Assoc.Prof. dr.eng. Dan Valentin Muller

Date of approval in the faculty council

Approval from the Dean

29.09.2026

Senior lecturer.dr.eng. Corina-Anca Mnerie

SYLLABUS

34. Program Information

1.1. Higher Education Institution	AUREL VLAICU UNIVERSITY OF ARAD
1.2. Faculty	FACULTY OF ENGINEERING
1.3. Department	AUTOMATION, INDUSTRIAL ENGINEERING, TEXTILES AND TRANSPORT
1.4. Field of Study	AUTOMATION, APPLIED INFORMATICS AND INTELLIGENT SYSTEMS
1.5. Study Cycle	BACHELOR OF SCIENCE
1.6. Study Program/Qualification	AUTOMATION AND APPLIED INFORMATICS (IN ENGLISH) (AIA-E)

35. Course Information

2.1. Course Title	ELECTRIC MACHINES AND DRIVES 2		
2.2. Course Lecturer	Assoc. Prof. Dr. eng. Valentin Dan MULLER		
2.3. Project activity Instructor	Assoc. Prof. Dr. eng. Valentin Dan MULLER		
2.4. Year of Study	2		
2.5. Semester	2		
2.6. Type of Assessment	VERIFICATION		
2.7. Course Status	DS-compulsory		

36. Estimated Total Time (hours per semester of didactic activities)

3.1. Hours per week	3	of which 3.2 lecture	2	3.3 Project	2
3.4. Total hours in the study plan	56	of which 3.5 lecture	28	3.6 Project	28
Time allocation:					Hours
Study based on course materials, bibliography					10
Additional documentation in library, specialized databases, or field work					10
Preparation for seminars/labs, essays, portfolios					10
Tutoring					4
Examinations					6
Other activities					4
3.7.Total hours of individual study					44
3.9.Total hours per semester					100
3.10.Number of appropriations					4

37. Preconditions (where applicable)

4.1. of curriculum	Mathematical Analysis, Algebra, Physics, Electrical Engineering, Electrical Machinery
4.2. of competences	Knowledge and appropriate use of the notions specific to the discipline; Knowledge and deepening of some fundamental notions of electric drives.

38. Conditions (where applicable)

5.1. of conducting the course	Classroom or classroom equipped with IT systems (video projector, etc.).
5.2. of conducting the seminar and laboratory	Classroom or laboratory

39. Specific Competencies Acquired

Professional Competencies	C3. Include new products in the production process – Help integrate new systems, products, methods, and components into the production line. It ensures that production workers are properly trained and comply with new requirements.
Transversal competencies	CT3. Think analytically – Think using logic and reasoning to identify the strengths and weaknesses of alternative solutions, conclusions, or approaches to problems.

7. Learning Outcomes

Knowledge	Graduate: <ul style="list-style-type: none"> • He has knowledge of the operation of some methods, algorithms, equipment. • Identify how certain products can be included in production • Define performance indicators. • Propose and validate optimization solutions to reduce costs and increase efficiency. • It processes information, ideas and concepts. • Solve problems. • Think creatively and innovatively.
Skills	Graduate: <ul style="list-style-type: none"> • Document and implement procedures for introducing a new product into the manufacturing flow. • It ensures the training of operators and the adaptation of equipment to the requirements of the new product. • Identify losses and non-conformities in the production process based on performance indicators. • Propose and validate optimization solutions to reduce costs and increase efficiency. • Think analytically. • Think critically. • Think creatively.
Responsibilities and autonomy	Graduate: <ul style="list-style-type: none"> • Evaluates and optimizes the performance of the designed system, taking responsibility for choosing technical solutions.

	<ul style="list-style-type: none"> • Can work independently or in a team to implement and test automation solutions in a real professional environment. • Has the ability to manage technical projects responsibly and on time. • It has availability for continuous learning and professional adaptation in emerging fields (intelligent automation, IoT, AI in control). • Manifestation of ethical behavior and a professional attitude in the engineering activity. • It analyzes experimental laboratory data. • Develop new installations.
--	--

8. Objectives of the discipline (resulting from the grid of specific competences accumulated)

8.1.General objective of the discipline	<ul style="list-style-type: none"> • The main objective of the discipline is to know the electrical drive systems. • During this course, control schemes with electric machines are presented, with the technical-constructive and functional characteristics of these systems.
8.2.Specific objectives	<ul style="list-style-type: none"> • Knowledge and appropriate use of the notions specific to the discipline. • Knowledge and deepening of some fundamental notions of electric drives. • Assimilation of theoretical knowledge regarding electric drive systems with direct current and alternating current machines.

9. Course Content

9.1 Course	Teaching methods	Observations
1.Shipping: Drive System Architecture	Oral presentation	2 hours
2. Kinematics and dynamics of electric drives . Kinematics of electric drives. Dynamics of electric drives The equation of motion. Reporting the main sizes to the shaft of the electric car	Oral presentation, completed with the presentation of images (video projector, etc.)	4 hours
3. Characteristics of electric drive motors of work machines and transmission elements. General notions. Mechanical characteristics of engines and working machines. Electromechanical couplings.	Oral presentation, completed with the presentation of images (video projector, etc.)	4 hours
4. Electric drive systems (mover-electric motor-work machine). Drive systems with DC motors and converters. Drive systems with asynchronous and synchronous AC motors.	Oral presentation, completed with the presentation of images (video projector, etc.)	8 hours
5. Automatic control and regulation systems for electric drives. General notions. Speed control systems Mcc. Impulse asynchronous car	Oral presentation, completed with the presentation of images (video projector, etc.)	6 hours

speed regulation systems. Speed adjustment of asynchronous machines with cascading schemes.	images (video projector, etc.)	
6. Choice of electric drive systems Energy for electric shareholders. Criteria for choosing drive machines	Oral presentation, completed with the presentation of images (video projector, etc.)	4 hours
	Total	28 hours

Course bibliography:

- [1]. Müller, V. Course Support in Electronic Format, 2025.
- [2]. Dordea, T. Electric Machines. ASAB Publishing House, Bucharest, 2002.
- [3]. Viorel, I.A.; Ciorba, R.C. Electric machines in drive systems. U.T. Pres Publishing House, Cluj-Napoca, 2002.
- [4]. Müller, V. Electric Machines, Politehnica Publishing House, Timișoara, 2005.
- [5]. Tunsoiu, Gh; Seracin, E; Saal, C. Electric Shareholders. Didactic and Pedagogical Publishing House, Bucharest 1982.
- [6]. Saal, C; Tope, I; Fransua Al; Micu, E. Electric Drives and Automation. Didactic and Pedagogical Publishing House, Bucharest, 1980.

9.2 Project		
Project theme: Electric drive of a working machine with asynchronous electric motors with winding rotor.	EN	4 hours
Quantities required for determining the mechanical characteristics for the asynchronous machine	EN	4 hours
Plotting Mechanical Characteristics	EN	4 hours
Determination of Starting Rheostat Steps for Three-Phase Asynchronous Machine with Winded Rotor	EN	4 hours
Checking the electric drive motor	EN	4 hours
Automatic control scheme of the electric drive	EN	4 hours
Delivering the project	EN	4 hours
	Total	28 hours

Project bibliography:

- [1] . Müller, V, Project Support in Electronic Format, 2025.
- [2]. Müller, V. Electric cars. Teme experimentale, Editura Politehnica Timișoara, 2005.
- [3]. Tunsoiu, Gh; Seracin, E; Saal, C. Electric Shareholders. Didactic and Pedagogical Publishing House, Bucharest 1982.

10. Corroboration/validation of the course content with the expectations of representatives of the epistemic community, professional associations, and representative employers in the field related to the program

- First of all, the university curricula for a study program must be structured based on the proposals of the social partners of the higher education institution, so that the graduate of the respective study program is easy to enter the labor market, immediately after completing the first cycle of studies (bachelor's degree), thus being stimulated to participate in master's and doctoral courses, organised in collaboration with the social partners.
- In the case of the study programme: Both the EU policy in the field and the standards in this field with immediate applicability must be taken into account, thus ensuring a compatibility of the curricula with the European ones as well as a better mobility of students through the European programmes (SOCRATES/ERASMUS, Leonardo da Vinci, Tempus II, etc.).

11. Assessment

Type of activity	Evaluation criteria	Evaluation methods	Percentage of final grade
11.1 Course	Students' ability to acquire a minimum level of knowledge.	Written Method - Exam, at the end of the semester	65%
	Active participation of students in the course.	Oral method (during the semester)	10%
11.2 Project	Students' ability to form and develop practical skills.	Oral method (at the end of the semester)	15%
	Active participation of students in the project.	Oral + practical method (during the semester)	10%
11.3 Minimum Performance Standard			
<ul style="list-style-type: none"> • The components of an electric drive system. • Ordering schemes 			

Date of completion Signature of the course holder Signature of the project instructor

20.09.2025 Assoc.Prof. dr.eng. Valentin Muller Assoc.Prof. dr.eng. Valentin Muller

Date of approval in the department Signature of the department director
26.09.2025 Assoc.Prof. dr.eng. Valentin Muller

Date of approval in the faculty council Approval from the Dean

29.09.2026 Senior lecturer dr.eng. Corina-Anca Mnerie

SYLLABUS

40. Program Information

1.1. Higher education institution	AUREL VLAICU UNIVERSITY OF ARAD
1.2. Faculty	FACULTY OF ENGINEERING
1.3. Department	AUTOMATION, INDUSTRIAL ENGINEERING, TEXTILES AND TRANSPORT
1.4. Field of study	AUTOMATION, APPLIED INFORMATICS AND INTELLIGENT SYSTEMS
1.5. Cycle of studies	BACHELOR OF SCIENCE
1.6. Study Program/Qualification	AUTOMATION AND APPLIED INFORMATICS (IN ENGLISH) (AIA-E)

41. Course Information

2.1 Course Title	ELECTRIC CARS AND DRIVES 1				
2.2 Course Lecturer	Assoc. Prof. Dr. eng. Valentin Dan MULLER				
2.3 Laboratory Instructor	Assoc. Prof. Dr. eng. Valentin Dan MULLER				
2.4 Year of Study	2				
2.5 Semester	1				
2.6 Type of Assessment	EXAMINATION				
2.7 Course Status	DS-compulsory				

42. Estimated Total Time (hours per semester of didactic activities)

3.1. Hours per week	4	of which 3.2 lecture	2	3.3 Laboratory	2
3.4. Total hours in the study plan	56	of which 3.5 lecture	28	3.6 Laboratory	28
Time allocation:					Hours
Study based on course materials, bibliography					14
Additional documentation in library, specialized databases, or field work					12
Preparation for seminars/labs, essays, portfolios					12
Tutoring					2
Examinations					2
Other activities...					2
3.7 Total hours of individual study					44
3.8 Total hours per semester					100
3.9 Number of credits					4

43. Preconditions (where applicable)

4.1. of curriculum	Mathematical Analysis, Algebra, Physics, Electrical Engineering
4.2. of competences	Knowledge and appropriate use of the notions specific to the discipline; Knowledge and deepening of some fundamental notions of electric cars.

44. Conditions (where applicable)

5.1. of conducting the course	Classroom or classroom equipped with IT systems (video projector, etc.).
5.2. of conducting the laboratory	Specialized laboratories within the institution or within partner companies.

45. Specific Competencies Acquired

Professional Competencies	C3. Include new products in the production process – Help integrate new systems, products, methods, and components into the production line. It ensures that production workers are properly trained and comply with new requirements.
Transversal competencies	CT3. Think analytically – Think using logic and reasoning to identify the strengths and weaknesses of alternative solutions, conclusions, or approaches to problems.

7. Learning Outcomes

Knowledge	Graduate: <ul style="list-style-type: none"> • He has knowledge of the operation of some methods, algorithms, equipment. • Identify how certain products can be included in production • Define performance indicators. • Propose and validate optimization solutions to reduce costs and increase efficiency. • It processes information, ideas and concepts. • Solve problems. • Think creatively and innovatively.
Skills	Graduate: <ul style="list-style-type: none"> • Document and implement procedures for introducing a new product into the manufacturing flow. • It ensures the training of operators and the adaptation of equipment to the requirements of the new product. • Identify losses and non-conformities in the production process based on performance indicators. • Propose and validate optimization solutions to reduce costs and increase efficiency. • Think analytically. • Think critically. • Think creatively.
Responsibilities and autonomy	Graduate: <ul style="list-style-type: none"> • Evaluates and optimizes the performance of the designed system, taking responsibility for choosing technical solutions. • Can work independently or in a team to implement and test automation solutions in a real professional environment. • Has the ability to manage technical projects responsibly and on time.

	<ul style="list-style-type: none"> • It has availability for continuous learning and professional adaptation in emerging fields (intelligent automation, IoT, AI in control). • Manifestation of ethical behavior and a professional attitude in the engineering activity. • It analyzes experimental laboratory data. • Develop new installations.
--	---

8. Objectives of the discipline (resulting from the grid of specific competences accumulated)

8.1. General objective of the discipline	<ul style="list-style-type: none"> • The main objective of the discipline is the knowledge of electric cars • This course presents all types of electric cars, with the technical-constructive and functional characteristics of these systems.
8.2. Specific objectives	<ul style="list-style-type: none"> • Knowledge and appropriate use of the notions specific to the discipline. • Knowledge and deepening of some fundamental notions of machines • Assimilation of theoretical knowledge regarding electric drive systems with direct current and alternating current machines.

9. Course Content

9.1 Course	Teaching methods	Observations
1. The electrical transformer. Construction – Principle of operation – Classification – Nominal sizes. The single-phase transformer. The operating regimes of the electrical transformer. The three-phase transformer. Parallel operation of transformers. Special transformers. The transient regime of the electrical transformer.	Oral presentation, completed with the presentation of images (video projector, etc.)	8 hours
2. Induction machine. Construction – Classification – Principle of operation. Equations of the asynchronous machine. Operating characteristics of induction machines. Starting the asynchronous machine. Changing the speed of the asynchronous car. Braking the asynchronous car.	Oral presentation, completed with the presentation of images (video projector, etc.)	8 hours
3. Synchronous machine. Construction – Classification – Principle of operation. The reaction of the induced. Equations of the synchronous machine. The power and electromagnetic torque of the synchronous machine. Synchronous generator. Operating characteristics. Non-symmetrical regimes of the synchronous machine	Oral presentation, completed with the presentation of images (video projector, etc.)	8 hours

4. DC machine. Construction – Classification – Principle of operation. The reaction of the induced and the resulting magnetic field. Equations and electromagnetic torque. DC motor. DC generator. Brake the DC machine.	Oral presentation, completed with the presentation of images (video projector, etc.)	4 hours
	Total	28 hours

Course bibliography:

- [1]. Müller, V. Course Support in Electronic Format, 2025.
- [2]. Dordea, T. Electric Machines. ASAB Publishing House, Bucharest, 2002.
- [3]. Viorel, I.A.; Ciorba, R.C. Electric machines in drive systems. U.T. Pres Publishing House, Cluj-Napoca, 2002.
- [4]. Müller, V. Electric Machines, Politehnica Publishing House, Timișoara, 2005.
- [5]. Tunsoiu, Gh; Seracin, E; Saal, C. Electric Shareholders. Didactic and Pedagogical Publishing House, Bucharest 1982..
- [6]. Saal, C; Tope, I; Fransua Al; Micu, E. Electric Drives and Automation. Didactic and Pedagogical Publishing House, Bucharest, 1980.

9.2 Laboratory	Teaching methods	Observations
Labor protection, presentation of the types of electric machines in the laboratory.	Classic + Presentation	2 hours
No-load test of electrical transformer	classic + assembly	2 hours
Electrical Transformer Short Circuit Test	classic + assembly	2 hours
Load Characteristics of Electrical Transformer	classic + assembly	2 hours
Trying to operate the asynchronous machine in a no-load operation	classic + assembly	2 hours
Short-circuit operation test of asynchronous machine	classic + assembly	2 hours
Adjusting the speed of the asynchronous motor	Mixed (classic + IT-assisted)	2 hours
Modeling and simulation of the three-phase asynchronous machine in transient mode	IT-assisted	2 hours
Starting the DC motor	classic + assembly	2 hours
Adjusting the DC motor speed	classic + assembly	2 hours
Transient mode in DC machine	IT-assisted	2 hours
Modeling and simulation of the synchronous machine in transient mode	IT-assisted	2 hours
Rebounds		4 hours
	Total	28 hours

Laboratory bibliography:

- [1]. Müller, V. Electric cars. Teme experimentale, Editura Politehnica Timișoara, 2005.
- [2]. Tunsoiu, Gh; Seracin, E; Saal, C. Electric Shareholders. Didactic and Pedagogical Publishing House, Bucharest 1982..

[3]. Müller, V. Laboratory support in electronic format, 2025.

10. Corroboration/validation of the course content with the expectations of representatives of the epistemic community, professional associations, and representative employers in the field related to the program

First of all, the university curricula for a study program must be structured based on the proposals of the social partners of the higher education institution, so that the graduate of the respective study program is easy to enter the labor market, immediately after completing the first cycle of studies (bachelor's degree), thus being stimulated to participate in master's and doctoral courses, organised in collaboration with the social partners.

In the case of the study programme: Both the EU policy in the field and the standards in this field must be taken into account with immediate applicability, thus ensuring a compatibility of the curricula with the European ones as well as a better mobility of students through the European programmes (SOCRATES/ERASMUS, Leonardo da Vinci, Tempus II, etc.).

11. Assessment

Type of activity	Evaluation criteria	Evaluation methods	Percentage in the final grade
11.1 Course	Students' ability to acquire a minimum level of knowledge.	Written method - Exam, at the end of the semester	65%
	Active participation of students in the course.	Oral method (during the semester)	10%
11.2 Laboratory	Students' ability to form and develop practical skills.	Oral method (at the end of the semester)	15%
	Active participation of students in laboratory work.	Oral + practical method (during the semester)	10%
11.3 Minimum Performance Standard			
In order to pass the exam, the student must obtain at least a grade of 5			
<ul style="list-style-type: none"> • Knowing how electric cars work • Speed adjustment 			

Date of completion Signature of the course holder Signature of the laboratory instructor
20.09.2025 Assoc.Prof. dr.eng. Valentin Dan Muller Assoc.Prof. dr.eng. Valentin Dan Muller

Date of approval in the department
26.09.2025

Signature of the department director
Assoc. Prof. dr. eng. Valentin Dan Muller

Date of approval in the faculty council

Approval from the Dean

29.09.2026

Senior lecturer.dr.eng. Corina-Anca Mnerie

SYLLABUS

1. Program Information

1.1 Higher Education Institution:	AUREL VLAICU UNIVERSITY OF ARAD
1.2 Faculty:	FACULTY OF ENGINEERING
1.3 Department:	AUTOMATION, INDUSTRIAL ENGINEERING, TEXTILES AND TRANSPORTS
1.4 Field of Study:	AUTOMATION, APPLIED INFORMATICS AND INTELLIGENT SYSTEMS
1.5 Study Cycle:	BACHELOR OF SCIENCE
1.6 Study Program / Qualification:	AUTOMATION AND APPLIED INFORMATICS (IN ENGLISH) (AIA-E)

2. Course Information

2.1 Course Title:	DATABASE			
2.2 Course Lecturer:	Prof.univ. dr.eng. Mariana NAGY			
2.3 Laboratory Instructor:	Assist, drd Tania-Bogdana GAVRILĂ			
2.4 Year of Study:	2			
2.5 Semester	1			
2.6 Type of Assessment:	VERIFICATION			
2.7 Course Status:	DS -ompulsory			

3. Estimated Total Time (hours per semester of didactic activities)

3.1 Hours per week:	3	of which 3.2 lecture	2	3.3 laboratory	1
3.4 Total hours in the study plan	42	of which 3.5 lecture	28	3.6 laboratory	14
Time allocation:					hours
Study based on course materials, bibliography					10
Additional documentation in library, specialized databases, or field work					10
Preparation for seminars/labs, essays, portfolios					10
Tutoring					0
Examinations					3
Other activities...					0
3.7 Total hours of individual study					33
3.8 Total hours per semester					75
3.9 Number of credits					3

4.4. Preconditions (where applicable)

4.1 of curriculum	
4.2 of competences	Knowledge of office automation

5. Conditions (where applicable)

5.1 of conducting the course	Course room, equipped with laptop, video projector / smart board and appropriate software – Power Point, Word, database software
5.2 of conducting the laboratory	Laboratory room, appropriately equipped: computers, network, Internet connection, Power Point, Word, database software

6. Specific Competencies Acquired

Professional Competencies	C6. Establishes data processes - Uses ICT tools to apply mathematical, algorithmic or other data manipulation processes to create information.
Transversal Competencies:	CT2. Comply with regulations - Comply with the rules, regulations and guidelines relating to a particular field or sector and apply them in their daily work. CT3. Think analytically - Think using logic and reasoning to identify the strengths and weaknesses of alternative solutions, conclusions or approaches to problems.

7. Learning Outcomes

Knowledge	The graduate: <ul style="list-style-type: none">• Knows algorithms for data processing and analysis.• Knows programming languages (e.g. C++,C#)• Understanding algorithms and data structures, programming paradigms and languages used in the field of automation
Skills	The graduate: <ul style="list-style-type: none">• Creates algorithms for processing and analyzing data in industrial and engineering applications.• Uses programming languages and ICT tools to transform raw data into useful information.
Responsibilities and autonomy	The graduate: <ul style="list-style-type: none">• Evaluates and optimizes the performance of the designed system, assuming responsibility for choosing technical solutions.• Can work independently or in a team to implement and test automation solutions in a real professional environment.• Has the ability to manage technical projects with responsibility and respect for deadlines. Has availability for continuous learning and professional adaptation in emerging fields (intelligent automation, IoT, AI in control).

8. Objectives of the discipline (resulting from the grid of specific competences accumulated)

8.1 General objective of the discipline	<ul style="list-style-type: none">• Students acquire the essential concepts for the efficient manipulation of a large volume of data using a computer.• Improving the quality of cooperation between specialists from various fields and the computer science specialist through an interdisciplinary approach to the subjects.
---	--

8.2 Specific objectives	<ul style="list-style-type: none"> • Mastering the concepts of data organization. Data analysis and database model creation. • Creating and using relational databases. • Familiarizing with the main methods of automatic data processing, efficient database querying. • Programming in a DBMS using VBA • Creating a database to solve a practical problem: analysis, design, implementation, use.
-------------------------	--

9. Course Content

9.1 Course	Teaching methods	Observations
Fundamental concepts - Basic concepts: data, information, databases – evolution, characteristics, examples. - Advantages of using BD. Data independence. Architecture of a BD. DBMS. DB administration. - - Database models. Database normalization.	- interactive presentation - heuristic conversation - demonstration	4 hours
MS-Access, relational DBMS - MS-Access, relational DBMS - component of the MS-Office package. Interface, important windows. - Entities used. Presentation, role. Creating, Editing, Vizualising. Utilities: search wizard, expression wizard, DB compress and repair.	- interactive presentation - web search - exemplification	2 hours
Tables and relationships - Table structure, data types, field properties, data validation. - Relationships: presentation, role, classification, creation, deletion, properties. Examples	- interactive presentation - problem solving - modeling	2 hours
User Interface - Forms: data entry/viewing. Properties. Forms: simple menus. - Reports: design, creation, properties. Interpretation of information. Examples.	- interactive presentation - problem solving - modeling	2 hours
Database querying - Select queries: presentation, roles, visualization. Sorting, filtering, parameters, aggregate functions, calculated fields. - Action queries: presentation, role, classification, examples Action queries: applications. - Macros. Examples - SQL elements	- interactive presentation - problem solving - debate - programing	6 hours

Elements of object-oriented programming in VBA - Events. Definition, examples, order of events related to the use of a form. - VBA modules. Role, classification. Commands. Examples of CBF modules. - Objects. Properties and methods. Classes and instances. Container.	- interactive presentation - problem solving - web search - exemplification	8 hours
Creating an application - Presentation of the stages of creating complex functional applications. - Creating a simple relational DBMS for parts management in a high-end warehouse	- interactive presentation - problem solving - modeling - web search	4 hours
	TOTAL	28 hours

Course bibliography:

1. Nagy M., Lecture notes, SUMS, 2025.
2. Churcher C, Beginning Database Design: From Novice to Professional, A Press, 2012.
3. Garais E.G., Proiectarea bazelor de date relationale cu Microsoft Access, Ed. Pro Universitaria, 2024.
4. MacDonald M., Access 2013- the missing manual, O'Reilly Media, 2013.
5. Preppernau J., Lambert S., Lambert D., Microsoft Office Access 2007 Step-by-step, Microsoft Press, U.S, 2000.
6. Sfetcu N., Working with databases, Ed. Multimedia, 2021.
7. Ulrich L.A., Cook K., Access 2019 For Dummies, Ed. Wiley, 2019.
8. <https://support.office.com/>.
9. <https://sourcedaddy.com/ms-access/event-sequence.html>.

9.2 Laboratory	Teaching methods	Observations
Fundamental concepts - Basic concepts: data, information, databases – evolution, characteristics, examples. - Advantages of using DB. Data independence. Architecture of a DB. DBMS. DB administration. - Database models. Database normalization.	- exercise - debate - web search	2 hours
MS-Access, relational DBMS - MS-Access, relational DBMS - component of the MS-Office package. Interface, important windows. - Entities used. Presentation, role. Creating. Viewing. Utilities: search wizard, expression wizard, database compress and repair.	- exercise - debate - web search	1 hours
Tables and relationships: - Table structure, data types, field properties, data validation. - Relationships: presentation, role, classification,	- application - modeling - organized group work	1 hour

creation, deletion, properties. <u>Examples</u>		
User interface: - Forms: data entry/viewing. Properties. Forms: simple menus. - Reports: design, creation, properties. Interpretation of information. Examples.	- exercise- - application - modeling - project	1 hour
Database querying: - Selection queries: presentation, role, visualization. Sorting, filtering, parameters, aggregate functions, calculated fields. - Action queries: presentation, role, classification, examples. Action queries: applications. - Macros. Examples - SQL elements	- application - modeling - project - organized group work	2 hours
Object-oriented programming elements in VBA - Events. Definition, examples, order of events related to the use of a form. - VBA modules. Role, classification. Commands. Examples of CBF modules. - Objects. Properties and methods. Classes and instances. Container.	- application - modeling - project - web search - organized group work	2 hours
Creating an application - Presentation of the stages of creating complex functional applications. - Creating a simple relational DBMS for parts management in a high-end warehouse	- application - modeling - project - web search - organized group work	5 hours
	TOTAL	14 hours
Laboratory bibliography:		
1. Nagy M., Lecture notes, SUMS, 2025.		
2. Gavrilă Bogdana Tania, laboratory notes electronics, 2025.		
2. Diamond S. B., Brilliant VBA for Microsoft Access 2007 VBA, Prentice-Hall, 2008.		
3. Garais E.G., Proiectarea bazelor de date relationale cu Microsoft Access, Ed. Pro Universitaria, 2024.		
4. MacDonald M., Access 2013- the missing manual, O'Reilly Media, 2013.		
5. Preppernau J., Lambert S., Lambert D., Microsoft Office Access 2007 Step-by-step, Microsoft Press, U.S, 2000.		
6. Sfetcu N., Lucrul cu baze de date, Ed. Multimedia, 2021.		
7. Ulrich L.A., Cook K., Access 2019 For Dummies, Ed. Wiley, 2019.		
8. https://support.office.com/ .		
9. https://sourcedaddy.com/ms-access/event-sequence.html .		

10. Corroboration/validation of the course content with the expectations of representatives of the epistemic community, professional associations, and representative employers in the field related to the program

The content of the discipline is consistent with the content of similar disciplines in other university centers in the country and abroad. For a better adaptation of the content of the discipline to the requirements of the labor market, meetings were held with both employers - representatives of the business environment and with professors involved in cooperation programs at the European level.

11. Assessment

Type of activity	Evaluation criteria	Evaluation methods	Percentage of final grade
11.1 Course	<input type="checkbox"/> correctness and completeness of knowledge <input type="checkbox"/> logical coherence <input type="checkbox"/> degree of assimilation of specialty language <input type="checkbox"/> conscientiousness, interest in study	Oral assessment: <input type="checkbox"/> Presentation of a final project <input type="checkbox"/> Free student presentation <input type="checkbox"/> Evaluation conversation <input type="checkbox"/> Oral questionnaire. Active participation in classes.	30% 10%
11.2 Laboratory	<input type="checkbox"/> ability to operate with the acquired knowledge; <input type="checkbox"/> ability to apply in practice <input type="checkbox"/> conscientiousness, interest in study	Oral assessment: <input type="checkbox"/> Project completion and presentation, <input type="checkbox"/> Themes, projects completed along the way Active participation in laboratory applications	30% 10% 20%
11.3 Minimum performance standard			
Mastering fundamental concepts, using specialized language, creating a basic application.			

Date of completion Signature of the course holder Signature of the laboratory instructor

20.09.2025 Prof.univ.dr.ing. Mariana Nagy Asistent drd. Bogdana-Tania Gavrilă

Date of approval in the department Signature of the department director

26.09.2025 Assoc.Prof. dr.eng. Valentin Muller

Date of approval in the faculty council Approval from the Dean

29.09.2026 Senior lecturer.dr.eng. Corina-Anca Mnerie

SYLLABUS

1. Program Information

1.1. Higher education institution	AUREL VLAICU UNIVERSITY OF ARAD
1.2. Faculty	FACULTY OF ENGINEERING
1.3. Department	AUTOMATION, INDUSTRIAL ENGINEERING, TEXTILES AND TRANSPORTS
1.4. Field of study	AUTOMATION, APPLIED INFORMATICS AND INTELLIGENT SYSTEMS
1.5. Study Cycle	BACHELOR OF SCIENCE
1.6. Study Programme/Qualification	AUTOMATION AND APPLIED INFORMATICS (IN ENGLISH) (AIA-E)

2. Course Information

2.1 Course Title:	ENGLISH LANGUAGE		
2.2 Course Lecturer:			
2.3 Seminar/Laboratory Instructor:	Senior Lecture dr. Manuela Odetă ȘOPTĂ-BELEI		
2.4 Year of Study:	2		
2.5 Semester	1		
2.6 Type of Assessment:	VERIFICATION		
2.7 Course Status:	DC-optional		

3. Estimated Total Time (hours per semester of didactic activities)

3.1. Hours per week	1	of which 3.2. lecture	-	3.3. Seminar	1
3.4. Total hours in the study plan	14	of which 3.5. lecture	-	3.6. Seminar	14
Time allocation:					

Study based on course materials, bibliography	
Additional documentation in library, specialized databases, or field work	10
Preparation for seminars/labs, essays, portfolios	14
Tutoring	4
Examinations	4
Other activities...	4
3.7 Total hours of individual study	36
3.8 Total hours per semester	50
3.9 Number of credits	2

4. Preconditions (where applicable)

4.1. of curriculum	Previous knowledge of English
4.2. of competences	Fluent communication ability B2

5. Conditions (where applicable)

5.1. Course	
5.2. Seminar	Seminar room

6. Specific Competencies Acquired

Professional Competencies	
Transversal Competencies	<p>CT1. Work in teams - Work confidently within a group, each doing their part in the service of the whole.</p> <p>CT2. Comply with regulations - Comply with the rules, regulations and guidelines related to a particular field or sector and apply them in their daily work.</p> <p>CT3. Think analytically – Think using logic and reasoning to identify the strengths and weaknesses of alternative solutions, conclusions, or approaches to problems.</p>

7. Learning Outcomes

Knowledge	<p>Know the principles and stages of teamwork.</p> <p>Know ways to communicate and collaborate effectively.</p> <p>Know the principles of professional ethics and deontology.</p> <p>He is familiar with the applicable procedures and quality standards.</p> <p>It processes information, ideas and concepts.</p> <p>Think creatively and innovatively.</p>
Skills	<p>Actively participates in team activities, contributing to the achievement of common goals.</p> <p>Demonstrates the ability to negotiate and resolve conflicts constructively.</p> <p>Correctly apply activity-specific regulations, procedures, and instructions.</p> <p>Propose solutions to improve compliance with rules and procedures.</p> <p>Think analytically and creatively.</p>
Responsibilities and autonomy	<p>They take on their own tasks and respect the deadlines set in the team.</p> <p>Contribute to a positive and productive team climate.</p> <p>Respects the principles of professional ethics in all activities carried out.</p> <p>It contributes to the promotion of an organizational culture based on compliance and integrity.</p> <p>Approach problems critically.</p>

8. Objectives of the discipline (resulting from the grid of specific competences acquired)

8.1. General objective of the discipline	<ul style="list-style-type: none"> - offering and requesting various information within a conversation - extracting essential information from a text and using it in various activities - the correct use of as many grammatical and language structures as possible - Acquiring the basic specialized language and using it in writing various materials or in various conversational situations
8.2. Specific objectives	<ul style="list-style-type: none"> - Acquiring the basic specialized language and using it in writing various materials or in various conversational situations

9. Contents

9.1. Course	Teaching methods	Observations
-------------	------------------	--------------

9.2. Seminar	Seminar methods	Observations
Computer types	-Lecture; - Interactive dialogue;	1 hours
Input devices	-Lecture; - Interactive dialogue;	2 hours
Output devices	-Lecture; - Interactive dialogue;	2 hours
Storage devices	-Lecture; - Interactive dialogue;	2 hours
Motoring, cars	-Lecture; - Interactive dialogue;	2 hours
Computer architecture	-Lecture; - Interactive dialogue;	2 hours
Software and programming languages	-Lecture; - Interactive dialogue;	2 hours
Oral Examination	-Dialogue;	1 hours
	All	14 hours

Seminar bibliography:

[1]. BANTAŞ, ANDREI, Porteanu Rodica, English Language for Science and Technology, Niculescu Publishing House, Bucharest, 1999.

[2]. CHITORAN, DUMITRU, Panoref Irina, Poenaru Ioana, English Grammar Exercises, Ed.Teora, Bucharest, 1999.

[3]. E.ADAM, English for Science and Technology, Cavallioti Publishing House, The British Council, Bucharest, 1999.

[4]. GLENDING, H.ERIC, English in Mechanical Engineering, Teacher's Edition, Oxford University Press, 1990.

[5]. HAPGOOD, MICHAEL, English Lesson One, Heinemann, Educational Books.

[6]. IDEM, English Lesson Three, Heinemann, Educational Books.

[7]. JONSON D and CN, General Engineering, Prentice Hall International, Great Britain, 1993.

[8]. MILLS, MARTIN, Nexus, English for Advanced Learners, Macmillan, UK, 2004.

[9]. PADIOŞ, CONSTANTIN, English Grammar, Thery and Practice, Ed. Polirom, Bucharest, 2001.

[10]. Vince, MICHAEL, Advanced Language Practice, English Grammar and Vocabulary, Macmillan, UK, 2004.

Dictionaries

[11]. NICULESCU, GABRIELA; CINCU, CORNELIU, Romanian-English Technical Dictionary, Bucharest Technical Publishing House, 2001.

[12]. WEBBER, MARTIN, Elementary Technical English, Thomas Nelson, 1983.

[13]. *Seminar in electronic format, uploaded to the SUMS platform, 2025.*

10. Corroboration/validation of the course content with the expectations of representatives of the epistemic community, professional associations, and representative employers in the field related to the program

The contents of the discipline were developed in accordance with the expectations of employers, with a national program and with the consultation of members of the same specialty within the department and from similar departments from other universities

11. Assessment

Type of activity	Evaluation criteria	Evaluation methods	Percentage of final grade
11.1. Course			
11.2. Seminar	<ul style="list-style-type: none"> - Correct use of specialized language; - Ability to solve the proposed exercises that lead to the recapitulation of various grammar problems and various language structures; - Translations and retroversions in which the learned specialty terms appear 	<ul style="list-style-type: none"> - Periodic testing during the semester (Partial exam) - Answers to the exam / colloquium (final evaluation); - Preparation of reports; - Preparation of portfolios. 	<ul style="list-style-type: none"> - Responses to the final evaluation – 70%; - Testing during the semester – 30%;
11.3. Minimum performance standard			
Writing a written document at B2 level to argue a point of view on a certain topic, coherent and linguistically correct, adapted to the context and field of interest; fluent oral argumentation, correctly articulated, at minimum level B2.			

Date of completion Signature of the course holder

20.09.2025

Signature of the seminar instructor

Senior lecturer.dr. Manuela Odetă Șoț Belei

Date of approval in the department

Signature of the department director

26.09.2025

Assoc. Prof. dr. eng. Valentin Muller

Date of approval in the faculty council

Approval from the Dean

29.09.2026

SYLLABUS

1. Program Information

1.1. Higher education institution	AUREL VLAICU UNIVERSITY OF ARAD
1.2. Faculty	FACULTY OF ENGINEERING
1.3. Department	AUTOMATION, INDUSTRIAL ENGINEERING, TEXTILES AND TRANSPORTS
1.4. Field of study	AUTOMATION, APPLIED INFORMATICS AND INTELLIGENT SYSTEMS
1.5. Study Cycle	BACHELOR OF SCIENCE
1.6. Study Programme/Qualification	AUTOMATION AND APPLIED INFORMATICS (IN ENGLISH) (AIA-E)

2. Course Information

2.1 Course Title:	ENGLISH LANGUAGE		
2.2 Course Lecturer:			
2.3 Seminar/Laboratory Instructor:	Senior Lecture dr. Manuela Odetă ȘOPTĂ-BELEI		
2.4 Year of Study:	2		
2.5 Semester	2		
2.6 Type of Assessment:	VERIFICATION		
2.7 Course Status:	DC-optional		

3. Estimated Total Time (hours per semester of didactic activities)

3.1. Hours per week	1	of which 3.2. lecture	-	3.3. Seminar	1
3.4. Total hours in the study plan	14	of which 3.5. lecture	-	3.6. Seminar	14
Time allocation:					

Study based on course materials, bibliography	
Additional documentation in library, specialized databases, or field work	10
Preparation for seminars/labs, essays, portfolios	14
Tutoring	4
Examinations	4
Other activities...	4
3.7 Total hours of individual study	36
3.8 Total hours per semester	50
3.9 Number of credits	2

4. Preconditions (where applicable)

4.1. of curriculum	Previous knowledge of English
4.2. of competences	Fluent communication ability B2

5. Conditions (where applicable)

5.1. Course	
5.2. Seminar	Seminar room

6. Specific Competencies Acquired

Professional Competencies	
Transversal Competencies	<p>CT1. Work in teams - Work confidently within a group, each doing their part in the service of the whole.</p> <p>CT2. Comply with regulations - Comply with the rules, regulations and guidelines related to a particular field or sector and apply them in their daily work.</p> <p>CT3. Think analytically – Think using logic and reasoning to identify the strengths and weaknesses of alternative solutions, conclusions, or approaches to problems.</p>

7. Learning Outcomes

Knowledge	<p>Know the principles and stages of teamwork.</p> <p>Know ways to communicate and collaborate effectively.</p> <p>Know the principles of professional ethics and deontology.</p> <p>He is familiar with the applicable procedures and quality standards.</p> <p>It processes information, ideas and concepts.</p> <p>Think creatively and innovatively.</p>
Skills	<p>Actively participates in team activities, contributing to the achievement of common goals.</p> <p>Demonstrates the ability to negotiate and resolve conflicts constructively.</p> <p>Correctly apply activity-specific regulations, procedures, and instructions.</p> <p>Propose solutions to improve compliance with rules and procedures.</p> <p>Think analytically and creatively.</p>
Responsibilities and autonomy	<p>They take on their own tasks and respect the deadlines set in the team.</p> <p>Contribute to a positive and productive team climate.</p> <p>Respects the principles of professional ethics in all activities carried out.</p> <p>It contributes to the promotion of an organizational culture based on compliance and integrity.</p> <p>Approach problems critically.</p>

8. Objectives of the discipline (resulting from the grid of specific competences acquired)

8.1. General objective of the discipline	<ul style="list-style-type: none"> - offering and requesting various information within a conversation - extracting essential information from a text and using it in various activities - the correct use of as many grammatical and language structures as possible - Acquiring the basic specialized language and using it in writing various materials or in various conversational situations
8.2. Specific objectives	<ul style="list-style-type: none"> - Acquiring the basic specialized language and using it in writing various materials or in various conversational situations

9. Contents

9.1. Course	Teaching methods	Observations
-------------	------------------	--------------

9.2. Seminar	Seminar methods	Observations
Computer types	-Lecture; - Interactive dialogue;	1 hours
Input devices	-Lecture; - Interactive dialogue;	2 hours
Output devices	-Lecture; - Interactive dialogue;	2 hours
Storage devices	-Lecture; - Interactive dialogue;	2 hours
Motoring, cars	-Lecture; - Interactive dialogue;	2 hours
Computer architecture	-Lecture; - Interactive dialogue;	2 hours
Software and programming languages	-Lecture; - Interactive dialogue;	2 hours
Oral Examination	-Dialogue;	1 hours
	All	14 hours

Seminar bibliography:

[1]. BANTAŞ, ANDREI, Porteanu Rodica, English Language for Science and Technology, Niculescu Publishing House, Bucharest, 1999.

[2]. CHITORAN, DUMITRU, Panoref Irina, Poenaru Ioana, English Grammar Exercises, Ed.Teora, Bucharest, 1999.

[3]. E.ADAM, English for Science and Technology, Cavallioti Publishing House, The British Council, Bucharest, 1999.

[4]. GLENDING, H.ERIC, English in Mechanical Engineering, Teacher's Edition, Oxford University Press, 1990.

[5]. HAPGOOD, MICHAEL, English Lesson One, Heinemann, Educational Books.

[6]. IDEM, English Lesson Three, Heinemann, Educational Books.

[7]. JONSON D and CN, General Engineering, Prentice Hall International, Great Britain, 1993.

[8]. MILLS, MARTIN, Nexus, English for Advanced Learners, Macmillan, UK, 2004.

[9]. PADIOŞ, CONSTANTIN, English Grammar, Thery and Practice, Ed. Polirom, Bucharest, 2001.

[10]. Vince, MICHAEL, Advanced Language Practice, English Grammar and Vocabulary, Macmillan, UK, 2004.

Dictionaries

[11]. NICULESCU, GABRIELA; CINCU, CORNELIU, Romanian-English Technical Dictionary, Bucharest Technical Publishing House, 2001.

[12]. WEBBER, MARTIN, Elementary Technical English, Thomas Nelson, 1983.

[13]. *Seminar in electronic format, uploaded to the SUMS platform, 2025.*

10. Corroboration/validation of the course content with the expectations of representatives of the epistemic community, professional associations, and representative employers in the field related to the program

The contents of the discipline were developed in accordance with the expectations of employers, with a national program and with the consultation of members of the same specialty within the department and from similar departments from other universities

11. Assessment

Type of activity	Evaluation criteria	Evaluation methods	Percentage of final grade
11.1. Course			
11.2. Seminar	<ul style="list-style-type: none"> - Correct use of specialized language; - Ability to solve the proposed exercises that lead to the recapitulation of various grammar problems and various language structures; - Translations and retroversions in which the learned specialty terms appear 	<ul style="list-style-type: none"> - Periodic testing during the semester (Partial exam) - Answers to the exam / colloquium (final evaluation); - Preparation of reports; - Preparation of portfolios. 	<ul style="list-style-type: none"> - Responses to the final evaluation – 70%; - Testing during the semester – 30%;
11.3. Minimum performance standard			
Writing a written document at B2 level to argue a point of view on a certain topic, coherent and linguistically correct, adapted to the context and field of interest; fluent oral argumentation, correctly articulated, at minimum level B2.			

Date of completion Signature of the course holder

Signature of the seminar instructor

20.09.2025

Senior lecturer dr. Manuela Belei Odetă

Date of approval in the department

Signature of the department director

26.09.2025

Assoc. Prof. dr. eng. Valentin Muller

Date of approval in the faculty council

Approval from the Dean

29.09.2026

Senior lecturer.dr.eng. Corina-Anca Mnerie

SYLLABUS

46. Program Information

1.1. Higher education institution	AUREL VLAICU UNIVERSITY OF ARAD
1.2. Faculty	ENGINEERING
1.3. Department	AUTOMATION, INDUSTRIAL ENGINEERING, TEXTILES AND TRANSPORT
1.4. Field of study	AUTOMATION, APPLIED INFORMATICS AND INTELLIGENT SYSTEMS
1.5. Cycle of studies	BACHELOR OF SCIENCE
1.6. Study Programme/Qualification	AUTOMATION AND APPLIED INFORMATICS (IN ENGLISH) (AIA-E)

47. Course Information

2.1. Name of the discipline	FIELD PRACTICE
2.2. Course activity holder	
2.3. Seminar/laboratory activity holder	
2.4. Year of study	2
2.5. Semester	2
2.6. Type of assessment	VERIFICATION
2.7. Discipline regime	DS- compulsory

48. Total estimated time

3.1. Number of hours per week		of which 3.2 course	3.3 Seminar/laboratory/internship	
3.4. Total hours in the curriculum	90	of which 3.5 courses	3.6 Seminar/laboratory/practice	90
Time Pool Distribution				Hours
Study by textbook, course material, bibliography and notes				
Additional documentation in the library, on specialized electronic platforms and in the field				10
Preparation of seminars/laboratories, assignments, papers, portfolios and essays				
Tutorials				
Examination				
Other activities				
3.7. Total hours of individual study				
3.9. Total hours per semester				100
3.10. Number of appropriations				4

49. Preconditions (where applicable)

4.1. de curriculum	Quality standards. User manuals.
4.2. de competences	Labor protection rules.

50. Conditions (where applicable)

5.1. de course	-
----------------	---

5.2.de seminar/laboratory	Attendance at practical activities is mandatory.
---------------------------	--

6. Specific skills acquired

Professional skills	C1 – performs analytical mathematical calculations. C2 – designs electronic systems.
Transversal competences	CT1 – works in teams. CT2 – complies with regulations.

7. Learning Outcomes

Knowledge	<p>Graduate:</p> <ul style="list-style-type: none"> - Knows and identifies mathematical methods (linear algebra, numerical analysis) for modeling and solving engineering problems. -Use specific software tools (e.g. MATLAB) to automate analytical calculations and verify mathematical solutions in real contexts. <p>Graduate:</p> <ul style="list-style-type: none"> -Has knowledge of electronic schematics and methods of designing electronic systems. -Has knowledge in simulation programs <p>Graduate:</p> <ul style="list-style-type: none"> -Knows the principles and stages of teamwork -Know ways to communicate and collaborate effectively -Knows the principles of professional ethics and deontology -Is familiar with applicable procedures and quality standards
Skills	<ul style="list-style-type: none"> -Applies advanced mathematical methods (linear algebra, numerical analysis) for modeling and solving engineering problems. -Use specific software tools (e.g. MATLAB) to automate analytical calculations and verify mathematical solutions in real contexts. -Makes electronic schematics and printed circuit boards using specialized software. -Performs simulations to verify the functionality and viability of systems designed before manufacturing
Responsibilities and autonomy	<p>Graduate:</p> <ul style="list-style-type: none"> -Evaluates and optimizes the performance of the designed system, assuming responsibility for choosing technical solutions. -Can work independently or in a team to implement and test automation solutions in a real professional environment. -Has availability for continuous learning and professional adaptation in emerging fields (intelligent automation, IoT, AI in control).-

	<ul style="list-style-type: none"> - Assumes his/her own tasks and respects the deadlines set in the team - Contributes to a positive and productive team climate
--	---

8. Objectives of the discipline (resulting from the grid of specific competences acquired)

8.1 General objective of the discipline	<p>The main objective of the discipline is to integrate students into real professional activities in their field of specialization, through the practical application of the acquired theoretical knowledge, the development of technical skills and the formation of the skills necessary to adapt to the requirements of the work environment.</p>
8.2 Specific objectives	<ul style="list-style-type: none"> - Familiarizing students with the professional environment, the organizational structure and the way of functioning of an institution or company in the field of their specialization. - Practical application of theoretical knowledge, by getting involved in real activities, projects and tasks, specific to the field of study. - Developing technical and operational skills, through the use of industry-specific equipment, tools, technologies and software. - Training the ability to work in a team, collaborate effectively with professionals in the field and communicate clearly and professionally. - Acquiring the work procedures, quality, safety and professional ethics rules specific to the sector of activity. - Development of analysis and problem-solving skills, by participating in the identification, diagnosis and optimization of processes. - Observing and understanding workflows, technological processes, and how different system components are integrated. - Exercising professional responsibility and autonomy, by assuming concrete tasks and complying with deadlines and work standards. - Improving time management skills and organizing activities in a real professional context. - Preparation of a well-structured practice report, in which the activities carried out, the experiences acquired and the skills developed are analyzed.

9. Content

9.1 Course	Teaching methods	Observations
9.2 Laboratory	Teaching methods	Observations

10. Corroboration of the contents of the discipline with the expectations of the representatives of the epistemic community, professional associations and employers representative in the field related to the program

Operating with up-to-date concepts from computer science, information and communication technology

11. Assessment

Type of activity	Evaluation criteria	Evaluation methods	Percentage of final grade
11.1 Course			
11.2 Laboratory			
11.3 Field practice	Check	Practice Notebook Discussions	80% 20%
11.4 Minimum Performance Standard			
Fulfillment of the evaluation criterion in a proportion of at least 50%			

Date of completion
20.09.2025

Signature of the department director
Assoc.prof.dr.eng. Valentin Dan Muller

Date of approval in the department
26.09.2025

Dean's signature

Senior lecture dr.eng. Corina-Anca Mnerie

Date of approval in the faculty council
29.09.2026

Approval from the Dean

Senior lecturer.dr.eng. Corina-Anca Mnerie